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Abstract

Ocean acidification (OA) refers to the increase in acidity (decrease in pH) of the ocean’s surface waters resulting from

oceanic uptake of atmospheric carbon dioxide (CO2). Mounting experimental evidence suggests that OA threatens

numerous marine organisms, including reef-building corals. Coral recruitment is critical to the persistence and

resilience of coral reefs and is regulated by several early life processes, including: larval availability (gamete

production, fertilization, etc.), larval settlement, postsettlement growth, and survival. Environmental factors that

disrupt these early life processes can result in compromised or failed recruitment and profoundly affect future

population dynamics. To evaluate the effects of OA on the sexual recruitment of corals, we tested larval metabolism,

larval settlement, and postsettlement growth of the common Caribbean coral Porites astreoides at three pCO2 levels:

ambient seawater (380 matm) and two pCO2 scenarios that are projected to occur by the middle (560 matm) and end

(800 matm) of the century. Our results show that larval metabolism is depressed by 27% and 63% at 560 and 800 matm,

respectively, compared with controls. Settlement was reduced by 42–45% at 560 matm and 55–60% at 800matm, relative

to controls. Results indicate that OA primarily affects settlement via indirect pathways, whereby acidified seawater

alters the substrate community composition, limiting the availability of settlement cues. Postsettlement growth

decreased by 16% and 35% at 560 and 800 matm, respectively, relative to controls. This study demonstrates that OA has

the potential to negatively impact multiple early life history processes of P. astreoides and may contribute to substantial

declines in sexual recruitment that are felt at the community and/or ecosystem scale.
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Introduction

The susceptibility of reef-building corals to increasing

carbon dioxide (CO2) levels [ocean acidification (OA)]

has been of recent concern with respect to global climate

change. Atmospheric CO2 (pCO2) levels are presently

estimated to be 387ppm, 30% higher than the natural

range over the last 650 000 years (Siegenthaler et al., 2005).

The present day rate of atmospheric CO2 increase is

estimated to be 200 times faster than any changes that

occurred during the last eight glacial cycles (Siegenthaler

et al., 2005) and eight to 15 times faster than any changes

in the past 60Myr, including the Paleo-Eocene Thermal

Maximum (PETM) (Zeebe et al., 2009). Approximately,

one-third of all CO2 emissions from the past 200 years

have been absorbed by the oceans (Sabine et al., 2004). On

dissolution in seawater, CO2 reacts with H2O, triggering a

series of chemical reactions that alter the seawater carbo-

nate chemistry: [CO2]aq and [HCO3] increase, and [CO3
2],

pH, and the carbonate saturation state (O) decrease,

causing surface waters to become more acidic (Sabine

et al., 2004). Increasing atmospheric CO2 concentrations

have already depleted seawater carbonate concentrations

byo30mmolkg�1, simultaneously reducing the pH of the

ocean’s surface waters by 0.1U relative to the preindus-

trial value of 8.18 (a 30% increase in [H1 ]) (IPCC, 2007).

Further reductions of 0.3–0.5 pH units are projected by

the end of this century as the oceans continue to absorb

anthropogenic CO2 (Sabine et al., 2004; IPCC, 2007).

OA is expected to have negative effects on a variety of

marine organisms (Royal Society, 2005), and early life

history stages of these organisms may be more sensitive

than adults, as has been demonstrated in oysters and

echinoderms (reviewed by Kurihara, 2008). The number

of studies devoted to the potential impacts on early life

history stages of marine invertebrates has risen over the

past several years. Mounting experimental evidence

now suggests that numerous biological and physiolo-

gical processes will be negatively impacted as the

oceans continue to acidify: sperm motility in urchins

(Havenhand et al., 2008), corals and sea cucumbers

(Morita et al., 2009); fertilization success in urchins

(Kurihara & Shirayama, 2004; Havenhand et al., 2008;

Reuter et al., 2010; but see Byrne et al., 2010), mollusks

(Parker et al., 2009; but see Havenhand & Schlegel, 2009)
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and corals (Albright et al., 2010); larval development

and/or growth in crustaceans (Arnold et al., 2009;

Findlay et al., 2009, 2010; McDonald et al., 2009), mol-

lusks (Kurihara et al., 2007; Ellis et al., 2009; Parker et al.,

2009), corals (Albright et al., 2008; Cohen et al., 2009;

Albright et al., 2010; Suwa et al., 2010) and echinoderms

(Kurihara & Shirayama, 2004; Dupont et al., 2008; Clark

et al., 2009; Brennand et al., 2010; O’Donnell et al., 2010);

physiology and behavior of mollusks (Ellis et al., 2009);

survival of echinoderms (Dupont et al., 2008; Clark et al.,

2009) and crustaceans (Findlay et al., 2009); stress re-

sponse in sea urchins (O’Donnell et al., 2009; Todgham

& Hofmann, 2009); and gene expression in sea urchins

(Todgham & Hofmann, 2009; O’Donnell et al., 2010).

