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Abstract— This paper reviews the current state of the art on
reinforcement learning (RL)-based feedback control solutions
to optimal regulation and tracking of single and multiagent
systems. Existing RL solutions to both optimal H,; and Heo
control problems, as well as graphical games, will be reviewed.
RL methods learn the solution to optimal control and game
problems online and using measured data along the system
trajectories. We discuss Q-learning and the integral RL algorithm
as core algorithms for discrete-time (DT) and continuous-time
(CT) systems, respectively. Moreover, we discuss a new direction
of off-policy RL for both CT and DT systems. Finally, we review
several applications.

Index Terms— Autonomy,
reinforcement learning (RL).

data-based optimization,

I. INTRODUCTION

PTIMAL control theory [1]-[6] is a mature mathemat-
Oical discipline that finds optimal control policies for
dynamical systems by optimizing user-defined cost functionals
that capture desired design objectives. The two main principles
for solving such problems are the Pontryagin’s maximum
principle (PMP) and the dynamic programming (DP) principle.
PMP provides a necessary condition for optimality. On the
other hand, DP provides a sufficient condition for optimal-
ity by solving a partial differential equation, known as the
Hamilton—Jacobi—Bellman (HJB) equation [7], [8]. Classical
optimal control solutions are offline and require complete
knowledge of the system dynamics. Therefore, they are not

able to cope with uncertainties and changes in dynamics.
Machine learning [9]-[13] has been used for enabling
adaptive autonomy. Machine learning is grouped in supervised,
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unsupervised, or reinforcement, depending on the amount and
quality of feedback about the system or task. In supervised
learning, the feedback information provided to learning algo-
rithms is a labeled training data set, and the objective is
to build the system model representing the learned relation
between the input, output, and system parameters. In unsu-
pervised learning, no feedback information is provided to the
algorithm and the objective is to classify the sample sets to
different groups based on the similarity between the input sam-
ples. Finally, reinforcement learning (RL) is a goal-oriented
learning tool wherein the agent or decision maker learns a
policy to optimize a long-term reward by interacting with
the environment. At each step, an RL agent gets evaluative
feedback about the performance of its action, allowing it
to improve the performance of subsequent actions [14]-[19].
The term of RL includes all work done in all areas such as
psychology, computer science, economic, and so on. A more
modern formulation of RL is called approximate DP (ADP).

In a control engineering context, RL and ADP bridge the
gap between traditional optimal control and adaptive control
algorithms [20]-[26]. The goal is to learn the optimal policy
and value function for a potentially uncertain physical system.
Unlike traditional optimal control, RL finds the solution to the
HIB equation online in real time. On the other hand, unlike
traditional adaptive controllers that are not usually designed
to be optimal in the sense of minimizing cost functionals,
RL algorithms are optimal. This has motivated control system
researchers to enable adaptive autonomy in an optimal manner
by developing RL-based controllers.

A. Related Theoretical Work

The origin of RL is rooted in computer science and has
attracted increasing attention since the seminal work of [27]
and [28]. The interest in RL in control society dates back
to the work of [15] and [29]-[31]. Watkins’ Q-learning
algorithm [32] has also made an impact by considering
totally unknown environments. Extending RL algorithms to
continuous-time (CT) and continuous-state systems was first
performed in [33]. The work of [33] used the knowledge of the
system models to learn the optimal control policy. The work
of [34]-[36] formulated and developed such ideas in a control-
theoretic framework for CT systems. The control of switching
and hybrid systems using ADP is considered in [37]-[41].

There are generally two basic tasks in RL algorithms. One
is called policy evaluation and the other is called policy
improvement. Policy evaluation calculates the cost or value
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function related to the current policy, and policy improvement
assesses the obtained value function and updates the current
policy. Two main classes of RL algorithms that are used
for performing these two steps are known as policy itera-
tion (PI) [14] and value iteration (VI). PI and VI algorithms
iteratively perform policy evaluation and policy improvement
until an optimal solution is found. PI methods start with an
admissible control policy [42], [43] and solve a sequence
of Bellman equations to find the optimal control policy. In
contrast to PI methods, VI methods do not require an initial
stabilizing control policy. While most of RL-based control
algorithms are PI, some VI algorithms have also been devel-
oped to learn optimal control solutions. We mostly survey
PI-based RL algorithms that are used for feedback control
design.

RL algorithms in control context have been mainly used to
solve: 1) optimal regulation and optimal tracking of single-
agent systems [1] and 2) optimal coordination of multiagent
systems [44]. The objective of the optimal regulation problem
is to design an optimal controller to assure the states or outputs
of the systems converge to zero, or close to zero, while in the
optimal tracking control problem, it is desired that the optimal
controllers make the states or outputs of the systems track a
desired reference trajectory. The goal in optimal coordination
of multiagent systems is to design distributed control protocols
based only on available local information of agents so that
agents achieve some team objectives. This paper reviews
existing RL-based algorithms in solving optimal regulation and
tracking of single-agent systems and game-based coordination
of multiagent systems.

Finally, RL algorithms that are used to solve optimal
control problems are categorized in two classes of learning
control methods, namely, on-policy and off-policy methods
[14]. On-policy methods evaluate or improve the same policy
as the one that is used to make decisions. In off-policy
methods, these two functions are separated. The policy used
to generate data, called the behavior policy, may in fact be
unrelated to the policy that is evaluated and improved, called
the estimation policy or target policy. The learning process
for the target policy is online, but the data used in this step
can be obtained offline by applying the behavior policy to the
system dynamics. The off-policy methods are data efficient
and fast since a stream of experiences obtained from executing
a behavior policy is reused to update several value functions
corresponding to different estimation policies. Moreover, off-
policy algorithms take into account the effect of probing
noise needed for exploration. Fig. 1 shows the schematic of
on-policy and off-policy RL.

B. Structure

This paper surveys the literature on RL and autonomy.
In Section II, we present the optimal control problems for
discrete-time (DT) dynamical systems and their online solu-
tions using RL algorithms. This section includes optimal reg-
ulation problem, tracking control problem, and Hs, problem
for both linear and nonlinear DT systems. In Section III,
we discuss several recent developments of using RL for
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Fig. 1. Two different categories of RL. In on-policy RL, the policy that is
applied to the system (behavior policy) to generate data for learning is the
same as the policy that is being learned (learned policy) to find the optimal
control solution. In off-policy RL, on the other hand, these two policies are
separated and can be different. (a) Off-policy RL diagram. (b) On-policy RL
diagram.

designing the optimal controllers for CT dynamical systems.
Nash game problems and their online solutions are discussed
at the end of this section. The RL solution to games on graphs
is presented in Section IV. Finally, we talk about applications
and provide open research directions in Sections V and VI.

II. OPTIMAL CONTROL OF DT SYSTEMS
AND ONLINE SOLUTIONS

Consider the nonlinear time-invariant system given as

x(k+1) = fx(k) + gx(k))u(k)
y(k) = 1(x(k)) e

where x(k) € R", u(k) € R™, and y(k) € RP represent
the state of the system, the control input, and the output of
the system, respectively. f(x(k)) € R” is the drift dynamics,
g(x(k)) € R™™ is the input dynamics, and [(x(k)) € R”
is the output dynamics. It is assumed that f(0) = 0 and
fx(k)) + g(x(k))u(k) is locally Lipschitz and the system is
stabilizable. This is a standard assumption to make sure the
solution x () of the system (1) is unique for any finite initial
condition.

A. Optimal Regulation Problem

The goal of optimal regulation is to design an optimal
control input to stabilize the system in (1) while minimizing a
predefined cost functional. Such energy-related cost functional
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can be defined as

J =D Ux@),ud) =D (@) +u" ()Ru(i))

i=0 i=0

where Q(x) = 0 and R = RT = 0. Hence, the problem to be
solved can be defined as

V(x(k)) = min [Z (0(x) + uT(i)Ru(i))j|, Vax (k).
i=k
The value function given u(k) can be defined as

V() =D U@),u@)

=~

(O(x) + ul ()Ru(i)), Vx. (2)

M

1

1
~

An equivalent to (2) is the Bellman equation
V(x (k) = UQx(k), u(k)) + V(x(k + 1)). 3)
The associated Hamiltonian is defined by
H(x(k), u(k), V)
= U(x(k), u(k)) + V(x(k + 1)) = V(x(k)),

Vx,u.

The Bellman optimality principle [1] gives the optimal value
function as

V¥ (x(k)) = min[U (x (k), u(k)) + V" (x(k + 1))]

which is termed the DT HJB equation. The optimal control is
derived to be

w*(x(k)) = argmin[U (x (k), u(k)) + V" (x(k + 1))]

oV*(x(k + 1))

_ oy
=—R8 (x)( ox(k+ 1)

2

B. Special Case
For the DT linear systems, the dynamics (1) become
x(k+1) = Ax(k) + Bu(k) y(k) = Cx(k) 4)

where A, B, and C are constant matrices with appropriate
dimensions.

