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Abstract—This paper presents a model-free distributed
event-triggered containment control scheme for linear multi-
agent systems. The proposed event-triggered scheme guarantees
asymptotic stability of the equilibrium point of the containment
error as well the avoidance of the Zeno behavior. To relax
the requirement of complete knowledge of the dynamics, we
combine an off-policy reinforcement learning algorithm in an
actor critic structure with the event-trigger control mechanism
to obtain the feedback gain of the distributed containment
control protocol. A simulation experiment is conducted to verify
the effectiveness of the approach.

Index Terms— Multi-agent systems, containment control,
event-triggered, off-policy reinforcement learning, actor-critic.

I. INTRODUCTION

Distributed control of multi-agent systems (MASs) has
attracted great amount of attention from multiple fields,
such as vehicle swarms [1], social networks [2], and so on.
Distributed control protocols for MASs are designed based
on the exchange of local information among neighboring
agents, and the interaction among agents is dictated by a
communication graph [3]. Examples of distributed MASs are
flocking control [4], formation control [5], graphical games
[6]-[8], synchronization control [9], [10] and so on. We will
focus on the containment control problem of MASs, for
which the objective is to drive the state of all followers into
the convex hull spanned by leaders’ states [11].

Related work

Containment control of MASs has practical uses in real-
world applications. For example, when a group of robots
performs the task of fire fighting in a forest, it is necessary
to make all the robots avoid the obstacles and arrive at the
designated area to accomplish their missions. The leader
robots which have more situation awareness capabilities can
guide other follower robots to accomplish the mission. Since
the interior point in the convex hull spanned by leaders,
i.e., the desired trajectory for all followers, is not unique,
the results from leader-follower distributed consensus control
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cannot be applied to the containment problem directly. Nec-
essary and sufficient conditions that guarantee the solution
of the containment control for first- and second-order MASs
with stationary and dynamic leaders have been investigated
in [12]. Recently, internal model principle [13], sliding model
approach [14] and observer-based design [15] have been
applied to solve the containment problem. However, these
results require constant interaction among agents, which
may not be practical when the communication resources are
limited.

The event-triggered design, is originally proposed to stabi-
lize single-agent systems while decreasing the communica-
tion burden [16], [17]. Such work has been recently extended
to develop the distributed consensus control protocol for
MASs [18]-[21]. Up to now, the state-dependent sampling
results in the dependency of each agent’s control update on
her neighbors’ events, which might not reduce the commu-
nication and computation load efficiently. Therefore, a novel
event-triggered mechanism is developed to guarantee such
independence.

Another issue in existing approaches for both time-
triggered and event-triggered containment control protocol
design methods is that complete knowledge of agents’ dy-
namics is required. Reinforcement learning (RL) has been
used effectively to solve optimal regulation and tracking
problems, as well as differential games and H,, problems
for single and MASs systems [22], [23], [24], [6], [25], [9].
In this paper, off-policy RL in an actor-critic structure is
developed to obtain the event-triggered containment control
in a model-free manner.

Contributions

The contributions are two-fold. First, both time-triggered
and event-triggered distributed containment control protocols
are developed. The proposed event-triggered scheme is based
on the sampling of the containment error, which guarantees
that the event-triggering instant for each agent is independent
of the other agents’ states. Second, to obviate the requirement
of complete knowledge of agents’ dynamics, an off-policy
RL is adopted to obtain the distributed event-triggered con-
tainment control protocol in a model-free manner.

Structure: The remainder of this paper is structured as
follows. Section II formulates the problem. A time-triggered
distributed protocol to solve the containment problem is
given in Section III. To avoid the continuous interaction
amongst the agents, a novel event-triggered containment
control framework along with Zeno-free behavior guarantees,
is proposed in Section IV. To obviate the requirement of
complete information of the agent dynamics, Section V



uses an off-policy RL algorithm to learn the feedback gain
of the event-triggered containment control. To validate the
proposed protocol design, a simulation example is carried
out in Section VI. Finally, Section VII concludes and talks
about future directions.

