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ABSTRACT

In this paper, we consider the problem of deriving recom-
mended resilient and predictive actions for an IoT network
in the presence of faulty components and malicious agents.
The IoT, combining physical and cyber devices, is formulated
as a directed graph with a known topology whose objective
is to maintain a constant and resilient flow between a source
node and a destination node. The optimal route through this
network is evaluated via a predictive and resilient Q-learning
algorithm which takes into account historical data about ir-
regular operation, including faults and attacks. To showcase
the efficacy of our approach, we utilize anonymized data from
Arlington County, Virginia to obtain predictive and resilient
scheduling policies for a smart water supply system while
avoiding neighborhoods with leaks and other faults.

Author Keywords
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INTRODUCTION

According to the World Health Organization, urban residents
account for 54% of the total global population and that figure
is projected to grow by 2% each year through 2020. That
growth means that cities will face increasing challenges to
meet demands of growing populations for resources such as
energy and water whose availability depends on other factors
including climate change, weather patterns and natural and
man-made hazards. With this recognition, municipal govern-
ments around the globe have started to recognize that big data
and Internet-of-Things (IoT) can or will play a major role in
developing sustainable connected communities while improv-
ing many aspects of the daily life of their citizens. Many cities
around the world are already overcrowded leading to transport
and traffic congestion, and a strain on resources such as water,
energy and safe housing. Meeting sustainability goals in cities
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requires completely new concepts for urban mobility and the
sustainable use of resources in other words, the evolution of a
city into a smart city. Using sensors, the smart city concept
is based on connected technology that has connected “things”
communicating “live” information with each other.

Due to the exponential increase of devices equipped with net-
working capabilities, researchers have introduced the concept
of the IoT [4]. The IoT consists of both physical and cyber
devices communicating via standard TCP/IP protocols. The
key characteristics of the IoT are the unprecedented amount
of connected devices, with experts projecting the number to
24 billion by 2020 [5], as well as the heterogeneous nature
of those devices. As an example, we can consider a single
network containing smart meters deployed in public areas [23],
individual wearable devices collecting health data [11] as well
as large-scale systems like heating, ventilation, and air condi-
tioning (HVAC) [2], all exchanging data with a single user’s
mobile phone.

It is expected that not only will the IoT protocols have to
support the different big data structures, but in many cases
they will also have a direct effect on the physical world as
well. Consequently, it is important to ensure safe and robust
operation of the IoT networks in case of random or malicious
faults.

The aforementioned complexity of the IoT networks, cou-
pled with the need for front-end user interfaces that allow
for asymmetric access to the various subsystems only from
certain authorized users, has led to concerns about the secu-
rity/resilience of IoT. Research has been conducted on those
issues both in experimental and real-world scenarios.

The authors in [13] investigated security issues in smart-lock
systems, showing that the successful attack angles relied heav-
ily on the interconnections between the physical component
- the lock itself - and the cyber component, the user’s mobile
phone. Furthermore, in [24] the authors reported on the effects
of Sybil attacks which leverage fake identity manipulation to
gain access to different nodes of the IoT network. Sinkhole at-
tacks have also been shown to have the ability to compromise
IoT networks [24].

Current research directions pursue the integration of existing
urban critical infrastructure with the IoT network via sensing,
communicating and actuating devices in order to establish a



smart city [12]. Eventually, smart cities will be a large scale
extension of the IoT network. Several public services will ben-
efit from IoT-enabled smart cities, in their accessibility as well
as their ability to make better use of their resources [23]. One
of the most important parts of a city’s infrastructure is its water
supply network. Owing to the rapid expansion of urban areas,
those networks tend to become more complex [10]. However,
the need to keep them operational at all times persists, even in
the presence of faults. It is known that water supply systems
are prone to a number of catastrophic failures like pipe busts
and leakage problems [1]. Thus, continuous monitoring of the
network’s status must be prioritized. However, human analysts
can process only a limited amount of the data collected from
the infrastructure’s sensors. The [oT can ensure safe operation
of smart city networks by autonomously collecting raw data
from the sensor-integrated infrastructure, processing the infor-
mation and providing action recommendations to the human
analyst.

