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Abstract— This paper presents a model-free distributed
event-triggered containment control scheme for linear multi-
agent systems. The proposed event-triggered scheme guarantees
asymptotic stability of the equilibrium point of the containment
error as well the avoidance of the Zeno behavior. To relax
the requirement of complete knowledge of the dynamics, we
combine an off-policy reinforcement learning algorithm in an
actor critic structure with the event-trigger control mechanism
to obtain the feedback gain of the distributed containment
control protocol. A simulation experiment is conducted to verify
the effectiveness of the approach.

Index Terms— Multi-agent systems, containment control,
event-triggered, off-policy reinforcement learning, actor-critic.

I. INTRODUCTION

Distributed control of multi-agent systems (MASs) has

attracted great amount of attention from multiple fields,

such as vehicle swarms [1], social networks [2], and so on.

Distributed control protocols for MASs are designed based

on the exchange of local information among neighboring

agents, and the interaction among agents is dictated by a

communication graph [3]. Examples of distributed MASs are

flocking control [4], formation control [5], graphical games

[6]–[8], synchronization control [9], [10] and so on. We will

focus on the containment control problem of MASs, for

which the objective is to drive the state of all followers into

the convex hull spanned by leaders’ states [11].

Related work

Containment control of MASs has practical uses in real-

world applications. For example, when a group of robots

performs the task of fire fighting in a forest, it is necessary

to make all the robots avoid the obstacles and arrive at the

designated area to accomplish their missions. The leader

robots which have more situation awareness capabilities can

guide other follower robots to accomplish the mission. Since

the interior point in the convex hull spanned by leaders,

i.e., the desired trajectory for all followers, is not unique,

the results from leader-follower distributed consensus control
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cannot be applied to the containment problem directly. Nec-

essary and sufficient conditions that guarantee the solution

of the containment control for first- and second-order MASs

with stationary and dynamic leaders have been investigated

in [12]. Recently, internal model principle [13], sliding model

approach [14] and observer-based design [15] have been

applied to solve the containment problem. However, these

results require constant interaction among agents, which

may not be practical when the communication resources are

limited.

The event-triggered design, is originally proposed to stabi-

lize single-agent systems while decreasing the communica-

tion burden [16], [17]. Such work has been recently extended

to develop the distributed consensus control protocol for

MASs [18]–[21]. Up to now, the state-dependent sampling

results in the dependency of each agent’s control update on

her neighbors’ events, which might not reduce the commu-

nication and computation load efficiently. Therefore, a novel

event-triggered mechanism is developed to guarantee such

independence.

Another issue in existing approaches for both time-

triggered and event-triggered containment control protocol

design methods is that complete knowledge of agents’ dy-

namics is required. Reinforcement learning (RL) has been

used effectively to solve optimal regulation and tracking

problems, as well as differential games and H8 problems

for single and MASs systems [22], [23], [24], [6], [25], [9].

In this paper, off-policy RL in an actor-critic structure is

developed to obtain the event-triggered containment control

in a model-free manner.

Contributions

The contributions are two-fold. First, both time-triggered

and event-triggered distributed containment control protocols

are developed. The proposed event-triggered scheme is based

on the sampling of the containment error, which guarantees

that the event-triggering instant for each agent is independent

of the other agents’ states. Second, to obviate the requirement

of complete knowledge of agents’ dynamics, an off-policy

RL is adopted to obtain the distributed event-triggered con-

tainment control protocol in a model-free manner.

Structure: The remainder of this paper is structured as

follows. Section II formulates the problem. A time-triggered

distributed protocol to solve the containment problem is

given in Section III. To avoid the continuous interaction

amongst the agents, a novel event-triggered containment

control framework along with Zeno-free behavior guarantees,

is proposed in Section IV. To obviate the requirement of

complete information of the agent dynamics, Section V
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uses an off-policy RL algorithm to learn the feedback gain

of the event-triggered containment control. To validate the

proposed protocol design, a simulation example is carried

out in Section VI. Finally, Section VII concludes and talks

about future directions.

Notation and Background: The background information

and assumptions for graphs used here is standard.

