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Abstract This work proposes a game-theory-based technique for guaranteeing con-
sensus in unreliable networks by satisfying local objectives. This multi-agent problem
is addressed under a distributed framework, in which every agent has to find the
best controller against a worst-case adversary so that agreement is reached among
the agents in the networked team. The construction of such controllers requires the
solution of a system of coupled partial differential equations, which is typically not
feasible. The algorithm proposed uses instead three approximators for each agent: one
to approximate the value function, one to approximate the control law, and a third
one to approximate a worst-case adversary. The tuning laws for every controller and
adversary are driven by their neighboring controllers and adversaries, respectively,
and neither the controller nor the adversary knows each other’s policies. A Lyapunov
stability proof ensures that all the signals remain bounded and consensus is asymp-
totically reached. Simulation results are provided to demonstrate the efficacy of the
proposed approach.
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1 Introduction

In recent years, complex dynamic systems consisting of interacting subsystems have
received a significant attention. Such systems arise, for example, in vehicle formation
and maneuvering, power systems [1,2], altitude alignment [3], rendezvous problem
[4], flocking [5], and consensus seeking and agreement [6]. Large-scale distributed
systems are vulnerable to adversaries since traditional consensus algorithms [7-9]
typically exhibit fragilities with respect to attacks. There is thus a need for architectures
that are resilient against attacks.

Machine learning is an attractive approach to achieving optimal behavior when
classical optimization techniques are infeasible, and its importance in real applications
has been demonstrated, e.g., in [ 10] that proposes applied apprenticeship algorithms for
learning control policies for helicopters flying in a very wide range of highly aerobatics
with a performance close to that of a human expert pilot. However, the application
of machine learning techniques in a distributed multi-agent setting is complicated by
the fact that all agents will likely be learning and adapting simultaneously, which may
prevent the learning process from converging. Game theory provides the appropriate
framework to study learning and autonomy in a distributed setting, as recognized in
[11-13].

Reinforcement learning [14] is useful when agents take a sequence of actions, based
on information or rewards received from the environment. This technique is inspired by
dynamic programming and lays the foundation for developing algorithms to update
expected utilities and to use them to explore the system’s state space. Actor—critic
frameworks [15,16] are based on reinforcement learning methods and use an actor
component that generates actions and a critic component that assesses the costs of
these actions. Based on this assessment, the actor policy is updated at each learning
step [14,17]. Current reinforcement learning proofs of convergence do not hold for
most of the multi-agent system problems.

1.1 Related Work

A survey of existing threats in multi-agent systems and models of realistic and ratio-
nal adversary models is presented in [18,19]. Consensus in the presence of persistent
adversaries has been focused on detecting, identifying, and isolating the failing nodes
[20], which can be computationally expensive and often requires the use of global
information and specific graph connectivity. The adversaries can easily drive the sys-
tem unstable and make the system operate with an undesired behavior. The authors
in [21-23] show the advantages of using game theory in network security. The work
of [24] presents a framework to show how models from game theory can be used to
defend an electric power system against antagonistic attacks.

Robust consensus algorithm from the information theory side has been proposed
in [25,26]. Specifically, distributed averaging in the presence of channel uncertainties
is presented in [25] where the network is used twice per cycle without any optimality
guarantees. The work of [26] proposes consensus-based distributed decoding algo-
rithms (e.g., Viterbi algorithm) that are robust to random link failures and additive
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noise present in the inter-sensor links. Performance bounds are provided to determine
the number of iterations needed to guarantee a given level of average decoding errors
at any given sensor.

Most of the consensus algorithms proposed in the literature to provide resilience
against adversaries either are not optimizing a specific performance criteria [27,28] or
require the offline solution of Riccati equations [29,30]. The work of [31] formulates
the problem of measurement corruption and jamming attacks as centralized finite hori-
zon problems where the adversary wants to maximize the Euclidean distance between
the nodes’ state and the consensus line. The computations have to be performed offline
in order to compute the optimal strategy. The authors in [32] propose to evaluate the
cost of every agent by considering constant states for the other agents, and the authors
in [33] present a suboptimal phase synchronization adaptive control scheme for net-
worked nonlinear Euler-Lagrange systems with a centralized performance without
incorporating the adversarial inputs in it. A distributed clock synchronization proto-
col based on a consensus algorithm for non-identical double integrators is presented
in [34]. The authors provide conditions on the protocol parameters in terms of rate
convergence and in terms of steady-state error in the presence of an additive noise
by solving offline a centralized optimization algorithm. In [35], the authors propose
a controller that suppresses the effect of constant and time-varying disturbances by
using information of agent’s and neighbors’ states. Vamvoudakis et al. [36] presented
reinforcement learning algorithms that guarantee optimal performance in networked
systems with leaders, but did not consider the effect of adversaries that corrupt the
measured data. In [26], the authors propose a distributed resilient formation control
algorithm that consists of a formation control block that adapts online to minimize a
local formation error, as well as a learning block that collects information in real time
to update the estimates of adversaries. The book of [21] models the malware traffic
as an H-infinity problem (zero-sum game) where the optimal filtering strategies can
also be used in spam filtering, distributed denial of service attacks, etc. This H-infinity
framework allows for dynamically changing filtering rules in order to ensure a cer-
tain performance level. Moreover, the objectives of the defense and adversaries are
diametrically opposed, so the zero-sum assumption is accurate with a performance
guarantee in the form of a minimum security level. The work of [37] provides meth-
ods for reaching consensus in the presence of malicious agents, but the algorithms
proposed are combinatorial in nature and thus computationally expensive.

A multi-agent synchronization problem of continuous-time Markov jump linear
systems is presented in [38] where one subsystem aims to mislead the other subsystems
to an unfavorable system state. The authors provide a set of coupled Riccati differ-
ential equations derived from centralized performances to characterize the feedback
Nash equilibrium solution, but require offline computations and without any stability
guarantees. The work of [39] achieves tracking for a case of double-integrator agents,
when sufficient communication for path distribution is permitted, but without any opti-
mality and robustness guarantees. In [40] the authors consider a network consisting of
identical agents with the only measurement given to each agent is a linear combination
of the output of the agent relative to that of its own neighbors. Their aim was to design
protocols to attenuate the impact of disturbances in the sense of the H-infinity norm
of the corresponding transfer function, without enforcing any optimization criteria.
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Coupled Hamilton—Jacobi equations that arise in such problems are nonlinear par-
tial differential equations, and it is well known that in general such equations do not
admit global classical solutions and if they do, they may not be smooth. But they may
have the so-called viscosity solutions [41,42]. Under certain local reachability and
observability assumptions, they have local smooth solutions [22,43]. Various other
assumptions guarantee the existence of smooth solutions, such as that the dynamics
not be bilinear and the value not contain cross-terms in the state and control input.

