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Abstract In situ calcification measurements tested the
hypothesis that corals from environments (Florida Bay,
USA) that naturally experience large swings in pCO, and
pH will be tolerant or less sensitive to ocean acidification
than species from laboratory experiments with less variable
carbonate chemistry. The pCO, in Florida Bay varies from
summer to winter by several hundred ppm roughly com-
parable to the increase predicted by the end of the century.
Rates of net photosynthesis and calcification of two stress-
tolerant coral species, Siderastrea radians and Solenastrea
hyades, were measured under the prevailing ambient
chemical conditions and under conditions amended to
simulate a pH drop of 0.1-0.2 units at bimonthly intervals
over a 2-yr period. Net photosynthesis was not changed by
the elevation in pCO, and drop in pH; however, calcifi-
cation declined by 52 and 50 % per unit decrease in satu-
ration state, respectively. These results indicate that the
calcification rates of S. radians and S. hyades are just as
sensitive to a reduction in saturation state as coral species
that have been previously studied. In other words, stress
tolerance to temperature and salinity extremes as well as
regular exposure to large swings in pCO, and pH did not
make them any less sensitive to ocean acidification. These
two species likely survive in Florida Bay in part because
they devote proportionately less energy to calcification
than most other species and the average saturation state is
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elevated relative to that of nearby offshore water due to
high rates of primary production by seagrasses.
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Introduction

Atmospheric CO; has increased by over 100 ppm since the
start of the industrial revolution principally as a result of
the burning of fossil fuels. The world’s oceans have
absorbed ~33-50 % of this CO, (Sabine et al. 2004),
which has in turn caused well-documented reductions in
carbonate ion concentration and concomitant decreases in
pH (Dore et al. 2009; Gonzélez-Davila et al. 2010). While
studies and meta-analyses have shown varying organismal
responses to ocean acidification (Ries et al. 2009; Hendriks
et al. 2010; Kroeker et al. 2010), coral calcification is
consistently negatively impacted with general declines of
20-30 % per unit change in aragonite saturation state
(Langdon and Atkinson 2005; Kroeker et al. 2010). How-
ever, some studies suggest certain corals appear less sen-
sitive to pCO, changes than others (Gattuso et al. 1998;
Marubini et al. 2001, 2003; Reynaud et al. 2003). Fur-
thermore, recent work has shown factors such as feeding
can mitigate the negative effects of pCO, on calcification
(Cohen and Holcomb 2009). Altogether, these studies
indicate corals have varying responses to pCO,, but little is
known about the nature of this variance.

In addition to ocean acidification, climate change is
expected to increase sea surface temperatures (SSTs) past
corals’ thermal optimums. The dual stressors of higher
temperatures and changing ocean chemistry are expected to
have compounding negative effects on net reef growth
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(Hoegh-Guldberg 2005; Silverman et al. 2009). A study by
Reynaud et al. (2003) illustrates these compounded effects,
where calcification of S. pistillata declined by —38 % at
elevated temperature and pCO, compared to —5 % as a
result of pCO, alone. The 3 °C temperature increase that
these corals experienced is within the annual (and diurnal)
temperature range of many reefs. Consequently to under-
stand coral responses to ocean acidification, calcification
must be measured under a range of conditions that repre-
sent the conditions that corals experience in nature and that
are associated with future climate change.

Florida Bay as a natural laboratory

Florida Bay, bordered by the Everglades to the north and
the Florida Keys to the south and east (Fig. 1), consists of a
series of shallow, compartmentalized basins whose chem-
istry is dominated by carbonate sediment precipitation and
dissolution (Ginsburg 1956; Kerr 1972; Yates et al. 2007).
The relative isolation and shallow basins subject Florida
Bay to more extremes in temperature and salinity (Mon-
tague and Ley 1993; Boyer et al. 1997, 1999; Millero et al.
2001). Mass seagrass dieoff and chronic ecosystem deg-
radation beginning in the summer of 1987 have been
attributed to such extremes in temperature and salinity
(Fourqurean and Robblee 1999; Porter et al. 1999; Zieman
et al. 1999; Koch et al. 2007). Because the depth is shallow
(<3 m), ambient air temperatures affect SSTs in the bay to
a greater degree than offshore waters. Winter cold fronts
traveling southward over the Florida peninsula cause cold

Fig. 1 The field site, denoted
by a star, is located just north of
Peterson Keys in Florida Bay
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spells (Roberts et al. 1982; Duever et al. 1994), whereas
summer temperatures typically raise bay temperatures over
30 °C for extended periods (Fig. 2). Two different pro-
cesses heavily influence salinity variations in the bay:
Everglades runoff in the northeast and evaporation/pre-
cipitation in the southwest (Swart and Price 2002).