Despite this recent surge, the majority of these studies

have been conducted on echinoderms, mollusks, and

crustaceans, and comparatively few studies focus on

the potential response(s) of early life history stages of

corals. As coral larvae do not calcify in the plankton,

those studies which have focused on coralsQ1 (Albright

et al., 2008; Cohen et al., 2009; Morita et al., 2009; Alb-

right et al., 2010; Suwa et al., 2010) have primarily

investigated the effects of elevated CO2 on postsettle-

ment calcification and growth; only two studies to date

have found evidence of impacts before the onset of

calcification (Morita et al., 2009; Albright et al., 2010).

Sexual reproduction in reef-building corals depends on

fertilization and the development, survival, and settle-

ment of planula larvae. Coral larvae spend hours to days

developing in the water column before they are compe-

tent to settle on the reef. Larval settlement involves

the recognition of water-soluble and substrate-bound

chemical cues, physical attachment to the substrate, and

subsequent metamorphosis. Recruitment (identification

and inclusion in a population) necessitates survival and

growth of the newly settled individual (Harrison &

Wallace, 1990). Coral recruitment plays a primary role

in: maintaining genetic diversity; populating denuded

areas; determining the community structure of coral

reefs; and replenishing reefs post disturbances. Environ-

mental factors that disrupt early life history processes can

result in compromised recruitment or recruitment failure

and profoundly affect marine population dynamics

(Gaines & Roughgarden, 1985; Harrison & Wallace,

1990; Doherty & Fowler, 1994; Riegl et al., 2009).

The present study aims to evaluate the effects of OA on

sequential early life history processes that are critical to

the successful sexual recruitment of corals. The experi-

mental coral chosen for this study was the common

Caribbean coral Porites astreoides. P. astreoides is a brooding

coral that spawns predictably near the new moon from

April through June (McGuire, 1998), rendering larvae easy

to collect for use in laboratory experiments. To estimate

the potential impact of OA on the sexual recruitment of

this species, larval metabolism, settlement, and postsettle-

ment growth were tested at pCO2 levels that represent

ambient seawater (380matm) and two pCO2 increases that

are expected to occur by the middle (560matm) and end

(800matm) of this century (IPCC, 2007).

Materials and methods

Collection of larvae

In 2008 and 2009, 12 adult colonies of P. astreoideswere collected

from Little Grecian, an offshore bank-barrier reef near Key

Largo, FL (USA), several days before the new moon in May

and June (2008) and April and May (2009). Colonies were

maintained in a flow-through seawater system at the University

of Miami’s Rosenstiel School of Marine and Atmospheric

Science (RSMAS) for approximately 1 week during the predicted

period of larval release. Larvae were collected according to the

methods outlined by Kuffner et al. (2006). On the mornings

following release, larvae from each parent colony were pooled

and transferred to sterile containers with filtered seawater for

use in experiments. In May, 2010, inclement weather prevented

us from directly collecting coral colonies and larvae; we, there-

fore, obtained � 800 larvae from eight P. astreoides colonies

( � 100 larvae from each of eight colonies), collected by a team

of researchers (Smithsonian Marine Station, Fort Pierce) from

two shallow (15–200) patch reefs near Summerland Key, FL.

Colonies were maintained at the Mote Marine Laboratory in

Summerland Key during the period of larval release, and larvae

were pooled upon release for use in experiments.

Seawater chemistry

Seawater chemistry was manipulated via direct bubbling with

CO2-enriched air to create three target conditions: 380matm
(control), 560matm (mid CO2), and 800matm (high CO2). The

control was bubbled with outside air. To verify distinct treat-

ments, water samples were taken and analyzed at the start of

respiration experiments and the start and end of settlement

experiments; samples were taken weekly during tile condition-

ing and growth experiments. Water samples were analyzed for

total alkalinity (TA) and pH. TA was determined in duplicate

(30–40mL analyses) using an automated, open-cell Gran titra-

tion (Dickson et al., 2007, SOP3b), and accuracy was checked

against certified seawater reference material (A. Dickson,

Scripps Institute of Oceanography). pH was determined on

the total scale using an Orion Ross combination pH electrode

calibrated at 25 1C against a seawater TRIS buffer (Dickson et al.,

2007, SOP6). Concentrations of CO3
2�, Ca21 , and Oarag were

computed from TA, pH, temperature, and salinity using the

program CO2SYS (E. Lewis, Brookhaven National Laboratory),

with dissociation constants for carbonate determined by Mehr-

bach et al. (1973), as refit by Dickson & Millero (1987) and

dissociation constant for boric acid determined by Dickson

(1990). pH is reported on the total scale, the scale on which

K1 and K2 were determined. Chemical and physical conditions

that persisted during each experiment are outlined in Tables S1–

S3 of the Supporting Information.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

