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Abstract— This paper reviews the current state of the art on
reinforcement learning (RL)-based feedback control solutions
to optimal regulation and tracking of single and multiagent
systems. Existing RL solutions to both optimal H2 and H∞

control problems, as well as graphical games, will be reviewed.
RL methods learn the solution to optimal control and game
problems online and using measured data along the system
trajectories. We discuss Q-learning and the integral RL algorithm
as core algorithms for discrete-time (DT) and continuous-time
(CT) systems, respectively. Moreover, we discuss a new direction
of off-policy RL for both CT and DT systems. Finally, we review
several applications.

Index Terms— Autonomy, data-based optimization,
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I. INTRODUCTION

OPTIMAL control theory [1]–[6] is a mature mathemat-

ical discipline that finds optimal control policies for

dynamical systems by optimizing user-defined cost functionals

that capture desired design objectives. The two main principles

for solving such problems are the Pontryagin’s maximum

principle (PMP) and the dynamic programming (DP) principle.

PMP provides a necessary condition for optimality. On the

other hand, DP provides a sufficient condition for optimal-

ity by solving a partial differential equation, known as the

Hamilton–Jacobi–Bellman (HJB) equation [7], [8]. Classical

optimal control solutions are offline and require complete

knowledge of the system dynamics. Therefore, they are not

able to cope with uncertainties and changes in dynamics.

Machine learning [9]–[13] has been used for enabling

adaptive autonomy. Machine learning is grouped in supervised,
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unsupervised, or reinforcement, depending on the amount and

quality of feedback about the system or task. In supervised

learning, the feedback information provided to learning algo-

rithms is a labeled training data set, and the objective is

to build the system model representing the learned relation

between the input, output, and system parameters. In unsu-

pervised learning, no feedback information is provided to the

algorithm and the objective is to classify the sample sets to

different groups based on the similarity between the input sam-

ples. Finally, reinforcement learning (RL) is a goal-oriented

learning tool wherein the agent or decision maker learns a

policy to optimize a long-term reward by interacting with

the environment. At each step, an RL agent gets evaluative

feedback about the performance of its action, allowing it

to improve the performance of subsequent actions [14]–[19].

The term of RL includes all work done in all areas such as

psychology, computer science, economic, and so on. A more

modern formulation of RL is called approximate DP (ADP).

In a control engineering context, RL and ADP bridge the

gap between traditional optimal control and adaptive control

algorithms [20]–[26]. The goal is to learn the optimal policy

and value function for a potentially uncertain physical system.

Unlike traditional optimal control, RL finds the solution to the

HJB equation online in real time. On the other hand, unlike

traditional adaptive controllers that are not usually designed

to be optimal in the sense of minimizing cost functionals,

RL algorithms are optimal. This has motivated control system

researchers to enable adaptive autonomy in an optimal manner

by developing RL-based controllers.

A. Related Theoretical Work

The origin of RL is rooted in computer science and has

attracted increasing attention since the seminal work of [27]

and [28]. The interest in RL in control society dates back

to the work of [15] and [29]–[31]. Watkins’ Q-learning

algorithm [32] has also made an impact by considering

totally unknown environments. Extending RL algorithms to

continuous-time (CT) and continuous-state systems was first

performed in [33]. The work of [33] used the knowledge of the

system models to learn the optimal control policy. The work

of [34]–[36] formulated and developed such ideas in a control-

theoretic framework for CT systems. The control of switching

and hybrid systems using ADP is considered in [37]–[41].

There are generally two basic tasks in RL algorithms. One

is called policy evaluation and the other is called policy

improvement. Policy evaluation calculates the cost or value
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function related to the current policy, and policy improvement

assesses the obtained value function and updates the current

policy. Two main classes of RL algorithms that are used

for performing these two steps are known as policy itera-

tion (PI) [14] and value iteration (VI). PI and VI algorithms

iteratively perform policy evaluation and policy improvement

until an optimal solution is found. PI methods start with an

admissible control policy [42], [43] and solve a sequence

of Bellman equations to find the optimal control policy. In

contrast to PI methods, VI methods do not require an initial

stabilizing control policy. While most of RL-based control

algorithms are PI, some VI algorithms have also been devel-

oped to learn optimal control solutions. We mostly survey

PI-based RL algorithms that are used for feedback control

design.

RL algorithms in control context have been mainly used to

solve: 1) optimal regulation and optimal tracking of single-

agent systems [1] and 2) optimal coordination of multiagent

systems [44]. The objective of the optimal regulation problem

is to design an optimal controller to assure the states or outputs

of the systems converge to zero, or close to zero, while in the

optimal tracking control problem, it is desired that the optimal

controllers make the states or outputs of the systems track a

desired reference trajectory. The goal in optimal coordination

of multiagent systems is to design distributed control protocols

based only on available local information of agents so that

agents achieve some team objectives. This paper reviews

existing RL-based algorithms in solving optimal regulation and

tracking of single-agent systems and game-based coordination

of multiagent systems.

