Coral Reefs
DOI 10.1007/s00338-014-1191-9

REPORT

Multiple driving factors explain spatial and temporal variability
in coral calcification rates on the Bermuda platform

A. Venti + A. Andersson + C. Langdon

Received: 8 February 2014/ Accepted: 11 July 2014

© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Experimental studies have shown that coral
calcification rates are dependent on light, nutrients, food
availability, temperature, and seawater aragonite saturation
(Q2,ra0), but the relative importance of each parameter in
natural settings remains uncertain. In this study, we applied
Calcein fluorescent dyes as time indicators within the
skeleton of coral colonies (n = 3) of Porites astreoides and
Diploria strigosa at three study sites distributed across the
northern Bermuda coral reef platform. We evaluated the
correlation between seasonal average growth rates based
on coral density and extension rates with average temper-
ature, light, and seawater £2,.,, in an effort to decipher the
relative importance of each parameter. The results show
significant seasonal differences among coral calcification
rates ranging from summer maximums of 243 + 58 and
274 + 57 mmol CaCO; m2 d™~' to winter minimums of
135 £ 39 and 101 & 34 mmol CaCO; m™>d~' for P.
astreoides and D. strigosa, respectively. We also placed
small coral colonies (n = 10) in transparent chambers and
measured the instantaneous rate of calcification under light
and dark treatments at the same study sites. The results
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showed that the skeletal growth of D. strigosa and P.
astreoides, whether hourly or seasonal, was highly sensi-
tive to ,r,c. We believe this high sensitivity, however, is
misleading, due to covariance between light and Q,,,,, with
the former being the strongest driver of calcification vari-
ability. For the seasonal data, we assessed the impact that
the observed seasonal differences in temperature (4.0 °C),
light (5.1 mol photons m ™2 d™"), and Q.. (0.16 units)
would have on coral growth rates based on established
relationships derived from laboratory studies and found
that they could account for approximately 44, 52, and 5 %,
respectively, of the observed seasonal change of
81 + 14 mmol CaCO; m 2 d~'. Using short-term light
and dark incubations, we show how the covariance of light
and €,.,, can lead to the false conclusion that calcification
is more sensitive to 2, than it really is.

Keywords Coral calcification - Ocean acidification -
Bermuda - Aragonite saturation state

Introduction

The negative effects of ocean acidification (OA) on coral
calcification rates and net ecosystem calcification (NEC)
rates have been well documented with a strong correlation
observed between seawater aragonite saturation state
(Qarag) and rates of calcification (e.g., Langdon and
Atkinson 2005; Hoegh-Guldberg et al. 2007; Andersson
and Mackenzie 2011). These results, however, are heavily
drawn from controlled aquarium and mesocosm studies,
which isolate OA by manipulating seawater inorganic
carbon chemistry while keeping other parameters such as
light, temperature, salinity, nutrients, and flow rates con-
stant. Previous research has shown that coral calcification
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rates are also a direct function of these parameters, as well
as the seawater inorganic carbon chemistry (e.g., Chalker
and Taylor 1975; Koop et al. 2001; Mass et al. 2010).
In situ studies, which in general do not control these
parameters, are limited in their ability to evaluate the rel-
ative importance of the controlling factors on the rate of
calcification, but can be helpful in assessing the combined
impact of these parameters.

Seasonal differences in light, temperature, and seawater
inorganic carbon chemistry, including seawater pH and
Qqrag> are more pronounced in higher latitude reefs, such as
the Bermuda coral reef. For example, seasonal differences
in Q,,, of up to 1.2 units have been recorded on the
northern reef platform of Bermuda (Bates et al. 2010),
while lower latitude reefs such as Davies Reef (Great
Barrier Reef, GBR) exhibit smaller seasonal ranges of 0.15
(Albright et al. 2013). On diurnal timescales, the same is
true for shallow reef systems. For example, large diurnal
fluctuations in £, from 1.5 to 6 units, have been
observed on Lady Eliot Island (GBR) where reef waters are
typically less than 1 m deep (Shaw et al. 2012). These
types of environments provide natural laboratories to
investigate rates of calcification under a broad range of
seawater ;.

Though field data are limited, correlation between cal-
cification rates and temporal variability in seawater tem-
perature, light, and €,.,, have been observed on coral reef
ecosystems at diurnal (e.g., Suzuki et al. 1995; Yates and
Halley 2003, 2006; Price et al. 2012) and seasonal (e.g.,
Silverman et al. 2007; Manzello et al. 2008; Bates et al.
2010; Shamberger et al. 2011; Albright et al. 2013) time-
scales. However, the interdependence of these parameters
makes deciphering the relative importance and the princi-
ple driving mechanism(s) difficult. For example, increased
light levels cause warmer temperatures, which also directly
affect (., (higher temperature increases £, by
decreasing aragonite solubility). Some studies have found a
significant relationship between coral calcification and
temperature (e.g., Marshall and Clode 2004; Reynaud et al.
2004; Silverman et al. 2007), while others have not (e.g.,
Shaw et al. 2012). To some extent, a positive relationship
between temperature and calcification rates may be due to
the effect of temperature on seawater 2,.,, (Silverman
et al. 2007; Shaw et al. 2012), but this effect is relatively
small (0.03 units per 2 °C).

Conversely, the concept of light-enhanced calcification
has been well established (Kawaguti and Sakumoto 1948;
Gordeau 1959; Goreau and Goreau 1959) and can increase
coral calcification rates by three to ten times compared with
rates in the dark (Gattuso et al. 1999; Moya et al. 2006). Light
availability may also determine the susceptibility of reef
building corals to pressures from OA. Increased gross pho-
tosynthesis under high light conditions has been shown to
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effectively enhance calcification in Aiphanes horrida and
Parapercis cylindrica, even under high CO, treatments
(Suggett et al. 2012). At seasonal timescales, the net reef
community metabolism may also affect the reef’s suscepti-
bility to pressures from OA. Strong net autotrophy from
benthic components of the reef system may enhance ;o
due to photosynthetic uptake of CO,, while €,,,, may be
suppressed by the release of CO, from reef metabolism
during periods of strong net heterotrophy, as proposed by the
coral reef ecosystem feedback (CREF) hypothesis (Bates
et al. 2010).

The present study measured the calcification rates of two
scleractinian coral species (Diploria strigosa and Porites
astreoides) at three sites across the Bermuda coral reef
platform at seasonal (winter/summer) and hourly (light/
dark) timescales to better understand how coral calcifica-
tion rates vary across natural temporal and spatial differ-
ences in light, temperature, and seawater £,,. Seasonal
Calcein staining was conducted in March 2010, September
2010, and March 2011, and colonies were cored in Sep-
tember 2011, while hourly incubations were conducted in
September 2010 and 2011. Though natural temporal and
spatial differences in nutrients are also likely, these data
were beyond the scope of the present study. We compare
seasonal coral calcification rates from Bermuda with cal-
cification rates measured by similar methods in other reef
environments and discuss the relative importance of sea-
water carbonate chemistry (specifically £,.,) on coral
calcification rates at hourly and seasonal timescales.

