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Abstract: This paper presents a novel intermittent suboptimal event-triggered controller design for continuous-time nonlinear
systems. The stability of the equilibrium point of the closed-loop system, and the performances are analyzed and quantified
theoretically. It is proven that the static and the dynamic event-triggered suboptimal controllers have a known degree of sub-
optimality compared to the conventional optimal control policy. In order to generate dynamic event-triggering framework, we
introduce an internal dynamical system. Moreover, the Zeno behavior is excluded. Finally, a simulation example is conducted to
show the effectiveness of the proposed intermittent mechanisms.
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1 Introduction

In real-world applications, the majority of the feedback

controllers is implemented on digital platforms, such as em-

bedded micro-processor and/or on-board modules of com-

munication and actuation. Traditional digital control tech-

niques depend on periodic sampling, computation, and ac-

tuation. But limited communication and computation re-

sources along with energy saving targets require that ev-

ery information through a network should be carefully de-

cided when to transmit. Therefore, it is necessary to de-

sign aperiodic-sampling based controllers that can function

in event-driven environments and update their values only

when it is necessary to guarantee stability and a level of op-

timality.

The event-triggered control design is a framework that

can efficiently deal with applications of limited bandwidth.

Such framework requires a sampled-state component, and an

event-triggering mechanism that determines when the con-

trol signal has to be updated [1–7]. The work of [8] pro-

posed a dynamic framework to further reduce the commu-

nication burden. However, in the above results, the perfor-

mance of the event-triggered controller was not discussed

and quantified. This work provides such a quantification

of sub-optimality with respect to the time-triggered optimal

controller.

Reinforcement learning (RL) is a branch of machine

learning which aims to find an optimal action to minimize

or maximize a long term reward. Recently, intermittent de-

sign, i.e., event-triggered control, has been combined with

RL to reduce the communication load and computation bur-

den in feedback controller design for multi-agent systems in

a model-free manner [9] and single-agent system with linear

dynamics [10] and nonlinear dynamics [11–15]. However,
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the event-triggered mechanisms in above results are static

in essence because the parameters for the event-triggered

condition is time-invariant. To further reduce the communi-

cation burden, a novel dynamic event-triggered mechanism

with time-varying parameters is developed in this paper.

A common issue for optimal control problem is that the

analytical solutions for systems with general nonlinear dy-

namics is not available. A future design may equip the pre-

sented dynamic event-triggered mechanism with RL algo-

rithm [16–20], which approximates the optimal controller in

an iterative and/or online manner. Due to the page limita-

tion, RL-based dynamic event-triggered mechanism design

will be introduced in a future paper.

The remainder of this paper is structured as follows. Sec-

tion 2 formulates the problem. In Section 3, a static event-

triggered mechanism is introduced. Section 4 extends the

static mechanism to the dynamic case. A simulation exam-

ple is shown in Section 5. Finally, Section 6 concludes the

whole paper and talks about future work.

Notation: For the ease of readers, we provide here a

partial notation list which will be also explained in more

details later throughout this article. R
+ denotes the set

{x ∈ R : x > 0}. N+ denotes the set of positive integers.
λM and λ̄M denote the minimum and maximum eigenvalues

of the matrix M , respectively. {tk}∞k=0 is a monotonically
increasing sequence of sampling instants with tk the k-th

consecutive sampling instant satisfying lim
k→∞

tk = ∞.

2 Problem Formulation

Consider the following stabilizable nonlinear system

ẋ = f (x) + g (x)u (t) , x (t0) = x0, (1)

where x ∈ Rn is the state vector and u ∈ Rm is the control
input.

We shall find a controller u that minimizes a cost func-

tional similar to the one with an infinite bandwidth con-
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troller,

V (x0) =

∫ ∞

t0

U (x (t) , u (t)) dt, ∀x0, (2)

where the utility function U (x (t) , u (t)) is differentiable
and satisfies U (x, u) ≥ 0, for ∀x, u.
For this paper we will choose,

U (x, u) := Q (x) + ‖u‖R, (3)

where Q (x) := xTQx and ‖u‖R := uTRu, with Q ' 0
and R ≻ 0, represent the trade-off between driving the state
to the origin and saving the energy applied to the system

respectively.