2 R . A L B R I GHT & C . LANGDON

r 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02404.x

GCB 2404

(B
W

U
K

 G
C

B
 2

40
4 

W
eb

pd
f:=

02
/0

8/
20

11
 0

5:
03

:5
8 

34
89

71
 B

yt
es

 1
0 

PA
G

ES
 n

 o
pe

ra
to

r=
bs

.a
na

nt
ha

) 2
/8

/2
01

1 
5:

04
:1

3 
PM



Larval metabolism

In May 2010, larval metabolic rates were measured twice at

each of the three CO2 levels. The first experiment was con-

ducted �24 h after spawning (AS), and the second incubation

was conducted �48 h AS. Each respiration experiment in-

volved four chambers (run simultaneously): three contained

filtered treatment water (0.2 mm; ambient, mid CO2, or high

CO2) and 20 larvae; the fourth chamber contained filtered

ambient seawater and no larvae and was used to correct

for background respiration rates. A preliminary experiment

was conducted using different numbers of larvae in each

chamber to determine the optimal number for the subsequent

experiments. before the experiments, the four chambers

were run with filtered seawater alone to ensure that they

were reading uniformly; chambers were calibrated in

air-bubbled filtered seawater at the measurement temperature

(26 1C), and a saturated oxygen value was obtained by

computation of the saturation concentration (Benson &

Krause, 1984).

Chambers and larvae were dark-acclimated for 2 h before

the start of each experiment, and experiments were conducted

in a darkened, constant temperature water bath maintained at

26 1C. Respiration was measured over a 2-h interval as oxygen

flux using YSI 5750 oxygen electrodes, connected to an

ENDECOQ2 1125 four-channel Pulsed DO Sensor. A PC compu-

ter was used to log the temperature and oxygen data output

every 10min from each of the four oxygen electrodes. The

oxygen consumption rate was determined by regressing

oxygen concentration against time. The oxygen consumption

rate determined in each chamber was corrected for the

background consumption rate in the control chamber multi-

plied by the volume of water in the chamber (�20mL)

and divided by the number of larvae (20) to obtain the

respiration rate in nanomoles of oxygen larva�1 h�1. A total

of six independent estimates of larval respiration rate were

obtained.

Twenty-four hours AS, the experiment commenced at 14:00

hours, and the CO2 levels were close to the target levels of 380,

560, and 800matm. Forty-eight hours AS, the experiment com-

menced �2h earlier in the day, at 12:00 hours. Owing to natural

diurnal variation in the seawater system (resulting from photo-

synthetic uptake of CO2 throughout the day), the ambient

and mid-CO2 levels were slightly higher at 48h AS than 24h

AS. The same should have been true for the high CO2 treatment,

but a blocked airstone resulted in a lower than target CO2 level.

Owing to both the natural diurnal variability and the airstone

blockage, the CO2 levels varied between the two experiments

and averaging values from the two experiments for analysis of

variance was deemed inappropriate. Rather, CO2 was treated as

a continuous variable and data from both experiments was

analyzed by linear regression analysis using least squared

residuals.

Settlement

In 2008, two settlement experiments were conducted simulta-

neously. In the first experiment, limestone settlement tiles were

preconditioned in ambient seawater (380 matm), and larvae

were settled onto the tiles in treatment seawater (380, 560, or

800 matm). In the second experiment, settlement tiles were

preconditioned in treatment seawater, and larvae were settled

in treatment seawater (corresponding to the treatment in

which the tiles were conditioned). Details of the tile condition-

ing and settlement assays are provided below.

Tile conditioning. Before settlement assays, commercially

sourced limestone tiles were preconditioned for 40 days in

flow-through aquaria with either ambient seawater (380 matm)

or treatment seawater (560 or 800 matm). Mean tile dimensions

were 20.6 � 0.1mm� 12.0 � 0.1mm� 3.23 � 0.06mm (mean �
1SEM), and average tile mass was 1.89 � 0.04g. Aquaria turned

over approximately once per day. A single source of live rock was

divided equally amongst the aquaria to provide a consistent

source of crustose coralline algae (CCA) and microfauna.