Materials and methods
Study site

Bermuda offers a unique environment to study the effects
of OA on coral calcification rates. Bermuda lies on the
northern limit of tropical coral reefs ecosystems and thus
experiences threshold oceanic environmental and chemical
conditions with respect to temperature and light, and pos-
sibly ..., and pH, for supporting this ecosystem. It has
been hypothesized that Bermuda is likely to be affected by
OA sooner than lower latitude reefs, making Bermuda an
important location to study the effects of seawater inor-
ganic carbon chemistry on coral calcification rates (Kley-
pas et al. 1999, 2001; Bates et al. 2010). Bermuda is also
relatively spared from major human influences, such as
pollution, run-off, overfishing, and dredging common to
many US and Caribbean reefs and has been protected rel-
atively successfully by local legislation. Therefore,
observed long-term changes in coral calcification rates are
likely to reflect large-scale pressures from global climate
change (GCC) and OA rather than local factors.
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Rim reef waters are rapidly flushed by offshore water
(1-2 d), while longer residence times are found closer to
shore (10-15 d; Venti et al. 2012). Consequently, the
potential for a spatial gradient in carbon chemistry across
the Bermuda reef platform seems likely. However, An-
dersson et al. (2013) have shown that despite a strong
seasonal and spatial signal in the distributions of total
alkalinity (TA) and dissolved inorganic carbon (DIC),
only relatively small spatial gradients in pH and €,,, are
observed across the platform due to the nearly propor-
tional changes in DIC and TA owing to net reef metab-
olism (i.e., net ecosystem production, NEP = primary
production — autotrophic and heterotrophic respiration;
net ecosystem calcification, NEC = calcification —
CaCO; dissolution; Andersson and Gledhill 2013). Nev-
ertheless, in an effort to capture the maximum range of
environmental and chemical conditions experienced
across the platform, three spatially separated sites were
selected for the present study: East of North Rocks (NR;

Seasonal coral calcification rates

Coral calcification rates (G) can be defined as the product
of the coral’s vertical extension during a given time
interval (X) and its skeletal density (p) (Chalker et al.
1985):

X cmd™!- pgCaCO; cm™ = G gCaCO; em 2 d™! (1)

In this study, we combined a calcein dye staining method,
which has not been shown to negatively impact coral
growth, to assess seasonal vertical extension with X-ray
imaging analysis of coral core slices to quantify coral
density and thus seasonal calcification rates.

Seasonal calcification rates were measured for a total of
eighteen coral colonies, three P. astreoides and three D.
strigosa at three study sites. The staining process consisted
of loosely “tenting” tagged coral colonies with an imper-
meable plastic tarp secured to the base of the coral with
bungee cords. Diluted calcein dye (1 g L' of sea water)

32.473247°N, 64.74572°W), Whalebone Bay (WB;  was released under the tarp, which remained over the coral
32.364516°N, 64.71573°W), and Buoy 29 (B29; for 18-24 h before being removed. Despite longer than
32.32203°N, 64.811718°W; Fig. 1). ideal tenting events, coral colonies did not exhibit any
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Fig. 1 Bermuda and the Bermuda reef platform. Black stars indicate
three sites selected for the present study, North Rocks (NR),
Whalebone Bay (WB), and Buoy 29 (B29). Yellow dots denote
sampling stations for the surface water platform survey conducted in
March (winter) and September (summer) 2012. Red stars indicate the
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location of monthly environmental data collected between March
2010 and September 2011 by the BEACON project: Buoy 33 (B33),
North Channel (NC), and Tyne’s Bay (TB). Map credit: M. Shailer,
Dept. of Conservation Services, Government of Bermuda
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signs of stress (e.g., bleaching, paling) from being tented.
Colonies were stained during seasonal sampling expedi-
tions in March 2010, September 2011, and March 2011. In
September 2011, stained corals were cored on SCUBA
using a pneumatic hand drill attached with a diamond
coring bit, capturing three complete growth periods: two
periods from March to September, encompassing mostly
“summer” months, and one period from September to
March, designated as “winter” months. The distance
between each seasonal calcein band, revealed by a fluo-
rescent filter, represents the coral’s vertical extension
between sampling periods. Coral density was measured on
coral cores sliced to a uniform thickness of 0.5 cm using
X-ray imaging analysis and Coral XDS software (Chalker
et al. 1985; Helmle et al. 2002; http://www.nova.edu/
ocean/coralxds/index.html).

Light/dark coral calcification rates

Though well suited for seasonal timescales, the calcein
staining method is not applicable for diurnal resolution.
Instead, we conducted short-term incubation experiments
using the alkalinity depletion method to determine hourly
calcification rates in light and dark conditions. This method
is based on the principle that seawater TA is depleted in a
mol ratio of 2:1 for every mol CaCO; deposited by the
coral during the incubation period. This relationship is
defined in Schneider and Erez (2006) as:

(ATA/Z) : (Vchamber - Vcoral) p
t-SA

G (umol CaCOzem *h™') =
(2)

where ATA (umol kg™') is the change in total alkalinity
during incubation, Vepamper a0d Veoral (m?) are the volumes
of the chamber and displaced by the coral, respectively, p
(kg m~?) is the density of sea water, ¢ (h) is the duration of
the incubation, and SA (m?) is the surface area of the coral
nubbin.

In March 2010, ten coral “nubbins,” five of each P.
astreoides and D. strigosa, were collected at each site,
epoxied onto PVC sleds and secured onto a platform at the
site from which the corals were collected. The initial sur-
face area of all corals was measured with calipers assuming
simple geometric forms unique for each colony (i.e., half
sphere, cone). In general, D. strigosa were classified as half
sphere geometries, while P. astreoides were typically cone-
shaped, though each colony’s geometry was assessed
independently for surface area analysis. In September
2010, after corals had a chance to recover from the col-
lection process, and again in September 2011, light and
dark calcification rates were measured in situ by collecting
water samples from 2-1 incubation chambers after ~ 1.5-h

@ Springer

Fig. 2 Platforms used for a hourly incubation study and b hourly
incubation analysis. Chambers in the background with the tin-foil
represent dark incubations, and chambers in the foreground represent
light incubations

incubation. All chambers were fitted with a battery-oper-
ated magnetic stirring bar to ensure sufficient water cir-
culation within the chamber during the incubation process
(Fig. 2). Dark incubations were achieved by covering
chambers with aluminum foil. Water samples were col-
lected from the water column above the platform at the
start of incubations to quantify the initial conditions and
also at the end from each chamber by syringe from a
sampling hose secured with a clamp. Water samples from
blank incubation chambers were used to correct for any net
water column metabolism (i.e., to understand the change in
TA over time in the water column). Incubations were
typically conducted around noon, though exact starting
times varied between stations and sampling year. Dark
incubations were conducted first, after which aluminum
foil was removed and chambers were flushed with fresh
water before starting the light incubations, roughly 2.5 h
after the dark incubation.

Platform surveys
To assess the spatial variability in seawater inorganic car-

bon chemistry across the Bermuda coral reef platform
within the scope of this study, we conducted two platform-
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wide surveys in March and September 2012 (Fig. 1). At
each of 50 stations, surface seawater measurements of
temperature, salinity, and dissolved oxygen were taken
with a yellow springs instrument (YSI) analyzer and water
samples were collected for TA and DIC analysis.

Sample analyses

Seawater samples for DIC and TA from the spatial surveys
were collected in thrice rinsed 250-ml PETG bottles.
Samples from the in situ chamber experiments were drawn
into four 50-cc plastic syringes by divers and transferred
through 0.45 pum cellulose acetate filters to 250-ml PETG
bottles at the surface. A headspace of ~1-2 % of the
sample volume was created to allow for water expansion,
and 100 pl of saturated HgCl, was added to stop biological
activity. All samples were analyzed within six weeks of
collection. Dissolved inorganic carbon was measured by an
acidification/gas extraction technique using an Apollo
Scitech AS-C3 Total Dissolved Inorganic Carbon Ana-
lyzer. In this technique, 0.75 ml sample maintained at
25 °C is drawn up into a syringe pump, mixed with 1 ml of
10 % H3PO, acid and injected into a gas stripping cell
where UHP N, gas carries the CO, gas through a LICOR
7000 CO, Gas Analyzer. The LICOR integrates the
absorbance versus time signal and yields a net result that is
proportional to the total inorganic carbon content of the
sample. Seawater-certified reference material (CRM’s,
prepared by A. Dickson, Scripps Institution of Oceanog-
raphy) was analyzed at the beginning and end of each
15-20 sample run to ensure accuracy of the DIC mea-
surements. Precision based on analysis of replicate offshore
samples was 0.17 % (~3 pmol kg~', n = 17).