By assuming that Q(x) = xT(k)Qx(k), Q > 0 in the
Bellman equation, the value function is quadratic in the current
state so that

V(x(k)) = xT (k)Px(k), Vx. (5)

Then, the DT HIB becomes the DT algebraic Riccati equation
(DARE)

Q—-P+ATPA—ATPB(R+B"PB) 'BTPA=0
and the optimal control input is

u (k)= —(R+BTPB)'BT PAx(k), Vx.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 6, JUNE 2018

C. Approximate Solution Using RL

The HIJB equation is generally extremely difficult or even
impossible to solve analytically and one needs to approx-
imate its solution. Existing methods for approximating the
HJB equation and DARE require complete knowledge of the
system dynamics. The following PI algorithm can be used
to approximate the HJB equation and DARE solutions by
performing successive iterations.

1) Offline PI Algorithm: Algorithm 1 presents an offline
solution to the DT HJB equation but requires complete knowl-
edge of the system dynamics.

Algorithm 1 PI Algorithm to Find the Solution of HIB

1: procedure

2:  Given admissible policy ug (k)

32 for j=0,1,... given uj, solve for the value V;(x)
using Bellman equation

Vit (x (k) = Q0)+uf (k) Ruj(k)+Vi1 (e (k+1)),

on convergence, set V;1(x(k)) = V;(x(k)).
4:  Update the control policy u1(k) using
OV (elk + 1)
ox(k+1)

1
(k) = —ER”ng(

5: Goto3
6: end procedure

).

2) Actor and Critic Approximators: To approximate the
solution of the HIB equation and obviate the requirement of
the complete knowledge about the system dynamics, actor-
critic structure has been widely presented to find the online
solution to the HJB. The critic approximator estimates the
value function and is updated to minimize the Bellman error.
The actor approximator approximates the control policy and is
updated to minimize the value function [15], [29], [30], [45].

The value function is represented at each step as

N
Vi (k) = WS ge(x(k) = Dbl e, (x(K)), Vx  (6)

i=1

and the control input as
Na
ij(k) = W) oa(x(k)) = D d};00,(x(k)), Vx  (7)
i=1

where ¢, (x(k)) and o, (x(k)) are the basis functions, Wcj =

[uA)gj 0> DT s the weight vector of the critic approx-

oj - Wef
imator with N, the number of basis functions used, and

W = [).d?2

ajgj - ﬁ);vf']T is the weight vector of the actor
approximator with N, the number of basis functions used.
The Bellman equation (3) in terms of the critic approxima-

tor (6) is written as

Wy dee (k) = U k), (k) + W 4 ) delx(k + 1)).
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The gradient descent tuning laws for the critic and actor
approximators are given as

WL = Wi — a1 (0) (WL 1) delx (K))
—U(x(k), (k) ()
= Wé(j+1) — 0204(x(k))

« (zR(W;W))T x 64 (x (k)

op(x(k + 1)) - !

—i—g(x(k))T%WC(jH)) )
where a1, az > 0 are the tuning gains. Note that using actor-
critic structure to evaluate the value function and improve
the policy for nonlinear systems does not need complete
knowledge of the system dynamics. In [46], synchronous
methods are given to tune the actor and critic approximators.
In [47], an online approximator approach is used to find the
solution HJB equation without requiring the knowledge of the
internal system dynamics. In [48], a greedy iterative heuristic
DP is introduced to obtain the optimal saturated controller
using three neural networks to approximate the value function,
the optimal control policy, and the model of the unknown
plant.

Remark 1: Note that the structure of the value function
approximator is an important factor in convergence and per-
formance of Algorithm 1. If an inappropriate value function
approximator is chosen, the algorithm may never converge to
an optimal solution. For linear systems, the form of the value
function is known to be quadratic, and, therefore, there would
be no error in its approximation. Consequently, Algorithm 1
converges to the global optimal solution for the linear systems.
That is, for linear systems, Algorithm 1 gives the exact
solution to the DARE. For nonlinear system, using single-
layer neural networks for value function approximation may
require a large number of activation functions to assure a
good approximation error, and consequently, a near-optimal
solution. Two-layer neural networks are used in [49] to achieve
a better approximation error with lesser number of activation
functions. Moreover, error-tolerant ADP-based algorithms are
presented for DT systems [50] that guarantees stability in
the presence of approximation error in the value function
approximation. U

3) Event-Triggered RL [51]: In order to reduce the com-
munication between the controller and the plant, one needs to
use an event-triggered control algorithm. The event-triggering
mechanism determines when the control signal has to be
transmitted so that the resulting event-based control executions
still achieve some degree of performance and stabilize the
system. For the nonlinear DT systems, three neural networks
are used to find the event-triggered-based approximation of
the HIB equation.

The nonlinear system can be represented as

x(k 4 1) = WL $p (i (k) + €m (10)

where W) is the target weights of model network from the
hidden layer to the output layer, x,, (k) is the input vector of
the hidden layer, and ¢,, is the bounded approximation error.
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The system (10) using current estimates W, of the ideal

weights W)y is given as

N

R+ 1) =D wpsi(k)

i=1
with
1 — itk
n—+m
hi(k) = D wpy ixmik) i =1,..., Nup

j=1

si(k) = i=1,..., Nun

where w,, and w2, are the weight matrices. h; is the input of
the ith hidden node, and s; is its corresponding output. Ny,j
is the number of hidden neurons. x,, (k) is the input of the
model network that includes the sampled state vector and the
corresponding control law.

The gradient descent can be used to update the weights of
the network to minimize e, = x(k 4+ 1) —x(k+ 1). The value
function can be approximated by a network similar to (6).
The gradient descent can be used to update the weights of the
network to minimize

ec(k) = J(x(ki)) — [J(x (ki + 1)) + U (k)]

where J is the output of critic network and defined as

Nep
T (ki) = D" whqi(k)
=1

with
s
qi(k) = Tren® ' = L,..., Nep
n
pik) = D wh jxejki) 1=1,..., Nen
=

where p; and ¢; are the input and the output of the hidden
nodes of the critic network, respectively, and N, is the total
number of the hidden nodes. The input for the critic network,
xc(k;), is the sampled state vector only, so there are n input
nodes in the critic network.

The sampled state x (k;) is used as input to learn the event-
triggered control law, which is defined as

Nan

p(x(ki)) = D waoi k)
=1

with
1 — etk

1 + g_tl(k)

n
n(k) = > wyy jxaj(k) 1 =1,..., Na
j=I
where #; and v; are the input and the output of the hidden nodes
of the action network, respectively. Ny is the total number of
the hidden nodes in the action network.

The gradient descent can be used to update the weights
of the actor network. In [52], the event-triggered finite-time
optimal control scheme is designed for an uncertain nonlinear
DT system.

v (k) = =1,..., Nan
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4) Q Function for the DT Linear Quadratic Regulation:
For linear systems, the work of [32] proposed an action-
dependent function (Q-function) instead of value function in
the Bellman equation to avoid knowing the system dynamics.
This is termed in the literature as Q-learning [53], [54].

Based on (3) and (5), the DT Q-function is defined as

Q(x(k), u(k)) = x" (k) Qx (k) + u” (k) Ru (k)
+xT(k+1)Px(k+1), Vu,x. (11)

Using the dynamics (4), the Q-function (11) becomes

Q(x(k), u(k))

_[x'[o+ATPA  ATPB x(k)
| ulk) BTPA R+BTPB || ulk) |
Define
_ x (k) ! Sex Sxu x (k)
Q0x (k) uk)) = I:u(k):| |:Sux Suui||:u(k)i|
= 7T (k)SZ (k)

for a kernel matrix S.
By applying the stationarity condition (6Q(x(k), u(k))/
ou(k)) = 0, one has

u*(k) = —(R+ BT PB)'BT PAx (k)
and

w* (k) = =S 1S, x (k).

Algorithm 2 Q-Learning Algorithm for DARE

1: procedure

2:  Given admissible policy ug(k)

32 for j = 0,1,... given u;, solve for the value §;;
using Bellman equation

Z7 (k) Sj41 Z(k) =x" (k) Q x (k) + u] (k) Ru (k)
+ZTk+1)Sj41 Z(k + 1),

on convergence, set S;+1 = S;.
4:  Update the control policy u (k) using

1K) = =(Suu) 71 Sux) j1 x ().