With respect to carbonate chemistry and ocean acidifi-
cation, Florida Bay acts as a natural laboratory for
changing pCO,, with seasonal pCO, of 325-725 patm
(Millero et al. 2001), and diurnal swings of 100-200 patm
pCO, (Yates et al. 2007). Variability in pH values in
Florida Bay reflects those reported in other nearshore
systems (Wootton et al. 2008; Hofmann et al. 2011).
Diurnal changes in carbonate chemistry of Florida Bay are
driven by biogenic sediment precipitation and dissolution
(Yates et al. 2007), which in turn are driven by photo-
synthesis and respiration effects on pCO, and pH (Yates
and Halley 2006). Seasonal variability is also biologically
driven through calcification and photosynthesis (Millero
et al. 2001), as well as by oxidation of organic matter and
by the exchange with marine water (Swart et al. 1996a,
1999). Because of this natural variation in pCO,, in situ
measurements of calcification in Florida Bay throughout
the year can be used to predict coral calcification responses
to future increases in atmospheric CO,.

Stress-tolerant corals

Corals are not widely found throughout Florida Bay,
principally as a result of the lack of suitable hard substrate.
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Fig. 2 Water quality
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Where there is bare rock on which they can attach, corals
appear healthy despite the variable pCO,. These corals
might therefore represent CO,-resistant scleractinians.
Three species of corals occur in the study area: Siderastrea
radians (Pallas 1776), Solenastrea hyades (Dana 1846),
and Porites divaricata (LeSuer 1821). Given the ability of
these species to tolerate stress and marginal or disturbed
habitats (Vaughan 1913; Yonge 1936; Macintyre and Pil-
key 1969; Lewis 1989; Rice and Hunter 1992; Lirman et al.
2002, 2003; Macintyre 2003; Chartrand et al. 2009; Lirman
and Manzello 2009), they may also have the ability to
tolerate changing pCO, levels, that is, maintain constant
calcification rates even in high pCO, conditions. Such
corals would provide model organisms for studying how
other taxa might cope with ocean acidification and
physiological mechanisms that determine pCO, resis-
tance. In addition, the two tropical corals examined in this
study, Siderastrea radians and Solenastrea hyades, have
been observed in temperate waters as far north as North
Carolina, USA (Macintyre and Pilkey 1969; Macintyre
2003).

Methods and materials
Field site

Eleven specimens of Siderastrea radians and nine specimens
of Solenastrea hyades were collected near Peterson Keys
(Fig. 1;24.926°N, 80.740°W) in Florida Bay and epoxied to
plastic tiles, which were attached to a platform of cinder-
blocks at the collection site. Surface areas of Siderastrea
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radians and Solenastrea hyades were 45 £ 17 and
138 + 43 cm? (mean + standard deviation), respectively.
Environmental loggers (Yellow Springs Instruments)
recorded conductivity, temperature, pressure, dissolved
oxygen and pH from April 2007 to November 2010 at 30-min
intervals. Between deployments, the loggers were calibrated
against standards (Yellow Springs Instruments) and discrete
water samples collected during field trips. Light was mea-
sured with Onset HOBO Temperature/Light Data Loggers in
units of lux, which does not have an exact conversion to
photosynthetically active radiation (PAR) but was approxi-
mated using a lux-PAR conversion factor of lux/50 = PAR.
While light readings were not obtained for all visits, light
levels ranged from 100 to 600 pmol photons m™~ s~', with
differences due to water quality, that is, turbidity.

Chemical measurements

Total alkalinity (TA) was determined in duplicate using an
automated Gran titration (Dickson et al. 2007), and accuracy
was checked against certified seawater reference material
(A. Dickson, Scripps Institute of Oceanography). The pH on
the total scale (Dickson et al. 2007) was determined at
25.0 °C using an Orion Ross combination pH electrode
calibrated against Tris buffer prepared in synthetic seawater
(Nemzer and Dickson 2005). Concentrations of co?-, Ca2+,
and saturation state ({,,g) Were computed from TA, pH,
temperature, and salinity using the program CO2SYS (Lewis
and Wallace 1998; Pierrot et al. 2006) and dissociation
constants for carbonate from Mehrbach et al. (1973) as refit
by Dickson and Millero (1987) and for boric acid from
Dickson (1990). The pH is reported on the total scale, the
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scale on which K1 and K2 were determined in the Gran
functions. Dissolved oxygen (DO) was determined by
Winkler titration using an automated titrator that utilized
amperometric endpoint detection (Langdon 2010). Salinity
was measured on a Guildline 8410A Salinometer.