Machine learning methods can be employed to provide the
IoT with adaptive decision making capabilities. While the
amount of data exchanged in the IoT act as a hindrance to the
smooth operation of the network when it has to be handled
by humans, big data solutions can be leveraged to facilitate
the training of automated intelligent assistants. Reinforcement
learning is a machine learning approach in which the decision
makers learn their optimal policies by interacting with the en-
vironment and evaluating their actions [19]. Borrowing ideas
from Dynamic Programming [6], many reinforcement learn-
ing techniques derive the optimal policies via learning value
functions. Q-learning was the first provably convergent rein-
forcement learning algorithm, initially developed for Markov
Decision Processes (MDP) with unknown transition probabili-
ties. In Q-learning frameworks, the decision maker evaluates
an action-dependent value function, through non-optimal poli-
cies [21]. Application of the principles of Q-learning in routing
problems in networks has led to the formulation of Q-routing
algorithms [7].

Contributions

The contributions of this work are as follows. First, we model
the IoT network as a graph and consider the problem of de-
riving recommended and resilient policies for transferring
data and supplies between nodes. Subsequently, we employ
a method based on Q-learning to derive the optimal policies
online in a dynamic fashion that mitigates congestion in the op-
timal path while learning to avoid nodes that presented faults,
either due to component failure, or due to malicious attacks.
Furthermore, we introduce performance metrics to evaluate
the resilience of the proposed path to faults. Finally, we apply
the proposed framework to a smart pipeline network, includ-
ing real anonymized data provided by the Arlington County,
Virginia, USA.

Related Work

Researchers seek to categorize the different threats and attack
angles that are expected to endanger the successful integration
of the IoT. The authors in [3] differentiate between the attack
vectors taking place in the various layers of the IoT network;
the physical, digital, and communication layers. On the other

hand, the work of [18] suggests to securely encrypt the data
exchanged between the subsystems of the network.

The authors in [9] designed a framework to detect faults in
IoT networks by employing various network tools and pro-
tocols alongside fault-sensing physical devices, whereas in
[17], resource reconfiguration in the IoT was investigated as
a solution to service failure. Considerable research has also
been conducted for faults due to malicious attacks and mit-
igating approaches. Several threat models in the 10T, such
as authentication spoofing and man-in-the-middle attacks as
well as attacks that compromise the network’s privacy, were
reported in [22]. To defend against such threats, they tested
different machine learning algorithms, both supervised and
unsupervised, to derive the defending parameters. In [24], the
authors leveraged graph-theoretic methods to detect Sybil at-
tacks on IoT networks taking into account the social behavior
of regular and malicious users.

Optimization techniques alongside historical data to predict
cyber attacks in computer networks were presented in [20]. Re-
inforcement learning approaches have mostly been employed
for cyber security in conjunction with game theory. For ex-
ample, in [16], the authors proposed a general framework that
formulates cyber security as a partial information stochastic
game. In [15], semi-supervised learning in support of the IoT
networks was employed. Q-routing was introduced in [7],
while the authors in [8] extended the framework by introduc-
ing prediction elements enabling the decision maker to adapt
to dynamic network traffic patterns.

Structure

The paper is organized as follows. The second section formu-
lates the IoT subnetwork and the corresponding scheduling
problem we wish to solve, followed by a general description
of the predictive and resilient Q-learning algorithm. In the
third section, we apply the proposed algorithm to a water
supply network utilizing anonymized real data of observed
leaks and we define appropriate performance metrics. Finally,
the fourth section concludes the paper and discusses future
research directions.

PROBLEM FORMULATION AND PROPOSED FRAME-
WORK

Network Model

Initially, we model the IoT subnetwork under consideration
as a directed graph. With this approach, a variety of different
services can be described. For example, one may describe
the data transfer between computational components and sens-
ing/actuating devices, or even physical networks monitored
and controlled through the IoT, such as a smart city pipeline
network. Expert analysts are expected to supervise the smooth
and safe operation of different sub-networks in future IoT and
smart city scenarios. As a result, algorithms that facilitate
the decision making process, by pre-processing the raw data
collected by the network and feeding higher level suggestions
to the human-in-the-loop operator, must be developed. Thus,
analysts will maintain high-speed situational awareness of the
network status. This can be achieved by utilizing reinforce-
ment learning techniques that render the network a black box



by predicting future behavior based on previous data, and ex-
tracting recommended policies, attack trends and vulnerability
assessments, that can be used by the “watch-standers.”