5. goto3
6: end procedure

Algorithm 2 is a model-free learning approach. This algo-
rithm converges to the global optimal solution, on condition
that a persistence of excitation (PE) condition is satisfied [55].
The PE condition guarantees the uniqueness of the policy
evaluation step at each iteration. However, full information
of the states of the system is needed. In [56], output-feedback
(OPFB) RL algorithms are derived for linear systems. These
algorithms do not require any knowledge of the system
dynamics and, as such, are similar to Q-learning and they
have an added advantage of requiring only measurements of
input/output data and not the full system state.
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D. Optimal Tracking Problem

The goal now is to design an optimal control input to
make the states of the system x (k) follow a desired reference
trajectory x4(k). Let us now define the tracking error e(k) as

e(k) = x(k) — xq(k).

In the tracking problem, the control input consists of two
terms: a feedforward term that guarantees tracking and a
feedback term that stabilizes the system.

The feedforward term can be obtained using the dynamics
inversion concept as

ua(k) = g(xa(k)) ™" (alk + 1) — f (xa(k))).

Consider the following cost functional:

o0

J(e(k), ue(k)) = > (e" (i) Qeeli) + ul (i) Reute (i)

i=k
where Q, > 0 and R, = ReT > 0. The feedback input
can be found by applying the following stationarity condition,
o0J(e,ue.)/0u, =0 as:

1 0J(e(k+1))

* k —_—_R 1.7 k
teb)=—3R"& O 011

Then, the optimal control input including both feedback and
feedforward terms is

w (k) = uq (k) + uj(k).

Obtaining the feedforward part of the control input needs
complete knowledge of the system dynamics and the reference
trajectory dynamics. In [57] and [58], a new formulation is
developed that gives both feedback and feedforward parts
of the control input simultaneously and thus enables RL
algorithms to solve the tracking problems without requiring
the complete knowledge of the system dynamics.

Assume now that the reference trajectory is generated by
the following command generator model:

xa(k+1) = y(xq(k))

where x4(k) € R". Then, an augmented system can be con-
structed in terms of the tracking error e(k) and the reference
trajectory x4 (k) as

e(k+1)
xq(k +1)
_ [f(e(k)Jer(k))—l//(Xd(k))} " [g(e(k)+xgz(k))

w Cra(6) 0 }“(")
— FOX0) + GX (k)

where the augmented state is

| eb)
X (k) = [Xd(k)]

The new cost functional is defined as
J(x(0), x4(0), u(k))

= >y (@ () —xa (k)" Q(x (k) —xq (k) +u” (i) Ru(i)

i=0
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where Q > 0 and R = RT » 0. The value function in terms
of the states of the augmented system is written as

VX)) =Dy T UXK), ulk))

i=k

= >y XT)QrX () +u” ()Rui)) (12)
i=k

0 0
Or = |: 0 0}
and 0 <y <1 is the discount factor.

Remark 2: Note that it is essential to use a discounted
performance function for the proposed formulation. This is
because if the reference trajectory does not go to zero, which
is the case of most real applications, then the value is infinite,
without the discount factor as the control input contains a
feedforward part that depends on the reference trajectory and
thus u” (k) Ru(k) does not go to zero as time goes to infinity. [J

A difference equivalent to (12) is

V(X (k) =UX(k),ulk)+yV(X(k+1)).
The Hamiltonian for this problem is given as
HX k), u(k), V) = XT (k) Qr X (k) + u” (k) Ru(k)
+yVix(k+ 1)) — V(x(k)).
The optimal value can be found [59]
V(X (k) = min[U (X (k), u(k)) + 7 V(X (k + 1))]

where

which is just the DT HJB equation. The optimal control is
then given as

(X (k) = argmin[U (X (k), u(k)) + 7 V(X (k + 1))]

AV*(X (k + 1))

_ VY p-igT
B kG (X)( oX(k+1)

2

E. Approximate Solution Using RL

The solution of the DT HJB tracking equation can be
approximated as follows.

1) Offline PI Algorithm: The PI algorithm is used to find
the solution of DT HJB tracking by iterating on the solution
of the Bellman equation.

The augmented system dynamics must be known in order
to update the control input in Algorithm 3. Convergence
properties of Algorithm 3 are similar to Algorithm 1 and are
not discussed here.

2) Online Actor and Critic Approximators: To obviate the
requirement of complete knowledge of the system dynamics
or reference trajectory dynamics, an actor-critic structure,
similar to (6) and (7), is developed in [57] for solving the
nonlinear optimal tracking problem. In [58], the Q-learning
is used to find the optimal solution for linear systems.
Kiumarsi et al. [60] presented PI and VI algorithms to solve
the linear quadratic tracker (LQT) ARE online without requir-
ing any knowledge of the system dynamics and information
of the states of the system only using the measured input and
output data.
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Algorithm 3 PI Algorithm to Find the Solution of Tracking

HJB

1: procedure

2:  Given admissible policy ug (k)

32 for j=0,1,... given u;, solve for the value V;11(x)
using Bellman equation

Virt (X (k) =X" (k) Qr X (k) + uj (k) Ru (k)
+ 7 Vi (X (k + 1)

on convergence, set V; (X (k)) = V;(X (k)).
4:  Update the control policy u (k) using

oVt (X (k + 1))

V =
upn (X @) = —Z R G (G5
5: Goto3
6: end procedure

F. Heo Control of DT Systems

The Ho control problem can be considered as a zero-sum
game, where the controller and the disturbance inputs are con-
sidered as minimizing and maximizing players, respectively
[61]-[64]. In the linear systems, the optimal solution to the
zero-sum game problem leads to solving the GARE.

Consider now the dynamics with an added disturbance input

x(k+1) = fx(k) + g (k)ulk) + h(x(k))d(k) (13)

where x(k) € R" is a measurable state vector, u(k) € R™
is the control input, d(k) € RY is the disturbance input,
f(x(k)) € R" is the drift dynamics, g(x(k)) € R**™ is the
input dynamics, and h(x(k)) € R"*4 is the disturbance input
dynamics.

Define the cost functional to be optimized as

(e.¢]
J(x(0), u(k), d(k)) = > (@) +u” () Ru(i)—p2d" (1)d (i)
i=0
where Q(x) = 0, R = RT > 0, and g > f* > 0 with g*
the smallest § such that the system is stabilized. The value

function with feedback control and disturbance policies can
be defined as

o
V(x(k), uk), d(k)) =D (@) +u” (i) Ru(i)—pd" (i)d(0)).
i=k
A difference equivalent to this is
V(x(k)) = Q(x)+u" (k) Ru(k)— p*d" (k)d (k) +V (x (k+1)).
We can find the optimal value, by solving a zero-sum differ-
ential game as

V*(x(k)) = muin max J(x(0),u,d)

subject to (13). It is worth noting that u(k) is the minimizing
player while d (k) is the maximizing one.

In order to solve this zero-sum game, one needs to solve
the following Hamilton—Jacobi-Isaacs (HJI) equation:

V*(x(k))
= Q) + uwT (k)R u*(k) — B*d*T (k)d* (k) + V*(x (k+1)).
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Given a solution V* to this equation, one can find the optimal
control and the worst case disturbance as

oV*(x(k+1
wlk) = __R gl )( 6x()(ck(++l))))
and
\ OV*(x(k + 1))
") = 2ﬁ2h ()( ox(k+1) )
respectively.

G. Approximate Solution Using RL

In the following sections, on-policy and off-policy RL
algorithms are presented to solve the HJI and GARE
solutions by successive approximations to the Bellman
equations.

1) On-Policy RL to Solve Ho, Control of DT Systems:
The following on-policy RL algorithm is given to solve the
HJL

Algorithm 4 PI Algorithm to Solve the HJI

1: procedure

2:  Given admissible policies 1o (k) and do(k)

32 for j =0,1,... given u; and d;, solve for the value
Vit1(x(k)) using Bellman equation

Vit (x(k)) =Q(x) 4 u’ (k) Ru (k)
+ Vipi(x(k+ 1)),

— B*d] (k)d; (k)

on convergence, set V;1(x(k)) = V;(x(k)).
4:  Update the control policy u;1(k) and disturbance pol-
icy djy1(k) using

—lR_lgT(x)(anH(k +1)

ujr1(k) = 7 oxk 1 1) ),
OV ek + 1
djr(k) = ﬁhT( )(%ﬁ”»
5: Go to 3.

6: end procedure

The PI algorithm (Algorithm 4) is an offline algorithm
and requires complete knowledge of the system dynamics.
The actor-critic structure can be used to design an online
PI algorithm that simultaneously updates the value function
and policies and does not require the knowledge of the drift
dynamics. The value function and control input are approx-
imated as (6) and (7), respectively. The disturbance input is
approximated as

Na
Wiioa(x(k)) = D 04, (x (k)

i=1

dj(k) =

where oy, (x(k)) is the basis function for the approximator,
de [wdj wﬁj wi,v 17 is the weight vector, and Ny is the
number of basis functions used.