Notation and Background: The background information
and assumptions for graphs used here is standard.

g 2 Graph of all agents, G = {1,..., M + N}
R 2 subgraph of leaders, R = {1, ..., M}
F o2 subgraph of followers, 7 = {M +1,.... M + N}
A & adjacency matrix of subgraph F
i 2 entry of adjacency matrix A
d; 2 in-degree of node ¢
p 2 in-degree matrix of subgraph F (D = diag {d;,
vy dn})
N; 2 setof neighbors of node @
n; 2 the number of agent ¢’s neighbors
o Laplacian matrix of subgraph F (L = D — A)
G, 2 pinning matrix of p-th leader to all followers
(G, = diag{g?, -, 9%}, G= X G,
PER
gt 2 pinning gain from p-th leader to i-th follower
Gi 2 j.th element on the diagonal of G (g, = Y ¢7)
PER
A & th eigenvalue of matrix £ + G (A < -+ < Ay)

Assumption 1. The subgraph F is undirected. For each
follower, there exists at least one leader that has a directed
path to that follower. O

Lemma 1. [26] Under Assumption 1, all the eigenvalues
of the matrix L + G, \1,--- , AN, are positive. O

II. PROBLEM FORMULATION
Consider the multi-agent system with N followers,

T; = Az; + Bu,, i € F (1)
where x; € R" is the state and u; € R™ is control of follower
- The leaders dynamics are modeled as,

T, =Ax,, peR 2)
where z, € R" is the leader’s state.

Assumption 2. The pair (A, B) is assumed to be stabiliz-
able. [l

The following definitions are adopted from [27].

Definition 1. (Distance) Let x € R™ and C < R". Then, the
distance from x to the set C is defined as

dist (2,C) = inf |~y . O
Yy

Definition 2. (Convex Hull) A set C < R™ is convex if
(I1=XNaz+ Xy eC, Ve,y € C and X € [0,1]. The convex
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hull Co(X) of a finite set of ¢ points X = {x1, 22, - , 24}
is the minimal convex set containing all points in X. That
q q
is,Co(X)={Zaimi‘azieX,aieRZai:l}. O
i=1 i=1

The containment control problem of MAS with leaders in
(2) and followers in (1) can now be formulated as follows.

Problem 1. Design the distributed control protocol wu; such
that tliﬁrg7 dist (xl (t), Co{z, (t)}pGR) =0,Vie F,ie, all
the followers are synchronized to the convex hull spanned
by the leaders. O

The local interaction between agent ¢ and her neighbors
can be expressed as,

6= >, aij(wi—xy) + Y, gl (wi—x). ()

JEN; PER
and in a compact form as,
M
§=Hz— ) Hy, (4)
p=1
with,
L
h, = i +Gp, Hy=h,® 1,
h=L+G H=hQ®I,,
where T, = Iy ® ), = [ :UlT x% ]T. Then, the
dynamics of ¢ in (4) are,
_ M
0=Hi— Y Hp,
p=1
— M —
= A (H:L -] prp> + HBu
p=1
= AS + HBu. (3)

where A = Iy ® A and B = Iy ® B.

According to [13], it is guaranteed that the containment
control problem is solved if (5) has an asymptotically stable
equilibrium point. Therefore, § in (4) is referred to as global
containment error, and J; in (3) is referred to as local
containment error.

III. TIME-TRIGGERED CONTAINMENT CONTROL DESIGN

Considering the local information ¢; in (3), the distributed
containment control can be written as,

U; = CK(SZ', (6)

where ¢ € R* is the coupling gain and K € R™*" is the
feedback gain matrix to be designed later.
Using (6) in (4) yields,

§=[(Iny®A)+ (ch® BK)]é. (7)

The following results provide the proper design of
continuous-time containment control in (6).



Lemma 2. Under Assumptions 1 and 2, suppose that there
exist matrices @ > 0 € R"*™ and R > 0 € R™*"™. Given
that, the feedback and the coupling gains are selected as

K =—-R'BTP, (8)
1

D s E— 9

=3 ‘_Ilnin A ©)

with P > 0 satisfying the algebraic Riccati equation (ARE),

AP+ PA—-PBR'BTP+Q =0, (10)

then, the equilibrium point (i.e. origin) of the closed-loop
system with state § is asymptotically stable. O

Proof. The proof is an extension of [28, Theorem 1] and is
omitted here due to page limitation. O

Remark 1. The distributed control protocol in (6) requires
continuous interaction between each agent and her neighbors,
and is referred to as time-triggered containment control in
contrast to the event-triggered containment control discussed
in the next Section. O

IV. EVENT-TRIGGERED DISTRIBUTED CONTAINMENT
CONTROL DESIGN

A. Event-Triggered Scheme Design

In this section, an event-triggered containment control is
developed. The aperiodic sampling of local containment error
0; is updated only when an event is triggered. That is,
the local containment error remains constant between two
successive events