Settlement assays. Settlement assays were conducted in

prerinsed six-well nontreated polystyrene tissue culture plates Q3

(BD Biosciences). One settlement tile, 10mL of treatment water

and 10 larvae (2 days old) were randomly added to each well.

Plates were securely covered and submerged in treatment tanks

to ensure temperature control (28 1C) and prevent gas exchange.

Sixteen wells were used per treatment. Tiles were examined after

24h. The number of settled larvae on the top, bottom and sides of

each tile was counted using a dissecting microscope. Larvae were

scored as ‘settled’ when they had fully metamorphosed (flat/

disc-shaped appearance rather than pear-shaped), with little or

no possibility of active detachment and further migration

(Harrison & Wallace, 1990). Wells in which all 10 larvae could

not be accounted for at the end of the experiment were eliminated

from the statistical analysis, resulting in the following sample

sizes: Ambient Tile Experiment: N515 (380matm); N516

(560matm); N514 (800matm) and Treatment Tile Experiment:

N515 (380matm); N513 (560matm); N513 (800matm).

Percentage data were arcsine transformed and analyzed using

one-way ANOVAs. D’Agostino and Pearson omnibus test

and Levene’s test were used to verify the underlying

assumptions of normality and homoscedacity, respectively.

Where significant differences were detected, post hoc Tukey’s

HSD analyses were used to determine which treatments

differed from each other.

In 2009, the second experiment (Treatment Tiles) was

repeated according to the previously outlined methodology

with the following modifications: 30 wells were used per

treatment (with similar omissions when all larvae were not

accounted for), resulting in the following sample sizes: N5 30

(380 matm); N5 30 (560 matm); N5 29 (800 matm). Experiments

were conducted at 26 1C. Data from the Treatment Tile Experi-

ments (2008 and 2009) were pooled and analyzed by linear

regression analysis using least squared residuals.

Spectrofluorometry

To determine whether conditioning settlement substrates at

the different pCO2 levels altered the epilithic algal commu-

nities (and the availability of potential settlement cues), pre-

conditioned tiles that were not used in settlement assays in
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2009 were placed in 15mL tubes and immediately frozen for

use in spectrofluorometry analyses. Epilithic algal commu-

nities were extracted from tiles, and concentrations of chloro-

phylls a, b, c, phycoerythrin (PE) and phycocyanin (PC) were

determined by measuring the fluorescent emission of the

pigments extracted from the settlement tiles using a SPEXQ4

Fluorolog-3 spectrofluorometer. Pigments were extracted

using a solution of 10mL dimethyl sulfoxide (DMSO) and

15mL 90% acetone for chlorophyll (Chl) analyses; DMSO was

added 30min before the addition of acetone. Ten milliliters of

phosphate buffer (0.05M H2KPO4, 0.05M HK2PO4, 0.01% mer-

captoethanol, pH 6.5) was used for the extraction of PE and

PC. Pigment extractions took place overnight. Ten tiles were

sampled per treatment (380, 560, 800 matm) per analysis (PE/

PC or Chl). Pigment concentrations were normalized to the

weight of the tile. Emission peaks (wavelengths) for each

pigment are as follows: Chl a – 670 nm; Chl c – 635 nm; Chl b

– 650nm; PE – 570 nm; PC – 640 nm.

PE/PC data were square root transformed to meet assump-

tions of homoscedacity, and all data were analyzed using one-

way ANOVAs. Where significant differences were detected, post

hoc Tukey’s HSD analyses were used to determine which

treatments differed from each other.

Juvenile growth

In 2008, once settlement was assessed, juveniles on Ambient

Tiles were introduced to treatment aquaria containing water

corresponding to the treatment in which they were settled.

Individuals were mapped to allow for their identification

over time, and growth (increase in cross-sectional area, de-

fined as the outermost extent of visible skeleton) of each

individual was quantified according to the methods outlined

in Albright et al. (2008). Growth rates (mm2month�1) were

calculated as the rate of change in cross-sectional area over

time (49 days in May–June). Data were analyzed using a one-

way ANOVA. D’Agostino and Pearson omnibus test and Le-

vene’s test were used to verify the underlying assumptions of

normality and homoscedacity, respectively. Where significant

differences were detected, post hoc Tukey’s HSD analyses were

used to determine which treatments differed from each other.