Total alkalinity was determined by potentiometric
titration with 0.1 M HCIl. The second equivalence point
was determined by iteratively fitting a modified Gran
function (Hansson and Janger 1973) to the titration data
using code originally written by D. Archer, University of
Chicago. Certified reference materials were analyzed at the
beginning and end of each set of 15 samples to ensure the
accuracy of TA measurements. Precision based on analysis
of replicate offshore samples was 0.19 % (~4 pmol kg™ ',
n = 17). All CRMs, DIC, and TA samples were run in
duplicate. Total alkalinity and DIC samples were filtered
through 0.45 pm cellulose acetate filters before analysis to
remove any carbonate particulates that might be present in
the sample. The pCO,, pH (total scale), and €2,,, Were
calculated as a function of the measured salinity, temper-
ature, TA, and DIC using the program CO2SYS, dissoci-
ation constants for carbonate acid determined by Mehrbach
et al. (1973) as refit by Dickson and Millero (1987), and the
dissociation constant for boric acid determined by Dickson
(1990).

Complementing environmental data

Though platform survey data were valuable in assessing
spatial trends in carbon chemistry, it was limited in its
temporal resolution. To assess the relationship between
coral calcification over the 6-month growth periods of our
three season study, we utilized monthly salinity, tempera-
ture, TA, and DIC data collected by BIOS’ water quality
monitoring program (WQMP) and the Bermuda Ocean
Acidification and Coral Reef Investigation (BEACON)
project from three sampling stations distributed across the
Bermuda coral reef platform (Fig. 1). Though sampling
sites were not exactly at the same location as our three
study sites, similar environmental characteristics between
north channel (NC) and NR, Tyne’s Bay (TB) and WB, and
Buoy 33 (B33) and B29, motivated the analysis of envi-
ronmental data from the former sites with coral growth data
from the later. What we lost in spatial resolution (i.e., these
sampling sites were not exactly the same location as our
three study sites) was compensated for by higher temporal
resolution, as platform survey data from the present study
was limited to 1 d during summer and winter. Light data
were collected at the L. F. Wade Bermuda International
Airport in St. George by BAS-Serco and the Bermuda
Weather Service in 1-min intervals that were integrated
over 24 h to yield daily PAR values for each day of the
three 6-month sampling periods.

Results

Corals were stained at our three study sites, (NR, WB, and
B29) in March 2010, September 2010, and March 2011,
and cored in September 2011, marking three 6-month
growth periods. The environmental characteristics of each
of these growth periods, collected by the BEACON project,
are reported below, followed by the corresponding growth
data.

Environmental conditions
March 2010-Sept 2010 (summer I)

Monthly measurements from NC, TB, and B33 showed that
surface water temperatures ranged from a minimum of
17.5 °C in late March to a maximum of 29.5 °C in late
August, with an average temperature of 24.5 °C (¢ = 4.3,
n = 21) for the first 6-month growth period (Fig. 3). Light
levels ranged from 7.4 molm > d~' in late March to
66.5molm2>d~" in June, with an average of
473 mol m > d™" (¢ =12, n = 280; Fig. 3). The Qyp,,
reached a minimum in April, with values of 3.35 and 3.36
for TB and B33, respectively (Fig. 3). At NC, Q.
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Fig. 3 Environmental data during the seasonal coral staining study.
a SST, ¢ Q,,, and d pCO, data came from monthly sampling by the
BEACON project. b Light data came from the BAS-Serco and the
Bermuda Weather Service. Light gray bars represent the two

reached a minimum of 3.57 in both March and mid-June.
The maximum €,,, was observed at all three study sites in
mid-July with values of 3.56, 3.61, and 3.54, for TB, NC,
and B33, respectively. The average €,,,, during this period
was 3.46 (¢ = 0.07, n = 5), 3.46 (¢ = 0.07, n = 5), and
3.55 (¢ = 0.08, n = 5), at TB, B33, and NC, respectively.
Seawater pCO,, though not discussed in this paper, agrees
with the Q,,, results and is also shown in Fig. 3 for con-
text. Though there were no significant differences in SST
among the three study sites (l1-way ANOVA,
Fa12)=0.009, p = 0.99), there was a significant differ-
ence in the €,,, among the three study sites (I1-way
ANOVA, F(],12) = 443, pP = 003)

September 2010—March 2011 (winter)
Minimum temperatures reached 16.8 °C in January and a
maximum temperature of 26.3 °C in late September, with

an average of 20.0 °C (¢ =4, n = 21) for the second
6-month growth period (Fig. 3). Though daily light values
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varied from a minimum of 3 mol m 2 d™! to a maximum
of 50.7 mol m~%d~" (Fig. 3), they were typically low,
averaging 27.7 mol m 2d™' (¢ = 11.4, n = 183). The
Qarag Was low with an average of 3.28 (¢ = 0.25,n = 6) at
NG, 3.27 (¢ = 0.048, n = 6) at B33, and 3.22 (¢ = 0.048,
n = 6) at TB (Table 1). Spatial differences were minimal
with SST and Q.. showing no significant differences
among the three study sites (l-way ANOVA,
Fi,12)=0.03, p=099 for SST; 1-way ANOVA,
F(l,lZ) = 073, p = 0.49 for Qarag)'

March 2011-September 2011 (summer II)

Sea surface temperature ranged from 18.8 °C in March to a
maximum of 29.5 °C in late August, with an average SST
of 24.6 °C (¢ = 4.1, n = 6). Light levels ranged from 10.3
to 66.5 mmol m>d~' with an average light level of
478 mmol m™>d~" (¢ = 12.7, n = 281). The Q. dis-
played different trends among study sites during the third
6-month growth period. At B33, the €,., reached a
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&)‘3’ E g % Q?% seasonally averaged environmental conditions showed
— é % % OO § g § g £ strong corre%ations with light (#* = 0.8), SST (* = 0.79),
2z(cE|lzz8 88 vx vy & — . ot :
zz 22223338383 |¢ é and Qa.rag (r 0.75; Fig. 5). The fact th..?lt Fhe correlation
FSlaslzzomm==2==1n5 coefficients for each of the factors are similar (0.75-0.8)
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Table 2 Average seasonal extension rate and coral density from calcein dye staining experiment and corresponding seasonal and average annual calcification rates (white)
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CoralXDS

Seasonal Calcein dye experiment

Sample

Site

Density Average annual

Extension

Average annual

-2 yr—l

Seasonal calcification (g cm

March 2011-Sept 2011

Sept 2010—

March 2010-
Sept 2010

Extension

(g cm™)

(mm yr)

yr )

-2

G (gcm

yrh

-2

G (gcm

March 2011
Extension

March 2011-
Sept 2011

March 2010-  Sept 2010-

Density

Extension

March 2011

Sept 2010

(mmyr™")  (mmyr ") (g cm™?)

(mm yr)

1

7.9

1.2367
1.8958
1.2668
1.4109
1.4754
1.3195

64

7.81 (£0.6)

10.7 (£3)
20.0 (+2)

4.8 (£1)

10.7 (£2)

1.2367
1.8958
1.2668
1.4109
1.4754
1.3195

86.45 (£11)

105.66 (+9)

86.4 (£13)  38.83 (£6)

NR  D. strig.

NR

0.00

P. astr.

6.71
7.20
7.38
7.65

53

6.84 (£0.2)
6.85 (£0.3)
7.05 (£0.3)
7.26 (+0.9)

7.9 (+3)
4.9 (1)
7.0 (£2)
7.6 (+2)

43 (£1)

7.9 (+2)
9.7 (43)

62.7 (£5)
34.9 (£7)

4777 (£6)

33.8 (£7)
38.62 (£8)

62.7 (48)
68.44 (£3)

WB  D. stri.
WB  P. astr.
B29  D. strig.
B29 P. astr.