51' (t) = 0; (t;g) RS [t;‘cv 7I;H—l) (11)

where {t{}? , is a monotonically increasing sequence of
sampling instants, satisfying limy_,o t} = 00, with ) = to
Vi € F. Then, the event-triggered containment control can
be designed as,

u; (t) = cKd; (t) = cK&; (), te [t tiy) . (12)

From (12), it can be seen that for each follower, the
distributed control is updated only at the triggering time ti.
Let ¢; (t) denote the sampling error between d; (t) and ¢; (¢),
i.e.,

i (t) = 0; () — 6; (1)

Then, the event-triggered distributed control (12) can be
equivalently expressed as,

w;i (8) = cK [e; (t) + 6 (£)]. (13)

Note that although the control policy (13) is continuous, it
is measurable and locally essentially bounded. Then, the
Filippov solutions for each follower with event-triggered
control (13) exists [29], [30]. Therefore, using (13) in (1)
and using differential inclusions and nosnsmooth analysis
[29], one has

T; (t) v K [AJCL (t) + cBK [Ci (t) +9; (t)]] . (14

Writing a compact form of (14) for all the followers yields,
() e K[(In®A)z(t) + (In®cBK) (e +9)], (15)

where e is a compact form of all the vectors in (13).
Similarly, the dynamics of the leaders are given by,

To(t) = (IN®A)Zo (t).

Substituting the event-triggered control from (13) in (15) and
(16) gives,

d(t) e K[(In®A+ch®BK)§ + (ch®BK)e].(17)

(16)

Based on 4, (t) in (11), the event-triggered containment
control protocol (12) can be designed by the following
theorem.

Theorem 1. Under Assumption 1 and 2, let the feedback
gain in (12) be designed as
K =—-BTP, (18)
where P > 0 is the unique solution to the following ARE
AYP+ PA—PBBYP+ I, =0, (19)

where we have substituted ) := [1,, in (10) and the coupling
gain c in (12) is selected such that,

1
)\NZ)\i>)\1>2—>O,WE{1,-~-,N}. (20)
c
Furthermore, let 3 from (19) satisfy,
B=An= A=A >0,Vie{l,--- N}. (21)

where \;, i = 1,..., N are the eigenvalues of the matrix h.
Then, §; — 0,Vi € F, as t — oo as long as the event-
triggering condition,

leil = mi ll3:]] (22)
is satisfied, with m = \Joi~(L—cyr) with v =
|PBBTP|, r < % and o; € (0,1). O

Proof. Consider the following Lyapunov equation,
1
V(5) = §5T (h® P)J.

Taking the time derivative of V' and substituting (17)
yields,

V=% %5T [h® (ATP + PA)]é

_

Vi

+ 6" [ch®> ® PBK|6+6" [ch® ® PBK]e| . (23)

~ ~
Vs V:}

Based on Assumption 1 and Lemma 1, there exists an
orthogonal matrix UT = U~ such that

UThU = A,
UAUT = h,

(24)
(25)



where A = diag (| A1 An |) is the diagonal matrix
consisting of the eigenvalues of h.
The following transformation can be used,

n= (UT®In) 57
e=(UT®I,)e

(26)
(27)
Combining the matrix transformation (24), (25) and variable

transformation (26), (27), Vi, Vo and V3 in (23) can be
written as,

Vi = lnT [A ® (ATP + PA)] 7,
Vo =" [A*® cPBK]|n,
Vs = nT [A’®cPBK] e

First, note that,

N
Vit Vale s Z [\i (ATP + PA) +2cA2PBK] |n|?

<

L7211

[)\ Ini|* (A"P+ PA— PBB"P)|

N | =

1

<.

(ATP + PA— PBB"P) 2 Nillmill?,

i=1

l\')\»—l

where the inequality results from (20). Considering the ARE
in (19), the following can be obtained

Rl 2 _ 2
-5 Z Aillni||” < Z A2 i,
=1

where the second inequality comes from (21).
Based on the well-known inequality

1

Vi+Va< (28)

l\D

T'

752
2 —|—

ab <

we can write V3,

N
Vs = > eAln PBBT Pe;
i=1

N
T 2 1 2
< e (5l + zoleil?).
~ 2 2r

where v = |PBBTP| and r is a positive constant to be
determined later.
el

(29)

=

Combining now (28) and (29) we have,
A llmi* + Z YA

(m
=1

| =D InilP + e’

14

N

M=
D= e EMZ

s.
w\ﬁ I
N

N

[(evr =D Inil? + Zel?]. (30)

~.
_

The second inequality comes from (21). By taking into
account the orthogonal matrix U in (24) and (25), one has

nT,r] _ 5T6, T T

ge=ee.
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Thus, (30) can be rewritten as

<Z[-a-emor + Zper?]