The weights of the value function and control input approx-
imators are updated using gradient descent as (8) and (8),
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respectively. The gradient descent can also be used to update
the weights of the disturbance input approximator.

A Q-learning algorithm is presented in [65] to find the
optimal control input and worst case disturbance input for
linear systems without requiring any knowledge of the sys-
tem dynamics. However, the disturbance input needs to be
updated in a prescribed manner. An off-policy RL algorithm
is presented in [66] that does not need any knowledge of
the system dynamics and the disturbance input does not
need to be updated in a prescribed manner. Fig. 2 shows a
schematic of off-policy RL for solving the zero-sum game
problem.

2) Off-Policy RL for Solving Zero-Sum Game Prob-
lem of DT Systems [66]: Consider the following system
description:

x(k + 1) = Ax(k) + Bu(k) + Dd (k) (14)

where x € R”, u € R™, and d € RY are the state, control, and
disturbance inputs, and A, B, and D are constant matrices of
appropriate dimensions. To derive an off-policy RL algorithm,
the original system (14) is rewritten as

x(k 4+ 1) = Agx(k)+ B(K jx (k) +u(k))+ D(K 7 x (k) +d (k))
(15)

where Ay = A — BK} — DKj?.

In (15), the estimation policies are u (k) = —K 1x(k) and
dj(k)=—-K 2x (k). By contrast, u(k) and d (k) are the behavior
policies that are actually applied to (14) to generate the data
for learning.

Using the Taylor expansion of the value function V (x(k))
at point x (k + 1) for (14), the value function (5) yields

xT (k) Pjy1x(k) — xT (k + 1) Pj1x(k + 1)

= xT (k) Qx (k) + xT (k) (K1) RK Lx (k) — p2xT (k) (K2)"

x K7x(k) — (u(k) + Kjx(k)) BT P ix(k+1)

— (k) + K }x(0))" BT Pj 1 Agx (k)
— (K2x(k) +d(0)" DT Pjax(k + 1)

— (K2x(k) +d(k)" DT Pj11Arx (k). (16)

Remark 3: Note that (16) does not explicitly depend on
Kj1 4+ and sz 41~ Also, complete knowledge of the system
dynamics is required for solving (16). In the following, it
is shown how to find (Pj+1,K}+1,KJ2+1) simultaneously
by (16) without knowing any knowledge of the system
dynamics. (]

Given any matrix M € R"*", vec(M) € R""*! is transpose
of a vector formed by stacking the rows of matrix M.

Using a’ Wb = (b ® a”)vec(W), (14), and Ay = A —
BK| — DK;, the off-policy Bellman equation (16) can be
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rewritten as

T (k) @ xT (k))vee(LL )

— Tk + D) @xT (k + D)vee(LL, )

+2(:7 () ® (k) + K x(0) " )vee(L3,,)

— ((Kjx(0) —u®)" @ (u(k) + K x (k)" vee(L )
+2(:7 () ® (dk) + K3x (k)" )vee(L,)
—((K}x(k) —u(®)" @ (dk) + K3x (k)" )vee(L3,))
+ (@) — Kx (k)" ® (ulk) + K fx (k)" )vee(LS 1)
+((d) — K2x(0)" ® (dk) + K2x (k)" )vee(L] )

— T (k) Qx (k) +xT(k)(K})TRK}x(k)

T
— BT (k) (K7)" K7x(k) (17)
; 1 2 T 3 T
with Lj+1=Pj+l, Lj+1=B Pj+]A, Lj+1:B Pj+]B,
L}, = D"PjiA, L3 = D" PjB, LS, = BT Pj11D,

and L; = DT Pj;1D that are the unknown variables in the
Bellman equation (17). Then, using (17), one has

T T T T
ifvee(L ) vee(L2 ) vee(L, ) vee(L, )
Vec(L§+1)Tvec(L?Jr])Tvec(L;H)T]T =¢; (18)

where ¢; = [(@)7 ... (@)1 and y/ = ()T ... (yTT
with ¢; and z//} defined as in [66]. One can solve (18) using
a least-squares (LS) method.

Algorithm 5 Off-Policy PI to Find the Solution of GARE

1: procedure

2:  Set the iteration number j = O and start with a
admissible control policy u(k) = —K'x(k) + e(k)
where e(k) is probing noise.

3 while [K] | —K!|>eand |K?,, —K?}| > e do
4: For j =0,1,2,..., solve (18) using LS

T T T T
vj [vec(L}Jrl) vec(L§+1) vec(L;Jrl) veC(Lijr])

T T 1T
vec(L?H) vec(L?H) vec(L;H) ] = ¢;.
5: Update the control and disturbance gains as
1 3 6 2 7 N-175 -1
Kig=—-R+Lj+ LB T—Lj ) Liy)
2 6 2 7 ylr4
X(Lj+1+Lj+1(.B I_Lj+1) Lj+1),

2 7 2 5 3 =176 -1
Kiy=(Lj =P T—-Lj(R+Lj) L)

4 5 3 L2
X (L = L (R+ L) Liyy)-
6: j=Jj+1
7:  end while
8: end procedure

III. OPTIMAL CONTROL OF CT SYSTEMS
AND ONLINE SOLUTIONS

Consider the nonlinear time-invariant system given as

X(1) = fx@) +gxc@u@) y@) =1x@)  (19)
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Fig. 2. Off-policy RL for Hoo control. The behavior disturbance policy is
the actual disturbance from the environment that cannot be specified. On the
other hand, the learned disturbance policy uses the collected data to learn the
worst case policy.

where x(r) € R", u(t) € R™, and y(r) € RP represent
the state of the system, the control input, and the output of
the system, respectively. f(x(¢)) € R" is the drift dynamics,
g(x(t)) € R™™ is the input dynamics, and [(x(t)) € R”
is the output dynamics. It is assumed that f(0) = 0 and
fx(t)) + g(x(?))u(t) is locally Lipschitz and the system is
stabilizable.

A. Optimal Regulation Problem

The goal in optimal regulation is to design an optimal
control input to assure the states of the system (19) converge
to zero by minimizing a cost functional. The cost functional
is defined as

J(x(0), u) = /OOO r(x, u)dt = /OOO(Q(x) + u” Ru))dt

where Q(x) = 0 and R = RT > 0. The value function for the
admissible control policy can be defined as

Vix,u)= /Oor(x,u)dr = /OO(Q(x) +ul Ru))dr.

A differential equivalent to this is

ovT
r(x,u)+a (f(x)+gx)u))=0, V(©0)=0

and the Hamiltonian is given by
ov’ ov’?
H X, U, — :r(x’u)—‘r_ (f(x)+g('x)u)
ox ox

The optimal value is given by the Bellman optimality equation
*T
r(x,u”) +

o U@Hgw) =0 @0
X

which is just the CT HJB equation. The optimal control is
then given as

% T

u*(t) = argmuin (r(x, u) + o (fx)+ g(x)u))

] ov*
_ L pt,r .
yR e () ( ox )

2
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B. Approximate Solution Using RL

The following on-policy and off-policy integral RL (IRL)
algorithms are presented to approximate HJB solution by
iterating on the Bellman equations.

1) On-Policy IRL: In [35] and [67], an equivalent for-
mulation of the Bellman equation that does not involve the
dynamics is found to be

t+T
V(x (1)) :/ (O ())+u" (D) Ru(e))de+V (x(t + T))
1
(22)
for any time ¢ > 0 and time interval 7 > 0. This equation
is called IRL Bellman equation. The following PI algorithm

can be implemented by iterating on the above IRL Bellman
equation and updating the control policy.

Algorithm 6 On-Policy IRL Algorithm to Find the Solution

of HIB

1: procedure

2:  Given admissible policy ug

32 for j=0,1,... given uj, solve for the value V;(x)
using Bellman equation

t+T
V@) = [ (000 ] Rup)de+ Vi +7)),

on convergence, set V;i1(x) = V;(x).
4:  Update the control policy u;1(k) using

oVjq1(x)

ox )-

1
uj1(0) = =3 R™Tg" (x)(

5. Goto 3.
6: end procedure

The IRL algorithm (Algorithm 6) is online and does not
require the knowledge of the drift dynamics. To implement
Step 3 of Algorithm 6, a neural-network-type structure, similar
to (6) and (7), is used in [67] to approximate the value
function. This algorithm is a sequential RL algorithm in the
sense that the actor (policy improvement) and critic (policy
evaluation) are updated sequentially. Synchronous update laws
for actor and critic were first introduced in [36] to update both
actor and critic simultaneously while assuring system stability.
Later, in [68] and [69], synchronous actor-critic structure
was augmented with system identification to avoid complete
knowledge of the system dynamics.