Our algorithm on the other hand will propose plug-and-play policies while also
satisfying user-defined distributed performance criteria formulated as a graphical
game. In this graphical game, only neighbors in the graph can interact and the payoffs
depend on the actions of the neighbors which give a representation that is exponential
in the size of the largest neighborhood. This is in contrast to games in normal form
where every agent interacts with any other agent, the payoffs depend on actions of all
agents, and the representation is exponential in the number of players. The result of
this work is an adaptive control system that learns based on the interplay of agents in
a game, to deliver true online gaming behavior.

1.2 Contributions

This paper proposes a game-theory-based consensus learning algorithm for networked
systems with N double-integrator dynamics that are being attacked by persistent adver-
saries. The problem is solved by combining adaptive dynamic programming and game
theory. We consider double-integrator dynamics, which are often used to represent
single-degree-of-freedom rotational or translational motion [44].

Furthermore, this work provides a relationship between the optimal consensus prob-
lem for multi-agent systems with adversarial inputs and graphical Nash equilibrium.
The derived coupled Hamilton—Jacobi equations for multi-agent systems are estab-
lished by Bellman’s dynamic programming, and then a formal stability analysis is
developed for the learning scheme. The game has 2N players, since the input to each
double integrator is the sum of two signals controlled by players with opposite goals:
a controller that wants to achieve consensus and an adversary that wants to prevent
this goal. We shall see that this problem formulation results in a distributed consensus
algorithm that is significantly more robust than the usual linear consensus.

The criteria to be minimized by each agent depend only on local information,
and the problem is formulated as a graphical game. Namely, the criteria depend
on every agent’s own state and controller/adversaries inputs, as well as the con-
troller/adversarial inputs for its neighbors. These optimization criteria will let us
design the decision policies based on the graph structure, local control, and adversar-
ial inputs and hence enable us the development of an optimal and distributed consensus
algorithm. It is worth noting that even though we are using distributed performance
criteria, this does not allow one to find a closed-form solution to the coupled Bellman
equation even for the quadratic case due to the state coupling in the neighborhood.

The computation of an exact equilibrium to the game formulated requires the solu-
tion of a system of coupled partial differential equations, one for each pair of agents,
which does not appear to be feasible. The algorithm proposed uses instead three
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approximators for every agent that use distributed information. Every agent uses a
critic to approximate each value function, an actor to approximate the optimal con-
troller, and a second actor to approximate the worst-case adversary. The tuning laws for
each controller and each adversary are driven by the values of their distributed criteria
and of their control signals, as well as the criteria and control signals of their neighbors.
In particular, the controllers do not require explicit measurements of the adversarial
signals and vice versa. The convergence of the game-theoretical actor—critic algorithm
and the stability of the closed-loop system are analyzed using Lyapunov-based adap-
tive control methods. These results require an appropriate notion of persistence of
excitation (PE) to guarantee exponential convergence to a bounded region.

1.3 Organization

In Sect. 2 we introduce the problem formulation and an existence result for the Nash
equilibrium. A game-theory-based consensus architecture that uses only local infor-
mation is presented in Sect. 3, where we also provide an online learning algorithm. The
effectiveness of the proposed approach is illustrated in Sect. 4 through simulations.
Finally, in Sect. 5 we conclude and discuss future work.

2 Problem Formulation

We consider a system consisting of N two-input agents, each modeled by a two-input
double integrator:

7 — p- . m
%= pi g € R VieN:=(l,...N}, (1
pi =ui +vi, pieR"

where u;, v; € R™ are the two inputs to agent i, which are controlled by players
with opposite goals. We thus have a total of 2N players: N of them—which we call
controllers—select values for u; (t), t > 0,i € N, within appropriate sets If; and the
other N—which we call adversaries—select values for the v; (¢), ¢ > 0,i € N, within
appropriate sets V;.

2.1 Distributed Performance Criteria

For each i € N, the criteria of the players associated with the inputs u; and v; are
symmetric and depend on their state [¢] p;], their inputs [ v!], and also the inputs
of a nonempty subset N; C A of the other agents. Specifically, u; and v; want to
minimize and maximize, respectively, the following criteria

Ji(pi(0), i (0), pps; (0), ga; (0); ui, upns, vi, UAS)

l o0
= 5/ (||sl~||2+ i 1% = v llwe >+ D lugl? = > ygnv‘/nz)dr, )
0 JeN; JeN;
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where

s,-(t):Z([gg]—[Z;])e]RZ’", Vi>0,ieN, 3)
jeN;

and y;, i, Vi, j € N, are positive constants. In (2) and in the sequel, we use the
subscript - z; as a shorthand notation for all the subscripts -, j € N;, associated with
the neighbors of i. The game just defined is called a graphical game [45], because the
coupling between the criteria of the different players can be naturally associated with
a graph G with N nodes (one for each pair of opposing agents) and edges defined by
the neighboring relations expressed by the sets NV;.

Remark 2.1 Note that, with the performance index (2), we consider attack scenarios
where the adversary’s goal is to drive the agents to an non-consensus state while
remaining stealthy. These kinds of attacks leave more autonomy to the adversary and
consider attacks that may be theoretically discernible, but are still stealthy since they
do not cause any alarm by the anomaly detector. We shall see in the subsequent theorem
(cf. Theorem 2.1) that in order for the systems to be stabilized one needs to pick y;; > 1
and y;j < yﬂz, Vi € N, j € N;. These conditions are similar to the ones in [21] (see
chapter 7), [22,43] where one needs to pick a y > y* > 0, where y* is the smallest
y such that the system is stabilized.

The variables s; (¢) should be viewed as consensus tracking errors that express the
(weighted) sum of the errors between the state of agent i and the states of its neighbors
in ;. When all the s;(¢) converge to zero, we say that consensus is asymptotically
reached in the sense that g; = g, pi = pj, Vi, j € N [6].