Scheduling Problem

The objective of the decision maker is to derive the optimal
flow from the source to the destination node of the network.
In order to define the scheduling problem as an optimization
problem, we associate each edge of the graph with a positive
number r,]»‘j, indicating the cost to transfer a single packet from
node i to node j at time k. Thus, we define the cost matrix,

RE =[], v, > 0Vi, j k.

To select the optimal scheduling policy, we seek to minimize
the accumulated cost of the flow from the source to the desti-
nation.

However, in a safe and robust IoT scenario, we have to account
for prior random faults and malicious attacks in certain nodes
of the network. For example, if the IoT sub-network in ques-
tion consists of computers connected to a smart home, then
each node is vulnerable to Denial of Service (DoS) attacks,
whereas in smart water supply systems, the history of leaks
should be considered when evaluating the flow of critical sup-
plies. Consequently, the cost matrix is dynamically updated
to reflect data collected during the run of the system, thus
containing different values of at each time k.

Predictive Q-learning

We utilize a Q-learning algorithm to derive the optimal policies
that will be used as recommended and resilient policies for
the network operator. Similar to other Q-learning approaches,
in predictive Q-learning we define an action-dependent value
function Q(s,a) for state s and action a. This function should
also contain information about the measured past faults. There-
fore, the Q-function has the form,

k k—M
d(s,a)= Y} R+ Y ¥R, (1)
t=k—M t=1

where b € (0, 1) is the discount factor and M > 0 is the size of
the window. Equation (1) implies that, during each time-step,
we take into account the faults and attacks observed through-
out a predefined time window of length M, while knowledge
observed farther in the past affects the scheduling less.

Finally, our objective is to derive the optimal Q-function,

ngpt = minQ*(s,a).
a

The dynamic nature of the environment, caused by faults and
attacks on the network, leads to the shifting structure of the
reward matrix and the Q-function as described above. It is
important for the decision maker to have the ability to adapt
the scheduling policy as fast as possible while being resilient.
Therefore, the Q-learning problem in this work is inspired by
the structure of Predictive Q-routing (PQ-routing) [8]. The
novelty of PQ-routing, is in its consideration of the congestion
created by the optimal routing policy itself. Specifically, it is
argued that when we need to statically use the optimal path,

the increase in traffic from specific nodes would decrease the
efficiency of the path.

While simple Q-learning utilizes the principles of reinforce-
ment learning by exploring the state and action spaces and
gradually converging to the optimal policy, in predictive Q-
learning, even after the algorithm has converged, we use prob-
ing packets to test the status (resilience) of different routes.
This way, if the optimal path was congested, and we had
switched to a different path, the learning scheme still tests the,
already learned, optimal path, expecting it to eventually revert
back to normal traffic. Special care has to be taken when the
frequency of probing is selected. High frequency will increase
the resilience levels of the optimal path even more, while low
frequency will decrease the response of the network to traffic
changes. In predictive Q-learning schemes, the speed with
which the packets go through a specific node - the node’s re-
covery rate - is assumed to be unknown and it is estimated
online.

Algorithm 1, given below, is the pseudocode for the proposed
predictive and resilient Q-learning. Specifically, we define
QK (si,a ;) as the estimated Q-value of the state-action pair
s; and a; where i and j are the nodes, BX(s;,a;) is the mini-
mum cost incurring when in state s;, action a; is taken. Also,
RR¥(s;,a;) and U((s;,a;) are the recovery rate and the last up-
date time, respectively, when action a; is chosen from state
s;. We use three learning parameters in the predictive and
resilient Q-learning framework, a, 3, and 7. As in the classic
Q-learning algorithm, « is the Q-function learning parameter,
which should be equal to 1 or the accuracy of the recovery
rate might be affected. The recovery rate learning parameter,
i.e., B, needs to obey B < 7, in order to regulate the decay of
the recovery rate, i.e., ¥, that has a direct effect on the probing
frequency of a non-resilient path.