2) On-Policy IRL With Experience Replay Learning Tech-
nique [70]-[72]: To speed up and obtain an easy-to-check
condition for the convergence of the IRL algorithm, the recent
transition samples are stored and repeatedly presented to the
gradient-based update rule. A similar condition was proposed
in [73] for adaptive control systems. This is a gradient-
decent algorithm that does not only minimize the instantaneous
temporal difference (TD) error but also minimize the TD errors
for the stored transition samples. Assume now that the value
function V (x) can be uniformly approximated as in the IRL
Bellman equation (22)

\A/(x) = WCTqﬁl(x), Vx
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where ¢;(x) : R” — RV is the basis function vector and N
is the number of basis functions. Therefore, the approximate
IRL Bellman equation becomes

t
eg = Agi ()T W, +/ (O(x) + al Ri)dt
t—T

where A¢i(t) = ¢1(t) — $1(t — T) and ep is the TD error
after using current critic approximator weights. To collect data
in the history stack, consider A¢(¢;) as evaluated values of
Ay at the recorded time ¢;. Then, define the Bellman equation
error (TD error) at the recorded time #; using the current critic
weights estimation W, as

tj
(e8); = Ai (i) W + / Q@)+ i (Ri(e)dr.
t p—

j
The experience replay-based gradient-decent algorithm for
the critic NN is now given as

W= —g A (1) .
‘ ApOTASI (D) +1)2°

l A¢l(l‘j)
— ac; (Agbl(tf)TAgbl([j) T 1)2 (eB)j.

The first term is a gradient update law for the TD error and
the last term minimizes its stored samples in the history stack.

3) Event-Triggered On-Policy RL [74]: The event-triggered
version of the optimal controller uses the sampled state infor-
mation instead of the true one and (21) becomes

i) =5 r et ()

ox
vVt € (ri—1,rilandi € N (23)

where r; is the ith consecutive sampling instant and x; = x ().
Using the event-triggered controller (23), the HIB equa-
tion (20) becomes Vx, x; € R"

*T * (%
2 (e g @ (T522))

ox ox
*ronT s
o+ 3 20 g R (T 0
X ox
= W &) —u))" Ru* (%) — uf) (24)

where u} is given by (21).
To solve the event-triggered HIB equation (24), the value
function is approximated on a compact set  as

VE(x) = W p(x) +e.(x), VxeR" (25)

where ¢(x) : R" — R is the basis function set vector, k is
the number of basis functions, and €. (x) is the approximation
error. Based on this, the optimal event-triggered controller
in (23) can be rewritten as

. 1 L fopGT dec (%)
*($)= ——R 1,T (2. *
u™(x;) ) 8 (xl)( ox ”c + ox

te(r-1,ril. (26)

The optimal event-triggered controller (26) can be approxi-
mated by the actor for all t € (r;—y,ri] as

W (%) = W () + eu(Ri), Vi, ieN  (27)
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where ¢, (x;) : R" — R” is the basis function set vector, /4 is
the number of basis functions, and €, (X;) is the approximation
error.

The value function (25) and the optimal policy (27) using
current estimates W, and W,, respectively, of the ideal weights
Wr and W) are given by the following critic and actor
approximators:

\7(x) = WCngS(x), Vx
A = WHpu(Gi), Vi

The Bellman error is defined as

o9

T
ecchg

(f (x) + g(x)ia(xi))) +r(x, i)
with r(x, 1) = Q(x) + a(x;)T Ra(%;).
The weights W, are tuned to minimize K = (1/2)eCTeC as
A oK

e = —

w I R
— = —O——— W, R
acaWC Uc (wTw T 1)2 (w e +r(x,n))

with w = (8¢/0x)(f (x) + g(x)it(%;))).
In order to find the update law for the actor approximator,
the following error is defined:

. ol (GO R
ey = WuT¢u(xi)+_R lgT(xi) (L) We, Vx;.
2 ox
The weights Wu are tuned to minimize E, = (1/ 2)euT e, as
Wu =0, forte (riy,ri]

and the jump equation to compute W, (r;L) given by

W;— = Wu(t) - auqsu(x(t))
0 (x

T T
x (vi/[qﬁu (x(1)) + %R*f@(z))% WC)
X

for t = r;.

The convergence and stability are proved in [74]. The work
of [75] extended [74] to systems with input constraints and
without requiring the knowledge of the system dynamics.
Event-based RL approaches are also presented in [76]-[78]
for interconnected systems.

4) Off-Policy IRL [79], [80]: In order to develop the off-
policy IRL algorithm, the system dynamics (19) is rewritten as

x(@) = fx@)+g(x()uj()+gx @) (u(t)—u;()) (28)

where u ;(¢) is the policy to be updated. By contrast, u(¢) is the
behavior policy that is actually applied to the system dynamics
to generate the data for learning.

Differentiating V (x) along with the system dynamics (28)
and using u;41(r) = —(1/2)R~ g7 (x)(8V;(x)/0x) give

, . T
Vi = (_av,(x)) T(f +gup) + (av,(x)) g —uj)

ox ox
—0(x) — ujTRuj — 2uj+1TR(u —uj).
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Integrating from both sides of the above equation yields the
off-policy IRL Bellman equation
Vitx(t + 1)) — Vj(x(1))
1+T
:/ (— Q(x)—ujTRuj—2uj+1TR(u—uj))dT. (29)
t

Tterating on the IRL Bellman equation (29) yields the
following off-policy IRL algorithm.

Algorithm 7 Off-Policy IRL Algorithm to Find the Solution

of HIB

1: procedure

2:  Given admissible policy ug

32 for j =0,1,... given uj, solve for the value V; and
uj11 using off-policy Bellman equation

Vix(t +T)) = Vi(x(2)) =

+T
/ (—Q(x)—uJTRuj—2uj+1TR(u—uj))dT.
t

on convergence, set Vi1 = V;.
4:  Go to 3.
5: end procedure

Remark 4: Note that for a fixed control policy u(z) (the
policy that is applied to the system), the off-policy IRL
Bellman equation (29) can be solved for both value function
V; and updated policy u 1, simultaneously without requiring
any knowledge about the system dynamics. 0

To implement the off-policy IRL algorithm (Algorithm 7),
the actor-critic structure, similar to (6) and (7), is used to
approximate the value function and control policy [79].

For a linear system, the off-policy IRL Bellman equation
(see [81]) is given as

XTIt + TYPjx(t + T) — xT (1) Pjx(t)

t+T
=/ (—xTQx—ujTRuj—2uj+1TR(u—uj))dT. (30)
t

ITterating on the Bellman equation (30) yields the off-policy
IRL algorithm for the linear systems.

5) Robust Off-Policy IRL [79]: Consider the following
uncertain nonlinear system:

x(1) = f(x(@) + gx(@®)[u(r) + Alx, w)]

w(t) = Ap(x, w) 3D

where x(¢) € R”" is the measured component of the state
available for feedback control, w(¢) € R” is the unmeasurable
part of the state with unknown order p, u(z) € R is the control
input, A, € R? and A € R are unknown locally Lipschitz
functions, and f(x(z)) € R" and g(x(r)) € R" are the drift
dynamics and input dynamics, respectively. In order to develop
the robust off-policy IRL algorithm, the system dynamics (31)
is rewritten as

x(1) = fx @)+ gx(@)u;(r) + g(x(1))v; (1))

where vj =u + A —u;.
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Differentiating V(x) along (31) and using u;((t) =
—(1/2)R'gT (x)(@V;(x)/0x) give

. oVi(x
Vi= (ﬁ) T(f + guj+gv))
0x
=—-0(x)— ujTRuj — 2uj+1TRvj.
Integrating both sides of the above equation yields the robust
off-policy IRL Bellman equation

Vix(t +T)) — V;(x(1)
T
= ‘/tJr (_ O(x) — M?Rl/tj - 2uj+1TRvj)dr. (32)

Using an actor-critic structure, similar to (6) and (7), for V;
and u ;11 in (32), yields

Ne
bk e, (et + T)) = o, (x(1))]
i=1
t+T Nqg T
=/ —Q(x)—ﬁ]T-Rﬁj—Z(ZuA);jaai (x(k))) Rv; | dz.
! i=1

(33)

Iterating on the IRL Bellman equation (33) provides the
following robust off-policy IRL algorithm.

Algorithm 8 Robust Off-Policy IRL Algorithm

1: procedure

2:  Given admissible policy ug

32 for j =0,1,... given u;, solve for the value V; and
uj11 using off-policy Bellman equation

N
Dbk (e (et + T)) — ¢, (x(1))] =

i=1
t+T Na
/ (—o@)—alRi; =2 bl 04, (x (k) Rv))dx,
t i=1
on convergence, set V11 = V;.

4. Go to 3.
5: end procedure

C. Optimal Tracking Problem

The goal here is to design an optimal control input to
make the states of the system x(¢) track a desired reference
trajectory x4(1).

Define the tracking error as

e(t) = x(t) — xq(1).