We are interested in finding Nash equilibria policies u} and v}, Vi € N, for the
2N-player game, in the sense that

*

JiCsui s uhe, vis Vae) <SG ug s ul, v vie)
< JiCrug, uyg, vf o), Vi, ug, i €N )

where, for simplicity, we omitted the dependence of criteria (2) on the initial con-

ditions. Essentially, each pair of players u; and v; are engaged in a zero-sum game,
but the outcomes of all these zero-sum games are coupled through the neighboring
relations expressed by the sets ;. The positive terms on the ||u;| and the negative
terms on the ||v;|| in (2) express the fact that the players that select the u; and the v;
want to achieve their objectives, while keeping these signals small. Recall that J; is a
cost for the player that selects u;, but a reward for the player that selects v;. It is clear
that criteria (2) enable us to define a general neighborhood optimization framework,
while the different signs are due to the zero-sum game formulation. One can also
remove the neighboring terms (see the fourth and fifth terms of (2)) since (3) has the
information from the neighborhood.
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To solve this problem, it is convenient to rewrite the agent dynamics (1) in terms
of the consensus tracking errors (3):

§i = |:g (I)i| si +d [(;} (ui +v;)

0 .
_Z[Ii|(uj+vj),l€./\/—, 5)
JeN;
where d; := |N;| > 0, and 0 and I denote the m x m zero and identity matri-

ces, respectively. This shows that J; () in (2) only depends on the initial conditions
pi(0), i (0), pp; (0), ga; (0) through s;(0). In the sequel, we thus simply write
Ji (5i(0); ui, ups, vi, vz;) for the left-hand side of (2).
2.2 Existence and Stability of Equilibria
The saddle-point conditions (4) can be expressed by 2N coupled optimizations:
Ji(si (0); ui, ups, vi, Vi)
= max Ji (si (0); uf, wle s vis VR, ieN, (6a)
Ji(si(0); uf, uys, vf, VR)
=nL1t%nJ,-(si(O);u,',uj‘v’_,v?‘,v}‘\/l_), ieN, (6b)

which share dynamics (5) and the Hamiltonians

0I
Hi(si, pi, Wi, UN;, Vi UNG) = ,O,T< [0 0] Si

0 0 1
+d; M (i +v) = ) M (uj + vp) + E(Hsinz + flui |
jeN;
—vilvil®+ D7 fujl? = > yﬁnvjnz), ieN,
jeN; JeN;

where p; € R?" is the co-state (adjoint) variable. For each i € N, the left-hand side
of the two optimizations in (6) can be viewed as a (common) value function to both
optimizations

Vi (5i(0)) := max Jj (i (0); uf', us, vis VA7)

=rrblgnJi(sl'(O);ui,uj\/i,v;“,v}“\/i), ieN, @)
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that should satisfy the following coupled Bellman equations:

H; Sis s U] UG VTS VR =0, ieN, 8)
sl L L

with boundary conditions V;*(0) = 0 and controller/adversarial policies given by

u; :argn’EnHi si,a—Si,ui,uM,v[,vM
BV*
—di[01] 5, e, ©)
3S,’

*

A%
* , oL gk K . o¥
v; _argn{/ziixH, (sl, o5 UGS UNS Vis Upp

=201 = ——uF, i e N, (10)
7/1%[ ] 8s,~ J/2 1

One can see from (9) and (10) that when one player accelerates (u; > 0) the other
decelerates (v;k < 0) and vice versa.

Remark 2.2 One could represent the value functions as quadratic in the consensus
tracking error, i.e., V.*(s;) : R" — R,

1
V (s;) = s Psl, Vs, Vi e N,

where P; € R™™", Vi € N, are the unique symmetric positive definite matrices that
solve the following complicated distributed coupled equations,

ool - ] ()
i) (=55)m)
(ool for] (=557
el (- 5p)me) ne
ez o] ()

jeN: Jj

1
+d’s! P, [g ﬂ (1 - ?) Pisi + lIsill* = 0, Vi € N.
ii
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Obviously, in the above equation the coupling of each state s; with the neighborhood
state sj, j € N; makes it difficult to provide a closed-form solution, hereby rendering
optimal control techniques of limited use for non-quadratic costs such as the one
considered here [15,46].

Remark 2.3 For every fixed u’ NV , vk N> We have ;Hi > 0 and therefore the
Hamiltonian is mlmm]zed at the statlonarlty point (9). Conversely, for every fixed

ul Ll N vt N we have o2 [:‘ < 0 and therefore the Hamiltonian is maximized at the
1

stationarity point (10).

Remark 2.4 As we shall see in the following theorem every agent is participating in
a zero-sum game, but all the agents together participate in a non-zero-sum game. The
controller and the adversarial input of each agent are two players competing with
each other, and as explained in [21], the intelligent maximizing adversary plays his
strategy to ensure a certain performance. When one player adopts a constant strategy, it
becomes an optimal control problem. In general, each player (controller or adversary)
tries to make the best outcome taking into account that his opponent also does the same.

The two players, controller and adversary, are measuring (3) (due to the presence of

BDV in (9)—(10)) which includes the positions and the velocities of the agents in the

nelghborhood

The following theorem shows that under the assumption of a smooth solution of
the coupled Bellman equations (8) and some other conditions, the Nash equilibrium
is attained, with the equality to zero replaced by less than or equal to zero (as in the
coupled Hamilton—Jacobi—Isaacs (HJI) inequalities [22,43,47]).

Theorem 2.1 Suppose that there exist continuously differentiable, positive definite
functions V¥ € C Ui € N that satisfy the following inequalities,

av*T[o 1} ' dizl—yﬁzBVi*T[()()} IV

8s,~ 00 7 yiiz 3Si 01 3S,’
yJJ —1aviTroo0 1 2
yd— 2 BV*T E)V*
+ Z ()L [0 0} ) <0, Vs (11)
= VJJ as; |O0I] 9s;

with Vl* (0)=0,Vi € Nandy; > 1 and vij < )/JJZ, Vi € N, j € N;. The closed-loop
system (5) with

av* d; IV
wp=u = —di [01] =, v=0f = y’ [or] =,  VieN, (12
l i 1
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is asymptotically stable. Moreover, the controller/adversarial policies (12) form a
Nash equilibrium and

JE(si(0); uf, ule, vf, vie) = Vit (si(0),  YieN.

Proof of Theorem 2.1 The orbital derivatives of the V,* along solutions to (5), (12) are

given by
ooavET o avrT rro 0
* —_— ! ‘. —_— ! . . . .
‘/i = aSi S;i = _aSi ( |:0 0:| Si + dz |:I:| (ul + vl)

_ Z |:(I)i| (uj—i—vj)) (13)

JeN;

and, after substituting the policies (12) in (13), one obtains
) av*T /To1 d? 00]aV*

* 1 . _l
=g <[0 0} itz Vu)[o I] os;

2
+Zyjj—1 0079V;
y..z 01 3S,’ '
] ’

JeN;

By using inequalities (11) we have that
) avT /101 d? 00]0V*

* __ i . i !

s ([o 0} sitpzd- i) [0 1} Bs;

2

£y vi —1r00]9V;
y..z 01 35‘]'
i

JeN;

3Si 01 as,»

Z 8V;‘T 00 BVJ-*
+ VJJ _Vu . [() 1} . )
/e/\/ 0s; s

1 d?
——(nsin2 + 50—
Vi

Since y5; > land y5 < )/jJZ,Vi e N, j € N;, we further conclude that Vl* < —%Hs,- ||2
from which asymptotic stability follows using the Lyapunov theorem [48].