G
∆“ Graph of all agents, G “ t1, ...,M ` Nu

R
∆“ subgraph of leaders, R “ t1, ...,Mu

F
∆“ subgraph of followers, F “ tM ` 1, ...,M ` Nu

A
∆“ adjacency matrix of subgraph F

aij
∆“ entry of adjacency matrix A

di
∆“ in-degree of node i

D
∆“ in-degree matrix of subgraph F (D “ diag td1,

..., dNu)

Ni
∆“ set of neighbors of node i

ni
∆“ the number of agent i’s neighbors

L
∆“ Laplacian matrix of subgraph F (L “ D ´ A)

Gρ
∆“ pinning matrix of ρ-th leader to all followers

(Gρ “ diag tgρ
1
, ¨ ¨ ¨ , gρNu), G “ ř

ρPR

Gρ

g
ρ
i

∆“ pinning gain from ρ-th leader to i-th follower

gi
∆“ i-th element on the diagonal of G (gi “ ř

ρPR

g
ρ
i )

λi
∆“ i-th eigenvalue of matrix L ` G (λ1 ď ¨ ¨ ¨ ď λN )

Assumption 1. The subgraph F is undirected. For each

follower, there exists at least one leader that has a directed

path to that follower. l

Lemma 1. [26] Under Assumption 1, all the eigenvalues

of the matrix L ` G, λ1, ¨ ¨ ¨ , λN , are positive. l

II. PROBLEM FORMULATION

Consider the multi-agent system with N followers,

9xi “ Axi ` Bui, i P F (1)

where xi P R
n is the state and ui P R

m is control of follower

i.

The leaders dynamics are modeled as,

9xρ “ Axρ, ρ P R (2)

where xρ P R
n is the leader’s state.

Assumption 2. The pair pA,Bq is assumed to be stabiliz-

able. l

The following definitions are adopted from [27].

Definition 1. (Distance) Let x P R
n and C Ď R

n. Then, the

distance from x to the set C is defined as

dist px, Cq “ inf
yPC

}x ´ y} . l

Definition 2. (Convex Hull) A set C Ď Rn is convex if

p1 ´ λqx ` λy P C, @x, y P C and λ P r0, 1s. The convex

hull CopX q of a finite set of q points X “ tx1, x2, ¨ ¨ ¨ , xqu
is the minimal convex set containing all points in X . That

is, Co pX q “
"

q
ř

i“1

αixi

ˇ

ˇ

ˇ

ˇ

xi P X , αi P R,
q
ř

i“1

αi “ 1

*

. l

The containment control problem of MAS with leaders in

(2) and followers in (1) can now be formulated as follows.

Problem 1. Design the distributed control protocol ui such

that lim
tÑ8

dist
´

xi ptq,Co txρ ptqu
ρPR

¯

“ 0,@i P F , i.e., all

the followers are synchronized to the convex hull spanned

by the leaders. l

The local interaction between agent i and her neighbors

can be expressed as,

δi “
ÿ

jPNi

aij pxi ´ xjq `
ÿ

ρPR

g
ρ
i pxi ´ xρq. (3)

and in a compact form as,

δ “ Hx ´
M
ÿ

ρ“1

Hρx̄ρ (4)

with,

hρ “ L

M
` Gρ, Hρ “ hρ b In,

h “ L ` G,H “ h b In,

where x̄ρ “ 1N b xρ, x “
“

xT
1 ¨ ¨ ¨ xT

N

‰T
. Then, the

dynamics of δ in (4) are,

9δ “ H 9x ´
M
ÿ

ρ“1

Hρ 9̄xρ

“ Ā

˜

Hx ´
M
ÿ

ρ“1

Hρx̄ρ

¸

` HB̄u

“ Āδ ` HB̄u. (5)

where Ā “ IN b A and B̄ “ IN b B.

According to [13], it is guaranteed that the containment

control problem is solved if (5) has an asymptotically stable

equilibrium point. Therefore, δ in (4) is referred to as global

containment error, and δi in (3) is referred to as local

containment error.

III. TIME-TRIGGERED CONTAINMENT CONTROL DESIGN

Considering the local information δi in (3), the distributed

containment control can be written as,

ui “ cKδi, (6)

where c P R
` is the coupling gain and K P R

mˆn is the

feedback gain matrix to be designed later.