Finally, RL algorithms that are used to solve optimal

control problems are categorized in two classes of learning

control methods, namely, on-policy and off-policy methods

[14]. On-policy methods evaluate or improve the same policy

as the one that is used to make decisions. In off-policy

methods, these two functions are separated. The policy used

to generate data, called the behavior policy, may in fact be

unrelated to the policy that is evaluated and improved, called

the estimation policy or target policy. The learning process

for the target policy is online, but the data used in this step

can be obtained offline by applying the behavior policy to the

system dynamics. The off-policy methods are data efficient

and fast since a stream of experiences obtained from executing

a behavior policy is reused to update several value functions

corresponding to different estimation policies. Moreover, off-

policy algorithms take into account the effect of probing

noise needed for exploration. Fig. 1 shows the schematic of

on-policy and off-policy RL.

B. Structure

This paper surveys the literature on RL and autonomy.

In Section II, we present the optimal control problems for

discrete-time (DT) dynamical systems and their online solu-

tions using RL algorithms. This section includes optimal reg-

ulation problem, tracking control problem, and H∞ problem

for both linear and nonlinear DT systems. In Section III,

we discuss several recent developments of using RL for

Fig. 1. Two different categories of RL. In on-policy RL, the policy that is
applied to the system (behavior policy) to generate data for learning is the
same as the policy that is being learned (learned policy) to find the optimal
control solution. In off-policy RL, on the other hand, these two policies are
separated and can be different. (a) Off-policy RL diagram. (b) On-policy RL
diagram.

designing the optimal controllers for CT dynamical systems.

Nash game problems and their online solutions are discussed

at the end of this section. The RL solution to games on graphs

is presented in Section IV. Finally, we talk about applications

and provide open research directions in Sections V and VI.

II. OPTIMAL CONTROL OF DT SYSTEMS

AND ONLINE SOLUTIONS

Consider the nonlinear time-invariant system given as

x(k + 1) = f (x(k))+ g(x(k))u(k)

y(k) = l(x(k)) (1)

where x(k) ∈ R
n , u(k) ∈ R

m , and y(k) ∈ R
p represent

the state of the system, the control input, and the output of

the system, respectively. f (x(k)) ∈ R
n is the drift dynamics,

g(x(k)) ∈ R
n×m is the input dynamics, and l(x(k)) ∈ R

p

is the output dynamics. It is assumed that f (0) = 0 and

f (x(k))+ g(x(k))u(k) is locally Lipschitz and the system is

stabilizable. This is a standard assumption to make sure the

solution x(t) of the system (1) is unique for any finite initial

condition.

A. Optimal Regulation Problem

The goal of optimal regulation is to design an optimal

control input to stabilize the system in (1) while minimizing a

predefined cost functional. Such energy-related cost functional
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can be defined as

J =
∞
∑

i=0
U(x(i), u(i)) ≡

∞
∑

i=0
(Q(x)+ uT (i)Ru(i))

where Q(x) � 0 and R = RT ≻ 0. Hence, the problem to be
solved can be defined as

V (x(k)) = min
u

[ ∞
∑

i=k

(Q(x)+ uT (i)Ru(i))

]

, ∀x(k).

The value function given u(k) can be defined as

V (x(k)) =
∞
∑

i=k

U(x(i), u(i))

≡
∞
∑

i=k

(Q(x)+ uT (i)Ru(i)), ∀x . (2)

An equivalent to (2) is the Bellman equation

V (x(k)) = U(x(k), u(k))+ V (x(k + 1)). (3)

The associated Hamiltonian is defined by

H (x(k), u(k), V )

= U(x(k), u(k))+ V (x(k + 1))− V (x(k)), ∀x, u.

The Bellman optimality principle [1] gives the optimal value

function as

V ⋆(x(k)) = min
u

[U(x(k), u(k))+ V ⋆(x(k + 1))]

which is termed the DT HJB equation. The optimal control is

derived to be

u⋆(x(k)) = argmin
u

[U(x(k), u(k))+ V ⋆(x(k + 1))]

= −1
2

R−1gT (x)

(

∂V ⋆(x(k + 1)
∂x(k + 1)

)

.

B. Special Case

For the DT linear systems, the dynamics (1) become

x(k + 1) = Ax(k)+ Bu(k) y(k) = Cx(k) (4)

where A, B , and C are constant matrices with appropriate

dimensions.