51

5.4 (40.5)

50
58

5.1 (1)

9.1 (1)

384 (45) 5733 (£5)

69.3 (+7)

Average annual extension rates, skeletal density, and average annual calcification rates from the CoralXDS analysis are shown in gray for comparison

350

1 P. astreoides

=3 D. strigosa
300 4{C=—] Summer
Winter

250 e

0] L 1
il 1P

100 A

50 4

Calcification rate (mmol CaCO, m” d'l)

Rim reef Shoreward

NR WB B29
Site

Fig. 4 Seasonal coral calcification rates averaged among three
replicate samples of Porites astreoides (light gray) and Diploria
strigosa (dark gray) measured from the seasonal calcein dye staining
experiment. Open bars represent summertime rates (March—Septem-
ber); hashed bars represent winter rates (September—March). Error
bars denote standard deviations among replicate species (n = 3).
Study sites are shown as a function of their proximity to the rim reef,
with NR closest to the rim reef, and progressing shoreward to WB and
B29 along the x-axis. Calcification rates of D. strigosa at NR were
statistically different from rates measured at WB or B29 (star).
Calcein bands of P. asreoides at NR were not clear in all three
replicate samples and thus are not shown. D. strigosa at B29 only
displayed the final calcein sampling band (summer) in all three
replicates, and thus, winter data are also not shown

does not mean that each factor contributed equally to the
observed differences in calcification rate, but rather that the
factors covary over time, i.e., temperature, light, and Q.
are highest during the summer and lowest during the
winter. Increasing solar irradiance causes the water to
warm. Warmer temperatures result in lower solubility of
CO, in seawater and lower aragonite solubility, which
contribute to an increase in seawater {2,.,,. Increasing solar
irradiance also affects net community production and cal-
cification, which could alter £,,,, depending on the relative
uptake of DIC and TA (Andersson and Gledhill 2013). We
discuss the cause and effect between these changes and the
calcification rates of the corals in the subsequent
discussion.

Hourly light/dark calcification rates

Hourly incubation experiments were conducted just after
maximum temperatures were reached at our three study
sites, in September 2010 and 2011 (indicated by the stars in
Fig. 3). Average hourly calcification rates for D. strigosa
(n = 5) ranged from —32 (£20) mmol CaCO; m~> h™ ! in
2010 to 14 (£6) mmol CaCO; m~2 h™! in 2011 under dark
treatments and light treatments ranged from 7 (£6) mmol
CaCO; m >h™' in 2011 to 40 (£26) mmol CaCOj;
m > h™" in 2011 under light treatments. Average hourly
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Fig. 5 Summer (open) and winter (filled) coral calcification rates
averaged among replicate samples of P. astreoides and D. strigosa
and corresponding a light, b sea surface temperature, and ¢ aragonite
saturation states at three study sites distributed across the northern
Bermuda coral reef platform. Gray bars represent the observed
seasonal range (Fig. 2); black bars represent average diurnal range;

calcification rates for P. astreoides (n = 5) ranged from
—34 (£21) mmol CaCO; m 2 h™ ! in 2010 to 24 (£35)
mmol CaCO; m 2 h™!in 2011 in dark treatments and from
14 (£10) mmol CaCO; m~>h™"' in 2010 to 32 (%19)
mmol CaCO; m~2 h™!'in 2011 in light treatments (Fig. 6).
Average hourly calcification rates in light and dark treat-
ments showed no significant difference between the three
study sites for either species P. astreoides and D. strigosa
(ANOVA, F», 19y = 0.06, p > 0.05; Fig. 6). However, the
calcification rates between light and dark treatments were
significantly different (ANOVA, F(; 19y = 5.71, p < 0.05;
Fig. 6). Average seawater pH and Q,.,, were lower during
dark treatments compared with light treatments in both
2010 and 2011 (Table 3). Light levels were similar during
2010 and 2011 sampling periods, while SST was about
2 °C cooler in 2011 (Table 3). Temperature and light did
not change during the 1.5-h incubation period and were

dark gray bars in figure a represent the standard deviation of the
seasonal average. Diurnal ranges in SST and €., were based on
measurements from NOAA PMEL MAPCO, buoy systems at Hog
Reef (32.46°N, 64.83°W) and Crescent Reef (32.40°N, 64.79°W)
http://www.pmel.noaa.gov/co2/story/Coral+Reef+Moorings. Light
data came from BAS-Serco and the Bermuda Weather Service

identical to water column values, but ,.,, was altered by
the coral’s metabolism; thus, corals experienced a range of
Qurag during the 1.5-h incubation. The values reported here
are the average ., during the 1.5-h incubation; the
complete range of €,,, each coral experienced during the
1.5-h incubation is shown in Fig. 7.

Sea surface temperatures, measured in the water column
and not inside the chambers throughout the incubation,
were constant throughout the 1.5-h incubation period and
did not vary between light and dark incubations. Temper-
ature was only weakly correlated with hourly calcification
rates (> = 0.06). Light levels also remained constant
throughout the incubation period and were, like SST,
weakly correlated with calcification rates (r2 = 0.25).
Hourly calcification rates displayed greater correlation with
the Q1ag (* = 0.53), which did vary throughout the 1.5-h
incubation (Fig. 7).
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Fig. 6 Average hourly calcification rates from ~ 1.5 h coral incuba-
tions in a September 2010 and b September 2011 under light (open)
and dark (dashed) treatments for the two sample species Porites
astreoides (light gray) and Diploria strigosa (dark gray). Results are
averaged from five coral nubbins of each P. astreoides and D. strigosa
at each of the three study sites. Error bars denote standard deviations.
Study sites are shown as a function of their proximity to the rim reef,
with NR closest to the rim reef and moving further away progressing
along the x-axis

Spatial surveys of carbonate chemistry

During the March 2012 platform spatial survey, distribu-
tions of DIC and TA were high and relatively uniform
across the Bermuda coral reef platform, with no clear
trends. The March seawater DIC ranged from 2,067 to
2,094 pmol kg~' (ADIC = 27 pmol kg '), and TA ran-
ged from 2,346 to 2,361 pmol kg™!
(ATA = 15 pmol kg_l). The Q,,; was relatively uniform
across the platform with an average of 3.08 (¢ = 0.12,
n = 50). Seawater pCO, was also uniform with an average
of 392 patm (¢ = 24, n = 50).

The September distributions of carbon chemistry from
the 2012 platform showed a drawdown of both DIC and TA
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compared with offshore values, with a large shoreward
decline in both parameters. Dissolved inorganic carbon
ranged from 2,047 pmol kg~' at the rim reef to
1,938 umol kg~'  nearshore (ADIC = 109 pmol kg™ "),
while TA ranged from 2,319 to 2,234 pmol kg_1
(ATA = 85 pmol kg_l; Table 1). The average Q,.,, was
329 (6 =0.24, n=50), and the average pCO, was
497.31 patm (¢ = 37.29, n = 50).

To evaluate spatial trends in these distributions, the 50
stations were divided into seven cross-platform transects
extending from shore to the rim reef. Data from stations at
similar distances from shore were averaged and evaluated
in reference to the average distance from shore. The sig-
nificance of this average trans-platform trend was deter-
mined by testing the null hypothesis that the slope equaled
zero (Hy: f = 0). Based on this analysis, we observed no
significant spatial trends in TA, DIC, or carbonate species
pCO; or Q,,, in the March sampling survey (Table 4).

Despite greater variability of both pCO, and €, in the
September spatial survey, neither parameter displayed any
statistically significant trend or gradient across the Ber-
muda coral reef platform (Table 4). When we averaged
data from all rim reef stations and all nearshore stations,
however, we found a significant difference of 0.14 units in
the Q.o between these two regions of the platform (one
sided T test, fj6 = 2.82, p < 0.05). These results agree
with the monthly data, which show elevated €, at the
rim reef (NC) compared with nearshore sites (TB and B33).