2
. l 1fchH6H + 7Zleql-m)

R %, then (31) is equivalent to

V<

o B
2

~

i [ T esf?
Hlr(l—cyr) !
(L =a)lal?].

where, o; € (0,1) is a design parameter Vi € F.
In order to guarantee that V' < 0, the following conditions
need to be satisfied Vi € F

i |0 H

— o361 -

el < (32)

T = (33)

— (1 —cyr),
Zw (L—cyr)
where 7 is selected as r < Ci to guarantee 1 — cyr > 0.

To this end, the event is triggered when (32) is violated,
ie.,

leill = mifloil

which guarantees that,

52

N

(1 —cyr) Z

i~ D ]6i]* <

It should be noted that since §; = 0,Vi € F, this
guarantees that each follower approaches the convex hull
spanned by the leaders [13]. Therefore, V' = 0 if and only
if the problem has a solution.

According to [30, Theorem 3.1], it follows that the solution
set of V' = 0 is attractive and §; — 0,Vi € F,ast — 0. []

Remark 2. The error 0;(t) in (3) serves as a combinational
measurement for containment control problem, which can be
viewed as an extension of the combinational measurement in
[31], [32] to the case of MASs with multiple leaders. O

Remark 3. The event-triggered containment control (12)
depends on the coupling weight ¢ and the feedback gain
K. Theorem 1 gives the condition that the coupling gain ¢
and the feedback gain K should satisfy. It can be seen that
the feedback gain and coupling weight are decoupled and
can be determined independently. It is shown in Section V
that the feedback gain K will be obtained by RL. ]

B. Feasibility of the Event-Triggered Mechanism

One critical issue in the event-triggered scheme design is
to avoid Zeno behavior, i.e., the case where the minimal inter-
event interval 7p,;;, = min {¢;11 — ¢;} is zero and there is

jENT

infinite number of events triggered over a finite time. In this
section, the Zeno-free behavior of the proposed distributed
event-triggered scheme in Theorem 1 is investigated as
follows.



Theorem 2. Consider the event-triggering condition de-
signed by Theorem 1, then, Vi € F, the inter-event intervals
{ti - t}c}il are strictly positive as k — . O
Proof. We need to consider two cases separately Vi e F.

i) The case when §; (t},) # 0.

We have proved in Theorem 1 that the event-triggering
condition guarantees that 6 — 0. The (32) is equivalent to

72 (10 O + les (017)

1+ w2

2
le: (D] <

(34)

Based on Young’s inequality,

(a+b)2 < 2
2 ~

we have the following inequality,

72 (18: O + le: (1))

1+ 7?2

a’ + v?,

2
m3 0 (8) + e (D] _
2 + 272

Therefore, the sufficient condition of (34) can be selected as

26 () + ei (1)
2+27r

l(tz)‘ A

= = 3
2 k>
2 + 2m;

le: (4)]* <

(35)

To guarantee that 6 — 0, an event is triggered, when (32)
is violated. A sufficient condition for this is,

lei ()] < 55— [0 (#)]-

dlei )] _ [es
dt le

|
5; (t) — d; (t)],vte [ Zaﬂcﬂ) .

The time derivative of §; (¢) yields,

(36)

51' = A(SZ + Bui — C Z a”BK& (t)
JEN;
= A§; — ¢cBBTPé; (t) + ¢cBBTP Z a;;0; ( k,(t)) (37)
JEN;

Based on (11), it is known that ; (¢) is constant for Vt e
[ti,ti,,). Taking (37) into (36) yields (38) and (39) (see
next page), where

k’(t):argmax{ti‘tiét,je/\/i} (40)
denotes the event-triggering time of follower j just before
time .