EXPERIMENTAL ANALYSIS

This section, demonstrates an application of the proposed
predictive and resilient Q-learning algorithm on a water net-
work, for the prediction of the location of future leaks and the
formation of a path, with determined start (source) and end
(destination) points, in which as many locations having leaks
as possible are avoided. In order to do so, we used data of the
leaks that occurred over the last five years in the Arlington
County, Virginia. In this experiment, we want to make sure
that no matter what happens (possible attacks or leaks on the
pipelines of the water network of the County), water from the
assumed source, namely neighborhood 1, reaches the Ronald
Reagan Washington Regional Airport, which we assume that
is the destination and corresponds to neighborhood 119. The
dataset, the assumed network topology, the training, as well as
the results, will be shown next.

Dataset

The dataset used contained 1816 instances of leaks in the water
network of the Arlington County, over the last five years. Each
instance involves information about the location of the leak,
the time period between the identification of the leak and the
recovery duration, and the occurred cost.



Algorithm 1: Predictive and resilient [oT Q-learning
procedure
Set the a, B, Y parameters.
for every time window k
Set environment rewards matrix R
Initialize matrices ngpt and B* with sufficiently large
numbers
Initialize matrices QF and U* to zero
Set the matrix RR* appropriately
for each epoch
Select a random initial state s
while the goal state has not been reached
Select action a; among all possible actions
for the current state
Using this action a;, consider going to the,
next state, s;
AQ = r,].‘j +min,, Qk(sj,ak) — Qk(s,-,aj)
Qk(shaj) “— Qk(s,-,aj) + (XAQ
Bk(sl-,aj) — min(Bk(s,-,aj),Qk(s,-,aj))
if AQ <0
ARR < AQ/(current time — U*(s;,a;))
RR*(s;,a;) < RR¥(s;,a;) + BAR
else AQ >0
RRk(S,', aj) — }’RRk(S,‘, aj)
end if
U¥(si,a;) < current time
At = current time — U (s;,a;)
O i (siya;) = max (QF (si,aj)+
AtRR(si,aj),Bk(si,aj))
Set the next state j as the current state
end while
end for
Y argmin{Q’gpt(si,aj)}
end for
end procedure

For the purposes of this work, the geographic area of Arling-
ton County was divided into 119 neighborhoods as shown in
Figure 3 and Figure 4. As mentioned before, we are assuming
that neighborhood 1 corresponds to the source of the water
network of the County, as it is by the bank of river Potomac,
and that the Ronald Reagan Washington Regional Airport,
which corresponds to neighborhood 119, is the destination of
the water network. These two neighborhoods (1 and 119) are
considered to have no leaks.

The data of the location instances were classified into 117
sets depending on their location ID, each set corresponding
to a geographic area of the Arlington County, as considered
for the purposes of this work. The total number of leaks
appearing in each neighborhood are as shown in Figure 1.
We can see that on neighborhoods 5 and 86 are the most
vulnerable, as they have the most leaks, i.e. 30, followed by
neighborhood 49, which has 29 leaks. On the contrary, the
neighborhoods 115, 116, 117 and 118 have just one leak each,
making them the least vulnerable of all neighborhoods. All
the other information, but the location of the leaks, is used to

determine the rewards assigned to the edges of the network
connecting the neighborhoods.

Specifically, in order to determine the rewards of the edges
of the network, first we define the rewards for each one of its
nodes, NR;‘, as

NR¥ = aNL¥ + hOC¥ + ¢TTFL!,

where NL! denotes the number of leaks at node i at time &,
OCF the occurred cost because of the leaks at node i at time
k, and TTFL{-‘ the time to fix the leaks at node i at time k. The
values of a, b, and c are taken as 0.2, 0.3, and 0.5, respectively,
since the time to fix the leaks of a node is considered to be the
most significant parameter among the three.

Having illustrated how the rewards of the nodes of the network
are computed, we can now specify the rewards of its edges.
Considering nodes i and j, there is an edge connecting these
two nodes if and only if they share a border, and we can define

the reward of the edge i at time k, rf.‘j, as

;= dmax (NR,NRY) + (1 — d)min (NRE,NRY),

where we consider d to be the rate of the minimum value
between NR¥ and NR’J‘- over the maximum value of them, and
we use it in order to add more weight to the reward of the most
vulnerable node.

