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Abstract: This paper presents a novel intermittent suboptimal event-triggered controller design for continuous-time nonlinear
systems. The stability of the equilibrium point of the closed-loop system, and the performances are analyzed and quantified
theoretically. It is proven that the static and the dynamic event-triggered suboptimal controllers have a known degree of sub-
optimality compared to the conventional optimal control policy. In order to generate dynamic event-triggering framework, we
introduce an internal dynamical system. Moreover, the Zeno behavior is excluded. Finally, a simulation example is conducted to
show the effectiveness of the proposed intermittent mechanisms.
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1 Introduction

In real-world applications, the majority of the feedback
controllers is implemented on digital platforms, such as em-
bedded micro-processor and/or on-board modules of com-
munication and actuation. Traditional digital control tech-
niques depend on periodic sampling, computation, and ac-
tuation. But limited communication and computation re-
sources along with energy saving targets require that ev-
ery information through a network should be carefully de-
cided when to transmit. Therefore, it is necessary to de-
sign aperiodic-sampling based controllers that can function
in event-driven environments and update their values only
when it is necessary to guarantee stability and a level of op-
timality.

The event-triggered control design is a framework that
can efficiently deal with applications of limited bandwidth.
Such framework requires a sampled-state component, and an
event-triggering mechanism that determines when the con-
trol signal has to be updated [1-7]. The work of [8] pro-
posed a dynamic framework to further reduce the commu-
nication burden. However, in the above results, the perfor-
mance of the event-triggered controller was not discussed
and quantified. This work provides such a quantification
of sub-optimality with respect to the time-triggered optimal
controller.

Reinforcement learning (RL) is a branch of machine
learning which aims to find an optimal action to minimize
or maximize a long term reward. Recently, intermittent de-
sign, i.e., event-triggered control, has been combined with
RL to reduce the communication load and computation bur-
den in feedback controller design for multi-agent systems in
a model-free manner [9] and single-agent system with linear
dynamics [10] and nonlinear dynamics [11-15]. However,
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the event-triggered mechanisms in above results are static
in essence because the parameters for the event-triggered
condition is time-invariant. To further reduce the communi-
cation burden, a novel dynamic event-triggered mechanism
with time-varying parameters is developed in this paper.

A common issue for optimal control problem is that the
analytical solutions for systems with general nonlinear dy-
namics is not available. A future design may equip the pre-
sented dynamic event-triggered mechanism with RL algo-
rithm [16-20], which approximates the optimal controller in
an iterative and/or online manner. Due to the page limita-
tion, RL-based dynamic event-triggered mechanism design
will be introduced in a future paper.

The remainder of this paper is structured as follows. Sec-
tion 2 formulates the problem. In Section 3, a static event-
triggered mechanism is introduced. Section 4 extends the
static mechanism to the dynamic case. A simulation exam-
ple is shown in Section 5. Finally, Section 6 concludes the
whole paper and talks about future work.

Notation: For the ease of readers, we provide here a
partial notation list which will be also explained in more
details later throughout this article. RT denotes the set
{z € R:2 > 0}. NT denotes the set of positive integers.
Ay and s denote the minimum and maximum eigenvalues
of the matrix M, respectively. {¢x},- is a monotonically
increasing sequence of sampling instants with ¢, the k-th
consecutive sampling instant satisfying lem tr = oo.

7 oo

2 Problem Formulation

Consider the following stabilizable nonlinear system
&= f(z)+g@)u(t),z(to) = zo, M

where © € R"™ is the state vector and v € R™ is the control
input.

We shall find a controller « that minimizes a cost func-
tional similar to the one with an infinite bandwidth con-



troller,

V(xo):l/on(x(ﬂ,u(w)dt Vo,

to

(@)

where the utility function U (x (¢),w (t)) is differentiable
and satisfies U (z,u) > 0, for Va, u.
For this paper we will choose,

Uz, u) = Q(2) + ||ullr, 3)

where Q (7) = 27Qz and ||u||g = uT Ru, with Q = 0
and R > 0, represent the trade-off between driving the state
to the origin and saving the energy applied to the system
respectively.