Next we need to prove that the controller/adversarial policies form a Nash equilib-
rium. Since the functions Vi*, i € N are smooth, are zero at zero, and converge to

zero as t — oo (due to the asymptotic stability), we can write (2) as
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l o0
Ji (si(0), wi, up;, vis upG) = 5/ (nsin2 + Jlui 12
0

+ ) gl = vill> = Y y§||v,-||2)dr

JeN; JeN;

+ V,»*(si(O))+/ V¥(s(t)dt, ieN,
0

and, in view of (5), we can rewrite this equation as

1 o0
Ji(5i(0), ui, up;, vi, vpA;) = 5/ <||s,-||2+||ul~||2
0

+ ) M 1P = il = ) yi?nv,-u?)dr

JeN; JeN;

. ooaVi*T 01 0
+Vi(Si(0))+/0 e <|:00i|si+di [I} (ui + v;)

-y [‘I’] (uj+vj))dt, PN

JeN;

Writing (8) as

v ror avrT o] ., .

s [00}”:_ s <d" [I] (i +v;)
0

- [I] (u§+v;‘)>

JeN;

1
- E(Hsinz 1P = v IoF 1P+ D > = Y ygnv;fnz),

JeN;: JeN;:

we can rewrite the previous equations as

Ji(510): i, uf s v, NG = Efo (nu,- —uf

2 2 2 2 2
+ D Mg =P = e = of 1P = Y wfley = vl

JeN; jeN;
av_*T 0
-2-L > [I]<uj_uj)+zzuj(uj_uj)
"jeN: JeN;
3V-*T 0
2
-2 > [1] W —vH =2 Y vivi@, —uj))dz
"jeN: JeN;

+ Vi*(s,‘(O)), ieN.
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Assuming that all the neighbors of the ith node play at the proposed equilibrium (i.e.,
uj = u;‘-, Vj € N;), we obtain

1 o0
Ji(si(0); ui, uyy s vis v)) = 5/ (llui —uf|)?
0

— vilvi — v?l|2>dt + V7 (si(0)), ieN. (14)

Moreover, setting u; = u;k in (14) leads to

1 o
Ji(si 0): uf e, vis vie) = 5/ (— Viillvi — v;‘nz)dt
0

+ V¥ (5i(0), i€eN; (15)
setting v; = v} in (14) leads to

Ji(si(0); ui, uys, v, Vi)
1

=3 /oo <||u,~ — u;‘||2)dt + V7 (5i(0), ieN; (16)
0

and setting u; = u} and v; = v} in (14) leads to
Ji*(Si(O);M}k,uj‘\/i,U?‘,Uf\[i) = V7 (5i(0), ieN. (17)

The Nash equilibrium condition (4) then follows directly from (15), (16), and (17). O

3 Reaching Consensus with Learning Ideas

Since in general it is not easy to find solutions V;* to the Bellman equations (8), based
on which one would construct the optimal controllers (9) and adversaries (10), we
shall use an actor—critic architecture to compute approximations to these functions.
Specifically, N critic approximators will provide approximations to the value functions
V¥, i € N,in (8) and 2N actor approximators will provide approximations to the
optimal controllers and adversaries u*, v}, i € N, given by (9) and (10), respectively.

We use linearly parametrized critics with & basis functions, defined using smooth
basis functions ¢; := [¢i1 ¢i2 ... ¢inl : R2" — R", i € N, which allow us to write

VE(si) = Wl gi(si) +€q(si), Vsi, ieN, (18)

where the W; € R” denote ideal weights and the €., (s;) the corresponding residual
errors. Based on this, the optimal controllers in (9) can be rewritten as

T
0 . dec, .
uf (s;) = —d; [1] (%(si>fw,-+%;), Vsi, ieN, (19)
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and adversaries in (10) can be rewritten as

d; 0 o€,
v?(si)=—;[l} ( %5 W,-+—C'), Vi, ieN. (20)
Y as; as;

For brevity from now we will omit the dependence of the basis functions on the state
s; and simply write ¢; for ¢; (s;).

Remark 3.1 Note that the adversarial input v in (20) is not the actual input by the
adversary, but the worst-case input that she can introduce to our system. The actual
adversary has the freedom to do anything she likes, as long as she remains stealthy.

Assumption 3.1 The following three statements must be satisfied Vs; and Vi € N:

— The basis functions ¢; and their derivatives = ¢’ are bounded.

— The ideal weights are bounded by known constants Wil < Wimax.

— The residual errors and their derivatives are bounded by known constants: ||e; || <
de Ll

€cimax and H < Veécimax-

Assumption 3.1 is a rather standard assumption in neuro-adaptive control [49-51].
The first two points are satisfied because W; and ¢; provide the value functions [15].
In order to satisfy the third one, one can pick sigmoidal (e.g., hyperbolic tangent) and
Gaussian functions as basis functions.

Remark 3.2 According to Weierstrass higher-order approximation theorem [49] as the
number of basis sets / increases, the approximation errors Vi € N go to zero, i.e., €
e . . S . . .
and H % H as h — oo. We shall require a form of uniformity in this approximation
Si

result that is common in neuro-adaptive control and other approximation techniques
[15,49,50].

3.1 Actor—Critic Control Architecture

To find the optimal controller/adversarial policies for every agent one needs to compute
the gradient of each optimal value function. While it would seem that a single set of
weights would suffice for the approximation since one can easily differentiate (18),
we will independently adjust three sets of weights: the critic weights WC € R” that
approximate the optimal value functions (7) according to

Vi = Wé(bt(&'), ieN;

the controller actor weights Wui € R" that approximate the optimal controller in (12)
according to

T oas T
i=—a % 22 e Q1)
I| 95 !
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and the actor weights in € R that approximate the optimal adversary in (12)
according to

d; [0 ag; T .
T L R N (22)

y..z I 8S,‘ '

1

All these approximators share the same set of basis functions ¢;. Adjusting three
independent sets of weights carries additional computational burden, but the flexibility
introduced by this “over-parametrization” will enable us to establish convergence to
a Nash equilibrium and guarantee Lyapunov-based stability.

Remark 3.3 Note that the approximated version of the adversarial input v; in (22) is
an approximation of the worst-case adversarial input (20) that the controller is using.
The actual adversarial inputs have the freedom to do anything they want, as long as
they remain stealthy.