As mentioned above, we consider two neighborhoods sharing
a border to be connected with a direct pipeline. This is used
to define the states and actions of the proposed predictive and
resilient Q-learning algorithm. The state-action pair (s;,a;) de-
notes that while being on neighborhood i, we decide to move
to neighborhood j, which is directly connected to neighbor-
hood i. Therefore the Q(s;,a;) is the cost of channelling the
water from neighborhood i to neighborhood j. Undoubtedly,
the more the neighborhoods a specific neighborhood shares a
border with, the largest the space of the actions correspond-
ing to that state, and the more computationally complex the
problem is.

Training Details

The proposed framework of predictive and resilient Q-learning
uses time windows, each time window handling M = 30 data
instances. First the reward matrix for the time window is
computed, accounting not only for the current number, the
time-to-fix, and the cost produced by the leaks, but also for the
past values of them in the neighborhood, in an exponentially
decreasing way. Following that, the training phase starts, in
which the system is trained for 100 epochs.

Once the training for the time window is completed, the lo-
cation of the possible future leaks is predicted, and a path,
for connecting the source with the destination, involving if
not none, as few as possible, neighborhoods with leaks is
proposed. The rationale behind the selection of the neighbor-
hoods used in the proposed path is that we want to reach our
destination point with a minimum cost. To achieve that, the
selection of the nodes is based on the Qg matrix of the time
window, which contains the cost for transitioning from one
neighborhood to another. For the neighborhoods having leaks,
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Figure 1. Total number of leaks appearing in each neighborhood in the Arlington County, Virginia.

and not being part of the proposed path, we suggest isolating
them from the water network, in order to facilitate the repair
of the pipelines and reduce the expenditures.

With a significant amount of training data, the absolute dif-
ference between the values of two consecutive Qe matrices
should be approaching zero. As we can see in Figure 2, the ab-
solute value of the difference of the Qope matrices between two
consecutive time windows in our system converges to zero,
and after the 50th time window remains 0. The fluctuations
appearing before the 50th time window are caused by the fact
that leaks in time window (k 4 1) are appearing in different
neighborhoods than in time window k, since our system is not
trained on the specific scenarios, and thus the predictions of
the locations of the future leaks differ from the actual ones.

At this point, we should note that the forgetting factor is taken
equal to b = 0.1 since we want to penalize more recent data.

Results

The more the training windows, the better the predictions of
our system are. To have a better understanding of how the
system evolves and learns from the past time windows, we can
take a look on the results of the first and last time window.

Figure 3 shows the proposed path, as well as the nodes having
leaks at the end of the first time window. The proposed path
starts from the source (neighborhood 1), and passing through
neighborhoods 4, 10, 17, 18, 19, 27, 42, 44, 54, 55, 76, 87, 91,
97,107, 111 and 118, reaches the destination (neighborhood
119). One might be confused as for why going from neighbor-
hood A to neighborhood C via neighborhood B (as it happens
for neighborhoods 44, 54 and 55). The reason is that it will
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Figure 2. Difference between two consecutive Q,, matrices over time.

be more effective than using the direct connection (pipeline)
between the first two neighborhoods.

Similarly, on Figure 4 we can see the proposed path, as well
as the nodes having leaks at the end of the last time window.
The proposed path, following the logic analyzed before, starts
at the source (neighborhood 1), passes through neighborhoods
3, 8, 22, 48, 51, 64, 74, 83, 87, 91, 97, 107, 111, 118, and
get to the destination (neighborhood 119). Once the last time
window has passed, our system has finished the training for all
the available data, it has deeper knowledge of the network and
the vulnerability of each neighborhood, and can give better
predictions. As a consequence, the proposed path consists of
less neighborhoods than the one after the first time window.
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Looking at both Figures 3 and 4, one can observe that both
after the first and the last time window, the neighborhoods
56 and 106 appear to have leaks and their isolation from the
rest of the network is suggested. A neighborhood may appear
between the ones suggested for isolation in multiple time win-
dows in the following two cases: (a) the leak in the pipelines
has not been fixed yet, or (b) it is of high vulnerability and
leaks keep appearing in the network. In the first case the neigh-
borhood will be among the isolated ones in two consecutive
time windows, while in the second case this is not necessarily
true.