Discussion
Evaluation of the calcein staining method

The objective of this study was to resolve seasonal changes
in coral growth rates and evaluate these changes in the
context of variations in environmental conditions. Histor-
ically, alizarin red has been the method of choice to stain
corals because it leaves a clear, pink stain, visible to the
eye. However, sometimes the corals do not take the stain
up effectively and data may be lost. There has also been
concern that alizarin may be toxic to some corals (Dodge
et al. 1984; Holcomb et al. 2013). For these reasons, we
decided to use calcein dye for this study. The drawback of
this stain is that it is not visible to the naked eye; it fluo-
resces when excited by 475 nm light. The advantages are
that corals seem to take it up more reliably, and there is no
reported negative impact to corals.

Though experiments employing calcein dye to measure
intra-annual extension are becoming increasingly common
in laboratory experiments, application of this method to
in situ experiments has remained relatively limited until
recently (Tambutte et al. 2011; Holcomb et al. 2013). To
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Table 3 Chemical and physical properties of water within the incubation chambers of the 2010 and 2011 hourly incubation study

Year Site Treatment coral species Temp C Salinity Light (umol TA DIC pH Qurag
photon m2 sh (pmol kgfl) (pmol kgfl)

2010 B29 Light P. astreoides 27.78 36.86 486 2,233 (£20) 1,917 (£19) 7.97 (£0.01) 3.22 (£0.08)
B29 Light D. strigosa 27.78 36.86 486 2,272 (£8) 1,951 (£11) 7.97 (£0.01) 3.25 (£0.04)
B29 Dark P. astreoides 27.78 36.86 0 2,318 (£66) 2,061 (£63) 7.85 (£0.07) 2.7 (£0.37)
B29 Dark D. strigosa 27.78 36.86 0 2,333 (£30) 2,058 (£34) 7.88 (£0.02) 2.86 (£0.07)
NR Light P. astreoides 27.08 36.832 243 2,304 (£27) 1,976 (£41) 7.99 (£0.03) 3.46 (£0.22)
NR Light D. strigosa 27.08 36.832 243 2,273 (£34) 1,938 (£34) 7.98 (£0.02) 3.30 (£0.12)
NR Dark P. astreoides 27.08 36.832 0 2,377 (£23) 2,107 (£43) 7.87 (£0.06) 2.84 (£0.28)
NR Dark D. strigosa 27.08 36.832 0 2,371 (£30) 2,093 (£26) 7.87 (£0.02) 2.85 (£0.13)
WB Light P. astreoides 27.69 36.767 87 2,283 (£16) 1,966 (£10) 7.98 (£0.01) 3.36 (£0.06)
WB Light D. strigosa 27.69 36.767 87 2,272 (£24) 1,955 (£20) 7.98 (£0.02) 3.33 (£0.11)
WB  Dark P. astreoides 27.69 36.767 0 2,359 (£30) 2,075 (£45) 7.89 (£0.06) 2.95 (£0.32)
WB  Dark D. strigosa 27.69 36.767 0 2,338 (£45) 2,070 (£13) 7.88 (£0.05) 2.88 (£0.31)

2011 B29 Light P. astreoides 25.56 36.273 441 2,266 (£31) 1,989 (£32) 7.96 (£0.06) 3.00 (£0.34)
B29 Light D. strigosa 25.56 36.273 441 2,245 (£14) 1,973 (£32) 8.03 (£0.05) 3.41 (£0.30)
B29 Dark P. astreoides 25.56 36.273 0 2,289 (£20) 2,052 (£38) 7.96 (£0.06) 3.04 (£0.31)
B29 Dark D. strigosa 25.56 36.273 0 2,299 (£9) 1,989 (£43) 7.98 (£0.07) 3.21 (£0.38)
NR Light P. astreoides 25.56 36.323 206 2,266 (£19) 1,960 (£16) 8.04 (£0.01) 3.44 (£0.08)
NR Light D. strigosa 25.56 36.323 206 2,252 (£21) 2,010 (£45) 7.96 (£0.09) 2.97 (£0.45)
NR Dark P. astreoides 25.56 36.323 0 2,328 (£15) 2,033 (£16) 8.00 (£0.03) 3.30 (£0.14)
NR Dark D. strigosa 25.56 36.323 0 2,324 (£11) 2,040 (£46) 7.95 (£0.02) 3.02 (£0.13)
WB Light P. astreoides 26.11 36.227 58 2,231 (£16) 1,941 (£10) 8.04 (£0.05) 3.39 (£0.31)
WB Light D. strigosa 26.11 36.227 58 2,240 (£21) 1,964 (£8)  8.02 (£0.07) 3.26 (£0.41)
WB  Dark P. astreoides 26.11 36.227 0 2,302 (£45) 2,028 (£56) 7.97 (£0.01) 3.08 (£0.09)
WB  Dark D. strigosa 26.11 36.227 0 2,286 (£31) 2,039 (£34) 7.93 (£0.02) 2.86 (£0.10)

TA, DIC, pH, and €,,, change throughout the 1.5-h incubation; values reported here represent the average from the beginning and end of the
incubation. Temperature, salinity, and light did not vary throughout the 1.5-h incubation. Values represent the average among replicate samples
from each species (P. astreoides and D. strigosa, site (NR, WB, B29) and treatment (light and dark). Errors represent the standard deviation
among replicates. Light values are given at depth (7 m for NR and WB, 3 m for B29), applying a diffusive attenuation coefficient of —0.27

validate the application of calcein dye staining in situ, we
compared our results with coral calcification rates assessed
using CoralXDS, which provides average annual calcifi-
cation rates based on annual extension and average coral
density (Helmle et al. 2002). Calcification rates from the
calcein dye staining method used in this study provide
seasonal resolution, and as expected, summer rates
(March—September) were higher than the annual average
results provided by CoralXDS, while winter rates (Sep-
tember—March) were lower (Fig. 8). In an effort to com-
pare these two methods of measuring coral calcification
rates, seasonal rates were converted to annual rates by
assuming two 6-month growth periods with rates defined as
the average winter and summer calcification rates deter-
mined from the seasonal staining study. These average
annual calcification rates, scaled temporally from the sea-
sonal staining study, were well correlated with average
annual calcification rates obtained from CoralXDS
(* =085, p=0.0004, n=18; Fig.8). The good

agreement between these two methods suggests that cal-
cein dye staining is an effective method for obtaining
in situ seasonal coral extension rates.

Environmental controls on seasonal differences
in growth rates

Previous studies investigating seasonal differences in coral
calcification rates show a range of differences between
summer and winter rates (Table 5; Gladfelter et al. 1978,;
Dodge and Brass 1984). Part of this difference is attributed
to differences in environmental conditions associated with
location and latitude. For example, low latitude reefs that
experience small seasonal differences also show small
differences between summer and winter calcification rates.
However, part of the observed differences in seasonal
calcification rates may be related to methodological chal-
lenges such as the aforementioned problems with alizarin
staining. In contrast to low latitude locations, Bermuda

@ Springer



Coral Reefs

(a)s (b)®
Y =0.0073X + 5.01 v Y =-047X+14.1
=6 =036 8 2 61 § 2 =0.06
< o
3 H Y o v b Y
g 4 v g 4 v
s 5 .
QO 24 O 2
< <
3 = O B29Ligh
S o/ O B29 Light 2 oJ B29 Light
£’ </ B29 Light £ "7v w Light v
g [J NRLight é [J WBLight ™)
O 2 @ B29 Dark O 21 @ B29Dark |
® VW NRDark W NR Dark (]
4 W WBDark B WB Dark
- - - - - - -4 : - - - - -
0 100 200 300 400 500 24.5 25.0 25.5 26.0 26.5 27.0 275 28.0
Light (umol m2 s-1) SST (C)
8
(©) O B29 Day
V NR Day v ‘
~ %10 wsbay O ‘
= @ B29 Dark i
44 VW NRDark
i B WBDark
©)
Q2
<
Q
E 0
g
@) 2]
— Y =8.28X-24.7
=041
4 :