Based on [21], a necessary condition for optimality is pro-
vided by

H (u” () ;2 (1), V" (2 (1))

min H (u(t);2(t),V* (z (1)),

4
e 4

with a boundary condition V* (z(c0)) = 0 and is termed
as a Hamilton-Jacobi-Bellman (HJB) equation. Assuming
that the minimum on the right hand side of (4) exists and
is unique, then the relationship between the solution of the
HIJB equation (4) and the optimal control problem of system
(1) with respect to the cost (2) can be described as,

ovV* (x)
oxr

The control (5) satisfies the following assumption.

1
ut (@) = —5 R (@) )

Assumption 1. The controller u*(x) is Lipschitz continuous
in the following sense,

[u” (2 () —u* (z (8) +y ()] < Ly O, vy

where L is a positive constant.

(6)

Remark 1. Note that the optimal control policy u(-) de-
pends on the optimal value gradient %. However, solv-
ing the HIB equation (4) is challenging since it is a nonlin-
ear partial differential equation and does not have an ana-

Iytical solution for general nonlinear systems.

The controller (5) requires the signal to be updated con-
tinuously and is therefore referred to as time-triggered con-
troller. In contrast, event-triggered controller will be intro-
duced in the next section.

3 Suboptimal Static Event-Triggered Control

Consider an aperiodic sampling component that yields,
@)

Define the gap or difference between the current state x(t)
and the sampled state & as,

e(t)=2(t)—z(t). @®)

Then, based on the time-triggered optimal control (5), the
event-triggered controller can be determined by following
[22] as,

T (t) = (tk) ,Vt € [tk7tk+1) .

v+ (&)
9%

U () f%RflgT (2) )

2018

Based on Assumption 1, the event-triggered policy wu. (-)
will satisfy

[u” ( (£)) = ue (= ()]

The dynamics of the system (1) by using (9) can be written
as,

< Lle@l a0

f (@) + g (@) ue (z)

f(@)+g@)u” (). (11)
Taking into account (11), the Hamiltonian of the event-
triggered control policy us (-) parametrized by the optimal

time-triggered value function V* (+) can be further expressed
as

H (ue (-); V" (), 2)

- |29 1@ - e e @ 2
= o+ 1|2 @m0 2 Cho)

The following lemmas provide a relationship between
uw* (+) and e (+).

Lemma 1. Under Assumption 1, the relationship between
the event-triggered Hamiltonian H (ue;x,V* (x)) in (12)
and the time-triggered Hamiltonian H (u*;x, V* (x)) in (4)
can be found to be
H (ue; , V™ (2)) — H (w52, V" (2))
= (ue —u") R (ue — u*).

(13)

Proof. The proof is similar to [22]. O

Lemma 2. Consider the system given by (1) with the event-
triggered control given by (9). Then, one has,
& < Acllz] + Be lle] (14)

where A, and B, are positive constants.

Proof. The proof is omitted due to page limitation and will
be provided in a future paper. O

Subtracting the time-triggered HJB equation (4) from (12)
yields,

| H (ue (-); V() 2) = H(u™ (-); V*(+), )]
< ArL*le®)? (15)

where \r denotes the maximum eigenvalue of matrix R.
Before we proceed, we require the following assumption.

Assumption 2. At the event-triggering instant, t, Yk €
N, finite-time stabilization is not achieved, i.e., x(t);) # 0.

Lemma 3. Consider the event-triggered control,

1 ov* (z)
s(2) =u* (8) = —=R g7 (2 16
us (@) = ' (1) = —5R T (@) S a6
with a triggering condition given as,
Ag (1=0?) ||z]* + Arllu* ()]
ot < 22 L= )l : (17)
ArL
S L2

} , 1) € RT. Then, the ori-
gin of the closed-loop system is asymptotically stable.

where o € (max {0, 1—4



Proof. The proof follows [22]. O

The triggering condition (17) can be equivalently written
as,

ho= A (1=0°) llz” + Arllu” (2)|* = ArL*[lel|”
h > 0. (18)

The event triggering instants determined by the condition
(17) are

ty = 07
tkrr = inf {t >t Ah<O0}. (19)
teRT

Thus, one requires A > 0 at all times. The triggering con-
dition (17) is denoted as static, whereas the dynamic will be
considered in the next section.