Even though the optimal paths proposed after the first and last
time windows do not involve neighborhoods with leaks, this is
not always the case. As we can see in Figure 5, which shows
the cost of the optimal path when neighborhoods having leaks

are part of it, sometimes it is more cost effective to employ a
neighborhood with leaks in the optimal path.

Cost of Optimal Path at Each Time Window
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Figure 5. Cost of the optimal path due to the appearance of leaks.

Performance Evaluation

We introduce the metric of blocking probability, as described
in [14], which can be used to evaluate the ability of the pro-
posed approach to adapt to node failures. We define BPW,
the blocking probability of time window £, as,

BNW,;
BNW, +OPN;’
where BNW; denotes the number of blocked neighborhoods in
the network, and OPN}, the number of neighborhoods without

leaks that belong to the optimal path. The value of BPWj is
evaluated at each time window k.

BPW, =

Figure 6 shows the blocking probability of our system over
time. Although our objective is to propose a path that involves
as few nodes with leaks as possible, in every time window we
have leaks appearing on multiple neighborhoods. This causes
the blocking probability to be high.

In addition, we introduce the metric of the performance of the
whole network, NP, as,

B Y BNW;

Y BNW; +YOPN;’

In our simulation, the aforementioned performance metric is
found to be NP = 0.9621.

NP

CONCLUSION

This work presents an algorithm that enables large-scale IoT
networks to provide human operators with recommended and
resilient policies for scheduling problems. We model the IoT
as a graph on which we formulate a scheduling problem. We
integrate past data from recorded node failures in real-time by
updating the cost matrix of the graph and thus dynamically
shifting the optimal path choice. We utilize predictive and
resilient Q-learning to consider the change in the environment
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due to prior inconsistencies, as well as the effect of congestion
by the optimal policy itself. The experimental results show
the efficacy of the proposed method in a smart water supply
system. Real anonymized data provided by the Arlington
County, Virginia, USA, were utilized to highlight the effects
of malicious, random, and non-random water network failures.

Future work will be focused on applying the developed frame-
work to cyber defense scenarios with human analysts in the
loop.

ACKNOWLEDGMENTS

This work was supported in part by ONR Minerva under grant
No. N00014-18-1-2160, and by an NSF CAREER under grant
No. CPS-17507809.

REFERENCES
1. Maroua Abdelhafidh, Mohamed Fourati, Lamia Chaari
Fourati, and Amor Abidi. 2017. Remote Water Pipeline
Monitoring System [oT-Based Architecture for New
Industrial Era 4.0. In Computer Systems and Applications
(AICCSA), 2017 IEEE/ACS 14th International
Conference on. IEEE, 1184-1191.

2. Ala Al-Fugaha, Mohsen Guizani, Mehdi Mohammadi,
Mohammed Aledhari, and Moussa Ayyash. 2015.
Internet of things: A survey on enabling technologies,
protocols, and applications. [EEE Communications
Surveys & Tutorials 17, 4 (2015), 2347-2376.

3. Ioannis Andrea, Chrysostomos Chrysostomou, and
George Hadjichristofi. 2015. Internet of Things: Security
vulnerabilities and challenges. In Computers and
Communication (ISCC), 2015 IEEE Symposium on.
IEEE, 180-187.

4. Luigi Atzori, Antonio lera, and Giacomo Morabito. 2010.
The internet of things: A survey. Computer networks 54,
15 (2010), 2787-2805.

5. Alessandro Bassi and Geir Horn. 2008. Internet of Things
in 2020: A Roadmap for the Future. European

10.

11.

13.

14.

15.

16.

Commission: Information Society and Media 22 (2008),
97-114.

. Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P

Bertsekas, and Dimitri P Bertsekas. 1995. Dynamic
programming and optimal control. Vol. 1. Athena
scientific Belmont, MA.