Defining the errors ¢; € R, Vi € N, between the values of the Hamiltonians
in (8) at the optimal value function/policies and their value at the estimated value
function/policies leads to

oA L A
e = i<Si,Wci—as_,ui,u/\/,-,vi,v/\/i>
L

oV L% ([0
_ H(si, a—S’lu,*uj‘\/lv;‘vj‘vl) = Wcia_s;([() 0:|Si

+ d; I:(I):| @; + v;) — Z |:(I)j| (ﬁj + ﬁj))

JeN;
1 . . . A
+me+mW+XNWW—MMV—mewﬁ
JjeN; jeN;
~rddi (|01 0
—_wr—x= . . N D
= Wci ds; (|:0 0:| si +d; |:I:| (u; +v;)
0f . N A .
= ||+ +E ieN, (23)

JeN;

s 1 2 a2 SN2 205112 205112
where 7; -=§<||Si|| a1 4 2 jen 117 = v lloil= = 32 e n; v 11051 >and

A% . . .
H(si, 55—, u:“ ”j\/ v;“, vj‘v_) = 0 from (8). Our goal is to design tuning laws for the
critic weights that minimize the squared-norm of the errors e;, Vi € N:

&®=%MVJ€N. (24)

We should note, however, that while it is true that if the functions s; ch(ﬁ,- (si)
satisfy the Bellman equations Vi € A\, s; € R?", then the error ¢; (¢) and their squared
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errors K;(t) are zero Vi € N/, t > 0, the converse is not necessarily true. Because of
this, it will not suffice to show that the e; converge to zero and, instead, we will need to
prove explicitly that the critics (and actors) asymptotically approximate their optimal
values.

3.2 Learning Algorithm

The gradient descent estimate Wci (#) for the critic’s weights can be constructed by
differentiating K; in (24) as follows,

B 0K, i
o = —Q; Al = —ai%eﬂ ieN, (25)
BWCi (1+a)l w;)

where w; = 3¢, ([ S si+di [9] (@ +0) =Y jen [9]@; +f)j)) and the constant
a € Ry essentially determines the speed of convergence.

We shall see below that the following tuning laws for the actors (controllers and
adversaries) guarantee Lyapunov stability of the overall system:

5 . di agi T . ol .
Wy, = Pr| Wy, oy \d? — Wy, ———— W,
. r[ " “”{ [0 1} i @le+

,3¢; [00] 06; 7 o
Z J — |: i| — WJ T : WCj
s s (w; wj +1)
+ oui (W, — W)H ieN (26)

5 . d? 3¢, api T . ol .
in='Pr|:WVi,Olvi{_ 09 [O 0} IR -

J/_iiz as; |0 1] as; . (a)iTa),' + 1) .
422 _
d7vij 89, [007 39, " o .
-2 V3 a5, [01] 35, Wy ———— W,
jen; Vi 9% 5j (0 wi +1)
+ o (We, — W)” ieN, 27)
where the constants «y,;, oyi € R4 determine the speed of convergence; oy, ovi € R+
. . _ ol . . .
are adaptation gains; and @; := m is a bounded signal, with

_ L.
loill € Oimax = E, VieN.
The symbol Pr in (26)—(27) denotes the smooth projection operator that is used to
modify the adaptation laws. The inclusion of this operator in the tuning laws guarantees
that Wy, and W,, remain inside S. The projection operator used in the update laws (26)
and (27) provides an effective way [50,52-55] to eliminate parameter drift and keeps
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Critic Information
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! Subsystem i
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Fig. 1 Visualization of the proposed control architecture for every agent i. The scheme shown is imple-
mented inside the controller of each agent and uses an approximation of the worst-case adversary

the basis weights within a priori defined bounds (bounded convex set). In other words,
as stated in Assumption 3.1, the projection operator makes sure that Winax specifies
the boundary and €cimax specifies boundary tolerance.

A block diagram showing the proposed control architecture for agent i is given
in Fig. 1, where we can see that the controller and the adversary of every agent i
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are driven by the controllers and adversaries, respectively, of her neighborhood. The
intuition behind this is that every agent needs to have information of the neighborhood
“performance” to see how good the agent does (that is why the neighborhood critic
weights appear in both (26) and (27)) and the inputs of the agents in the neighborhood
that share a common goal (controllers vs. adversaries).

3.3 Convergence and Stability Analysis
Define the critic and actor estimation errors Vi € N as
Wci = Wi - Wciy Wui = Wi - Wuiv in = Wi - WV1~

The following lemma proved in “Appendix” provides the critic error dynamics for
each agent i € A in the form of a nominal system plus a perturbation.

Lemma 3.1 The critic estimation error dynamics for agent i € N can be written in
the following form:

We = Fo+ Fii, Vi e N, (28)

Ci

where Fiy := —aid)icbl.T W, can be viewed as a nominal system;

(O] T8¢i 0 - -
Fi=ai————| - W (4 i
il (67 (a)iTwi i 1)2|: i asi ( i |:I (l/h + Uz)

0] - o\ Lo 1o,
- [I] (i +vj>> S lil® = Sy, = uf

jeN;

+ v v+ Z (nu,n — i lj17 = 2wt + 2507 )
/eN

de;, T/ TOT 0] . .
_8_Sl ([Oo}sl"i_dl[l](ul"i_v[)

-> m (uj+vjf))], VieN

JjeN;:
as a perturbation; and i; := u; — it;, v; := v} — v; with u?, v}, u;, 0; given by
(19), (20), (21), and (22), respectively. O

Theorem 3.1 Let the tuning of the critic be given by (25), for each agenti € N. Then
the nominal system Fio from (28) is globally exponentially stable with its trajectories
satisfying || We, ()|l < || W, (t0) || ki1e =424~ for some ki1, kip € Ry, Vi > 19 > 0,
provided that there exists a constant T > 0 such that @ w, is persistently exciting (PE)
over every interval of length T (i.e., that the matrix &;®! is positive definite over any
finite interval), in the sense that
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t+T
/ ool =Bl VieN, =1
t

with B; € Ry and I the identity matrix of appropriate dimensions.

Proof of Theorem 3.1 Consider the following Lyapunov function, V¢ > 0
"W, i€, (29)

and hence £; is decrescent and radially unbounded in the space of Wci.
By differentiating (29) along the error dynamics nominal system trajectories, one
has

Li=-Wlwd] W <0, ieN.

Viewing the nominal system Fjo given in (28) as a linear time-varying system, the
solution W,, is given as (the reader is directed to [56] and [57] for the details)

We, (1) = @i (t, 1) We, (t0), i € N, Vi, 19 > 0, (30)
where the state transition matrix is defined as W = —aw; cZ)[T @;(t, tp). We can
prove, by following Theorem 1 from [56], that for the nominal system, the equilibrium
point is exponentially stable provided that o; is PE and therefore for some ki1, «jp €
R+ we can write

@iz, 10) || < Kkjre 2070 i e N, Vi, 19 > 0. (31)

Finally, by combining (30) and (31) we have
H We, (1) H < H We, (t0) ” Kipe U= i e NVt 19 > 0,

from which the result follows. O

Remark 3.4 Note that the parameters «j; and kj depend on the PE condition. The
reader is directed to [56,57] for a more detailed explanation. Typically, one can ensure
PE of the vector signal @; by adding sinusoids of different frequencies to the inputs.
This condition is equivalent to state space exploration in reinforcement learning [14]
required for convergence to the optimal policies. For linear systems of order n one
can guarantee PE by adding w different frequencies [57]. It has been shown in
[15,57] (cf. Chapter 7) that the convergence rate of gradient descent algorithms of
the above form converges exponentially fast with the rate that depends on the level of
excitation §; and the size of the time interval 7.