Similar to DT systems, standard techniques find the
feedback and feedforward parts of the control input sepa-
rately using complete knowledge of the system dynamics.
In [82] and [83], a new formulation is developed that gives
both feedback and feedforward parts of the control input
simultaneously and thus enables RL algorithms to solve the
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tracking problems without requiring complete knowledge of
the system dynamics.

Assume that the reference trajectory is generated by the
command generator model

Xq(t) = hg(xq(2))

where x;(t) € R". An augmented system can be constructed
in terms of the tracking error e(¢) and the reference trajectory

xq(t) as

o T e ] T fle) + xa(0) — haGra(t))
X0 = [xd(r)] = [ haGea(1)) }

+ | SEOTHO ) = Fxen + G0

(34)

where the augmented state is

X(t) = [ e(?) }

xq(t)

The cost functional is defined as

J(x(0), x4(0), u(r))

_ / 1D 5 ((1) — xa (1) O (1) — xa(2))
0
+ ul (t)Ru(7))dr

where Q > 0 and R = RT » 0. The value function in terms
of the states of the augmented system yields

V(X (1) = /00 e 1D (X, u)dr

t

= X"(0)Qr X (¢) + u" (r)Ru(r))dr

_|e o
Or = |: 0 0
and # > 0 is the discount factor.
A differential equivalent to this is the Bellman equation

(35)

where

T

r(X,u)—nV—i-g—; (Fx)+GX)u) =0, V(0)=0

and the Hamiltonian is given by

ov’T ov’T
H(X,u, Y ): r(X,u) —nV + % (F(X)+ G(X)u).

The optimal value is given by

* T

r(X,u*) —ngV*+ (F(X)+GX)u") =0

0X

which is just the CT HIB tracking equation. The optimal
control is then given as

*T

u*(t) = argnbin(r(X, u) —nV>* + ov (F(X) + G(X)u))

0X
1 ov*
=——R'GT(x) .
2 o0X
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D. Approximate Solution Using RL

Using the value function (35) and in a similar manner to
the off-policy and on-policy IRL algorithms for the optimal
regulation, the following off-policy and on-policy IRL algo-
rithms are developed to find the optimal solution of CT HJB
tracking equation.

1) On-Policy IRL: Similar to Algorithm 6 for the opti-
mal regulation, the following on-policy IRL algorithm is
presented in [83] to solve the CT HIB equation online
and without requiring the knowledge of the internal system
dynamics.

Algorithm 9 On-Policy IRL Algorithm to Find the Solution

of HIB

1: procedure

2:  Given admissible policy u )

32 for j=0,1,... given uj, solve for the value V;(X)
using Bellman equation

t+T
Vo) = [ e (T 00r X
+uj (D) Ruj (D))t + eV (X + 1)),

on convergence, set V;11(X) = V;(X).
4:  Update the control policy u;1(¢) using
1 oVjt1(X)
1(t) = —=R™! T X)(————
i) = =5 R8T OO (EE=).
5. Goto 3.
6: end procedure

The IRL algorithm (Algorithm 9) is an online algorithm and
does not require the knowledge of the internal system dynam-
ics. In [83], an actor-critic structure, similar to (6) and (7), is
used to implement Algorithm 9. In [82], the quadratic form
of value function, xT(t)Px(t), is used in the IRL Bellman
equation for the linear systems to find the solution of LQT
ARE.

2) Off-Policy IRL: Similar to off-policy IRL for optimal
regulation, for the augmented system (34) and the discounted
value function (35), the following off-policy IRL algorithm is
developed in [84] to avoid the requirement of the knowledge
of the system dynamics.

Algorithm 10 Off-Policy IRL Algorithm to Find the Solution

of HIB

1: procedure

2:  Given admissible policy ug

32 for j=0,1,... given uj, solve for the value V;,1 and
uj11 using off-policy Bellman equation

MV (X (1 +T)) = Vi (X () =

t+T
/ e "(=QX)—uj Ruj—2uji" R (u—uj))dr
t

on convergence, set V11 = V;.
4. Go to 3.
5: end procedure
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To implement off-policy IRL algorithm (Algorithm 10),
the actor-critic structure, similar to (6) and (7), is used to
approximate the value function and control policy [84].

Remark 5: Most of the existing solutions to optimal control
problems are presented for affine systems. Extensions of RL
algorithms for nonaffine systems are considered in [85] for
optimal regulation and in [86] for optimal tracking control
problems. 0

E. Hso Control of CT Systems

The CT system dynamics in the presence of disturbance
input is considered as

x(@0) = fx@) 4+ gx(@)u(r) + h(x(1))d(1)

where x (1) € R”" is a measurable state vector, u(t) € R™ is the
control input, d(¢t) € R is the disturbance input, f(x(¢)) € R”
is the drift dynamics, g(x(z)) € R™*™ is the input dynamics,
and h(x(t)) € R"*? is the disturbance input dynamics. The
performance index to be optimized is defined as

(36)

J(x(0), u,d) = /OO(Q(x) +u” Ru — p*d" d)dr
t

where Q(x) > 0, R = RT - 0, and p = p* = 0 with g*
the smallest £ such that the system is stabilized. The value
function can be defined as

o
V(x(@t),u,d) = / (O(x) + u” Ru — p*d" d)dr.
1
A differential equivalent to this is the Bellman equation
— p*d’d

ovT
+ . (f@x)+ g@)u+hx)d)=0 V(©0)=0

O(x)+ u’ Ru

and the Hamiltonian is given by

ovT
H(x,u,d, — )
ox

=0x)+u’ Ru— ﬁszdJr (f(x)+g(x)u+h(x)d)

Define the two-player zero-sum differential game as
V*(x(¢)) = min max J(x(0),u,d)
u

subject to (36).
In order to solve this zero-sum game, one needs to to solve
the following HIJI equation:

0(x) + )" Ru* — p*(@")"d*

* T

+ 5o (F) + 80wt +h(x)d) =0,

Given a solution to this equation, one has

1 ov*
M* — __Rfl T(.X)—

2
6V*

d5F = — T
ﬁ ()
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F. Approximate Solution Using RL

The following PI algorithms can be used to approximate the
HIT solution by iterating on the Bellman equation.

1) On-Policy IRL: In [87], an equivalent formulation of the
Bellman equation that does not involve the dynamics is found
to be

Vix@—T)) = I (r(x(r), u(z),d(z))dr + V(x(1))
t—T

for any time # > 0 and time interval 7 > 0. This equation is
called the IRL Bellman equation.

Algorithm 11 On-Policy IRL for Regulation in Zero-Sum
Games (H, Control)

1: procedure

2:  Given admissible policy ug

32 for j=0,1,... given u;

4 fori=0,1,... set d° =0, solve for the value Vj(l)(x)
using Bellman’s equation

ovi\" ,
Q(x) +(8—xj) (f(x) +g()uj +h(x)d') + u]TRuj

- p*@H'd" =0,vi©0) =0,

. 1 ovi
At = —nT (o) (—2L),
i G
on convergence, set V;(x) = V; (x).
5:  Update the control policy u ;41 using

1 oVin
ujp1=—=R g (o) (—=

2 ox )-

6: Goto 3.
7: end procedure

The PI algorithm (Algorithm 11) is an offline algorithm
and requires complete knowledge of the system dynamics.
Actor-critic structure as (6) and (7) can be used to implement
an online PI algorithm that simultaneously updates the value
function and policies and does not require the knowledge of
the drift dynamics. Various update laws are developed for
learning actor, critic, and disturbance approximators’ weights
by minimizing the Bellman error [88]-[90].

2) Off-Policy IRL [80]: In order to develop the off-policy
IRL algorithm for the H control, the system dynamics (36)
is rewritten as

x(0) = fx@) +gx(@)u;(0) + g(x (1)) (u() — u;(1))
+ h(x(0)d; (1) + g(x(1)(d () —d; (1))

where u;(t) and d;(t) are the policies to be updated. By
contrast, u(t) and d(t) are the behavior policies that are
actually applied to the system dynamics to generate the data
for learning.

Differentiating V (x) along with the system dynamics (28)
and using u;41(t) = —(1/2)R_1gT(x)(8Vj(x)/ax) and
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dj+1(t) = (1/25%)hT (x)(0V;(x)/0x) give

. onT
V= (—6Vj(x)) T(f + guj +hd;j) + (avaj(x)) glu—uj)

ox X
) T
+ (%:x)) h(d —d;j) = —Q(x) —u;" Ru;

+4%d;Td; —2u; TR —uj) +2p%d; T (d — dj).

Integrating from both sides of the above equation yields the
‘H~o off-policy IRL Bellman equation

Vilx(r +T)) — Vj(x(1))
+T
:/; (- Q(x)—ujTRuj+ﬁ2ddej—2u]T+1R(u—uj)

+2p%d7

T1(d—d)))dr. (37)

Iterating on the IRL Bellman equation (37) yields the
following off-policy IRL algorithm.