Incubations

At approximately bi-monthly intervals from May 2007 to
March 2009, a random subset of corals from the sample
population were detached from the platform that held them
in place between trips and incubated in situ in 2-L cham-
bers (Fig. 3) for approximately 90 min. Under this sam-
pling regime, certain individuals were measured multiple
times over the course of the experiment. Battery-powered
magnetic stirrers in the bases provided circulation within
the chambers. Individual corals were incubated twice
during each visit: once with the chamber filled with
ambient seawater and once with the seawater in the
chamber modified to simulate mid- to end-of-century pro-
jections of pCO,, that is, 100-200 patm above ambient
conditions. The order of incubations was randomized such
that half the corals were incubated under ambient condi-
tions first, while the other half under elevated pCO,

Fig. 3 Corals were placed in incubation chambers to measure
calcification and net photosynthesis. The pCO, levels were elevated
above ambient conditions by equimolar additions of NaHCO; and
HCI through a sampling port. Water samples were drawn from the
same port. Photo credit: Evan D’ Alessandro
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conditions. The incubations were performed between 1000
and 1400 hrs when daily solar insolation peaked, assuming
photosynthesis would be saturating (Langdon and Atkinson
2005). Light levels were equal for both incubations. Lab-
oratory tests indicated no reduction in light across the clear
polycarbonate chamber tops. Incubations with an empty
chamber were made to account for any non-coral changes
to the water chemistry, which were found to be negligible.
Chambers that malfunctioned during the incubation and
samples that were lost were excluded from the analyses.
Water samples were withdrawn using syringes fitted to a
valved port on the incubation chambers. The chambers
themselves acted as large syringes, with the clear tops
sliding over the bases to account for changes in volume
from sampling while maintaining the separation of outside
water from the inner incubation water. Water samples were
then poisoned with HgCl, for TA or pickled Winkler
reagents for DO.

CO, treatments

A two-part chemical injection of NaHCO; followed by HCI
was used to elevate pCO, in the treatment incubations. This
procedure was necessary for these underwater, in situ
incubations and is chemically identical to bubbling with
pCO, (Gattuso et al. 2010). The addition of NaHCO; causes
an increase in dissolved inorganic carbon (DIC), while the
HCI cancels the increase to TA caused by the addition of the
Na™ ions. The net result is an increase in DIC and no change
in TA that closely simulates what would happen if the sea-
water was bubbled with CO, until the desired pCO, was
achieved. Calculation of the amounts of NaHCO5; and HC1
needed to achieve the desired chemical conditions in the 2-L
chambers were computed as follows. First, present-day
pCO, and average Florida Bay TA were used to compute
present-day DIC using CO2SYS. Second, future DIC was
computed holding TA constant and choosing a target pCO,
of 750 ppm. The addition of NaHCOyj is the desired increase
in DIC and is given by Eq. 1.

ADIC x Vchamber

N, spike

Vspike = (1)
where Vi is the volume of NaHCOj3 solution added to
the chambers, ADIC is the difference in DIC between
simulated future and present-day conditions (pmol L™"),
Vehamber 18 the volume of the incubation chamber (2 L), and
Ngpike is the normality of the NaHCOj3 solution. Since the
addition of NaHCOj increases the DIC and the TA equally,
Eq. 1 also gives the volume of the HCI spike.

The actual achieved pCO, varied due to differences in
ambient conditions and generally ranged from 500 to
800 ppm, which in turn resulted in a variable decrease in
Qqrag- Sample sizes for each field trip are listed Table 1.
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Biological variables

Changes in TA and DO were used to calculate calcification
and net photosynthesis. Carbonate parameters and dis-
solved oxygen were measured as described above. Rates
were normalized to coral surface area, determined from
morphometric measurements. Biological variables were

calculated from the following equations: Calcification:
—0.5pATA x V

G=————— 2

t x SA @)

where G is calcification, p is seawater density, ATA is the
change in total alkalinity (umol kg™' seawater), V is
chamber volume, ¢ is the incubation time, and SA is the
coral surface area. Net photosynthesis:

