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ABSTRACT

This paper presents the application and effectiveness of a
recent novel model-free Q-learning algorithm to control linear
systems with unknown dynamics in support of the growing
Internet of Things (IoT) ecosystem.
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INTRODUCTION

In recent years, Internet-connected devices have been exten-
sively utilized in various applications and, with the prolifera-
tion of the IoT and cloud based services, it is easy to envision
a diverse set of devices becoming an integral component of
the IoT ecosystem. Massive deployment of these devices is
expected as their technology matures and cost lowers. IoT
devices can be configured with a diversity of sensors to collect
data in coordination with other IoT devices. As the number
of IoT devices and their utility increases, it becomes essential
to design and implement efficient mechanisms to reconfigure,
program, and control them. Traditional controllers are based
on an underlying dynamical model of the device which is de-
signed to a particular configuration of the platform and usually
requires retuning when tasks and performance requirements
are changed. Reinforcement Learning (RL), as an online-
learning approach, can be implemented in real time to control
IoT devices without any knowledge of the system dynamics or
the environment. In this paper, we present the application and
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effectiveness of an online model-free Q-learning algorithm to
derive controllers for different types of systems.

Q-LEARNING APPROACH

Our model-free Q-learning approach is based on the recent
work presented in [7]. This online algorithm was proposed to
solve the infinite-horizon optimal control problem of an LTI
system with completely unknown dynamics.

Considering an LTI continuous-time system,

X(t) = Ax(t) + Bu(r) ()

with x(0) = xp and ¢ > 0, where x(r) € R" is the state vector
and, u(r) € R™ is the control input, and A € R"™", B € R"*™
are the plant and input matrices respectively and assuming
controllable dynamics, the goal is to find the optimal value
function V* defined by,

V*(x(1)) := min / %(xTMer W Ru)dT,¥i ()
t

but without any information of the system dynamics (A, B).
Note that M > 0 and R > 0 are user defined matrices and the
pair (v/M,A) is detectable. The assumption that (A,B) is
controllable and (/M,A) is detectable, will guarantee that
the algebraic Riccati equation will have a unique non-negative
solution [7] when the control contains full-state feedback.
Traditionally, with the full knowledge of the dynamics, the
Hamiltonian associated with (1) and (2) can be considered as
follows,

ov:  ovrT 1 1
H(x,u,——) =~ (Ax+Bu) +§xTMx +§uTRu 3)
and the optimal control can be found to be,
A% 1 dV*
*(x) = in H(x,u,——)=—R'BT—— (4
' (x) = arg min H (x,, %) — @

For the linear system (1), the value function can be considered
as quadratic in the state,

1
Vi(x) = ExTPx, Vx 5)



where P € R™*" is the unique symmetric positive definite
matrix that solves this Riccati equation,

ATP+PA—PBR'BTP+M =0 (6)
Therefore, the optimal control (4) can be written as follows,
u*(x) = —R'BT Px, ¥x (7

Note that (6) and (7) require full knowledge of the system
dynamics.

This new Q-learning approach solves the optimal control prob-
lem without any information of the system dynamics, by ad-
justing parameters in an adaptive way.

The Q-function is defined by adding the Hamiltonian (3) to
the value function (5),

*

=V H —_
O(w,) = V" () + H(x, 5 )
* 1 T 1 T
=V*(x)+ 7% P(Ax+ Bu) + E(Ax—i—Bu) Px
1 1
+ ExTMx + iuTRm Vx,u ®)

By defining U := [x" u”]" a compact quadratic Q-function can
be written as follows,

_ L o [P+M+PA+A"P PB
1 T Qxx qu
=_U U
2 [qu Ouu| v, u 9)

In this framework, by solving %

can be found as follows,
u*(x) = arg min Q(x,u) = —Q,, ! Oux (10)
u

Note that (10) is the model-free formulation of (4).

By introducing an actor/critic structure as follows, we can tune
the parameters of the Q-function to solve the infinite-horizon
optimal control problem of a LTI system with completely
unknown dynamics.

O(x,u) =W (URU)
u(x) = WegorX (11)

= 0 the optimal control

In (11), the critic approximator W, will approximate the Q-
function and the actor approximator W, will approximate
the optimal controller as derived in [7].

NUMERICAL EXAMPLES

To demonstrate the range of effectiveness of this proposed Q-
learning algorithm we applied it to five classic LTI examples
that were taken from the literature in [5, 4, 1, 6, 2]. For the
examples we present, the initial state vector and the initial
weights for the critic were generated randomly between O
and 1 before being scaled by a constant. The initial weights
for the actor are constant multiplicities of the identity matrix.
The actor and critic gradient descent parameters were selected
as o, = 0.01 and o, = 35 respectively. The delay time is
the iteration time step and the number of iterations in each
simulation can be calculated by dividing the total simulation

time in the figures by this delay time. Also, in all of the
simulations, we do not add any exploration noise.