Based on [21], a necessary condition for optimality is pro-

vided by

0 = H (u∗ (t) ;x (t) , V ∗ (x (t)))

= min
u(t)

H (u (t) ;x (t) , V ∗ (x (t))) , (4)

with a boundary condition V ∗ (x(∞)) = 0 and is termed
as a Hamilton-Jacobi-Bellman (HJB) equation. Assuming

that the minimum on the right hand side of (4) exists and

is unique, then the relationship between the solution of the

HJB equation (4) and the optimal control problem of system

(1) with respect to the cost (2) can be described as,

u∗ (x) = −1

2
R−1gT (x)

∂V ∗ (x)

∂x
. (5)

The control (5) satisfies the following assumption.

Assumption 1. The controller u∗(x) is Lipschitz continuous
in the following sense,

‖u∗ (x (t)) − u∗ (x (t) + y (t))‖ ≤ L ‖y (t)‖ , ∀y (6)

where L is a positive constant.

Remark 1. Note that the optimal control policy u(·) de-
pends on the optimal value gradient

∂V ∗(x)
∂x

. However, solv-

ing the HJB equation (4) is challenging since it is a nonlin-

ear partial differential equation and does not have an ana-

lytical solution for general nonlinear systems.

The controller (5) requires the signal to be updated con-

tinuously and is therefore referred to as time-triggered con-

troller. In contrast, event-triggered controller will be intro-

duced in the next section.

3 Suboptimal Static Event-Triggered Control

Consider an aperiodic sampling component that yields,

x̂ (t) = x (tk) , ∀t ∈ [tk, tk+1) . (7)

Define the gap or difference between the current state x(t)
and the sampled state x̂ as,

e (t) = x̂ (t) − x (t) . (8)

Then, based on the time-triggered optimal control (5), the

event-triggered controller can be determined by following

[22] as,

ue (x) = u∗ (x̂) = −1

2
R−1gT (x̂)

∂V ∗ (x̂)

∂x̂
. (9)

Based on Assumption 1, the event-triggered policy ue (·)
will satisfy

‖u∗ (x (t)) − ue (x (t))‖ ≤ L ‖e (t)‖ (10)

The dynamics of the system (1) by using (9) can be written

as,

ẋ = f (x) + g (x)ue (x)

= f (x) + g (x)u∗ (x̂) . (11)

Taking into account (11), the Hamiltonian of the event-

triggered control policy us (·) parametrized by the optimal
time-triggered value function V ∗ (·) can be further expressed
as

H (ue (·) ;V ∗ (·) , x)

=

[

∂V ∗ (x)

∂x

]T [

f (x) − 1

2
g (x)R−1gT (x̂)

∂V ∗ (x̂)

∂x̂

]

+ Q (x) +
1

4

[

∂V ∗ (x̂)

∂x̂

]T

g (x̂)R−1gT (x̂)
∂V ∗ (x̂)

∂x̂
.(12)

The following lemmas provide a relationship between

u∗ (·) and ue (·).
Lemma 1. Under Assumption 1, the relationship between

the event-triggered Hamiltonian H (ue;x, V
∗ (x)) in (12)

and the time-triggered HamiltonianH (u∗;x, V ∗ (x)) in (4)
can be found to be

H (ue;x, V
∗ (x)) −H (u∗;x, V ∗ (x))

= (ue − u∗)TR (ue − u∗) . (13)

Proof. The proof is similar to [22].

Lemma 2. Consider the system given by (1) with the event-

triggered control given by (9). Then, one has,

ẋ ≤ Ae ‖x‖ + Be ‖e‖ (14)

where Ae and Be are positive constants.