The main theorem is presented next and provides a Lyapunov-based stability proof
for the proposed game-theoretical learning controller.
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Theorem 3.2 Consider the dynamics given by (5), the controller given by (21), the
adversary given by (22), the critic tuning law given by (25), the controller tuning
law given by (26), and the adversarial tuning law given by (27). Assume that the
coupled Bellman equations (8) have locally smooth solutions V;(s;), Vs;, Vi € N.
Assume that the signal w; is persistently exciting, that Assumption 3.1 holds, and
that d; # 0 for all i € N. Then, the solution (s;(t), We,(t), Wy, (t), Wy, (1)), for all
(s,' 0), Wci 0), Wui 0), in (0)), Vi € N, is uniformly ultimately bounded (UUB). O

Remark 3.5 By picking some parameters appropriately we can guarantee the asymp-
totic reduction in the tracking errors s;, Vi € )N, and the actor—critic weight estimation
errors to a small neighborhood of zero.

Remark 3.6 Although we are considering fixed topology graphs of a networked team,
the proof will still go through if the team breaks in multiple disconnected subteams,
provided that each agent retains at least one neighbor (N; # ). In this case, the
subteams formed will reach separate consensus values.

Remark 3.7 An online learning framework such as the one in Theorem 3.2 allows
the controller to adapt to changing conditions. Each agent might learn defense strate-
gies online, while adversaries perform sequences of simple strategies. The learning
algorithm is not known to the adversary, since the adversary can apply any policy.
Now if the adversary wants to know which learning framework the controller uses,
there are some analyses that could enable the adversary to learn the framework. Our
Theorem 3.2 (and the Corollary that follows) shows that in order to achieve a proper
approximation one has to use a large number of basis sets and hence if the controller
and the controller’s estimate of the worst-case adversary do not use a good approxi-
mation they will deviate from the Nash equilibrium. The learning framework would
also allow the distributed performances to be changed on the fly. The fact of using the
same basis sets in (21)—(22) is in order not to use more symbols. The real adversary
can conceivably do anything. Finally, it will be difficult for the adversary to have any
information regarding the type of approximation used by the controller, since this pro-
cess could require a number of experimenting that could lead the adversary to perform
expensive computations in the state space.

Corollary 3.1 Suppose that the hypotheses and the statements of Theorem 3.2 hold.
Then, the policies ii;, 0;, Vi € N, form a Nash equilibrium as for a sufficiently large
number of basis sets h.

Proof First, we shall compute [|u} — i; || by using (19), (21) and the fact that Wui =
Wi — Wui as
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Similarly for ||v}* — 0; || by using (20), (22), and Wy, = W; — Wy,

di 7077 (9 7~  Oe
& )T W )l
’}/2 [I} (aSi (sl) Vi + BSi

ii

1011 == llv = Bill =

According to the result of Theorem 3.2, we have proved that Wui and in are UUB.

Moreover, after using Assumption 3.1 we have upper bounds on % and % and thus
all the quantities on the right-hand side of ||#;| and ||v;| are bounded. Then after
following the results from [36] we can conclude that the approximated policies as one

selects a large number of basis sets (c.f. Remark 3.8) satisfy (4). O

3.4 Proof of Theorem 3.2

Consider the following continuously differentiable positive definite candidate Lya-
punov function Vg : R?" x R" x R" x R" — R defined as

N
VE = ZVEi(Si’ Wci, Wuia WVi)a

i=1

with

VL[(SI" Wci’ Wui’ in) = Vi*(si) + Vc;(Wc,-)
—1
o . ~

-1
Ayi

o r o~
> Wy, Wy,

Wy, +

where Vi*(s,-) is the Lyapunov function for (5), (12) used in the proof of Theorem 2.1,
VC,' (Wci) = H Wci

From the positive definiteness and radial unboundedness of the Vl* we conclude
that there exist class K functions [48] k;j; and kjp such that V* satisfies

2
, and o and ay; are positive scalars.

kir(llsilD) < Vi#si) < kin(llsilD), Vsi, i € N.

We can write

1 1

kit (sl + IWe I + = I Waill? 4+ = IWoilI* < Ve
ut V1
- 1 ~ | D
<k (llsi ) + 1Weill? + S— W I + — 1 W1
ui V1

Computing the time derivative of Vl.*, Vi € N, along solutions to the closed-loop
system (5) with controller #; and adversary 9; and for V,, along the perturbed system
(40) leads to
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. aviT o 0
=1 . . 0 0.
VL‘,I asi ( [0 0} Sl dl [I} (ul UI)

0 A A 8VC,‘
—Z | @ +0) )+ ==\ Fo+ Fii
JeN; W,

— Wl Wy, — WEa W, 32)

We can write the coupled Bellman equations (8) as

3V*T 01 aVI*T 0 i i}
aSi |:0 0:| - aSi (dl |: ](ui + vi)
-> [ ](u +v*>)——(||sl|| 1P+ D k)
JEN; jeN;
— vl = > ygnvw). (33)
JeN;:

Setting it; = u} —i1;, v; = v} — ¥;, and using (26), (27), and (33), we can bound (32)
as

. vty ro],. 0] - -
o2 (o[l 5 [

jeN;

(||s,||2+||u (RN 7 R R ygnv;fnz)

jeN; JEN;
e

_ d?%[ ] 99: " Au,—d)iT 7
P as; |01 o ' (a)Ta)i +1)

_ d23¢] 00 3¢] W J),T W
= as; [01]as; " Ylei+1)

JEN;
d? a¢i [00] 09" ol .
2 01 T WCi
asl 3S, (a)l. w; +1)

2 2 -T
'Vij 8¢j |:0():| 8¢j ~ ; N )
+ — Wy ————W,. ). (34)
]gf )/]4 8S 01 3Sj Vj(a)iTa)i—l—l) K

2 - ~ ~ ~
+ 20 We I Fon )+ W (om-(wc,. — W)

Ci

W (aviwvcl W) + 2

* T ayx T
Using —d; da‘; [(I):| = u;‘T and )‘f—l‘%% |:(I):| = v;"T, (34) can be written as
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) *T ~ *T ~ 1 *T ~ 7/ii *T
Ve <uj’up —v; Vi = Zuj ZUJ
b jeN; JjeN;

(nsl (R 7 e B A R I R yijznv;‘fnz)

jeN; JEN;