Results

Larval metabolism

Larvalmetabolic rates decreased significantlywith increas-

ing pCO2 (F1, 4532.74, Po0.005) (Fig. 1). Model para-

meters obtained from regression analysis indicate a 27%

and 63% reduction in metabolic rates at pCO2 levels that

are projected to occur by the middle (560matm) and end

(800matm) of this century. Initial O2 concentrations in each

experiment and treatment were close to 200mmolkg�1 (the

expected saturation concentration at 26 1C and 35ppt), and

absolute O2 concentrations never fell below 160mmolkg�1,

80% of saturation (2mgL�1 or � 60mmolkg�1 is typically

identified as physiologically stressful by the EPA and

NOAA). Absolute respiration rates (nmolO2 larva
�1h�1)

were as follows (mean � 1SEM), where error represents

the analytical precision of the respiration rate (i.e. the

standard error of the slope of the regression line): 24h

AS: 2.06 � 0.09 (368matm); 1.7 � 0.1 (491matm);

0.87 � 0.07 (779matm); 48h AS: 2.0 � 0.1 (443matm);

1.3 � 0.1 (533matm); 1.4 � 0.1 (633matm).

Settlement

When settled onto Ambient Tiles, percent settlement

declined by 11% at 560 matm and 28% at 800 matm,

relative to controls. Percent settlement was as follows

(mean � 1 SEM): 65 � 8 (380 matm); 58 � 6 (560 matm);

and 47 � 9 (800 matm). Results of ANOVA indicate that

these reductions in settlement are not statistically sig-

nificant (F2, 425 2.78; P5 0.07). When settled onto Treat-

ment Tiles, percent settlement decreased by 45% at

560 matm and 55% at 800 matm relative to controls

(F2, 395 7.05, Po0.005) with percent settlement as fol-

lows: 65 � 8 (380 matm); 36 � 10 (560 matm); and 29 � 4

(800 matm) (Fig. 2a). Results of post hoc Tukey’s HSD

analyses are presented in Table 1.

In 2009, when settled onto Treatment Tiles, percent

settlement was reduced by 42% at 560 matm and 60% at

800 matm relative to controls (F1, 885 15.87, Po0.0001).

Percent settlement was as follows: 53 � 7 (380 matm);

31 � 6 (560 matm); and 21 � 5 (800 matm). Results of

settlement experiments with Treatment Tiles from

2008 and 2009 were pooled and analyzed via linear

regression using least squares residuals, indicating a

significant effect of pCO2 on settlement success

(F1, 1305 29.58, Po0.0001) (Fig. 2b).
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Fig. 1 Larval metabolism as a function of pCO2. Data are

pooled from two subsequent experiments. Closed triangles

represent data collected 24 h after spawning (AS); open triangles

represent data collected 48h AS. Error bars represent the analy-

tical precision of the respiration rates.
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Spectrofluorometry

Epilithic algal communities of tiles that were precondi-

tioned in ambient seawater (380 matm) had significantly

higher concentrations (mg g�1) of PE (F2, 285 10.96,

Po0.0005) and PC (F2, 285 18.38, Po0.0001). PE con-

centrations were reduced by 78% and 74% at 560 and

800 matm, respectively, compared with controls,

while PC concentrations were reduced by 73% and

83% (Fig. 3a and b). Results of post hoc Tukey’s HSD

analyses for PE/PC data are presented in Table 1. No

significant differences were observed in the concentra-

tions of Chl a and Chl c (Fig. 3c and d). Chl b was not

detected.

Absolute pigment concentrations (mgpigmentg�1 tile)

by treatment were as follows (mean � 1 SEM): PE:

0.7 � 0.1 (357matm); 0.15 � 0.04 (555matm); 0.17 � 0.04

(796matm). PC: 3.7 � 0.6 (357matm); 1.0 � 0.3 (555matm);

0.6 � 0.1 (796matm). Chl a: 1.1 � 0.1 (357matm); 1.0 � 0.1

(555matm); 1.00 � 0.07 (796matm). Chl c: 0.048 � 0.007

(357matm); 0.056 � 0.007 (555matm); 0.046 � 0.004

(796matm).
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Fig. 2 Results of settlement assays (mean � 1 SEM). (a) 2008:

gray bars represent data from the Ambient Tile Experiment (tiles

conditioned in ambient seawater, larvae settled in treatment sea-

water); white bars represent data from the Treatment Tile Experi-

ment (tiles conditioned in treatment seawater, larvae settled in

treatment seawater). (b) Pooled results from both Treatment Tile

Experiments (2008 and 2009). Open squares represent data from

2008. Closed squares represent data from 2009.

Table 1 Analysis of variance tables and pair-wise multiple

comparisons (Tukey’s HSD)