Proof. The proof is omitted due to page limitation and will

be provided in a future paper.

Subtracting the time-triggered HJB equation (4) from (12)

yields,

‖H (ue (·) ;V ∗ (·) , x) −H (u∗ (·) ;V ∗ (·) , x)‖
≤ λ̄RL

2‖e (t)‖2, (15)

where λ̄R denotes the maximum eigenvalue of matrix R.

Before we proceed, we require the following assumption.

Assumption 2. At the event-triggering instant, tk, ∀k ∈
N
+, finite-time stabilization is not achieved, i.e., x(tk) ,= 0.

Lemma 3. Consider the event-triggered control,

us (x) = u∗ (x̂) = −1

2
R−1gT (x̂)

∂V ∗ (x̂)

∂x̂
, (16)

with a triggering condition given as,

‖e‖2 ≤
λQ

(

1 − σ2
)

‖x‖2 + λ̄R‖u∗ (x̂)‖2

λ̄RL2
(17)

where σ ∈
(

max
{

0, 1 − λ̄RL
2

λQ

}

, 1
)

∈ R+. Then, the ori-
gin of the closed-loop system is asymptotically stable.
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Proof. The proof follows [22].

The triggering condition (17) can be equivalently written

as,

h = λQ
(

1 − σ2
)

‖x‖2 + λ̄R‖u∗ (x̂)‖2 − λ̄RL
2‖e‖2

h ≥ 0. (18)

The event triggering instants determined by the condition

(17) are

t0 = 0,

tk+1 = inf
t∈R+

0

{t > tk ∧ h ≤ 0} . (19)

Thus, one requires h ≥ 0 at all times. The triggering con-
dition (17) is denoted as static, whereas the dynamic will be

considered in the next section.

4 Suboptimal Dynamic Event-Triggered Control

The static event-triggered condition (17) needs to be sat-

isfied ∀t. In order to further reduce the communication load,
this section will relax such requirement by introducing a dy-

namic intermittent framework.

Following [8], we will require the condition to be non-

negative in an average sense over an interval. To formulate

the dynamic event-triggered mechanism, the following inter-

nal dynamical system is required

η̇ = −µη + h, ∀η (t0) = η0, t ∈ R+0 (20)

where µ ∈ R+ is a parameter to be designed later.
We are now ready to present the following dynamic event-

triggering mechanism,

η (t) + θh (t) ≤ 0, (21)

where θ ∈ R+ is a parameter to be designed later.
The event triggering instants sequence can be determined

by (21) as,

t0 = 0,

tk+1 = inf
t∈R+

{(t > tk) ∧ (η (t) + θh (t) ≤ 0)} .(22)

Consequently, the control for this dynamic event-triggered

case can be found to be

ud (x) = u∗ (x̂) = −1

2
R−1gT (x̂)

∂V ∗ (x̂)

∂x̂
. (23)

Lemma 4. Let µ be a positive constant, η0, θ ∈ R+0 , and h
be defined as in (18). Then,

1) η (t) + θh (t) ≥ 0, ∀t ∈ R+0 ;
2) η ≥ 0, ∀t ∈ R+0 .
Proof. 1) According to (22), the following condition is true

η (t) + θh (t) ≥ 0. (24)

2) Consider the case that θ = 0. Then the first proposition
η (t) + θh (t) ≥ 0 implies that η ≥ 0, ∀t ∈ R+0 .

For the case when θ ,= 0, the first proposition implies

h (t) ≥ −1

θ
η (t) . (25)

Considering now (20) and (25), allow us to write,

η̇ (t) ≥ −
(

µ +
1

θ

)

η (t) , ∀η0, t ∈ R+0 . (26)

Now let y (y0, t) be a solution of the differential equation

ẏ (t) = −
(

µ +
1

θ

)

y (t) , ∀y0 = η0, t ∈ R+0 . (27)

Then, we can conclude according to the comparison princi-

ple [23] that η (t) ≥ y (t) ≥ 0.