Using (6) in (4) yields,

9δ “ rpIN b Aq ` pch b BKqs δ. (7)

The following results provide the proper design of

continuous-time containment control in (6).
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Lemma 2. Under Assumptions 1 and 2, suppose that there

exist matrices Q ą 0 P R
nˆn and R ą 0 P R

mˆm. Given

that, the feedback and the coupling gains are selected as

K “ ´R´1BTP, (8)

c ě 1

2 min
i“1,¨¨¨ ,N

λi

, (9)

with P ą 0 satisfying the algebraic Riccati equation (ARE),

ATP ` PA ´ PBR´1BTP ` Q “ 0, (10)

then, the equilibrium point (i.e. origin) of the closed-loop

system with state δ is asymptotically stable. l

Proof. The proof is an extension of [28, Theorem 1] and is

omitted here due to page limitation. l

Remark 1. The distributed control protocol in (6) requires

continuous interaction between each agent and her neighbors,

and is referred to as time-triggered containment control in

contrast to the event-triggered containment control discussed

in the next Section. l

IV. EVENT-TRIGGERED DISTRIBUTED CONTAINMENT

CONTROL DESIGN

A. Event-Triggered Scheme Design

In this section, an event-triggered containment control is

developed. The aperiodic sampling of local containment error

δi is updated only when an event is triggered. That is,

the local containment error remains constant between two

successive events

δ̂i ptq “ δi
`

tik
˘

, t P
“

tik, t
i
k`1

˘

(11)

where ttiku8
k“0

is a monotonically increasing sequence of

sampling instants, satisfying limkÑ8 tik “ 8, with ti0 “ t0
@i P F . Then, the event-triggered containment control can

be designed as,

ui ptq “ cKδ̂i ptq “ cKδi
`

tik
˘

, t P
“

tik, t
i
k`1

˘

. (12)

From (12), it can be seen that for each follower, the

distributed control is updated only at the triggering time tik.

Let ei ptq denote the sampling error between δ̂i ptq and δi ptq,

i.e.,

ei ptq “ δ̂i ptq ´ δi ptq .

Then, the event-triggered distributed control (12) can be

equivalently expressed as,

ui ptq “ cK rei ptq ` δi ptqs . (13)

Note that although the control policy (13) is continuous, it

is measurable and locally essentially bounded. Then, the

Filippov solutions for each follower with event-triggered

control (13) exists [29], [30]. Therefore, using (13) in (1)

and using differential inclusions and nosnsmooth analysis

[29], one has

9xi ptq Pa.e.
K rAxi ptq ` cBK rei ptq ` δi ptqss . (14)

Writing a compact form of (14) for all the followers yields,

9x ptq Pa.e.
K rpIN b Aqx ptq ` pIN b cBKq pe ` δqs , (15)

where e is a compact form of all the vectors in (13).

Similarly, the dynamics of the leaders are given by,

9̄x0 ptq “ pIN b Aq x̄0 ptq . (16)

Substituting the event-triggered control from (13) in (15) and

(16) gives,

9δ ptq P a.e.
K rpIN b A ` ch b BKq δ ` pch b BKq es . (17)

Based on δ̂i ptq in (11), the event-triggered containment

control protocol (12) can be designed by the following

theorem.

Theorem 1. Under Assumption 1 and 2, let the feedback

gain in (12) be designed as

K “ ´BTP, (18)

where P ą 0 is the unique solution to the following ARE

ATP ` PA ´ PBBTP ` βIn “ 0, (19)

where we have substituted Q :“ βIn in (10) and the coupling

gain c in (12) is selected such that,

λN ě λi ě λ1 ě 1

2c
ą 0,@i P t1, ¨ ¨ ¨ , Nu . (20)

Furthermore, let β from (19) satisfy,

β ě λN ě λi ě λ1 ą 0,@i P t1, ¨ ¨ ¨ , Nu . (21)

where λi, i “ 1, ..., N are the eigenvalues of the matrix h.