4 Suboptimal Dynamic Event-Triggered Control

The static event-triggered condition (17) needs to be sat-
isfied Vt. In order to further reduce the communication load,
this section will relax such requirement by introducing a dy-
namic intermittent framework.

Following [8], we will require the condition to be non-
negative in an average sense over an interval. To formulate
the dynamic event-triggered mechanism, the following inter-
nal dynamical system is required

n=—un+h, ¥n(ty) =no,t € Rg (20)

where ;1 € R™ is a parameter to be designed later.
We are now ready to present the following dynamic event-
triggering mechanism,

1 (t) +6h(t) <0, 2D

where § € R™ is a parameter to be designed later.
The event triggering instants sequence can be determined
by (21) as,

to = 0,
ter =l {(t>0) A (n(2) +0h (1) < 0)}.22)

Consequently, the control for this dynamic event-triggered
case can be found to be
ov* (z)
or

wi(@) = u* (#) = 3 R (3) @3)

Lemma 4. Let 11 be a positive constant, 1,0 € ]R(J{, and h
be defined as in (18). Then,

1) n(t)+0h(t) >0Vt e RS,
2) n>0,VteR].

Proof. 1) According to (22), the following condition is true
n(t)+0h(t) > 0. (24)

2) Consider the case that § = 0. Then the first proposition
7 (t) + 0h (t) > 0 implies that n > 0, V¢ € R
For the case when 6 # 0, the first proposition implies

h(t) = —2n(t). (25)

Considering now (20) and (25), allow us to write,

1
ﬁ(t)Z*<u+5)n(t),vno,t€R(T‘ (26)

Now let y (yo, t) be a solution of the differential equation

1
i == (n+3)vO 0 =meery. @

Then, we can conclude according to the comparison princi-
ple [23] that n (¢) > y (t) > 0. O

The following theorem guarantees the stability of the
equilibrium point of the closed-loop system with the dy-
namic event-triggering mechanism provided by (20) and
(21).

Theorem 1. Let o be selected as in Lemma 3 and ji, 19,0 €
R*. Suppose that the controller (23) with the dynamic event-
triggered mechanism given in (20) and (21) is applied to the
system (1). Then, the following properties hold.

1) The origin of the closed-loop system is asymptotically
stable.

2) The event-triggered condition (21) is Zeno-free. More-
over, let q = 2A. — i, u € (0,24,), 0 € (i, ﬂ, the
inter-event interval T, = nzin (tx+1 — tg) determined
implicitly by (22) is lower-bounded by a positive con-
stant T4, which is given by

1

1
Id:/
D AT+ (Bet §) s+ Byt 4 5ys?

ds, (28)

where a, b are given as
ArL?,
Ao (1=07). (29)

a =

b =
3) The cost of applying ug (+) is quantified as,
J (ua () ;20) = J (u” ()5 0)

b [ e @) = @ ()l par. G0

to

Proof. 1) Given now the augmented system of (11) and
(20), consider the following Lyapunov candidate function
W:R" x Rf = R{,

W(z,n) =V"(2) +n. (40)

We can show that W (x, n)) is a positive definite and radially
unbounded function, since

W (z,m) > V* (x),V(z,n) € R" x R{. (41)

Based on Lemma 3, the orbital derivative of (41) is,

Wiz,n) = V*(x)+7
< (-2g0%Nall® = h) + (~un + B)
= 20 |all* — . (42)
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: ad ad e
¢ < Y (acgel+ Beel) + —— 2
0+ bb)jz] 2(1 -+ b0

A

a Iz bo 1.
A (B By e mofle s Lo

pn = bz + alle]® + 200 A |z|* + 260 B, ||| He\l)

(€29

According to Lemma 3 and 4, one has W (z,7) < 0. There-
fore, W (z (t) ,n (t)) decreases and both z (¢) and 7 (¢) con-
verge to the origin asymptotically.

2) As shown in Lemma 3 lell evolves from 0 to L, during

>l
the interval [t, t11). Equivalently, the term ﬁ\‘:”
from 0 to 1, where ¢ = ApL? and b = AQ (1 — 02).