The following theorem guarantees the stability of the

equilibrium point of the closed-loop system with the dy-

namic event-triggering mechanism provided by (20) and

(21).

Theorem 1. Let σ be selected as in Lemma 3 and µ, η0, θ ∈
R
+. Suppose that the controller (23) with the dynamic event-

triggered mechanism given in (20) and (21) is applied to the

system (1). Then, the following properties hold.

1) The origin of the closed-loop system is asymptotically

stable.

2) The event-triggered condition (21) is Zeno-free. More-

over, let q = 2Ae − µ, µ ∈ (0, 2Ae), θ ∈
(

1
2q ,

1
q

]

, the

inter-event interval τd = min
k

(tk+1 − tk) determined

implicitly by (22) is lower-bounded by a positive con-

stant τd, which is given by

τd =

∫ 1

0

1

Ae
√

a
b

+
(

Be + µ
2

)

s + Be

√

b
a
s2 + 1

2θ s
3
ds, (28)

where a, b are given as

a = λ̄RL
2,

b = λQ
(

1 − σ2
)

. (29)

3) The cost of applying ud (·) is quantified as,

J (ud (·) ;x0) = J (u∗ (·) ;x0)

+

∫ ∞

t0

‖ud (x (τ)) − u∗ (x (τ))‖Rdτ. (30)

Proof. 1) Given now the augmented system of (11) and

(20), consider the following Lyapunov candidate function

W : Rn × R+0 → R
+
0 ,

W (x, η) = V ∗ (x) + η. (40)

We can show thatW (x, η) is a positive definite and radially
unbounded function, since

W (x, η) ≥ V ∗ (x) , ∀ (x, η) ∈ Rn × R+0 . (41)

Based on Lemma 3, the orbital derivative of (41) is,

Ẇ (x, η) = V̇ ∗ (x) + η̇

≤
(

−λQσ2‖x‖
2 − h

)

+ (−µη + h)

= −λQσ2‖x‖
2 − µη. (42)
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ξ̇ ≤
√
aθ

√

η + bθ‖x‖2
(Ae ‖x‖ + Be ‖e‖) +

√
aθ ‖e‖

2
(

η + bθ‖x‖2
)

3
2

(

µη − b‖x‖2 + a‖e‖2 + 2bθAe‖x‖2 + 2bθBe ‖x‖ ‖e‖
)

≤ Ae

√

a

b
+
(

Be +
µ

2

)

ξ + Be

√

b

a
ξ2 +

1

2θ
ξ3 (31)

According to Lemma 3 and 4, one has Ẇ (x, η) < 0. There-
fore,W (x (t) , η (t)) decreases and both x (t) and η (t) con-
verge to the origin asymptotically.

2) As shown in Lemma 3,
‖e‖
‖x‖ evolves from 0 toLx during

the interval [tk, tk+1). Equivalently, the term
√
a‖e‖√
b‖x‖ evolves

from 0 to 1, where a = λ̄RL
2 and b = λQ

(

1 − σ2
)

.

For the dynamic event-triggered mechanism, according to

(21) one has,

η (t) + θ
[

b‖x (t)‖2 + λ̄R‖ud (t)‖2 − a‖e (t)‖2
]

≤ 0, (43)

which can further yield,

aθ‖e (t)‖2 ≥ η (t) + bθ‖x (t)‖2 + θλ̄R‖ud (t)‖2

≥ η (t) + bθ‖x (t)‖2. (44)

Therefore, when θ > 0, the interval of [tk, tk+1),√
aθ‖e(t)‖√

η(t)+bθ‖x(t)‖2
, evolves from 0 to 1. Denote now,

ξ (t) =

√
aθ ‖e (t)‖

√

η (t) + bθ‖x (t)‖2
, (45)

By investigating the dynamics of ξ (t) we can bound the
inter-event interval as

ξ̇ = −
√
aθ ‖e‖

2
(

η + bθ‖x‖2
)