Table 1 Physical parameters measured during field trips

P_ADOXV
 txSA

(3)

where NP is net photosynthesis, ADO is the change in
dissolved oxygen over the incubation period. Coral
responses to high CO, treatments were calculated as the
change in calcification or photosynthesis between ambient
and high CO, treatments normalized to the ambient
treatment rate:

Gam ient — GC
Reaicit = <bGt—bt02> (4)
ambien

NPambient - NPCOZ) ( 5)

Pa—— (
photosyn
NPambient

Date Time T Sal. O, pH, TA TCO, Q.. pCO,  Sample size

(m/d/yr)  (hh:mm) (°C) (LM) (pmol kg’1 SW)  (umol kg’1 SW) (ppm) (A = ambient, T = treatment)
S. radians S. hyades
A T A T

4/27/07 15:00 26.5 377 224 821 2,267 1,821 4.7 237 - - - -

5/4/07 11:15 283 39.1 178 7.99 2,407 2,027 3.8 465 3 - 1 -

7/11/07 11:00 30.6 374 163 8.05 2,206 1,822 4.1 360 - - - -

7/23/07 11:30 30.8 365 224 8.12 2,159 1,693 4.4 293 - - - -

9/12/07 11:30 29.6 33.1 203 8.00 2,212 1,884 3.5 437 4 4 1 1

9/12/07 14:45 299 335 208 8.02 2,222 1,878 3.6 422

11/19/07  11:30 222 334 237 8.12 2,505 2,168 39 358 3 1 - -

11/19/07  13:55 22.5 334 235 8.11 2,495 2,163 3.8 368

12/12/07  11:15 239 322 214 8.07 2,676 2,338 4.1 447 2 2 3 3

12/12/07  14:00 242 323 224 8.08 2,653 2,309 4.2 430

1/30/08 10:30 19.5 353 239 8.11 2,711 2,370 3.8 396 4 4 5 4

1/30/08 13:00 199 354 237 8.10 2,715 2,369 3.8 406

4/9/08 11:00 25.8 36.6 204 8.12 2,308 1,935 4.1 316 - - - -

4/9/08 13:00 26.3 366 217 8.14 2,271 1,885 4.2 293

4/28/08 11:00 25.1 38.0 216 8.23 2,201 1,759 4.9 234 4 3 5 5

4/28/08 14:00 257 379 212 822 2,223 1,777 4.9 239

6/9/08 11:00 28.1 39.7 191 820 2,174 1,711 5.0 244 4 4 3 3

6/9/08 14:00 284 395 200 820 2,177 1,714 5.1 248

8/12/08 11:00 299 465 131 8.03 2,187 1,781 3.9 366 4 4 5 5

8/12/08 13:30 30.1 472 131 8.07 2,179 1,733 4.1 317

11/3/08 11:30 22.7 363 229 8.14 2,466 2,096 4.1 326 5 5 5 5

11/3/08 13:00 23.0 364 231 8.14 2,456 2,083 4.1 323

1/28/09 10:45 21.8 38.0 235 823 2,895 2,421 54 297 4 4 3 3

1/28/09 12:45 222 379 241 826 2,870 2,361 5.7 268

3/31/09 10:50 2577 373 197 8.05 2,396 2,057 3.8 415 4 4 2 2

3/31/09 12:45 263 373 212 8.08 2,378 2,012 4.0 375

Sample sizes refer to the total number of corals measured on a particular date
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Dividing Eq. 4 for R.,.if by the change in saturation
(AQ) state between ambient and high CO, treatments
yields the change in calcification per unit change in
saturation state, a useful metric for comparing coral growth
responses across studies (Langdon and Atkinson 2005;
Kleypas and Langdon 2006; Hendriks et al. 2010).

Chemical environment

The diurnal pH range was calculated from the difference
between the maximum and minimum recorded value for
every day from April 2007 through April 2009. Saturation
state was estimated for a typical year based on pH values
recorded from the environmental logger and TA values
reported in this study, Millero et al. (2001), and Yates and
Halley (2006). TA generally shows low interannual varia-
tion relative to seasonal variation. Monthly values were
extrapolated for missing months using adjacent dates.