The summation in (38) stands for the previous update
control value of all the neighbors of the follower 7. The item
W in (38) is the right-hand side derivative of |le; (t)| at
the event-triggering time ¢ = .
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Using the comparison lemma [33] in (38) yields,

i ()] < e (dAI00) 1),

where w}, is defined in (39).
Combining now the inequalities (35) and (41) at the event-
triggering instant ¢} 41 let us write,

. w‘ i i
lei (teyr) | = sk < H;” (e”AH(tk+1 th) _ 1)7

where si, is defined as in (35). Then,

(41)

Th = t2+1 —t
N <N%%%)
HAH W
> 0.

ii) The case when 0; (t}v) =0as k — o0.
The sampling error (13) by using the absolute value
inequality can be written as,

B = 16 0)1] < lex (1)1

Since the event-triggered condition designed by Theorem 1
guarantees (32) and combined with (42) gives,

) = 16 &)l < mi o (1),

(42)

which leads to

Jo: (83)] Jo: (83)]
As a result of (43), we have,
i (£)]
>1—;. 44)
ol =T
In the case when §; (t;) = 0 as k — oo, it follows

from (43) that ¢; (t) = 0. Then, the dynamics of the local
containment error §; (37) satisfy

bi (t) = A; (t) + eBB™P Y ayy, (W))
JEN;
— ¢BBTPs; (1)
= ()7
ofr,
A8 = cBBTP6; (1) — cBBTP Y ai;0; () )- 45)
JEN;
Considering (39) and (45) yields
L1165+ max
k" k+1

= 1Al ]o: ()] + 148 ()]

| Ad; (£))]

where ' € [ti,ti _,]. From (44), the following holds
i i > lim \/m H (tl)H
k=0 wh koo [A] ]6; (tl)H + [ As; ()]
1—m)m

> }
|A[l (2 — ;) /2 + 272



L A (50— 0 0) ~ cBETPH (0 4 cBBTP Y, 0y, (ti'@)‘

dt =
< | Ae; (t)] + |Ad; (t) — cBBTP6; (t) + cBB™P ) a;;0; (tf;/(t)) < |A] e: @) + wi, (38)
JEN;
wh= max A6 (t}) — cBBYPS; (1) + cBBTP Y ais; (t )| (39)
te[ti 4 JeN
Finally, where z; := [ Til ... Tin ]T. By using approximators
) ; . ; ; for W, as W[, in the r-th iteration, the estimation of
kh_)ngo T = /}Ln;o (tha1 — th) Vi (x;) can be expressed as
i K K T
> ”%Hlog (A”fk ; 1) VE (a) = (W) e (@) @7)
F and,
S 1 1 (1 7T7;) Uy 1 T
=Z 77 10 K K
1] %8 (2 —m) /2 + 2m2 VYV () = [Ve (x:)]” W
>0, Accordingly, the optimal control policy in (46) can be
L . equivalently represented by an actor network in the form
which is the required result. ] of
V. OFF-POLICY RL uf (z;) = (Wzi)T<pa (z5),

Off-policy RL algorithms [34] are able to solve the ARE  where ¢, (x;) = x; is the basis vector and W*, € R"*™ is
on-line in a model-free fashion. In this subsection, an off-  the weights matrix of the actor network. In Kth iteration,
policy RL algorithm is developed to solve (19) based on by denoting the estimation of W:,i as W(’Zi one has
actor-critic structure [22]. .

Based on the discussions in Section IV, one can observe uff (z;) = (W) @a (i) - (48)
that the feedback gain K = —BT P depends on the ARE
(19). In order to obtain the feedback gain K = —BT P in a
model-free manner, the following problem is considered. #; = Ax; + Bul + B(m; —uf), Vie F, (49)

Next, we need to rewrite the followers’ dynamics (1) as,

Problem 2. For each follower, design the optimal state feed- ~ where m;, Vi € F is the admissible policy! and u? €
back control u; = Kx; such that the following performance ~ R™*! is the policy at k-th iteration. Let the value function
function is minimized corresponding to the policy u/ () be written as

o0 E(m) — L pho..
V() i=min | (Bl + fusl?)ar. O Vilw) = e Fra,
Lo which after taking the time derivative along the system
According to the optimal control theory [35], the optimal ~ dynamics (49) becomes

control that solves Problem 2 can be expressed as "
K aVZ K K
T ) Vi = ,Az; + Buf + B (m; —ul)
w = Kx; = —BYPa; Vie F (46) ox;
=z (PFA+ AT PF) z; + 2z PfBuf
and the optimal performance is N 2xiTPfB (i — %), (50)

* . = T . 3
Vii(xi) = zi Pa;,Vie F. where (-,-) is the inner product operator. Integrating now
where P satisfies the ARE (19). both sides of (50) over an interval [¢,¢ + T with T € R