Then, δi Ñ 0,@i P F , as t Ñ 8 as long as the event-

triggering condition,

}ei} ě πi }δi} , (22)

is satisfied, with πi “
b

σi
r
cγ

p1 ´ cγrq with γ “
›

›PBBTP
›

›, r ă 1

cγ
and σi P p0, 1q. l

Proof. Consider the following Lyapunov equation,

V pδq “ 1

2
δT ph b P q δ.

Taking the time derivative of V and substituting (17)

yields,

9V “ K

»

—

—

–

1

2
δT

“

h b
`

ATP ` PA
˘‰

δ
loooooooooooooooomoooooooooooooooon

V1

` δT
“

ch2 b PBK
‰

δ
loooooooooomoooooooooon

V2

` δT
“

ch2 b PBK
‰

e
loooooooooomoooooooooon

V3

fi

ffi

fl
. (23)

Based on Assumption 1 and Lemma 1, there exists an

orthogonal matrix UT “ U´1 such that

UThU “ Λ, (24)

UΛUT “ h, (25)
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where Λ “ diag
`“

λ1 ¨ ¨ ¨ λN

‰˘

is the diagonal matrix

consisting of the eigenvalues of h.

The following transformation can be used,

η “
`

UT b In
˘

δ, (26)

ε “
`

UT b In
˘

e. (27)

Combining the matrix transformation (24), (25) and variable

transformation (26), (27), V1, V2 and V3 in (23) can be

written as,

V1 “ 1

2
ηT

“

Λ b
`

ATP ` PA
˘‰

η,

V2 “ ηT
“

Λ2 b cPBK
‰

η,

V3 “ ηT
“

Λ2 b cPBK
‰

ε.

First, note that,

V1 ` V2 le
1

2

N
ÿ

i“1

“

λi

`

ATP ` PA
˘

` 2cλ2

iPBK
‰

}ηi}2

ď 1

2

N
ÿ

i“1

”

λi}ηi}2
`

ATP ` PA ´ PBBTP
˘

ı

“ 1

2

`

ATP ` PA ´ PBBTP
˘

N
ÿ

i“1

λi}ηi}2,

where the inequality results from (20). Considering the ARE

in (19), the following can be obtained

V1 ` V2 ď ´β

2

N
ÿ

i“1

λi}ηi}2 ď ´1

2

N
ÿ

i“1

λ2

i }ηi}2, (28)

where the second inequality comes from (21).

Based on the well-known inequality

ab ď r

2
a2 ` 1

2r
b2,

we can write V3,

V3 “
N
ÿ

i“1

cλ2

i η
T

i PBBTPεi

ď
N
ÿ

i“1

cγλ2

i

ˆ

r

2
}ηi}2 ` 1

2r
}εi}2

˙

, (29)

where γ “
›

›PBBTP
›

› and r is a positive constant to be

determined later.

Combining now (28) and (29) we have,

9V ď ´1

2

N
ÿ

i“1

λ2

i }ηi}2 `
N
ÿ

i“1

cγλ2

i

ˆ

r

2
}ηi}2 ` 1

2r
}εi}2

˙

“
N
ÿ

i“1

λ2
i

2

”

pcγr ´ 1q }ηi}2 ` cγ

r
}εi}2

ı

ď β2

2

N
ÿ

i“1

”

pcγr ´ 1q }ηi}2 ` cγ

r
}εi}2

ı

. (30)

The second inequality comes from (21). By taking into

account the orthogonal matrix U in (24) and (25), one has

ηTη “ δTδ, εTε “ eTe.

Thus, (30) can be rewritten as

9V ď β2

2

”

´ p1 ´ cγrq }δ}2 ` cγ

r
}e}2

ı

“ β2

2

«

´ p1 ´ cγrq
N
ÿ

i“1

}δi}2 ` cγ

r

N
ÿ

i“1

}ei}2
ff

. (31)

By adding and subtracting σi}δi}2, then (31) is equivalent to

9V ď β2 p1 ´ cγrq
2

N
ÿ

i“1

„

cγ

r p1 ´ cγrq}ei}2

´ σi}δi}2 ´ p1 ´ σiq }δi}2
ı

,

where, σi P p0, 1q is a design parameter @i P F .