3
2

(

η̇ + 2bθxT ẋ
)

+

√
aθeT ė√

η + bθ · ‖e‖ · ‖x‖ , (46)

with initial condition ξ0 = 0. Considering the fact that

ė = −ẋ
‖ẋ‖ ≤ Ae ‖x‖ + Be ‖e‖
η̇ = −µη + b‖x‖2 + λ̄R‖u∗ (x̂)‖2 − a‖e‖2

≥ −µη + b‖x‖2 − a‖e‖2 (47)

gives (31) (see top on next page), in which the last inequality

holds if µ ∈ (0, 2Ae) and θ ∈
(

0, 1
2Ae−µ

]

. By using the

assumption that θ ∈
(

1
2q ,

1
q

]

and q = 2Ae−µ, then one can

obtain θ ∈
(

0, 1
2Ae−µ

]

.

Denote now ψ (t, ψ0) as the solution of,

ψ̇ = Ae

√

a

b
+
(

Be +
µ

2

)

ψ + Be

√

b

a
ψ2 +

1

2θ
ψ3,

ψ0 = ξ0. (48)
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Fig. 1: Time-triggered control policy u∗ (x)

Based on the comparison principle [23] and (31), ξ (t) sat-
isfies ξ (t) ≤ ψ (t, ψ0). Moreover, time needed by ξ (t) to
evolve from 0 to 1 is lower bounded by the positive constant
τd in (28). Therefore, the event-triggered condition (21) is

Zeno-free;

3) This proof follows from [22].

5 Simulation
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Fig. 2: The evolution of the state trajectories of the static

event-triggered mechanism.

In order to validate the effectiveness of the presented

Hamiltonian event-triggered control policies we will use a

system adopted from [24].
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Fig. 3: The evolution of the control input of the static mech-

anism.
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Fig. 4: The evolution of the state trajectories of the dynamic

event-triggered mechanism.

Consider the following controlled Van der Pol oscillator,

ẋ =

[

x2
−x1 + 0.5

(

1 − x22
)

x2

]

+

[

0
1

]

u. (49)

The user-defined matrices of (2) are picked as, R = 1 and
Q = I , then the optimal value function for this system is

V ∗ (x) = x21+x
2
2 and the optimal controller is u

∗ (x) = −x2
[24].

When applying the optimal time-triggered control pol-

icy u∗ (x), the results are shown in Figure 1, where the
continuous-time optimal control input is a continuously

time-varying signal with infinite bandwidth.

The static event-triggered mechanism is designed based

on Lemma 3. When the static event-triggered mechanism

is applied to system (49), the evolution of the state trajec-

tories and the control signal are presented in Figures 2 and

3, respectively. A comparison between the continuous-time

optimal control and the static event-triggered control shows

that the static event-triggered mechanism is able to reduce

the communication bandwidth.
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Fig. 5: The evolution of the control input of the dynamic

mechanism.

The dynamic event-triggered mechanism is designed

based on Theorem 1. When the dynamic event-triggered

mechanism is applied to system (49), the evolution of the

state trajectories and the control signal are presented in Fig-

ures 4 and 5, respectively. To compare the sampling fre-

quency of the static and dynamic event-triggered controllers,

from Figures 2 – 5, one can observe that the dynamic event-

triggered mechanism is able to further reduce the commu-

nication bandwidth. Therefore, the dynamic event-triggered

mechanism is superior to the static event-triggered mecha-

nism with respect to the communication bandwidth.

6 Conclusion and Future Work

In this paper, a novel dynamic event-triggered suboptimal

control policy is developed. The stability of the equilibrium

point for the closed-loop system is discussed, while also

guaranteeing exclusion of Zeno behavior about the proposed

dynamic event-triggered mechanism. A simulation example

is carried out to validate the dynamic event-triggered mech-

anism.

Future work will focus on combining the model-free re-

inforcement learning techniques with the presented dynamic

event-triggered mechanism.
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