First, the optimal value function V* (z;) can be equiva- yields the following off-policy integral RL Bellman equation,

lently represented by a critic network as VE (i (t+ T)) — VE (4 (1))
T t+T
VI (@) = (W) e ). [ (st + i) ar
. . " n(n+1) . ' t+T
w1th. the wlelght vector W7, € R™ 2 and quadratic poly- P f #TPFB (my — uf) dr. 51)
nomial basis vector ' v ¢

T
Qe (CCL) = [ $l21 Ti1Tiz 0 Ty, ] s !For more details about admissible policy, see [35] for reference.
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Denoting vj* := m; — u, and considering the critic and
actor networks (47) and (48) respectively, we can rewrite
(51) in terms of the critic and actor weights sz and W(fjl
as

W) [pe (@i (t 4+ T)) — e (2 (£))]
t+T

( Hl’]) L Pa (;)

—ft (81l + 1W2) " pu )] . 52)

v dr

where
rk+1 rk+1,1 k41,5 k+1lm
Wa,i - [ W(Li a,i a,i ]7
; ; T
KJ K, 1 KyJ K,m
Ui [ ] Yy A
and ¢ is a temporal difference error. By rearranging (52),

the off-policy integral RL algorithm becomes a least squares
problem of the form,

yr (1) = (W) s () — <F (1), (53)
where,
t+T T
w0 = | Bl = 107 e ) ] dr
- T
P T
Moo (@i <t+T>> <Pc (mz )
2S Ldr
| 2St+T o () v dr

To this end, the off-policy RL algorithm, which solves the
ARE (19) in a model-free manner, is given in Algorithm 2.
Algorithm 2: Off-policy RL Algorithm
1: Initialization: For follower ¢, set iteration index x = 0, and
start with an admissible control policy m;;
procedure
Least Squares Solution Step: Solve the least square problem
(53) to obtain W and W/ ™! simultaneously;
Stop if convergence is achieved, otherwise set Kk = k + 1
and go to Least Squares Solution Step;
5: On convergence set W, = W,
6: end procedure
Remark 4. Tt can be seen that Algorithm 2 needs to start
from an initial admissible policy. Due to page limitations,
readers are referred to [23], [24], [34] for more details about
how to obtain an initial admissible policy. |

2:
3:

4:

VI. SIMULATION STUDY

Consider a MAS with three leaders and five followers with
the communication graph illustrated in Figure 1. The system
matrices of agent dynamics in (1) and (2) is selected as

R

1 -1 1
Based on Theorem 1, the design parameters are selected as

B = 4.9985, ¢ = 1.2713, v = 25.3217, 7 = 0.0155.
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Leaders

Follower

Fig. 1. Graph topology.

Then, the event-triggering condition (22) can be obtained
with

g1 = 0.6,02 = 0.5,0’3 = 04, g4 = 0.3,0’5 =0.2
71 = 0.0120, 75 = 0.0110, 713 = 0.0098, 74 = 0.0085,
5 = 0.0069.

The results of the event-triggered containment control are
shown in Figure 2. One can observe that the state trajectories
of all followers converge to the convex hull spanned by
leaders. The event instants of all followers is shown in Figure
3, which gives the distributed and asynchronous feature
of proposed event-triggered containment control protocols,
because the event-triggering instant of each follower is
independent of others.

= leader 1
= |eader 2
leader 3
—follower 4
follower 5
follower 6
— follower 7
follower 8

(t)

1

(tyx

1
k

X

= leader 1
= leader 2
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follower 4
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follower 6
follower 7
— follower 8

Time(sec)

Fig. 2. State trajectories of agents.

+ followerd
4 followers.

follower6
O follower7
* _follower8

i-th follower
o

Time(sec)

Fig. 3. The event instants of each follower.



VII. CONCLUSIONS

We have investigated the distributed event-triggered con-
tainment control design of MASs. The closed-loop stability
of the equilibrium point for local containment error is
analyzed. Moreover, Zeno-free behavior is guaranteed to be
excluded. An off-policy RL algorithm is derived to obtain the
feedback gain in the containment control without requiring
the complete knowledge of the agents’ dynamics. Simulation
results shows the efficiency of the proposed approach.

Future efforts will focus on extending the results to more
complicated cases, such as agents with nonlinear dynamics,
time-delay in the communication between leaders and fol-
lowers, directed communication graph, etc.
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