In order to guarantee that 9V ď 0, the following conditions

need to be satisfied @i P F

}ei} ď πi }δi} , (32)

πi “
c

σi

r

cγ
p1 ´ cγrq, (33)

where r is selected as r ă 1

cγ
to guarantee 1 ´ cγr ą 0.

To this end, the event is triggered when (32) is violated,

i.e.,

}ei} ě πi }δi} ,
which guarantees that,

9V ď β2

2
p1 ´ cγrq

N
ÿ

i“1

pσi ´ 1q }δi}2 ď 0.

It should be noted that since δi “ 0,@i P F , this

guarantees that each follower approaches the convex hull

spanned by the leaders [13]. Therefore, 9V “ 0 if and only

if the problem has a solution.

According to [30, Theorem 3.1], it follows that the solution

set of 9V “ 0 is attractive and δi Ñ 0,@i P F , as t Ñ 8. l

Remark 2. The error δiptq in (3) serves as a combinational

measurement for containment control problem, which can be

viewed as an extension of the combinational measurement in

[31], [32] to the case of MASs with multiple leaders. l

Remark 3. The event-triggered containment control (12)

depends on the coupling weight c and the feedback gain

K. Theorem 1 gives the condition that the coupling gain c

and the feedback gain K should satisfy. It can be seen that

the feedback gain and coupling weight are decoupled and

can be determined independently. It is shown in Section V

that the feedback gain K will be obtained by RL. l

B. Feasibility of the Event-Triggered Mechanism

One critical issue in the event-triggered scheme design is

to avoid Zeno behavior, i.e., the case where the minimal inter-

event interval τmin “ min
jPN`

tti`1 ´ tiu is zero and there is

infinite number of events triggered over a finite time. In this

section, the Zeno-free behavior of the proposed distributed

event-triggered scheme in Theorem 1 is investigated as

follows.
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Theorem 2. Consider the event-triggering condition de-

signed by Theorem 1, then, @i P F , the inter-event intervals
!

tik`1
´ tik

(8

i“1
are strictly positive as k Ñ 8. l

Proof. We need to consider two cases separately @i P F .

i) The case when δi
`

tik
˘

‰ 0.

We have proved in Theorem 1 that the event-triggering

condition guarantees that δ Ñ 0. The (32) is equivalent to

}ei ptq}2 ď
π2
i

´

}δi ptq}2 ` }ei ptq}2
¯

1 ` π2
i

. (34)

Based on Young’s inequality,

pa ` bq2
2

ď a2 ` b2,

we have the following inequality,

π2
i }δi ptq ` ei ptq}2

2 ` 2π2
i

ď
π2
i

´

}δi ptq}2 ` }ei ptq}2
¯

1 ` π2
i

.

Therefore, the sufficient condition of (34) can be selected as

}ei ptq}2 ď π2
i }δi ptq ` ei ptq}2

2 ` 2π2
i

“
π2
i

›

›

›
δ̂i

`

tik
˘

›

›

›

2

2 ` 2π2
i

∆“ sik, (35)

To guarantee that δ Ñ 0, an event is triggered, when (32)

is violated. A sufficient condition for this is,

}ei ptq} ď πi

2 ` 2π2
i

›

›δi
`

tik
˘›

› .

The evolution of ei ptq over time in
“

tik, t
i
k`1

˘

satisfies

d }ei ptq}
dt

ď
›

›eTi ptq
›

›

}ei ptq} } 9ei ptq}

“
›

›

›

9̂
δi ptq ´ 9δi ptq

›

›

›
,@t P

“

tik, t
i
k`1

˘

. (36)

The time derivative of δi ptq yields,

9δi “ Aδi ` Bui ´ c
ÿ

jPNi

aijBKδ̂i ptq

“ Aδi ´ cBBTP δ̂i ptq ` cBBTP
ÿ

jPNi

aij δ̂j

´

t
j

k1ptq

¯

. (37)

Based on (11), it is known that δ̂i ptq is constant for @t P
“

tik, t
i
k`1

˘

. Taking (37) into (36) yields (38) and (39) (see

next page), where

k1 ptq “ argmax
!

t
j
k

ˇ

ˇ

ˇ
t
j
k ď t, j P Ni

)

(40)

denotes the event-triggering time of follower j just before

time t.