ANOVA df SS MS F-ratio P

Settlement (Treatment Tile Experiment, 2008)

Treatment 2 1.3988 0.699 7.0513 0.0024

Residual 39 3.8683 0.099

Total 41 5.2671

Tukey’s HSD

Mean

difference Q Po0.05

342 vs. 537 matm 0.3715 4.402 Y

342 vs. 765 matm 0.3890 4.701 Y

537 vs. 765 matm 0.0175 0.204 N

ANOVA df SS MS F-ratio P

Phycoerythrin

Treatment 2 1.079 0.5394 10.96 0.0003

Residual 27 1.329 0.0492

Total 29 2.408

Tukey’s HSD

Mean

difference Q Po0.05

357 vs. 555 matm 0.4157 5.925 Y

357 vs. 796 matm 0.3873 5.520 Y

555 vs. 796 matm �0.0284 0.405 N

ANOVA df SS MS F-ratio P

Phycocyanin

Treatment 2 6.808 3.404 18.38 o0.0001

Residual 27 5.000 0.1852

Total 29 11.81

Tukey’s HSD

Mean

difference Q Po0.05

357 vs. 555 matm 0.9225 6.779 Y

357 vs. 796 matm 1.0800 7.937 Y

555 vs. 796 matm 0.1576 1.158 N

ANOVA df SS MS F-ratio P

Growth

Treatment 2 1.0889 0.5445 12.6033 o0.0001

Residual 99 4.2768 0.0432

Total 101 5.3657

Tukey’s HSD

Mean

difference Q Po0.05

330 vs. 548 matm 0.1206 3.502 Y

330 vs. 775 matm 0.2571 7.094 Y

548 vs. 775 matm 0.1365 3.698 Y
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Growth

Postsettlement growth significantly declined with increas-

ing pCO2 (F2, 995 12.60, Po0.0001). Results of post hoc

Tukey’s HSD analyses are presented in Table 1. Growth

rates decreased by 16% and 35% at 560 and 800matm,

respectively, compared with controls (Fig. 4). Absolute

growth rates (mm2month�1) by treatment were as follows

[mean � 1SEM (N)]: 330matm, 0.74 � 0.04 (38); 548matm,

0.62 � 0.03 (35); 775matm 0.48 � 0.03 (29).

Discussion

This study demonstrates that OA has the capacity to

affect coral recruitment by impacting several early life

history processes, including: larval metabolism, larval

settlement, and postsettlement growth. Results of the

respiration experiments demonstrate that near-future

OA scenarios significantly depress larval metabolic

rates. Metabolic suppression resulting from exposure

to acidified conditions has previously been reported to

occur in a variety of adult marine invertebrates, includ-

ing: crabs (Metzger et al., 2007), squid (Rosa & Seibel,

2008), worms (Pörtner et al., 1998), bivalves (adult and

juveniles, Michaelidis et al., 2005), pteropods, and am-

phipods (reviewed in Fabry et al., 2008). Recent work,

conducted on sea urchin larvae, demonstrated that

culturing larvae in acidified conditions resulted in the

downregulation of several genes involved in aerobic

metabolism (Todgham & Hofmann, 2009; O’Donnell

et al., 2010). Metabolic suppression is considered an

adaptive strategy for the survival of short-term hyper-

capnia and hypoxia (reviewed in Fabry et al., 2008);

however, slowed metabolism is generally achieved by
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halting energy-expensive processes, such as protein

synthesis (Hand, 1991; Langenbuch et al., 2006), and

therefore, if sustained, will lead to reductions in growth

and reproductive potential (Fabry et al., 2008). Thus,

metabolic suppression is not considered to be advanta-

geous under chronic elevations of CO2, such as

OA (Langenbuch & Pörtner, 2004; Langenbuch et al.,

2006).

Depressed metabolic rates in coral larvae may hold

implications for larval fitness and motility, thereby

limiting dispersal and settlement rates. Recent work

demonstrated that oxygen consumption and energy

use in Acropora intermedia peaks �5 days AS, when

larvae begin actively swimming and exploring (Okubo

et al., 2008). During the planktonic dispersal phase,

larvae actively explore and change their position in

the water column to: locate ideal settlement sites (Mun-

dy & Babcock, 1998; Raimondi & Morse, 2000) and

possibly influence horizontal transport and dispersal

(Szmant & Meadows, 2006). If metabolic suppression

during the planktonic stage translates into decreased

larval motility, the ability of larvae to regulate their

vertical position in the water column may be compro-

mised, thereby impacting dispersal and settlement po-

tential. P. astreoides is a brooding species, and the larvae

contain symbiotic algae during the planktonic dispersal

stage (as opposed to larvae of spawning species which

generally do not contain symbiotic algae until after

settlement/metamorphosis). These algae are likely pro-

viding the larvae with an additional source of energy in

the form of translocated metabolites (Richmond, 1982;