Statistical analyses

Each fieldtrip measured a subset of corals from the same
experimental pool, necessitating a multilevel model that
could account for repeated measures, unbalanced data, and
missing-at-random corals (i.e., not every coral was mea-
sured on every trip). Coral calcification and photosynthesis
responses to high CO, treatments were analyzed as a
function of pCO, treatment, temperature, salinity, coral,
and date. The baseline null model grouped response by
individual corals:

Rij = Po+ moj + & (6)

where R;; is the calcification or photosynthesis response for
the ith measurement of the jth coral, fiy is the overall mean
calcification or photosynthesis response, p; is the residual
between the individual and the overall calcification or
photosynthesis response, assumed to have a mean of zero
with variance aﬁo, and ¢;; is the residual difference between
the average jth coral response and ith measured response
for that coral. Explanatory variables were individually
forward-stepped into the model and evaluated against the
simpler nested model with likelihood ratio (LR) tests. If
they improved the model fit, they were retained and the
next variable was added. The treatment variable AQ was
first added to the null model as a fixed effect because it was
the only treatment imposed on the corals:

Rj = Bo+ B1AQ; + po; + & (7)
with slope term f; for AQ. Median-zeroed time,
temperature, and salinity were subsequently forward-

stepped into the model as random effects with diagonal
covariance structures:

@ Springer

Ry = Bo = Previ + gy o Foxag oo -+ v
T yXij + Hoj + &

(8)

where f3, through f3, are slopes for each explanatory vari-
able x, to xi. The error terms p,; to py; for the random
variables 2 to k are assumed to follow a zero-centered
normal distribution with ¢3; to ¢}; variance. Equation 8
shows the full model with all explanatory variables though
the final model would not necessarily contain all variables.
Models were fit with maximum likelihood estimates of
parameters. Model residuals were examined for normality.
Bayesian highest probability density (HPD) 95 % confi-
dence intervals were calculated from Markov chain Monte
Carlo samples of posterior distributions of the fixed effect
parameters.

Statistical analyses were performed using the software
program R, version 2.14.1 (R Development Core Team
2011). The statistical packages ‘stats’ and ‘lme4’ (Bates
et al. 2011) within R were used for the curve-fitting and
multi-level modeling, respectively. Significance thresholds
were set at oo = 0.05.

Results
Field conditions

Conditions recorded in Florida Bay exhibit large-scale
diurnal and seasonal variability (Table 1; Fig. 2). Over the
3-yr deployment of the environmental loggers, temperature
ranged diurnally 1.4 £+ 0.5 °C (n = 1,297 d) with more
extreme values of approximately 4 °C d~'. Seasonally,
temperature varied approximately 15 °C from summer to
winter (Fig. 2). The average diurnal salinity range was
1.0 £ 1.4 (n = 1,297 d). The most extreme daily salinity
ranges were 10, the same as the seasonal variation. Aver-
age diurnal pH range was 0.09 = 0.05 (n = 1,297 d) with
more extreme ranges of 0.2-0.3 d~'. Seasonally, pH ran-
ged from approximately 7.9 to 8.3 (Fig. 2). Ambient

Table 2 Pooled calcification (G) and net photosynthesis (NP) mea-
surements for Siderastrea radians and Solenastrea hyades

S. radians S. hyades
Gambient 5.2+ 32 (41) 3.1+ 1.8(33)
Gco, 2.7 +£5.6 (35) 20+27@301
NP, mbient 18.7 +£ 12.3 (41) 9.1 +£43 (33)
NPco, 20.1 + 12.1 (35) 10.0 £ 5.6 (31)
G:NP,mbient 0.29 £ 0.12 (40) 0.37 £ 0.20 (33)

Subscripts ‘ambient’ and ‘CO,’ indicate control and elevated pCO,
conditions, respectively. Values are reported as mean =+ standard
deviation (sample size)
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pCO, averaged 350 £ 70 ppm (n = 11 incubation
dates). Treatment pCO, conditions were 480 £ 100 ppm
(n = 11).

Calcification and photosynthesis

Pooled ambient calcification rates for Siderastrea radians
were 5.24 + 3.17 mmol CaCO; m™> h™' over the study
period, while calcification rates for Solenastrea hyades
were 3.07 = 1.81 CaCO; m 2h~' (Table 2; Fig. 4).
Pooled net photosynthesis was 18.70 &+ 12.29 mmo-
10, m ?h~"and 9.10 + 4.28 for Siderastrea radians and
Solenastrea hyades, respectively (Table 2; Fig. 4). Ambi-
ent calcification to net photosynthesis (G:NP) ratios were
0.26 £ 0.12 for Siderastrea radians and 0.37 £ 0.20 for
Solenastrea hyades (Table 2). Calcification rates tracked