The summation in (38) stands for the previous update

control value of all the neighbors of the follower i. The item
d}eiptq}

dt
in (38) is the right-hand side derivative of }ei ptq} at

the event-triggering time t “ tik.

Using the comparison lemma [33] in (38) yields,

}ei ptq} ď ωi
k

}A}
´

e}A}pt´ti
kq ´ 1

¯

. (41)

where ωi
k is defined in (39).

Combining now the inequalities (35) and (41) at the event-

triggering instant tik`1
let us write,

›

›ei
`

tik`1

˘›

› “ sik ď ωi
k

}A}
´

e}A}ptik`1
´ti

kq ´ 1
¯

,

where sik is defined as in (35). Then,

τ ik “ tik`1 ´ tik

ě 1

}A} log

ˆ}A} sik ` ωi
k

ωi
k

˙

ą 0.

ii) The case when δi
`

tik
˘

“ 0 as k Ñ 8.

The sampling error (13) by using the absolute value

inequality can be written as,
ˇ

ˇ

ˇ

›

›

›
δ̂i ptq

›

›

›
´ }δi ptq}

ˇ

ˇ

ˇ
ď }ei ptq} . (42)

Since the event-triggered condition designed by Theorem 1

guarantees (32) and combined with (42) gives,
ˇ

ˇ

ˇ

›

›

›
δ̂i ptq

›

›

›
´ }δi ptq}

ˇ

ˇ

ˇ
ď πi }δi ptq} ,

which leads to
›

›δi
`

tik
˘›

›

1 ` πi

ď }δi ptq} ď
›

›δi
`

tik
˘›

›

1 ´ πi

. (43)

As a result of (43), we have,
›

›δi
`

tik
˘›

›

}δi ptq} ě 1 ´ πi. (44)

In the case when δi
`

tik
˘

“ 0 as k Ñ 8, it follows

from (43) that δi ptq “ 0. Then, the dynamics of the local

containment error δi (37) satisfy

9δi ptq “ Aδi ptq ` cBBTP
ÿ

jPNi

aijδj

´

t
j

k1ptq

¯

´ cBBTPδi ptq
“ 0,

or,

Aδi “ cBBTPδi ptq ´ cBBTP
ÿ

jPNi

aijδj

´

t
j

k1ptq

¯

. (45)

Considering (39) and (45) yields

ωi
k ď }A}

›

›δi
`

tik
˘›

› ` max
tPrtik,tik`1s

}Aδi ptq}

“ }A}
›

›δi
`

tik
˘›

› `
›

›Aδi
`

t1
˘›

› ,

where t1 P
“

tik, t
i
k`1

‰

. From (44), the following holds

lim
kÑ8

sik
ωi
k

ě lim
kÑ8

πi?
2`2π2

i

›

›δi
`

tik
˘›

›

}A}
›

›δi
`

tik
˘›

› ` }Aδi pt1q}

ě p1 ´ πiqπi

}A} p2 ´ πiq
a

2 ` 2π2
i

.
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d }ei ptq}
dt

“
›

›

›

›

›

A
´

δ̂i ptq ´ ei ptq
¯

´ cBBTP δ̂i ptq ` cBBTP
ÿ

jPNi

aij δ̂j

´

t
j

k1ptq

¯

›

›

›

›

›

ď }Aei ptq} `
›

›

›

›

›

Aδ̂i ptq ´ cBBTP δ̂i ptq ` cBBTP
ÿ

jPNi

aij δ̂j

´

t
j

k1ptq

¯

›

›

›

›

›

ď }A} }ei ptq} ` ωi
k, (38)

ωi
k “ max

tPrtik,tik`1s

›

›

›

›

›

Aδi
`

tik
˘

´ cBBTPδi
`

tik
˘

` cBBTP
ÿ

jPNi

aij δ̂j

´

t
j

k1ptq

¯

›

›

›

›

›

, (39)

Finally,

lim
kÑ8

τ ik “ lim
kÑ8

`

tik`1 ´ tik
˘

ě 1

}A} log

ˆ}A} sik
ωi
k

` 1

˙

ě 1

}A} log

˜

p1 ´ πiqπi

p2 ´ πiq
a

2 ` 2π2
i

` 1

¸

ą 0,

which is the required result. l

V. OFF-POLICY RL

Off-policy RL algorithms [34] are able to solve the ARE

on-line in a model-free fashion. In this subsection, an off-

policy RL algorithm is developed to solve (19) based on

actor-critic structure [22].