Harrison & Wallace, 1990), which may render them less

susceptible to stressful environmental conditions. Re-

cent work suggests that the nutritional status of a coral

may play a role in its sensitivity to acidified conditions,

with decreased sensitivity in individuals with supple-

mental food and/or nutrients (Cohen & Holcomb,

2009). It is, therefore, possible that larvae of broadcast-

spawning species, devoid of symbionts, may be more

heavily impacted during the planktonic dispersal phase

than larvae of brooding species such as P. astreoides.

The effect of pCO2 on larval settlement may indicate

either a direct (physiological disruption of settlement

and/or metamorphosis) or indirect (interference with

benthic habitat/settlement cues) effect. By conditioning

tiles in ambient seawater and settling larvae onto those

tiles in treatment seawater, we assessed the potential for

acidification to directly impair larval settlement success.

Alternatively, by conditioning tiles in treatment seawater

and settling larvae in treatment seawater we assessed the

potential for OA to indirectly affect larval settlement by

altering the substrate community composition and the

availability of biological and chemical settlement cues.

Results of the Ambient Tile experiment indicate a trend

of decreasing settlement with increasing pCO2 (Fig. 2a).

However, these results are not statistically significant,

and it is not possible to determine whether the reduc-

tions in settlement are due to a nonsignificant effect of

acidified water on larval physiology or whether the

chemistry and microbiology of the settlement tiles were

altered by acute pH shifts that occurred as tiles were

moved to treatment water for the 24h settlement experi-

ment. A significant effect of pCO2 on larval settlement

was only observed when tiles were conditioned in

acidified seawater, with significant reductions in both

2008 and 2009. The results of these experiments indicate

that OA has the capacity to impact larval settlement but

may primarily do so indirectly, by affecting the chemistry

and microbiology of the substrata.

Acidification has been shown to negatively impact

larval settlement and/or metamorphosis in other mar-

ine invertebrates, including at least three species of

marine bivalves (Talmage & Gobler, 2009) and a broad-

cast spawning coral (Albright et al., 2010). Two prior

studies (Albright et al., 2008; Anlauf et al., 2011) have

reported no effect of acidified seawater on the ability of

coral larvae to successfully settle and metamorphose.

However, it is important to note that both of these

studies tested only for direct effects of pCO2 on larval

settlement and did not address the potential for indirect

effects by conditioning substrates in acidified seawater.

Kurihara (2008) observed no effect of acidified seawater

on the ability of Acropora tenuis larvae to successfully

settle; however, materials and methods were not pro-

vided for these experiments, and direct comparisons

with our results are, therefore, invalid.

Both positive settlement cues from CCA and settle-

ment interference by turf algae have been previously

documented (Morse et al., 1988; Webster et al., 2004;

Birrell et al., 2005; Kuffner et al., 2006; Vermeij & Sandin,

2008; Ritson-Williams et al., 2010). Red or blue phyco-

biliproteins such as PE and PC are major pigment

characteristics of red algae (e.g. CCA) and/or cyano-

bacteria. Chlorophylls a and c are major pigment char-

acteristics of chromophytes, such as Bacillariophyceae

(diatoms), Dinophyceae (dinoflagellates), Prymnesio-

phyceae (coccolithophores), etc. (Rowan, 1989; Jeffrey

& Vesk, 1997). Biofilms that developed on tiles condi-

tioned in ambient seawater contained significantly

higher concentrations of PE and PC (Fig. 3). Using

PE/PC concentrations, we were unable to differentiate

between red algae and cyanobacteria; however, visual

differences in the tiles (noticeably more CCA present on

tiles conditioned at ambient CO2), led us to believe that

the differences in PE/PC measured by spectrofluoro-

metry were indicative of CCA abundance as opposed to

cyanobacteria. Therefore, the prevalence of PE and PC

on control settlement tiles may partially explain the
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higher settlement rates that were observed. The data

suggest that, as CO2 levels increase, changes in the algal

community occur as red algae are outcompeted by

other algal types, such as diatoms and other chromo-

phytes. These data are in agreement with previously

published studies indicating that CCA recruit and

calcify more slowly at elevated CO2 (Anthony et al.,

2008; Kuffner et al., 2008). These findings indicate that

OA has the potential to alter coral recruitment dy-

namics by shifting epibenthic/epilithic algal commu-

nity composition away from taxa known to facilitate

larval settlement of certain coral species (e.g. CCA) and

towards alternate algal species (e.g. consortiums domi-

nated by diatoms and other chromophytes).