2.4 2.6 2.8 3.0

32 3.4 3.6 3.8

Average Qyrgo

Fig. 7 Hourly coral calcification rates under light (open) and dark
(filled) treatments and corresponding a light, b temperature, and
¢ aragonite saturation states within each incubation chamber at three
study sites distributed across the northern Bermuda reef platform.
Error bars in c represent the range of aragonite saturation states

Table 4 Summary of the statistics of spatial trends across the Ber-
muda northern reef platform from the March and September 2012
spatial surveys

Parameter March September
t df Significant at ¢ df Significant at
p =0.01 YN p = 0.01 Y/N
DIC 007 9 N 899 9 Y
TA 1.67 9 N 609 9 Y
Qarag 0.14 9 N 134 9 N
pCO, —-022 9 N 016 9 N

For this analysis, 50 sampling stations (Fig. 1) were divided into
seven transects extending from the island of Bermuda out to the rim
reef. Data from stations at similar distances from shore were then
averaged to generate one average cross-platform transect. These data
were then plotted as a function of their proximity to shore, testing the
null hypothesis that the slope of this average cross-platform transect
was zero (Hp: f = 0)
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experience by each coral during the roughly 1.5-h incubation period.
Qarag 1s highest at the beginning and decrease throughout the
incubation period. Light and temperature remained constant through-
out the 1.5-h incubation

experiences large seasonality due to its relatively high
latitude (32°N), which results in large differences in coral
calcification rates between summer and winter, with an
average AG between seasons of 77 (£29) mmol CaCO;
m~2 d~!, compared with studies from lower latitude reefs,
such as the Great Barrier Reef (AG = 49, Barnes and
Lough 1993; Table 5).

The large seasonal difference in coral calcification rates
observed in the present study combined with monthly
measurements of environmental parameters (temperature,
light, and €,,,) make it possible to assess the correlation
between these parameters and the calcification rates. Corals
experienced significantly different average SST, light, and
Qarag during the two growth periods (Fig. 3). The correla-
tions shown in Fig. 5 suggest that each of the factors alone
could conceivably explain the observed differences in
seasonal growth. Of course, the strong correlations are
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Fig. 8 Comparison of calcification rates measured using Coral XDS
(annual rates) and calcein dye staining method (seasonal and annual
average rates). Summer sampling periods are indicated by circles and
squares; triangles indicate winter sampling period; and diamonds
represent the average of winter and summer rates. The line designates
a 1:1 ratio; points above this line indicate the calcein dying method
overestimates calcification with respect to Coral XDS results; points
below the line indicate the calcein dye method underestimates
calcification. Average seasonal calcification from the calcein dye
staining method agree well with results determined from CoralXDS
(= 0.85, p = 0.0004, n = 18)

partly the result of the fact that we are working with only
two sets of observations (March—September and Septem-
ber—-March). We also know that light, temperature, and
saturation state covary on both seasonal and hourly time-
scales. Therefore, we need to move beyond simple corre-
lations in order to evaluate what is controlling the
calcification rates measured in this study.

Silverman et al. (2009) and Anthony et al. (2011) took
the approach of defining functions that attempted to
describe the combined effects of temperature and £,.,, on
coral calcification. These functions did not include the
effect of light, which certainly is important in explaining
seasonal differences nor did they take into account that
coral growth often has an asymmetric response to tem-
perature (Houck et al. 1975; Reynaud et al. 1999). We
make the assumption that the seasonal change in coral
growth can be described by a partial differential equation
of the form:

oG oG oG

AG_yy = —Al+—=AT + ——AQy1, 3

6o TR T AT T a0 e ®)
where AG(_,, is the difference between summer and
, 96,80 and asaz_,(ig7 are partial
derivatives that describe the sensitivity of coral calcification
(G) to a unit change in light, temperature and €2,,, when the
other factors are held constant and Al, AT, and AQ,,,, are

the measured seasonal change in light, temperature, and

winter coral calcification rates

Qqrag, Tespectively. Essentially, we are assuming that the
growth rate of the corals (G) is a surface in 3-dimensional
space (R3) and the three dimensions are light, temperature,
and €2,,,,. The slope of the gradient in this R3 space is given
by Eq. (3) where each of the terms is a vector and the sum of
these vectors gives the change in G due to the change in the
three environmental factors. We estimate the gradient along
each of the three dimensions (axes) based on available
laboratory studies. Obviously, this model is very simplistic
and ignores covariance terms and the influence of other
factors such as food availability, nutrients, and water flow,
but it represents a starting point to evaluate whether we can
come close to predicting the magnitude of the seasonal
change in calcification by considering just three factors and
laboratory data on how the rate of calcification changes
when each of these factors is varied individually.

Light

Coral calcification rates are strongly dependent on light
availability. While many studies have looked at the short-
term response of coral calcification to changes in light on
an hourly or day/night time scale (Gattuso et al. 1999;
Anthony et al. 2007), what is needed for the present ana-
lysis is how coral calcification varies in response to the
slow change in daily integrated irradiance that occurs over
many days to weeks. On this timescale, the coral-algal
symbiosis has time to photo-acclimate to changing light
conditions, thereby optimizing its performance through
changes in pigment content per symbiont, symbiont den-
sity, and even changes in symbiont genotype. Marubini
et al. (2001) incubated replicate colonies of Porites com-
pressa at different light levels for 6 weeks and determined
that the relationship between photo-acclimated growth rate,
and the average daily PAR was well described by the same
hyperbolic tangent function used to describe the instanta-
neous rate of light calcification (Chalker 1981) and ranged
from 7.8 to 9.0 mol photons m~> d~" per unit change in G
and averaged 8.4 mol photons m~> d~' per unit change in
G. The change in G due to light (AG) is then given by:

AG = Gppx * (tanh <E1) — tanh <E2>> 4)
I I

where Gp.x is the light-saturated rate of growth in
mg cm 2 d™', E, and E, are the daily integrated photo-
synthetically available light at time 1 and time 2, and I is
the light saturation parameter in units of mol photons
m2d".

The first step in determining the effect of the seasonal
change in light is to estimate the amount of light that
reaches the corals. The light at depth is given by I,exp
(—k.*z) where I, is the incident PAR at the water surface, k,
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Table 5 Seasonal coral calcification rates

Study Study site Method Growth Coral G (mmol Seasonal AG
period species CaCO; m~2 d™")  (mmol CaCO, m2 da™h

Gladfelter et al. (1978) St Croix, USVI  X-ray Summer M. annularis 355 (£24) 73

Gladfelter et al. (1978) St Croix, USVI  X-ray Winter M. annularis 282 (£21)

Gladfelter et al. (1978) St Croix, USVI  X-ray Summer M. annularis 299 (£18) —81

Gladfelter et al. (1978) St Croix, USVI  X-ray Winter M. annularis 380 (£18)

Gladfelter et al. (1978) St Croix, USVI  X-ray Summer  P. astreoides 143 (£13) 7

Gladfelter et al. (1978) St Croix, USVI  X-ray Winter P. astreoides 136 (£8)

Barnes and Lough (1993)  Central BGR X-ray Summer  Porites 372 (£33) 49

Barnes and Lough (1993)  Central BGR X-ray Winter Porites 323 (£32)

Dodge and Brass (1984) Gulf of Mexico  X-ray Summer M. annularis 291 (£33) 32

Dodge and Brass (1984) Gulf of Mexico  X-ray Winter M. annularis 259 (£32)

This study Bermuda, WB Staining/X-ray ~ Summer  P. astreoides = 210 (£27) 65

This study Bermuda, WB Staining/X-ray ~ Winter P. astreoides 145 (£13)

This study Bermuda, B29 Staining/X-ray ~ Summer  P. astreoides 222 (£77) 87

This study Bermuda, B29 Staining/X-ray ~ Winter P. astreoides 135 (£39)

This study Bermuda, NR Staining/X-ray ~ Summer  D. strigosa 253 (£22) 109

This study Bermuda, NR Staining/X-ray ~ Winter D. strigosa 144 (£30)