Based on the discussions in Section IV, one can observe

that the feedback gain K “ ´BTP depends on the ARE

(19). In order to obtain the feedback gain K “ ´BTP in a

model-free manner, the following problem is considered.

Problem 2. For each follower, design the optimal state feed-

back control ui “ Kxi such that the following performance

function is minimized

V˚
i pxiq :“ min

ui

ż 8

0

´

β}xi}2 ` }ui}2
¯

dτ. l

According to the optimal control theory [35], the optimal

control that solves Problem 2 can be expressed as

ui “ Kxi “ ´BTPxi,@i P F (46)

and the optimal performance is

V˚
i pxiq “ xT

i Pxi,@i P F .

where P satisfies the ARE (19).

First, the optimal value function V˚
i pxiq can be equiva-

lently represented by a critic network as

V˚
i pxiq “

`

W˚
c,i

˘T
ϕc pxiq ,

with the weight vector W˚
c,i P R

npn`1q
2 and quadratic poly-

nomial basis vector

ϕc pxiq “
“

x2
i1 xi1xi2 ¨ ¨ ¨ x2

in

‰T
,

where xi :“
“

xi1 . . . xin

‰T
. By using approximators

for W˚
c,i as Wκ

c,i in the κ-th iteration, the estimation of

V˚
i pxiq can be expressed as

Vκ
i pxiq “

`

Wκ
c,i

˘T
ϕc pxiq , (47)

and,

∇Vκ
i pxiq “ r∇ϕc pxiqsTWκ

c .

Accordingly, the optimal control policy in (46) can be

equivalently represented by an actor network in the form

of

u˚
i pxiq “

`

W˚
a,i

˘T
ϕa pxiq ,

where ϕa pxiq “ xi is the basis vector and W˚
a,i P R

nˆm is

the weights matrix of the actor network. In κ-th iteration,

by denoting the estimation of W˚
a,i as Wκ

a,i one has

uκ
i pxiq “

`

Wκ
a,i

˘T
ϕa pxiq . (48)

Next, we need to rewrite the followers’ dynamics (1) as,

9xi “ Axi ` Buκ
i ` B pmi ´ uκ

i q , @i P F , (49)

where mi, @i P F is the admissible policy1 and uκ
i P

R
mˆ1 is the policy at κ-th iteration. Let the value function

corresponding to the policy uκ
i pxq be written as

Vκ
i pxiq “ xT

i P
κ
i xi,

which after taking the time derivative along the system

dynamics (49) becomes

9Vκ
i “

BBVκ
i

Bxi

, Axi ` Buκ
i ` B pmi ´ uκ

i q
F

“ xT

i

`

Pκ
i A ` ATPκ

i

˘

xi ` 2xT

i P
κ
i Buκ

i

` 2xT

i P
κ
i B pmi ´ uκ

i q , (50)

where x¨, ¨y is the inner product operator. Integrating now

both sides of (50) over an interval rt, t ` T s with T P R
`

yields the following off-policy integral RL Bellman equation,

Vκ
i pxi pt ` T qq ´ Vκ

i pxi ptqq

“
ż t`T

t

´

β}xi}2 ` }ui}2
¯

dτ

` 2

ż t`T

t

xT

i P
κ
i B pmi ´ uκ

i q dτ. (51)

1For more details about admissible policy, see [35] for reference.
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Denoting vκi :“ mi ´ uκ
i , and considering the critic and

actor networks (47) and (48) respectively, we can rewrite

(51) in terms of the critic and actor weights Wκ
c,i and Wκ`1

a,i

as

ςκi “
`

Wκ
c,i

˘T rϕc pxi pt ` T qq ´ ϕc pxi ptqqs

` 2

m
ÿ

j“1

´

W
κ`1,j
a,i

¯T
ż t`T

t

ϕa pxiq vκ,ji dτ

´
ż t`T

t

”