Example 1: This 5th order unstable system is from Kailath
[4][5] with

—-0.0297  0.331 —-1.13 0 0
-1 —0.0042 0.128 0 1
A= 0 —0.0461 —-0.803 1 O
0.0438 0 0 00
0 0 0 00
0 0
0 0
B=1| 0 0
1000 0O
0 1000

M =1, R=0.1] and delay time 7 = 0.001 sec. This system
is controllable and observable. The evolution of the states
(dashed lines) in this system along with the optimal LQR
solution (solid lines) are shown in Figure 1.
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Figure 1. Evolution of system states in example 1

Example 2: This 6th order system is the lateral-directional,
rigid-body model of the L-1011 aircraft in cruise flight and is
taken from Andry-Shapiro-Chung [1][5]. The plant matrix of
the system A is

-20 0 0 0 0 0
0 =25 0 0 0 0
0 0 0 0 1 0
—-0.744 —0.032 0 —0.154  —0.0042 1.54
0337 —1.12 0 0.249 -1 5.2
0.02 0 0.0386 —0.996 —0.000295 —-0.117



The input and state weighting matrices are

20 0 000000
0 25 000000
0 0 000000
B=1o ol M=lo00100
0 0 000010
0 0 00000 1

Also, we selected R = [ and delay time 7 = 0.001 sec. This
system is controllable and observable. The evolution of the
states (dashed lines) in this system along with the optimal
LQR solution (solid lines) are shown in Figure 2.
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Figure 2. Evolution of system states in example 2

Example 3: This 10th order example is a stable system taken
from Lainiotis [6][5] with

B=[1 1 11111111
where
-2 1 0 0 0
1 =2 1 0 0
Ag=]0 1 -2 1 0, M=I
0 0 1 -2 1
0 0 0 1 =2

In this case, we selected R = 0.1/ and a delay time of
T = 0.001 seconds with the system being observable and
controllable. The evolution of the states (dashed lines) in this
system along with the optimal LQR solution (solid lines) are
shown in Figure 3.
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Figure 3. Evolution of system states in example 3

Example 4: This example is a 9th order unstable system taken
from Davison-Maki [2]. For this system we have the A matrix,

0 1 0 0 0 0 0 0 0

0 0 0.2165 —0.0356 0 —0.0299 0 —0.027 0
—0.0458 1 —0.0133  0.0004 0 0.0006 0 0.0007 0

0 0 0 0 1 0 0 0 0

0 0 0 —29.81 —0.0546 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 —-169  —0.13 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 —334.3 —0.1828

and we have,

B=[0 —1.138 —0.0348 0 29.56 0 47.25 0 16.4]T

M = diag(0.1,0.05,0.5,107*,107*,107%,107*,107%,107%)

Also, R = 0.1/ and the delay time was selected as 7 = 0.001
sec. This system is controllable and observable. The evolu-
tion of the states (dashed lines) in this system along with the
optimal LQR solution (solid lines) are shown in Figure 4.
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Figure 4. Evolution of system states in example 4



Example 5: This 7th order system is based on the F-16 lin-
earized lateral dynamics and is taken from Lewis [3]. The
plant matrix of this stable system A, is

—0.3220 0.0640 0.0364 —0.9917 0.0003 0.0008 0
0 0 1 0.0037 0 0 0
—30.6492 0 —3.6784 0.6646 —0.7333 0.1315 0
8.5396 0 —0.0254 —-0.4764 —-0.0319 —-0.0620 O
0 0 0 0 —20.2 0 0
0 0 0 0 0 —-20.2 0
0 0 0 57.2958 0 0 —1
We have
B— 0000202 0 O
~10 000 0 202 0

M =diag (50 100 100 50 0 0 1)

and we selected R = 0.5] with delay time 7" = 0.1 sec. This
system is controllable and observable. The evolution of the
states (dashed lines) in this system along with the optimal
LQR solution (solid lines) are shown in Figure 5.
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Figure 5. Evolution of system states in example 5

CONCLUSION

This paper demonstrates the application of a model-free Q-
learning algorithm to estimate optimal controller settings for
time-invariant linear systems without any knowledge of the
system dynamics. This algorithm, in its present form, is very
sensitive to initialization parameters and the fine tuning of
these parameters can drive the solution close to the optimal
solution. Future research efforts will include initialization
techniques that can find an initial solution in the neighbor-
hood of the optimal solution similar to graduated optimization
methodologies. At the same time our future work will also
focus on higher-order quadrotor models which are envisioned
to become part of the IoT ecosystem. Quadrotors are always
exposed to new dynamics, sensor loads and / or environments,
therefore, this Q-learning algorithm is a potential solution
to address changing environments and configurations of IoT
devices.
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