changes in temperature, light, and pH that are known to
affect growth, but calcification was best explained as a
function of net photosynthesis. Pooled calcification data
were linearly correlated with net photosynthesis for both
species. However, for Siderastrea radians, calcification
was better fit to a hyperbolic tangent function (G = 14.59
tanh(NP/46.34)) than linear regression (AIC scores of
161.0 and 164.9, respectively) (Fig.5). Traditionally,
hyperbolic tangent functions have been used to describe
calcification or photosynthesis as a function of irradiance
(Chalker 1981). Multiple linear regressions with physical
data did not yield significant models for predicting calci-
fication or net photosynthesis, suggesting interactions with
other unmeasured variables such as feeding or flow rates
may influence these processes (Kinsey and Davies 1979;
Dennison and Barnes 1988; Houlbréque et al. 2003).
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Fig. 5 Calcification
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parameters: G = 0.305 c
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Table 3 Multilevel model S radians S. hyades
comparisons of the only
observed significant Null model Model 1 Null model Model 1

calcification response variable,
change in saturation state,
against a null model accounting

Fixed effects

Intercept 0.414 (0.111) —0.073 (0.244) 0.370 (0.130) —0.156 (0.202)
only for coral

AQ 0.516 (0.234) 0.502 (0.160)
Random effects

Coral 0 0 0 0

Residual 0.427 0.375 0.526 0.399
Log likelihood —34.776 —32.498 —34.016 —29.73
HDP 95 % CI

AQ (0.013-0.997) (0.157-0.832)
n coral 10 7
n observations 35 31

Calcification and net photosynthesis responses

Multilevel models of calcification responses found both
species responded to AQ, with calcification decreasing
52 % (1-100 % HPD 95 % CI) and 50 % (16-83 % HPD
95 % CI) per unit change in saturation state for Siderastrea
radians and Solenastrea hyades, respectively (Table 3;
Null model vs model 1, fixed effects AQ: S. radians
LR, =4.6, p =0.03, S. hyades LR; = 8.6, p = 0.003).
Date, temperature, salinity, and initial saturation state did
not improve model fits and were therefore not considered
in the final model. Estimates of zero variance suggest that
grouping by corals did not help explain overall variability
in the data, that is, there is insufficient evidence that
individual corals had unique responses. The coral calcifi-
cation responses to increased pCO, observed here are
greater than the range of 5-40 % for other species sum-
marized by Kleypas and Langdon (2006). None of the

@ Springer

variables of increased pCO,/decreased saturation state,
initial saturation state, date, temperature, and salinity had
detectable effects on photosynthetic responses of either
species of corals.

Discussion

The calcification rates reported here are lower than other
corals and reef communities (Chave et al. 1972; Kinsey
1983; Davies 1990; Meesters et al. 1994; Ohde and van
Woesik 1999; Bates et al. 2001; Langdon and Atkinson
2005). The low G:NP ratios of <0.4 reported here relative
to other studies (Jacques and Pilson 1980; Dennison and
Barnes 1988; Swart et al. 1996b; Furla et al. 2000; Gattuso
et al. 2000; Houlbréque et al. 2003; Al-Horani et al. 2005;
Schneider and Erez 2006) suggest Florida Bay corals’
photosynthate provides energy for processes other than



Coral Reefs

calcification, possibly for coping with temperature and
salinity extremes or large swings in pH. Siderastrea radi-
ans and Solenastrea hyades have historically populated
disturbed areas (Yonge 1936; Lewis 1989; Sorauf and
Harries 2009), and the extremes in temperature and salinity
posed by Florida Bay are more immediate and threatening
to survival than extremes in pCO,. As a result, these corals
have most likely developed survival strategies that favor
stress-tolerant mechanisms and have possibly prioritized
them over calcification processes.

Another possible explanation for the relatively low
G:NP ratios is that zooxanthellae may be hoarding photo-
synthate and thereby slowing coral calcification. This
explanation assumes calcification is driven mainly by
energy from translocated photosynthate instead of the
direct chemical effects of increased pH from photosyn-
thesis. This explanation is not favored because it contra-
dicts many studies that indicate calcification is chemically
linked to photosynthesis (Furla et al. 2000; McConnaughey
et al. 2000; Al-Horani et al. 2003).

Calcification—photosynthesis curves offer insight into
the nature of this relationship. A linear relationship sup-
ports a direct inorganic chemical response, whereas an
asymptotic curve indicates some biological constraint, such
as enzyme saturation. Calcification rates of S. radians fit
better to an asymptotic hyperbolic tangent curve than a
simple linear curve, indicating possible limits to photo-
synthesis-stimulated calcification (Fig. 5). The mecha-
nisms underlying this restriction are unknown, but may
include limitations in HT transport from the calcification
site (Ries 2011; McCulloch et al. 2012). This relationship
may be species-specific as Solenastrea hyades calcification
data were linearly correlated with photosynthesis. Further
studies on this relationship would better elucidate the
effects of photosynthesis on calcification.