β}xi}2 ` }
`

Wκ
a,i

˘T
ϕa pxiq}2

ı

dτ. (52)

where

Wκ`1

a,i “
”

W
κ`1,1
a,i ¨ ¨ ¨ W

κ`1,j
a,i ¨ ¨ ¨ W

κ`1,m
a,i

ı

,

v
κ,j
i “

“

v
κ,1
i ¨ ¨ ¨ v

κ,j
i ¨ ¨ ¨ v

κ,m
i

‰T

.

and ςκi is a temporal difference error. By rearranging (52),

the off-policy integral RL algorithm becomes a least squares

problem of the form,

yκi ptq “
`

Wκ`1

i

˘T
ϕi ptq ´ ςκi ptq , (53)

where,

yκi ptq “
ż t`T

t

”

´β}xi}2 ´ }pWκ
a qTϕa pxiq }2

ı

dτ,

Wκ`1

i “
„

`

Wκ
c,i

˘T
´

W
κ`1,1
a,i

¯T

¨ ¨ ¨
´

W
κ`1,m
a,i

¯T
T

ϕi ptq “

»

—

—

—

–

ϕc pxi pt ` T qq ´ ϕc pxi ptqq
2
şt`T

t
ϕa pxiq vκ,1i dτ

...

2
şt`T

t
ϕa pxiq vκ,mi dτ

fi

ffi

ffi

ffi

fl

,

To this end, the off-policy RL algorithm, which solves the

ARE (19) in a model-free manner, is given in Algorithm 2.
Algorithm 2: Off-policy RL Algorithm

1: Initialization: For follower i, set iteration index κ “ 0, and
start with an admissible control policy mi;

2: procedure
3: Least Squares Solution Step: Solve the least square problem

(53) to obtain W
κ
c and W

κ`1

a simultaneously;
4: Stop if convergence is achieved, otherwise set κ “ κ ` 1

and go to Least Squares Solution Step;
5: On convergence set W˚

a,i “ W
κ
a,i.

6: end procedure

Remark 4. It can be seen that Algorithm 2 needs to start

from an initial admissible policy. Due to page limitations,

readers are referred to [23], [24], [34] for more details about

how to obtain an initial admissible policy. l

VI. SIMULATION STUDY

Consider a MAS with three leaders and five followers with

the communication graph illustrated in Figure 1. The system

matrices of agent dynamics in (1) and (2) is selected as

A “
„

1 ´3

1 ´1



, B “
„

0

1



.

Based on Theorem 1, the design parameters are selected as

β “ 4.9985, c “ 1.2713, γ “ 25.3217, r “ 0.0155.

Fig. 1. Graph topology.

Then, the event-triggering condition (22) can be obtained

with

σ1 “ 0.6, σ2 “ 0.5, σ3 “ 0.4, σ4 “ 0.3, σ5 “ 0.2

π1 “ 0.0120, π2 “ 0.0110, π3 “ 0.0098, π4 “ 0.0085,

π5 “ 0.0069.

The results of the event-triggered containment control are

shown in Figure 2. One can observe that the state trajectories

of all followers converge to the convex hull spanned by

leaders. The event instants of all followers is shown in Figure

3, which gives the distributed and asynchronous feature

of proposed event-triggered containment control protocols,

because the event-triggering instant of each follower is

independent of others.
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Fig. 2. State trajectories of agents.
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Fig. 3. The event instants of each follower.
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VII. CONCLUSIONS

We have investigated the distributed event-triggered con-

tainment control design of MASs. The closed-loop stability

of the equilibrium point for local containment error is

analyzed. Moreover, Zeno-free behavior is guaranteed to be

excluded. An off-policy RL algorithm is derived to obtain the

feedback gain in the containment control without requiring

the complete knowledge of the agents’ dynamics. Simulation

results shows the efficiency of the proposed approach.

Future efforts will focus on extending the results to more

complicated cases, such as agents with nonlinear dynamics,

time-delay in the communication between leaders and fol-

lowers, directed communication graph, etc.
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