For the dynamic event-triggered mechanism, according to
(21) one has,

evolves

0(2) +0 [blla O + Anllua ()] — alle @)]2] <0, @)
which can further yield,

afle (t)|” 1 (t) + 0]z (t)]|* + OAg|lua (1)

>
> () + b ()] (44)
Therefore, when 6 > 0, the interval of [t,fr11),

Vad|le(t)]|

Vn)+oollz(t)]*’

evolves from 0 to 1. Denote now,

Val |le (#)]]

€)= 2
10+ bola (1)

(45)

By investigating the dynamics of £ (f) we can bound the
inter-event interval as

__ Vab|e]
3
2+ ol

n Va?eTé
V60 el - =]’

with initial condition £y = 0. Considering the fact that

(1) + 2602 1)

(46)

—

Ac ||zl + B |le]

—pn + Bllz|* + Arflu” (@)% — allel|”
—pm + bl — alle]”

é

IN

1]

7

A\

(47)
gives (31) (see top on next page), in which the last inequality

holds if 1 € (0,24,) and 6 € (0, 5!

, m}. By using the

assumption that 6 € (2—1(1, ﬂ and ¢ = 2A, — 11, then one can
obtain § € (0 —

) 2Ae—u}'
Denote now v (t, 1) as the solution of,

a p by Lys
Al (s B)vem s Lo

€o- (43)
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X, (t)/xz(t)
u(t)
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10 20
time/sec

30 30

Fig. 1: Time-triggered control policy u* (z)

Based on the comparison principle [23] and (31), £ (¢) sat-
isfies & (t) < v (t,10). Moreover, time needed by & (¢) to
evolve from 0 to 1 is lower bounded by the positive constant
T, 1in (28). Therefore, the event-triggered condition (21) is
Zeno-free;

3) This proof follows from [22]. (I

5 Simulation

e 71 (1)
(t)

@1(t)/21(t)
25(t)/22(t)

0 10 20 30 10 20 30

Fig. 2: The evolution of the state trajectories of the static
event-triggered mechanism.

In order to validate the effectiveness of the presented
Hamiltonian event-triggered control policies we will use a
system adopted from [24].



—u()

us(t)

1 I I I I I
15 20

Time/sec

Fig. 3: The evolution of the control input of the static mech-

anism.

10 20
Time/sec

10 20 30
Time/sec

30

Fig. 4: The evolution of the state trajectories of the dynamic
event-triggered mechanism.

Consider the following controlled Van der Pol oscillator,

o |7 [1]

The user-defined matrices of (2) are picked as, R = 1 and
@ = I, then the optimal value function for this system is
V* (x) = 22+22 and the optimal controller is u* (z) = —x»
[24].

When applying the optimal time-triggered control pol-
icy u* (z), the results are shown in Figure 1, where the
continuous-time optimal control input is a continuously
time-varying signal with infinite bandwidth.

The static event-triggered mechanism is designed based
on Lemma 3. When the static event-triggered mechanism
is applied to system (49), the evolution of the state trajec-
tories and the control signal are presented in Figures 2 and
3, respectively. A comparison between the continuous-time
optimal control and the static event-triggered control shows
that the static event-triggered mechanism is able to reduce
the communication bandwidth.

T2

—z1+ 0.5 (1 — 3 “49)

2021

35

25

uq(t)

0.5

1 I I I I I
15 20 25

Time/sec

Fig. 5: The evolution of the control input of the dynamic
mechanism.

The dynamic event-triggered mechanism is designed
based on Theorem 1. When the dynamic event-triggered
mechanism is applied to system (49), the evolution of the
state trajectories and the control signal are presented in Fig-
ures 4 and 5, respectively. To compare the sampling fre-
quency of the static and dynamic event-triggered controllers,
from Figures 2 — 5, one can observe that the dynamic event-
triggered mechanism is able to further reduce the commu-
nication bandwidth. Therefore, the dynamic event-triggered
mechanism is superior to the static event-triggered mecha-
nism with respect to the communication bandwidth.

6 Conclusion and Future Work

In this paper, a novel dynamic event-triggered suboptimal
control policy is developed. The stability of the equilibrium
point for the closed-loop system is discussed, while also
guaranteeing exclusion of Zeno behavior about the proposed
dynamic event-triggered mechanism. A simulation example
is carried out to validate the dynamic event-triggered mech-
anism.

Future work will focus on combining the model-free re-
inforcement learning techniques with the presented dynamic
event-triggered mechanism.
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