Two aspects of the calcification response findings are
noteworthy: (1) Both species exhibited high variability in
calcification responses, with some individuals exhibiting
positive responses to increased pCO, on some dates, and
(2) calcification rates for both species are not, on average,
CO, resistant. Such variability in calcification responses
could serve as an adaptive mechanism to increasing ocean
acidification where over time colonies whose calcification
rates are resistant to CO, increase in abundance relative to
CO,-susceptible conspecifics. However, positive responses
to acidification were not consistent by coral or any other
measured parameter, and no such resistant individuals were
observed in this study.

Furthermore, calcification is an energy-intensive process
(Chalker and Taylor 1975; Chalker 1976; Fang et al. 1989;
Tambutté et al. 1996), and the hypothetically resistant
corals may maintain calcification at the expense of other
processes such as tissue repair or gamete production.

Comparably, Wood et al. (2008) showed echinoderms that
increased calcification during ocean acidification suffered
muscle wastage and increased metabolic costs. The Florida
Bay corals appear to exhibit the opposite pattern, where
calcification decreases because of ocean acidification and is
superseded by other metabolic demands. Furthermore,
corals exhibited consistent declines in calcification under
high pCO,/low pH treatments despite experiencing diurnal
swings in pH of 0.08 £ 0.04 units in their natural envi-
ronment. This response suggests short-term variability in
pH will not mask the negative effects of incremental, long-
term declines in pH on coral calcification. More studies are
needed to determine how corals prioritize resource allo-
cation and whether they might face tradeoffs between
calcification and other processes.

Role of the environment

The persistence of Siderastrea radians and Solenastrea
hyades in Florida Bay initially seems counterintuitive
given their skeletal growth susceptibility to low saturation
states and the bay’s low winter saturation states (Millero
et al. 2001). However, over the course of this study satu-
ration state at the field site remained high relative to oce-
anic waters (Qur,e = 4.27 £ 0.57 vs oceanic Qe = 3.6).
The pH remained above 8.0 for 88 % of the time during the
study (Fig. 2). An annual composite of aragonite saturation
state created from recorded pH and discrete TA samples
over a 3-yr period extending from 2007 to 2010 indicates
aragonite saturation state would remain above 3.6 for 80 %
of the year (Fig. 6). Consequently, the environment aug-
ments the low calcification rates of Siderastrea radians and
Solenastrea hyades (relative to other species), while its
extremes preclude other less stress-tolerant coral species.
With its low average annual pCO,, Florida Bay could
potentially serve as a refuge against ocean acidification
(Manzello et al. 2012), if not for the frequent phyto-
plankton blooms, persistent turbidity, and extremes in
temperature and salinity (Boyer et al. 1999, 2009; Four-
qurean and Robblee 1999). However, seagrass areas and
other highly productive habitats should be included in any
management plan to deal with ocean acidification due to
their ability to reduce ambient pCO, levels.

Future research should decouple these corals from their
chemically favorable environment to better evaluate their
calcification-pCO, responses. If these corals direct a large
portion of their resources toward survival in Florida Bay’s
marginal conditions, then under more benign oceanic
conditions they may have more robust pCO, responses than
observed in this study. Comparing these corals with con-
specifics from the nearby reef tract might elucidate how
individuals and their environments interact to affect pCO,
responses.

@ Springer
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Fig. 6 Composite monthly saturation state based on pH recorded at
the field site and discrete monthly total alkalinity (TA) samples from
2007 to 2010. CO2SYS was used to calculate saturation state as
discussed in the methods section. Black line represents median
aragonite saturation state (Qyy,g), dark shaded region represents the
middle 50 % of composite values, light shaded region represents the