2 8
+ 2| Wl

0¢; . .
[ WT a¢ < ’|:(I)] (u; +v;) — ZN I:(I)j| (uj—i-vj))
JEN;

1
-2 205 25T
+5 il ——Vii||vi|| — i} uf + ;o] of

+ o Z (|uj||2—y5||ﬁjn —@jus+ o] )

jEN

dec T
ST (o8]l - 5 [ )]
! JEN;

+mmmm—m>

a¢i [0 07 8¢ - o] .
Y il LW = W) —— L (W — W
L as; |:0 Ii| ; (Wi u) (a)iTa),' + (Wi )

200, [007 39, " ol =
- Z /3SJ |:0 I:| (W )( T l+1)(W] Wcj)>

jeN;

—_—

4wqmm—m>

d} a¢; [0 0] a9 " - 23 -
it £ — (W = Wy)———— (W, — W,
yiiz as,- 0 I ( l Vl) (a)lTa)l + 1)( 1 c,)
J J J 7
— — (W; — W,
o] -
i 1

Using Fact A in “Appendix,” and expanding the parentheses we can further upper-
bound (35) as

] 72 72 1 2
Vei S = ouil[Wull™ = ovil Wi I = Sllsi

2
+ bis + (21714 + ouibi2
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+0vibi3 + Wimaxbibi1d; Wimax
Wimaxbi1 bizd?

+ a)imaxbilbizzdi2 Lzll Wimax

Yii

Oimaxbi1bAd?\ -
+ Lzﬁl ”Wc,' Il + Z wimaxbi2djz'bjlvvjmax
ii JeN;
d?bj1y?
+ C()im.91>(l712d]2'bjlij + Wimaxbi3 ]—41J jmax
Ii
bjlbj3d V
+ Oimaxbiz ——— = | W, |- (36)
jj

Summing the last term in the equation above over all agents, we conclude that

N

Z ( Z (wimaxbiZdjzbjl Vijax
i=1 " jeN;
2 dibjivi
+wimaxbi2d;bj1bj2 + Wimaxbi3 T Wimax
Ji

bjlbﬁd J/ N ~
+wimaxbigy—”) IWe, ||) < bir|We |
i i

for sufficiently large constants b;7. Completing the square in (36), we thus obtain

N N
Vi =Y Ve <0 (= ol Wal?
i=1 i=1
7 2 1 2 T 2
= ovill W I = Slsil = (1 = &) | W I + s ). 37

where § € (0, 1) and

Wi = bis + — 4.8 (2b14 + ouibio + ovibiz + wlmaxb12b11d Wimax
i
wimaxbi1bizd? Wimaxbi1bAd?
+a)1maxb11b d2 lmaxylzl ke Wimax + —lmaxylzl B +bi7)2- (33)
ii ii

According to Lemma 4.3 in [48] and by defining Q; () := [s; (t) We, (t) Wy, (1) Wy, ()],
there exist class K functions ks, kijg such that

kis (11 Qi 1) < ouill Wy I + ovil Wy 12 + S l1si 112

+ (1 = 8)a; [|We, 1> < kis(10: 1),
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Fig. 2 Graph G describing the
topology of a network of 5
agents

which can be used to further upper-bound (37):
Ve< ). ( — kis(1 Q1) + Mi)-
i=1

From this, we conclude that Vg < 0 whenever the combined state (Ql s Qz, R Q N)
lies outside the compact set

N N
25 ={(01. 020 Om) Y Kis(10i1) < Y i)
i=1

i=1

Therefore, there exists a 7,, such that for all + > T, the state ( Q 1 Qz, R Q N)
remains inside 2 o from which uniformly ultimately boundedness (UUB) follows
[48]. i

Remark 3.8 One can make the set £2 5 small by decreasing the values of the 1; in (38).
To accomplish this, one can select a large value for the critic tuning gain «; [which
decreases the second term in (38)] and select a large number 4 of basis functions
to decrease the errors €, and consequently the constant bjs in (38) (see Fact A in
“Appendix”).

4 Simulation Results

We now illustrate the theoretical developments for a graph G| with 5 agents networked
as shown in Fig. 2. The gains in the tuning laws are selected as oy = 5,0y =
5,a; = 10,0y = 1,ay; = 1, Vi € N, and all the weights of the tuning laws
are initialized randomly inside [—1, 1]. Although Assumption 3.1 requires bounded
basis functions, in practice one could pick these functions to be quadratic forms, e.g.,
si ® si, and still obtain satisfactory results. To ensure PE, a probing signal p(¢) =
tanh(t)( sin(2¢t) cos(t) + 4 sin(r?) + 10 cos(5¢) sin(1 lt)) is added to the input signals
for the first 2 s of the simulation.

@ Springer



246

J Optim Theory Appl (2018) 177:222-253

Positions

()=

400

2 4 6 8 10 12 14 16 18 20
Time (s)

Positions

L L

6 18 20

5.0 12 14 1
Time (s)

(d)

20

Velocities

0 i 2 3 : 5 5 7
Time (s)
Velocities

2 4 6 8 0 12 14 & 18 2
Time (s)

Fig. 3 Agents perturbed by adversaries connected as in G; moving in a line. a Adversary adds constant
biases. b Adversary adds time-varying biases. ¢ Positions with the proposed algorithm. d Velocities with
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Fig.4 The proposed algorithm when the agents are perturbed by adversaries that use the complete quadratic
basis sets while the controller’s adversarial estimate uses a subset of them, connected as in G| moving in
line. a Positions when the adversaries use the complete quadratic basis sets while the controller’s adversarial
estimate uses a subset of them. b Velocities when the adversaries use the complete quadratic basis sets while
the controller’s adversarial estimate uses a subset of them
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Fig.5 The proposed algorithm when the agents are perturbed by adversaries that do not let the agents reach
a steady-state velocity value, connected as in G| moving in line. a Positions with the proposed framework
while the intelligent adversaries do not let the agents reach a steady-state velocity value. b Velocities with the
proposed framework, but the intelligent adversaries also do not let the agents reach a steady-state velocity
value

(@)= (b) °
15 1 4 1
5L ]
10 1
of J
— 5 1 — 2
£ £
- -
- 0 ] > ]
) ]
5 1
sl J
-0 4 ®
15 L ! . . . 12 T T e T
10 20 30 [G] 50 &0 0 2 4 & 8 10 1§ 18 18 2
x (m) x (m

Fig. 6 Agents perturbed by adversaries, connected as in G| and moving in the bi-dimensional space. a
Without the proposed algorithm. b With the proposed algorithm

We start by considering agents that move on a line (m = 1) with random initial
conditions.