The observed reductions in juvenile growth rates are

consistent with the hypothesis that calcification and,

ultimately, growth decline as pCO2 increases and

saturation state decreases (Albright et al., 2008; Jokiel

et al., 2008; Marubini et al., 2008; Cohen et al., 2009).

Larval and juvenile calcification may be more sensitive

to acidification than adults, as has been shown for at

least two marine invertebrates (one bivalve, one echi-

noderm; reviewed by Kurihara, 2008). This may, in part,

be due to the presence of amorphous calcium carbonate

(ACC) precursors that can occur at the onset of calcifi-

cation and later stabilize into less soluble forms of

CaCO3. ACC is 30 times more soluble than calcite

(Brecevic & Nielsen, 1989; Politi et al., 2004), rendering

it particularly vulnerable to acidified conditions. Larval

spines of urchins form via an ACC precursor that later

stabilizes into calcite (Beniash et al., 1997; Politi et al.,

2008); similarly, shell formation in mollusk larvae in-

volves an initial, transient ACC phase (Weiss et al., 2002;

Marxen et al., 2003), and it has been suggested that the

same may be true for corals (Meibom et al., 2004).

Slowed postsettlement growth resulting from expo-

sure to acidified conditions has been documented in a

number of scleractinian coral speciesQ5 (Albright et al.,

2008; Kurihara, 2008; Cohen et al., 2009; Albright et al.,

2010; Suwa et al., 2010) and may translate into increased

juvenile mortality, as risk of mortality is inversely

proportional to juvenile growth rate and colony size

(Hughes & Jackson, 1985; Babcock, 1991; Vermeij &

Sandin, 2008). Additionally, for corals and other species

that exhibit a direct relationship between colony size,

onset of sexual maturity (Szmant, 1986) and fecundity

(Babcock, 1991), reduced growth will substantially di-

minish reproductive potential. Slowed growth will re-

sult in longer time spent in juvenile, nonreproductive

life stages, which, in combination with adult loss,

would shift population structures toward dominance

by smaller size classes, ultimately reducing effective

population sizes, population fecundity, and the resili-

ence of reef-building corals (Done, 1999).

Coral recruitment and early postsettlement survivor-

ship are critical to the persistence and resilience of coral

reefs. Recent research using artificial settlement sub-

strates indicates that recruit survivorship during the

first year is extremely low, generally reported to be as

low as 0.2–6.0% survivorship, depending on the species

and environment (Fairfull & Harriott, 1999; Wilson &

Harrison, 2005). Stochastic events or chronic stressors

that further reduce survivorship during these critical

stages have the potential to significantly alter future

population sizes (Gosselin & Qian, 1997; Vermeij &

Sandin, 2008). Results of this study demonstrate that

OA has the potential to interfere with recruitment by

negatively impacting multiple early life history pro-

cesses, including larval metabolism, settlement and

postsettlement growth, with implications for survivor-

ship. The compounding nature of successive impacts

may translate into a substantial decline in recruitment

that is felt at the community and/or ecosystem scale.
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Langenbuch M, Pörtner HO (2004) High sensitivity to chronically elevated CO2 levels

in a eurybathic marine sipunculid. Aquatic Toxicology, 70, 55–61.

Marubini F, Ferrier-Pagés C, Furla P, Allemand D (2008) Coral calcification responds to

seawater acidification: a working hypothesis towards a physiological mechanism.

Coral Reefs, 27, 491–499.

Marxen JC, Becker W, Finke D, Hasse B, Epple M (2003) Early mineralization in

Biomphalaria glabrata: microscopic and structural results. Journal of Molluscan

Studies, 69, 113–121.

McDonald MR, McClintock JB, Amsler CD, Rittschof R, Angus RA, Orihuela B,

Lutostanski K (2009) Effects of ocean acidification over the life history of the

barnacle Amphibalanus amphitrite. Marine Ecology Progress Series, 385, 179–187.

McGuire MP (1998) Timing of larval release by Porites astreoides in the northern Florida

Keys. Coral Reefs, 17, 369–375.

Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the

apparent dissociation constants of carbonic acid in seawater at atmospheric

pressure. Limnology and Oceanography, 18, 897–907.

Meibom A, Cuif JP, Hillion F et al. (2004) Distribution of magnesium in coral skeleton Q7.

Geophysical Research Letters, 31, L23306.
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