Potential mechanisms for calcification resistance
to pCOz

The means by which corals might achieve CO,-resistant
calcification are unknown. Many researchers have shown
calcification is a linear function of saturation state (Lang-
don et al. 2000; Leclercq et al. 2000, 2002; Marubini et al.
2001; Ohde and Hossain 2004; Langdon and Atkinson
2005), which is directly proportional to carbonate ion
concentration. As more CO, dissolves in the ocean, [CO%’]
decreases while [HCOy5 ] increases, causing saturation state
reductions and depressed calcification (Langdon et al.
2000; Schneider and Erez 2006; Marubini et al. 2008).
Hence, one possible mechanism of calcification resistance
could involve corals switching from CO3~ to HCOJ as the
primary substrate used for calcification. If corals were able
to utilize ambient bicarbonate, they would have more
substrate available for calcification under ocean acidifi-
cation scenarios. To date, only Madracis auretenra has
been shown to utilize bicarbonate instead of carbonate for
calcification (Jury et al. 2010). This study did not support
this hypothesis because bicarbonate levels increased under
elevated pCO, conditions while calcification decreased.
Furthermore, multiple models of calcification posit Ca**-
ATPase proton pumps drive pH gradients that create
favorable calcification conditions (Adkins et al. 2003; Al-
Horani et al. 2003; McConnaughey 2003; Cohen and
Holcomb 2009). Reduced ambient seawater pH would
increase the metabolic cost of maintaining these pH gra-
dients, countering any gains made from switching to
bicarbonate as the primary substrate.
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full range of composite estimates of upg. Dotted horizontal line
represents the modern-day oceanic average saturation state of 3.6.
Saturation states in Florida Bay were generally closer to pre-industrial
levels of 4.6 for most of the year. As a result, Florida Bay is a
chemically favorable environment for calcification

Another potential CO,-calcification resistance mecha-
nism is the stimulation of photosynthesis by increased
pCOs,. Increased CO, concentrations could reduce photo-
respiration in symbiotic dinoflagellates’ form II Rubisco
leading to a more efficient Calvin cycle or indirectly reduce
the metabolic costs of operating a carbon-concentrating
mechanism (CCM) (Leggat et al. 1999; Bertucci et al.
2010). Increased photosynthesis might then boost calcifi-
cation (Gattuso et al. 1999; Furla et al. 2000; Marubini
et al. 2001; Al-Horani et al. 2003, 2005; Allemand et al.
2004), likely through (1) the production of CO;>~ as car-
bonic anhydrase dehydrates HCO3;~ to supply CO, for
photosynthesis, (2) removal of CO, elevating pH and
essentially countering ocean acidification, and (3) addi-
tional photosynthates for calcification. The basis for this
mechanism requires photosynthetic stimulation in higher
pCO,, for which evidence is equivocal: some researchers
have shown potential CO, fertilization (Marubini et al.
2008), while others, including this study, have not (Lang-
don et al. 2003; Reynaud et al. 2003; Schneider and Erez
2006). Whether or not CO, fertilizes photosynthesis, pho-
tosynthesis generally does not buffer calcification declines
from increased CO, (Kroeker et al. 2010).

Despite experiments showing the importance of het-
erotrophy in reducing the negative effects of ocean acidi-
fication on calcification (Cohen and Holcomb 2009) and
increasing photosynthesis (Borell et al. 2008), heterotrophy
may not be enough to buffer coral calcification under
predicted future climate conditions. It is possible that the
limited positive responses of calcification rates to increased
pCO, observed here could be due to feeding or increased
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nutrient uptake by corals, which were not measured in this
study. However, positive responses were not consistent for
individual corals or time. Additionally, the corals in this
study were kept in their natural environment and had ample
opportunity to feed, yet their calcification responses were
more sensitive those from many laboratory studies sum-
marized in Kleypas and Langdon (2006).

In conclusion, increased frequency of bleaching as a
result of climate change and increased local stress from
growing human populations will probably favor more
stress-tolerant corals on reefs. For example, Montastraea
sp. increased in prominence with respect to Acropora
cervicornis following the decline of A. cervicornis in the
early 1980s (Gardner et al. 2003), and Porites astreoides in
general have increased in abundance throughout the
Caribbean relative to other species (Green et al. 2008).
However, the ability of reefs to cope with future warming
by supporting more stress-tolerant species will be under-
mined whether those species are vulnerable to ocean
acidification. This study found that the calcification rates of
two stress-tolerant corals, Siderastrea radians and Sole-
nastrea hyades, are just as sensitive to elevated pCO, as
other corals previously studied, which suggests a limited
ability of corals to adjust to ocean acidification. The corals
from this study appear uniquely adapted to the marginal
environment of Florida Bay, with their low calcification
rates augmented by the environment’s generally high sat-
uration state and their physiologies adapted to frequent
extremes in water quality. As a result, calcification appears
to be a secondary priority compared to survival in Florida
Bay. The sensitivity of calcification rates of Siderastrea
radians and Solenastrea hyades to pCO, discounts the
notion that reefs can adjust to climate change by shifting to
eurytopic species.
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