This study Bermuda, WB Staining/X-ray ~ Summer  D. strigosa 204 (£51) 93

This study Bermuda, WB Staining/X-ray ~ Winter D. strigosa 111 (£13)

is the diffuse attenuation coefficient for PAR, and z is the Temperature

depth in m. No data could be found for k, on the Bermuda
platform. We recognize that k, varies both temporally and
spatially due to changes in suspended particulates. The
turbidity of the water in Bermuda varies between high in
summer and low in winter. Certain areas of the reef
platform (particularly B29) experience high turbidity
following the passing of cruise ships. Given the lack of
seasonal and spatial data on k, on the Bermuda platform,
we make the assumption that it is similar to the value we
have measured in the upper Florida Keys and on Davies
Reef in the Great Barrier Reef, ie., —0.3 m™! (C.
Langdon unpublished data). Making this assumption, we
believe that the attenuation coefficient is on the high end,
and hence, our estimate of the effect of light on calcifi-
cation will be on the conservative or low side. Based on
the depth of our corals at approximately 5 m at our three
study sites, we compute that the average light levels as
12.3 mol photons m~> d~" for the summer (March—Sep-
tember) growth period and 7.2 mol photons m~> d~' for
winter (September—March). If we plug in 12.3 and 7.2 as
El and E2, 8.4 as [, and 215 as G« into Eq. (4), we
find that the change in light could account for a
44 mmol m—* d~" decrease in calcification rate between
summer (March—September) and winter (September—
March) or 54 % of the total seasonal change. If k, is
significantly greater than 0.3 m~' during the winter
(September—March) period, then light could play an even
greater role in driving the seasonal change in G.
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Data on the effect of temperature on coral growth in well-
controlled experimental studies is sparse, but based on
what we have been able to find, the effect is symmetric
about the temperature optimum for some species and
asymmetric for others (Table 6). These temperature studies
did not account for the corresponding change in £,
which also affects calcification. Though we recognize this
as a limitation of our estimate of the effect of temperature
on calcification, we argue that the corresponding change in
Qarag, due to a change in temperature is small and will
therefore have a minimal influence on calcification in
comparison with temperature. A 2 °C change in tempera-
ture results in a 0.03 unit change in Q.. If we assume a
15 % change in calcification for every unit change in
Qurag (Chan and Connolly 2013), this results in a 0.45 %
change in G, which is small compared with the influence of
temperature. We find that on average growth rate decreases
by 12 + 4 % °C~' below the species temperature optimum
and decreases by 24 4 17 % °C~' when temperature
exceeds the temperature optimum. Utilizing this informa-
tion in our study requires knowing the temperature opti-
mum for our species. We could find nothing in the
literature specific to the two species used in this study or
for corals growing on the Bermuda platform. In general,
temperature optima of tropical corals range from 25 to
29 °C (Vaughan and Wells 1943). However, the optimum
is specific to the range of temperature that the corals
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Table 6 Examples of the effect of temperature both above and below the optimal temperature for coral growth (Tp.) on coral calcification rates

Species Origin of colonies T (°C) % change in G % change in G Reference
rang per °C for T < Ty, per °C for T'> Ty
M. capitata Kaneohe Bay, HI 20-28 8 -8 Coles et al. (1976)
P. lobata Kaneohe Bay, HI 22-28.5 11.1 —-57 Houck et al. (1975)
G. fascicularis Heron Reef, GBR 21-29 15.2 —18 Marshall and Clode (2004),
Al Horani (2005)
S. pistilata Gulf of Aqaba 21-29 8.1 -32 Reynaud et al. (1999)
Acropora sp. Gulf of Aqaba 21-29 6.9 -9 Reynaud et al. (1999)
P. damicornis Kaneohe Bay, HI 22.6-28 16.9 —18 Clausen and Roth (1975)
Eniwetok Atoll,
Marshall Islands
Average 12 —24
SD 4 17

experience at a specific location. Jokiel and Coles (1974)
found that the temperature optima for Pocillopora dami-
cornis ranged from 31 °C for specimens collected at Eni-
wetok (11.5 N) to 27 °C for corals collected in Kaneohe
Bay, Oahu (21 N) to 23 °C for corals collected at Midway
Atoll (28 N). Based on these studies, it can be inferred that
the optima is close to or slightly above the average annual
temperature that the species encounters. The annual aver-
age SST for the Bermuda coral reef platform from 2010 to
2011 was 23.4 °C (Fig. 3) with a summer maximum of
29 °C. Even though Bermuda is located at a higher latitude
(32°N) than Midway, it experiences summer temperatures
that are approximately 2 °C warmer. Based on this, we
assume that the temperature optimum of corals in Bermuda
is in the 23.4-25.4 °C range, but we recognize that this
range could be broader and very likely span a higher
temperature range. The percentage change in calcification
between two temperatures is given by:

If Ty < Topt <Ty:

A%G = (12%°C™") (Top — T1) (5)
+ (—24%°C™") (T — Top)
If Tope > Ty A%G = (12%°C™") (T — T1) (6)

where A%G is the percentage change in the rate of calcifi-
cation, 12 and —24 % °C~! are the sensitivity of calcifica-
tion to a unit change in temperature from Table 6, T is the
optimum temperature for growth, and 71 and Ty are the low
and high temperatures of interest. 71 and Ty in this study are
21 and 25 °C, respectively. Based on Eq. (5) and a T, that
ranges from 23.4 to 25.4 °C, we compute that A%G ranges
from —10 to +38 % and averages +24 %. If T, exceeds
25.0 °C (Eq. 6), then the A%G asymptotes out at 48 %. A
24 % reduction in the summer (March—September) calcifi-
cation rate amounts to a change of 52 mmol m—>d~'. A
24 % decrease in the winter (September—March) rates
amounts to a change of 32 mmol m 2 d ™.

Seawater aragonite saturation state

Lastly, we consider the contribution from the 0.16 unit
change in €,,, observed between summer and winter.
Laboratory studies have found that the mean response of
coral calcification is —15 & 8 % per unit decrease in Qg
(Chan and Connolly 2013). Based on this sensitivity we
estimate that the change in €., would cause a 2.4 % or
4 mmol m~2 d™' change in coral calcification rate.

In order to compare the sensitivities (slope of calcifi-
cation vs. €,,, relationship) measured in different studies,
it is first necessary to normalize the data because the
absolute rates may be different. A simple way to normalize
the rates is to express them relative to a rate at a reference
seawater aragonite saturation state. While any €,,, can be
used, it is advantageous to use the pre-industrial average
seawater £,.,, of 4.6 because the rates then reflect the
change since the onset of modern anthropogenic ocean
acidification. For data sets where an equation of the form
y = mx + b has been provided, multiplying m by [100/
(m*4.6 + b)] yields a normalized slope or sensitivity that
reflects the percentage change in calcification per unit
change in €,,,. This is how the single organism sensitiv-
ities were compared in Chan and Connolly (2013), which
showed an average of 15 &+ 8 % change in G per unit
change in €,,,. The stronger sensitivity of 63 % change in
G per unit change in €,,, observed in this study for both
hourly and seasonal calcification rates is much greater than
that observed in controlled experiments (Fig. 9). A stronger
sensitivity of community calcification to a change in Q,,,
has been previously noted (Pandolfi et al. 2011). This
strong sensitivity results in a threshold €., of 2.97, below
which we should expect dissolution; however, we know
that to be incorrect as corals on the Bermuda platform
continue to calcify at €,.,, < 3.0. With regard to the sea-
sonal data, this strong sensitivity may be a result of the
covariance of ,,, with other driving factors like

@ Springer
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Fig. 9 Calcification rates from Diploria strigosa (triangles) and
Porites astreoides (squares) from the dark (gray) and light (white)
hourly incubation study and seasonal staining study (black) normal-
ized to the calcification rate at €,.,, = 4.6 and corresponding Q,,,.
Hourly €, shown are the average values from the ~1.5-h
incubation period. Seasonal average €,., were determined from
monthly water sampling by the Bermuda Ocean Acidification and
Coral Reef Investigation (BEACON) project

temperature and light. With regard to the hourly incubation
data, the strong sensitivity may be a result of the effects of
respiration or dissolution on £2,,, within the chambers.
Alternatively, if environmental conditions (e.g., light,
temperature, food availability) in the field were sub-opti-
mal, corals may be more sensitive to £,,, compared with
corals reared in controlled environments where these
parameters are maintained at optimal levels.