Figure 3a, b shows a simulation of the same consensus algorithm [6], but with
two different attacking scenarios where a constant bias and a time-varying bias is
added to the measurements, which can represent two very basic forms of attacks. The
simulation shows that even these simple attacks can result in an unstable behavior.
This is in contrast to what can be observed in Fig. 3c, d, that shows the behavior of the
algorithm proposed in this paper (with y;; = 5, y4; = 1, Vi # j € N) which results in
position and velocity agreement. We will now consider a prototypical case that will
test our algorithm to the limits. In this case, the actual adversary uses quadratic basis
functions of the form s; ® s;, while the controller’s adversarial estimate uses a subset
of those basis functions. For the latter case, Fig. 4a, b shows that the actual adversary
is able to successfully diverge one agent and oscillate the velocities of the rest. It will
be worth noting that when the controller does not use a good set of basis functions,
the performance will deviate. On the other hand, another interesting example that is
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more probable should be when the actual adversary uses less basis functions than the
controller’s adversarial estimate, then the optimal consensus looks similar to Fig. 3c,
d. Another interesting scenario is when the adversaries and the controllers play their
Nash solution, but the adversaries also do not let the agents agree on acommon velocity
value. This case is shown in Fig. 5a, b.

We shall now consider agents moving in the plane (m = 2) with random initial
conditions. Figure 6a illustrates how even a simple adversarial input consisting of
adding a constant bias to the measurements can lead to instability for the regular
consensus algorithm. Figure 6b shows that, also here, the algorithm proposed in this
paper (with y;i = 5, y4j = 1, Vi # j € N) results in an asymptotic consensus.

5 Conclusions

We have derived a game-theoretical actor—critic algorithm for reaching consensus of
multi-agent systems with guaranteed performance when the dynamics are perturbed by
persistent adversaries. It was shown that the proposed architecture is able to optimally
reject adversarial inputs using a distributed algorithm. The optimization is performed
online and results in agreement among all the agents in the team.

Three approximators are used for each agent: one to approximate the optimal value
function, another to approximate the optimal controller, and a final one to approximate
the adversary. Each of these approximators uses a specially designed tuning law. A
Lyapunov-based argument is used to ensure that all the signals remain bounded. Simu-
lation results show the effectiveness of the proposed approach. This work was focused
on adversarial inputs that involve measurement corruption. More sophisticated adver-
sarial inputs that utilize multiple points or multiple methods are important problems
for future research. Other problems of interest include coordinated actions, where mul-
tiple adversaries cooperate to maximize damage, as well as disguised attacks, where
the adversary can mask its actions to induce an erroneous reaction for mitigation.
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Appendix
Proof of Lemma 3.1 The error in Eq. (23) after subtracting zero becomes

06; 0 . N 0f . N
— WCT o5, <|:00]Si+di I:I:| (ui +v;) — Z |:I:| (uj—i-vj))

JeN;

09 (|01 0 0
' JeN;
(|u 1P+ D7 a1 = vl = ) v |v,||2>

JeN; jeN:
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- —(nu BN T e DR yl-’*}nv;fnZ)

jeN: JEN;

86CiT 01 0 * *
_ 55, (|:00:|si+di |:I:| (u; +v;)

-y m (u’ +ujf)), Vi e N.

JeN;

Completing the squares we have

i = = Wlw - Wi ( : [‘I’] i+ )~ Y m (i + 5,-)>

JeNi
1 ~ 2 1 20~ 2~T . %
+ _”ul” _Eyii”vj” _u u ViV v
+ 5 ZN(nu]u — Vi I9 12 = 2afu + 2y 0] v j‘)
jE

8eci or| |0 « %
_ B_S, <|:00i|s,+d, |:I:|(ul-+vi)

- Z m (u’ +v;‘f)>, Vi e N. (39)

JeN;

The dynamics of the critic estimation error WC,. can be found by substituting (39) in
(25) as

Wci = —oe,»d)ic?)iTWC[
o; Ta¢,~< m o
o ———| — W' —| d; u; +v;
l(a)l.Ta)l‘ +1)2[ 1 asl_ ] I ( 1 l)
0] _ . 1 . 1 -
- M (u,»+vj>)+ SNaill® = Syt 17 — & uf + yio] v
jeN
25> (||qu| = 20 9117 = 2 fuj + 25 v 7)
jeN
de, T(TOT 0
_ ﬁ ([Oo]si—i—di I:I:|(u;~k+vl~*)
L
- [ +)] wen. (40)
JeN;
from which the result follows. O

The following fact is a consequence of Assumption 3.1 and the properties of the
projection operator Pr[.].
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Fact A There exist constants bji, bi2, bi3, bia, bis € R4 for which the following
bounds hold, for every agent Vi € N and time V¢ > 0:

i agi T
Bs; |:0 I:|

0¢; L ..
—WiTa;?(d,’ |:(I):| (; +v;) — Z |:(I)] (uj + vj))

JeN;

< bin, [[Wyll < bia, |Wy |l < bia,

1
2 205 2-T
il __ViiHUi” — i} uf + ;o] vf

dee, T
"2 Z (”uj” R F19,11% 2“Tu*+2V112 /T 7) B 8_c
N

]eN

<|:g (I)i| si +d; |:(I)i| (u;-‘ + U;k) - Z |:([)] (uj + v;f)> < big SO

JeN;

+

*T

xT ~ *T ~ u; yu *T
u; uj —v; v — P E uj+—v E v]

bojeN; jeN;

__(|u||+2||u|| — i ;1% — Zy,JivH)

JEN; JeN;

~T
—wT d?% 8¢, w; w; Wi
AT 9s |0 I asl ((,z)l.Ta),' +1)

_ i [00] 06T . o Wi
Dosi [0L] os; M (@l w4+ 1)

Z 200, 00 ap,; " W, ol w;
I ds; as; 7’
J J

(@l o + 1)
3¢/ 3¢/ z 5’1‘TWJ'
B Z I as; s Wy (0w +1)
jeN; Y J it
(d,? 04 [0 0} o, oW
asi (! w;j +1)
d? o [0 0} agi T o]

o
01 as; Y (a).Ta)i +1)

ol Wi
+ Yy Zua%[ }ai

jeN; 9sj (a) @i + 1)

_ Vu 99; ;" O W ) _
> - [ }a 5| < b 42)

JjeN; J/JJ 9s, J(w wi +

W;
v Osi
ll
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T
0 agi T = dec\  ~ d; 0
I (%Wui'i'ﬁ)’vi:y_“zl
u?, vf, U;, v; are given by (19), (20), (21), and (22), respectively. Inequalities (41)
and (42) result from the fact that all the quantities that appear in the left-hand side
have known definable bounds. Also all the residual errors €, that appear in u} [see
(19)], v;“ [see (20)], and u; and v; (as shown above) can be reduced by increasing the

number of basis functions. O

r. T ~ Je,
(297 W, + 541, and

where u; = —d; B, br
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