Algorithm 12 Off-Policy IRL Algorithm to Find the Solution

of HJI

1: procedure

2:  Given admissible policy ug

32 for j =0,1,... given u; and d;, solve for the value
Vi, uj+1 and dj41 using off-policy Bellman equation

t+T
Vj(x(t+T))—Vj(x(t)):/ (—Q(x)—ujTRuj+
t
prd;iTd; —2ujp1 "R —uj)+2p%dj1" (d —d)))dr,

on convergence, set Vi1 = V;.
4. Go to 3.
5: end procedure

Note that for a fixed control policy u(¢) and the actual
disturbance (the policies that are applied to the system),
the off-policy IRL Bellman equation (37) can be solved for
value function V;, learned control policy u;1, and learned
disturbance policy d; 1 simultaneously, and without requiring
any knowledge about the system dynamics.

To implement the off-policy IRL algorithm (Algorithm 12),
the actor-critic structure, similar to (6) and (7), is used
to approximate the value function, control, and disturbance
policies [80].

In [88], an off-policy IRL algorithm is presented to find the
solution of optimal tracking control problem without requiring
any knowledge about the system dynamics and reference
trajectory dynamics.

G. Nash Games

In this section, online RL-based solutions to noncooperative
games, played among N agents, are considered.

Consider the N-player nonlinear time-invariant differential
game

N
20 = fx@) + D g x@)u;()

j=1
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where x € R" is a measurable state vector, u; (t) € R"/ are the
control inputs, f(x) € R" is the drift dynamics, and g;(x) €
R™™j is the input dynamics. It is assumed that f(0) = 0 and
f)+ Z;V:l gj(x)u;j is locally Lipschitz and that the system
is stabilizable.

The cost functional associated with each player is defined as

o0
Ji(x(O),ul,uz,...,uN)z/ (rilx,ut,...,un))dt
0

00 N
E/ Q,-(x)—}-ZLt]T-R,-juj dt
0

j=1
Vie N:={1,2,...,N}

where Q;(-) =0, R;; =R} > 0,Vi e N/, and R;; =R,§ >0,
Vj#ieN with NV:={1,2,...,N}.

The value for each player can be defined as
L UN)

o0
:/ (ri(x,uy,...,uy)dzr, YieN, VYx,uj,uz,...,un.
'

Vilx,up, uz, ..

Differential equivalents to each value function are given by
the following Bellman equations:

ov; T al

1

ri(x,ul,...,u/v)—i-—ax f(x)-i-élgj(x)“j =0
j:

Vi(0) =0, Viel.

The Hamiltonian functions are defined as

( aViT)
Hi\ x,ui,...,un,
ox

Vi
=ri(x,ui,..

)+
U
N 0x

T N
FO+D giuj|., YieN.
j=1
By applying the stationarity conditions, the associated feed-
back control policies are given by

ovxT
u;‘:argminHi X, UL, o UN, —
;i ox
I 1 7, .0V ;
— _ER” g (x)g, Vi e N.

After substituting the feedback control policies into the
Hamiltonian, one has the coupled Hamilton—Jacobi (HJ)
equations

N T
1 oV; _ -
0= Qi(x) + Z Z a—x] gj(x)RjjTRinjjlg]T(x)
j=1

oV
ox

ov; T
ox

< oV,
f(x)—EZgj(x)R;jlng(x)a—; , VieN.
=

+

(38)

H. Approximate Solution Using RL

A PI algorithm is now developed by iterating on the
Bellman equation to approximate the solution to the coupled
HIJ equations.
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Algorithm 13 PI for Regulation in Nonzero-Sum Games

1: procedure
2:  Given N-tuple of admissible policies ,uf.‘(O), VieN
(k) (k=1)
3 while [V/ — V! || = €4, Vi € N do
4: Solve for the N-tuple of costs Vik(x) using the
coupled Bellman equations

ovkT™ N r
—5 (FO) + 2 &) + uf R
i=1

Qi(x) +

N
T k
+ > 1k Rk =0, v 0) = 0.
j=1

5: Update the N-tuple of control policies ,u{.‘H , Vie N
using ,
1 ovk
k+1 —1,T
i = _ERii 8i (x)a—xl .
6: k=k+1

7. end while
8: end procedure

1) On-Policy IRL: 1t is obvious that (38) requires the com-
plete knowledge of the system dynamics. In [87], an equivalent
formulation of the coupled IRL Bellman equation that does not
involve the dynamics is given as

Vix(t = T)) =/ . ritx(t),ui(r),...,un(z))dr
(—

+Vix(@), VieN
for any time ¢ > 0 and time interval 7 > 0.

Let the value functions V;* be approximated on a compact
set Q as

Vi) = W i(x) + € (x), Vx, VieN

where ¢; (x) : R" — RXi| Vi e N, are the basis function basis
set vectors, K;, Vi € N, is the number of basis functions, and
€;(x) is the approximation error.

Assuming current weight estimates Wic, Vi € N, the
outputs of the critic are given by

Vitx) = WLpi(x), Vx, i eN.

Using a similar procedure as used for zero-sum games, the
update laws can be rewritten as

Wic
. Agi(r)
(A ()T Agi(t) + 1)2

t
X A¢i(f)TWic+/ Qi (x) + i} Riiii;
—T

N
+ZLA{?R,']'LA£]' dt), VieN
j=1
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and

Wiu = —atiu | (FiWiu — LiAgi ()T Wie)

S ‘ T
5 Z(% G OOR,T Ry Ry i) )

o ox ox

s Agi(n)”

Wiu (A¢i(I)TA¢,'(l‘) i 1)2 ch 5 Vi EN

respectively, with Ag; (t) := ¢;(t) — ¢i(t — T).

In [91], a model-free solution to nonzero-sum Nash games
is presented. To obviate the requirement of complete knowl-
edge of the system dynamics, system identification is used
in [92].

IV. GRAPHICAL GAMES

Interactions among agents are modeled by a fixed strongly
connected graph G = (Vg, £Eg) defined by a finite set Vg =
{ni,...,ny} of N agents and a set of edges &g € Vg x Vg
that represent interagent information exchange links. The set
of neighbors of a node n; is defined as the set of nodes with
edges incoming to n; and is denoted by N; = {n; : (nj,n;) €
&g}. The adjacency matrix is Ag = [a;jlnxny With weights
aij > 0if (nj,n;) € & and zero otherwise. The diagonal
degree matrix D of the graph G is defined as D = diag(d;)
with the weighted degree di = 2\, aij-

Let the agents dynamics be modeled as

Xi(t) = Ax;(t) + Bju;(t), x;(0) =x0, t >0

where x;(f) € R" is a measurable state vector, u;(t) €
R™ i e N :={1,..., N}, is each control input (or player),
and A € R"™" and B; € R"™™i | € N, are the plant and
input matrices, respectively.

The leader node/exosystem dynamics are

X0 = Axp.

The agents in the network seek to cooperatively asymptoti-
cally track the state of a leader node/exosystem, i.e., x; () —
x0(1), Vi € N while simultaneously satisfying distributed cost

functional.
Define the neighborhood tracking error for every

agent as
O = > aij(xi —x;)+gilxi —x0), VieN (39)

JEN;

where g; is the pinning gain. g; # 0 if agent is pinned to the
leader node. The dynamics of (39) are given by

5 = A% + (d; + gi)Biui — Z ajjBjuj, Vie N (40)
JjeN;
with J; € R".
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The cost functional associated to each agent i € N has the
following form:

Ji (6:(0); ui, ups)

1 [
= 5/ ri(5i,ui,uM)dt, Vie N
0

l oo
—/ of Qidi+u] Rijui+ Y ul Rijuj| dt, Vi e N
0

2 JEN;

with user-defined matrices Q; > 0, R;; > 0, and R;; > 0,
Vi, j € N, of appropriate dimensions and (+/Q;, A), Vi € N,
are detectable.

It is desired to find a graphical Nash equilibrium [93] u]
for all agents i € N in the sense that

Ji @i (0); ui, why) < Ji(Gi(0); wi, uyy), Vui, i €N.

This can be expressed by the following coupled distributed
minimization problems:

Ji (0 (0); uf, ujy;) = HLI}H Ji©@i(0); ui,uje), VieN

with the dynamics given in (40).
The ultimate goal is to find the distributed optimal value
functions V*, Vi € N defined by

o0
. 1
V7 (0i(1)) = min / 5 | o Qo + i Rijui
toJt

+ZMJT-Rijuj dt, Vt,éi,iej\/'.
JeN;
(41)

One can define the Hamiltonians associated with each agent’s
neighborhood tracking error (40) and each V given in (41)
as follows:

avy
Hi 5iauiauMa ﬁ
1

% T
= 651- Ad; + (d;i + gi)Biu; — Z aijBju;
! JjeN;
1 1 1
+ §5iTQi5i + EMiTRiiui +3 > ul Rijuj,
JeN;
Vo, u;, YieN.