Controlling factors of seasonal coral calcification
in Bermuda

In summary, our analysis suggests that light and tempera-
ture contribute roughly equally to the seasonal difference in
calcification, i.e., 44—54 mmol m~2 d~! and the change in
Qarag contributes about 4 mmol m 2 d~!. Thus, the total
seasonal difference in calcification based on this assess-
ment is roughly 102 mmol m~2 d™!, which is more than
the observed change of 81 + 14 mmol m~2 d™', suggest-
ing that the cumulative effects of changing light, temper-
ature, and saturation state are less than the individual
effects based on experimental studies.

It is encouraging that the prediction is not significantly
different from the observations, but the uncertainty of the
prediction is undoubtedly large. Future work is required to
better constrain the I and T, of the Bermuda corals and
determine if there are important covariance terms that we
are ignoring.

@ Springer

Environmental controls on hourly differences in growth
rates

During our short-term incubation experiments, we found
the response of calcification to changes in light to be
0.007 mmol m~2 h™', which is similar to that reported by
Langdon and Atkinson (2005; 0.01 mmol m~> h™") and
Gattuso et al. (1996; 0.005 mmol m—> h™"). During the
light incubations, €., increased by 0.13 & 0.06 (SD)
units, and during the dark incubation, it decreased by
0.18 £ 0.07 units. Calcification was similarly correlated
with both light (¥ = 0.36) and Q,,, (¥ = 0.41; Fig. 7a,c).
While the slope of G versus light plot
(0.007 mmol m 2 h! compares well with other studies,
the slope of the G versus €,.,, implies a sensitivity that is
much greater than observed in other single organism lab-
oratory studies. This can be seen by normalizing the hourly
data as described above for the seasonal data (Fig. 9). The
slope of the normalized hourly data is 63 % per unit ,,,,
which is similar to that reported for the seasonal data and
likewise four times greater than the average coral sensi-
tivity (Chan and Connolly 2013). We think that this high
sensitivity to €, is overestimated. Photosynthesis and
respiration have a direct impact on €, (i.e., photosyn-
thesis results in an increase in £,,,, while respiration
decreases ,,,), which in turn affect calcification rates. In
this study, photosynthesis is causing €, to rise in the
light incubations, and respiration is causing it to decline in
the dark incubations. This net change in £,,,, between the
light and dark incubations is 0.13 units. Calcification rates
of the corals do respond to these changes in €, but it is
also responding to the light. The effect of light is much
greater than the effect of €,,,. The average light received
is sufficient to increase calcification rates by 0.0073 *
(200400) or 1.5-3 mmol m~> h™', while the 0.13 unit
increase in €2,,, probably increases G by only
0.04 mmol m2 h™'. In the dark incubation, the effect of
the removal of light causes G to abruptly decrease to the
dark rate, while the decrease in €,,, probably only con-
tributes a decrease of only 0.05 mmol m~2h~'. The
decrease in £,,¢ in the dark incubation may also cause the
rate of dissolution to increase. This increase in dissolution
may be why we see net dissolution in some of the chambers
(Fig. 6).

The combination of decreased calcification and
increased dissolution would result in an even larger
decrease in G. The net effect of light and dark is to cause a
large change in G that looks like a very strong sensitivity to
Qurag if the full change in G is mapped onto the 0.31 unit
change in Q,.,,, but is actually largely due to light and
perhaps also the stimulation of dissolution in the dark
incubations.
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TA:DIC property—property plots and lack of a spatial
gradient in €,.,, across the platform

To understand why we are not seeing gradients in Q.
across the platform, which is a common feature of many
reefs (Kawahata et al. 1997, 2000; Suzuki and Kawahata
2003; Watanabe et al. 2006; Albright et al. 2013), we turn to
the plot of salinity-normalized TA versus DIC, which shows
data points from the 50 station platform-wide surveys
conducted in March and September 2012 (Fig. 10). The
points tend to fall along a fairly tight line with a slope of
0.93 £ 0.04 that closely approximates the slope of the 2,
isopleths. This is not significantly different from the
1.05 £ 0.04 reported by Andersson et al. (2013). This
means that the biota on the platform is removing DIC and
TA from the water in a fairly constant ratio both temporally
and spatially and that this ratio balances the effect of pho-
tosynthesis to elevate pH (reduce pCO,) and calcification to
reduce pH (elevate pCO,; Andersson and Gledhill 2013).
When the two processes combine in this ratio, the DIC and
TA can be drawn far down from their source water values
without altering the pH, pCO,, or Q,,, significantly. One
consequence of this is that you do not find spatial gradients
in pH, pCO,, or Q,,, as you do on many other reefs where
the slope of the TA:DIC line tends to be lower.
Understanding the relationship of temperature, light, and
Qarag ON coral calcification rates requires high temporal and
spatial resolution of environmental data. The monthly data
showed sustained differences in €., and pCO, at the rim
reef (NC) compared with nearshore sites (TB and B33).
The platform surveys in March and September, however,
showed that despite significant differences between the rim
reef and nearshore sites, there was no consistent or uniform
spatial gradient across the platform. This highlights the
importance of obtaining environmental data at both high
spatial and temporal resolutions in order to understand how
these parameters are influencing coral calcification rates.
Seasonal coral calcification rates were measured at three
study sites across the Bermuda coral reef platform and
showed a difference between seasons that was reasonably
well explained by a simple linear model that combined the
known sensitivity of coral growth to temperature, light, and
Qarag from laboratory studies with the measured differences
in temperature, light, and €,.,,. We have presented a new
way to assess the impact of different driving parameters on
coral calcification rates, based on laboratory relationships
between G and environmental driving factors, and mea-
sured differences of these environmental factors. Based on
these assessments, seasonal differences in coral calcifica-
tion rates in Bermuda are driven mostly by the seasonal
differences in temperature and light. Differences between
hourly calcification rates under light and dark treatments
are most likely driven by light, enhanced by the effect of
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Fig. 10 Salinity normalized (S = 36.6) total alkalinity versus dis-
solved inorganic carbon from data collected at 50 sampling stations
distributed across the Bermuda reef northern platform in March and
September, 2012 (open circles), with offshore end members from
samples collected in the Sargasso sea during corresponding reef
sampling expeditions (filled triangle and square). Hashed lines are
aragonite saturation state contours at 25 °C. The slope of the type 1I
linear regression of the reef data (black line) equals 0.93 £ 0.04
(n=179, ¥ =0.89)

respiration and photosynthesis on €2,,, under dark and
light conditions, respectively.

Though the sensitivity of normalized calcification to a
unit change in €,.,, was found to be similar and high at
hourly and seasonal time scales, i.e., 63 % per unit change in
Qurag, We believe this sensitivity is misleading. In the
chamber study, this high sensitivity can be explained by the
covariant nature of light and €,,,,, which both have a posi-
tive effect on calcification, with the former having a much
stronger effect. In the seasonal study, this high sensitivity
may be a result of the covariant nature of temperature, light,
and €,,,. On the other hand, it is important not to underes-
timate the role that ocean acidification may play in control-
ling demographics in coming decades. Not assessed in field
studies such as this one is the possibility that a unit change in
saturation state, pH, or pCO, can have a much larger impact
on growth or net photosynthesis when the temperature
approaches the upper thermal limit of the coral, i.e., a syn-
ergistic interaction between pH and temperature (Anthony
et al. 2008; Crawley et al. 2010; Kaniewska et al. 2012).

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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