. Justin A Boyan and Michael L Littman. 1994. Packet

routing in dynamically changing networks: A
reinforcement learning approach. In Advances in neural
information processing systems. 671-678.

. Samuel PM Choi and Dit-Yan Yeung. 1996. Predictive

Q-routing: A memory-based reinforcement learning
approach to adaptive traffic control. In Advances in
Neural Information Processing Systems. 945-951.

. Bishnu Prasad Gautam, Katsumi Wasaki, and Narayan

Sharma. 2016. A novel approach of fault management
and restoration of network services in 0T cluster to
ensure disaster readiness. In Networking and Network
Applications (NaNA), 2016 International Conference on.
IEEE, 423-428.

Daniel Granlund and Robert Brinnstrom. 2012. Smart
city: the smart sewerage. In Local Computer Networks
Workshops (LCN Workshops), 2012 IEEE 37th
Conference on. IEEE, 856-859.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic,
and Marimuthu Palaniswami. 2013. Internet of Things
(IoT): A vision, architectural elements, and future
directions. Future generation computer systems 29,7
(2013), 1645-1660.

. José M Hernandez-Munoz, Jesds Bernat Vercher, Luis

Muiioz, José A Galache, Mirko Presser, Luis

A Hernandez Gomez, and Jan Pettersson. 2011. Smart
cities at the forefront of the future internet. In The Future
Internet Assembly. Springer, 447-462.

Grant Ho, Derek Leung, Pratyush Mishra, Ashkan
Hosseini, Dawn Song, and David Wagner. 2016. Smart
locks: Lessons for securing commodity internet of things
devices. In Proceedings of the 11th ACM on Asia
conference on computer and communications security.
ACM, 461-472.

Shuo Li, Moshe Zukerman, Meigian Wang, and Eric WM
Wong. 2015. Improving throughput and effective
utilization in OBS networks. Optical Switching and
Networking 18 (2015), 222-234.

Mehdi Mohammadi, Ala Al-Fugaha, Mohsen Guizani,
and Jun-Seok Oh. 2018. Semisupervised deep
reinforcement learning in support of IoT and smart city
services. IEEE Internet of Things Journal 5, 2 (2018),
624-635.

Sajjan Shiva, Sankardas Roy, and Dipankar Dasgupta.
2010. Game theory for cyber security. In Proceedings of
the Sixth Annual Workshop on Cyber Security and
Information Intelligence Research. ACM, 34.



17.

18.

19.

20.

Penn H Su, Chi-Sheng Shih, Jane Yung-Jen Hsu,
Kwei-Jay Lin, and Yu-Chung Wang. 2014. Decentralized
fault tolerance mechanism for intelligent iot/m2m
middleware. In Internet of Things (WF-10T), 2014 IEEE
World Forum on. IEEE, 45-50.

Hui Suo, Jiafu Wan, Caifeng Zou, and Jianqi Liu. 2012.
Security in the internet of things: a review. In Computer
Science and Electronics Engineering (ICCSEE), 2012
international conference on, Vol. 3. IEEE, 648-651.

Richard S Sutton and Andrew G Barto. 1998.
Reinforcement learning: An introduction. Vol. 1. MIT

press Cambridge.

Kyriakos G Vamvoudakis, Joao P Hespanha, Richard A
Kemmerer, and Giovanni Vigna. 2013. Formulating
cyber-security as convex optimization problems. In
Control of Cyber-Physical Systems. Springer, 85—-100.

21.

22.

23.

24.

Christopher JCH Watkins and Peter Dayan. 1992.
Q-learning. Machine learning 8, 3-4 (1992), 279-292.

Liang Xiao, Xiaoyue Wan, Xiaozhen Lu, Yanyong Zhang,
and Di Wu. 2018. IoT Security Techniques Based on
Machine Learning. arXiv preprint arXiv:1801.06275
(2018).

Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo
Vangelista, and Michele Zorzi. 2014. Internet of things
for smart cities. IEEE Internet of Things journal 1, 1
(2014), 22-32.

Kuan Zhang, Xiaohui Liang, Rongxing Lu, and Xuemin
Shen. 2014. Sybil attacks and their defenses in the
internet of things. IEEE Internet of Things Journal 1, 5
(2014), 372-383.