According to the stationarity condition, the optimal control for
each i € N can be found to be
ovr
00;
*

ovV:
—1 pT
= —(d; +gi)R,‘,‘ B; 652 , Yo

that should satisfy the appropriate distributed coupled HJ
equations

u;(6;) = argmin H; ((Z-, Ui, UN,

u;

(42)

ov>
Hi (51-5”?’147\/}98—51):0, VlEN
i
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Assume that the value functions are quadratic in the neigh-
borhood tracking error, i.e., Vi*(éi) R > R

1
V() = 55}13,-5,-, Vo, Vi e N (43)
where P, = P > 0 € R"™", Vi € N, are the unique matri-

ces that solve the following complicated distributed coupled
equations:

of Pi | Adi — (d; + gi)*BiR;;' Bl o

+ D wij(dj +g))B; R} B] P;;
jeN

+ [ A% — (di + 8)*BiR;;' B] Pio;

T
+ Z aij(d; +gj)BjRj_lejTPj(5j
jeN
X P;o; + Z (d] —i—gj)zéerijR;jTRin;jl BjTPjéj
jeN;

+ (di + gi)*0] PiBiRii Bl Pio; + 6 0i0: =0, VieN.

Using (43), the optimal control (42) for every player i € N’
can be written as

uf(6) = —(d; + g)R;;' Bl Pio;, V6.

A. Approximate Solution Using RL

A PI algorithm is now developed to solve distributed cou-
pled HJ equations as follows.

Algorithm 14 PI for Regulation in Graphical Games

1: procedure
2:  Given N-tuple of admissible policies ,ui.‘(O), VieN
(k) (k=1)
3 while [V/(6) = V! () = €iac, Vi €N do
4: Solve for the N-tuple of costs Vik(x) using the
coupled Bellman equations,
kT

T oV
o; Qiidi + 2,

(Ad; + (di + g)Bipt — Z a Bjﬂ];-)
JeN;
T T k
+ 0 Rk + > ik Rk =0, v 0) = 0.
JeN;
Update the N-tuple of control policies ,uf.‘H, Vie N
using

W

kT

_ oV!
:ui'{_H = —(d; +gi)RiilBlT !
00;

6: k=k+1
7. end while
8: end procedure
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The PI algorithm (Algorithm 14) is an offline algorithm. We
now show how to develop an online RL-based algorithm for
solving the coupled HJ equations.

Assume there exist constant weights W; and such that
the value functions V* are approximated on a compact
set Q as

VZ©G) = W () + € (), Vo ieN

where ¢;(d;) : R" — RXi Vi e N, are the basis function set
vectors, K; is the number of basis functions, and ¢;(d;) is the
approximation error.

Assuming current weight estimates Wic, Vi € N, the
outputs of the critic are given by

Vi) = WEei(d), YieN.

Using the current weight estimates, the approximate
Lyapunov-like equations are given by

Hi() = ri(0i(0), i, iy

ov; T . .
+ 65-1 ASi + (di + gi) Bilii — D 0ij Bt
1 jN
=e¢, VieN (44)
where ¢; € R,Vi € N, are the residual errors due to

approximation and

X L 0di T
i = —(d; +gi)RiilB'T£

Vie N
i 56, !

A
Wiu,

where W,-u denote the current estimated values of the ideal
weights W;.

The critic weights are updated to minimize the square
residual errors e¢; in order to guarantee that Wic —

W;, Vi € N. Hence, the tuning law for the critic is
given as
Wic

20 (A0 + s + g Bt — X jen; i Byl )
A2

= —ai

T

A5i+(di+gi)Biﬁi—z aij Bjﬁj
JjeN;

O
00;

A 1 . . A N .
X Wic+§5iTQi5i+uiTRiiui+z M?R,'ju , YieN
jeN;
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where a; > 0 is a tuning gain, and for the actor is given as

o¢i
00;

Ad; + (d; + gi)Bill;

T

— E a,-ijﬁj Wic
JeN;

opi T\

0pi
W.
20, in

09;

1
iy
JeN;
% (A&i +(di+gi)Biit _Zje/\/} Gij Blﬁj)
> Wic

A

BiR;" RijR;'Bf

Vie N

where a;, > 0 is a tuning gain, and F;, L; > 0 are matrices
that guarantee stability of the system and

T
o ) )
= | (25 (Ao + @i +g)Biiii — > i Bji;
09; jeN;
2
a¢i AS: . . . B
X ;+(dz+gz)Bz”t_Zal]BjuJ +1
00; JjeN;

V. APPLICATIONS

RL has been successfully applied in many fields. Two of
such fields are presented below.

A. Robot Control and Navigation

In the last decade or so, the application of RL in robotics has
increased steadily. In [94], RL is used to design a kinematic
and dynamic tracking control scheme for a nonholonomic
wheeled mobile robot. Reference [95] uses the RL in the
network-based tracking control system of the two-wheeled
mobile robot, Pioneer 2-DX. The neural network RL is
used to design a controller for an active simulated three-
link biped robot in [96]. In [97], an RL based actor-critic
framework is used in control of a fully actuated six degrees-
of-freedom autonomous underwater vehicle. Luy et al. [98]
use RL to design robust adaptive tracking control laws with
optimality for multiwheeled mobile robots’ synchronization
in communication graph. Reference [99] presents an optimal
adaptive consensus-based formation control scheme over finite
horizon for networked mobile robots or agents in the presence
of uncertain robot/agent dynamics. In [100], IRL approach
is employed to design a novel adaptive impedance control
for robotic exoskeleton with adjustable robot bebavior. IRL
is used in control of a surface marine craft with unknown
hydrodynamic parameters in [101]. In [102], RL is used
along with a stabilizing feedback controller such as PID or
linear quadratic regulation to improve the performance of the
trajectory tracking in robot manipulators.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 6, JUNE 2018

A mobile robot navigation task refers to plan a path with
obstacle avoidance to a specified goal. RL-based mobile robot
navigation mainly includes robot learning from expert demon-
strations and robot self-learning and autonomous navigation.
In the former, the examples of standard behaviors are provided
to the robot and it learns from these data and generalize over
all potential situations that are not given in the examples
[103]-[112]. In the later, RL techniques are used to train the
robot via interaction with the surrounding environment. Stabil-
ity is not a concern in this type of the task. Yang et al. [113]
used continuous Q-learning for autonomous navigation of
mobile robots. Lagoudakis and Parr [114] proposed the LS PI
for robot navigation task. In this paper, and some other similar
works [115]-[117], neural networks are used to approximate
the value function and the environment is assumed static.
An autonomous agent needs to adapt its strategies to cope with
changing surroundings and solve challenging navigation tasks
[118], [119]. The methods in [115] and [116] are designed for
environments with dynamic obstacle.

B. Power Systems

There have existed several applications of RL in power
systems. The work of [120] proposes the PI technique based
on actor-critic structure for automatic voltage regulator sys-
tem for its both models neglecting and including sensor
dynamics. In [121], a game-theory-based distributed controller
is designed to provide the desired voltage magnitude and
frequency at the load. The optimal switching between different
typologies in step-down dc—dc voltage converters is investi-
gated in [122]. The control of boost converter is presented
in [123] using RL-based nonlinear control strategy at attaining
a constant output voltage. In [124], RL is used for distributed
control of dc microgrids to establish coordination among active
loads to collectively respond to any load change. In [125], RL
is applied to the control of an electric water heater with 50
temperature sensors.

VI. CONCLUSION

In this paper, we have reviewed several RL techniques
for solving optimal control problems in real time using data
measured along the system trajectories. We have presented
families of online RL-based solutions for optimal regulation,
optimal tracking, Nash, and graphical games. The complete
dynamics of the systems do not need to be known for these
RL-based online solution techniques. As another approach to
speed up the learning by reuse of data, experience replay
technique used in RL was discussed. These algorithms are fast
and data efficient because of reuse of the data for learning.

The design of static RL-based OPFB controllers for non-
linear systems has not been investigated yet. Also existing
RL-based Ho controllers require the disturbance to be mea-
sured during learning. Another interesting and important open
research direction is to develop novel deep RL approaches for
feedback control of nonlinear systems with high-dimensional
inputs and unstructured input data. Deep neural networks can
approximate a more accurate structure of the value function
and avoid divergence of the RL algorithm and consequently
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instability of the feedback control system. Deep RL for
feedback control, however, requires developing new learning
algorithms that assure the stability of the feedback system in
the sense of Lyapunov during the learning.
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