By assuming that Q(x) = xT (k)Qx(k), Q ≻ 0 in the

Bellman equation, the value function is quadratic in the current

state so that

V (x(k)) = xT (k)Px(k), ∀x . (5)

Then, the DT HJB becomes the DT algebraic Riccati equation

(DARE)

Q − P + AT P A − AT P B(R + BT P B)−1BT P A = 0

and the optimal control input is

u⋆(k) = −(R + BT P B)−1BT P Ax(k), ∀x .

C. Approximate Solution Using RL

The HJB equation is generally extremely difficult or even

impossible to solve analytically and one needs to approx-

imate its solution. Existing methods for approximating the

HJB equation and DARE require complete knowledge of the

system dynamics. The following PI algorithm can be used

to approximate the HJB equation and DARE solutions by

performing successive iterations.

1) Offline PI Algorithm: Algorithm 1 presents an offline

solution to the DT HJB equation but requires complete knowl-

edge of the system dynamics.

Algorithm 1 PI Algorithm to Find the Solution of HJB

1: procedure

2: Given admissible policy u0(k)

3: for j = 0, 1, . . . given u j , solve for the value V j+1(x)
using Bellman equation

V j+1(x(k)) = Q(x)+uT
j (k) R u j (k)+V j+1(x(k+1)),

on convergence, set V j+1(x(k)) = V j (x(k)).

4: Update the control policy u j+1(k) using

u j+1(k) = −1
2

R−1gT (x)(
∂V j+1(x(k + 1))
∂x(k + 1) ).

5: Go to 3

6: end procedure

2) Actor and Critic Approximators: To approximate the

solution of the HJB equation and obviate the requirement of

the complete knowledge about the system dynamics, actor-

critic structure has been widely presented to find the online

solution to the HJB. The critic approximator estimates the

value function and is updated to minimize the Bellman error.

The actor approximator approximates the control policy and is

updated to minimize the value function [15], [29], [30], [45].

The value function is represented at each step as

V̂ j (x(k)) = Ŵ T
cj φc(x(k)) =

Nc
∑

i=1
ŵi

cj φci (x(k)), ∀x (6)

and the control input as

û j (k) = Ŵ T
aj σa(x(k)) =

Na
∑

i=1
ŵi

a jσai (x(k)), ∀x (7)

where φci (x(k)) and σai (x(k)) are the basis functions, Ŵcj =
[ŵ1cj ŵ

2
cj . . . ŵ

Nc

cj ]T is the weight vector of the critic approx-

imator with Nc the number of basis functions used, and

Ŵa j = [ŵ1a j ŵ
2
a j . . . ŵ

Na

a j ]T is the weight vector of the actor

approximator with Na the number of basis functions used.

The Bellman equation (3) in terms of the critic approxima-

tor (6) is written as

Ŵ T
c( j+1)φc(x(k)) = U(x(k), û j (k))+ Ŵ T

c( j+1) φc(x(k + 1)).
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The gradient descent tuning laws for the critic and actor

approximators are given as

Ŵ l+1
c( j+1) = Ŵ l

c( j+1) − α1φc(x(k))((Ŵ
l
c( j+1))

Tφc(x(k))

− U(x(k), û j (k))) (8)

Ŵ l+1
a( j+1) = Ŵ l

a( j+1) − α2σa(x(k))

×
(

2R
(

W l
a( j+1)

)T × σa(x(k))

+ g(x(k))T
∂φ(x(k + 1))
∂x(k + 1) Ŵc( j+1)

)T

(9)

where α1, α2 > 0 are the tuning gains. Note that using actor-

critic structure to evaluate the value function and improve

the policy for nonlinear systems does not need complete

knowledge of the system dynamics. In [46], synchronous

methods are given to tune the actor and critic approximators.

In [47], an online approximator approach is used to find the

solution HJB equation without requiring the knowledge of the

internal system dynamics. In [48], a greedy iterative heuristic

DP is introduced to obtain the optimal saturated controller

using three neural networks to approximate the value function,

the optimal control policy, and the model of the unknown

plant.

Remark 1: Note that the structure of the value function

approximator is an important factor in convergence and per-

formance of Algorithm 1. If an inappropriate value function

approximator is chosen, the algorithm may never converge to

an optimal solution. For linear systems, the form of the value

function is known to be quadratic, and, therefore, there would

be no error in its approximation. Consequently, Algorithm 1

converges to the global optimal solution for the linear systems.

That is, for linear systems, Algorithm 1 gives the exact

solution to the DARE. For nonlinear system, using single-

layer neural networks for value function approximation may

require a large number of activation functions to assure a

good approximation error, and consequently, a near-optimal

solution. Two-layer neural networks are used in [49] to achieve

a better approximation error with lesser number of activation

functions. Moreover, error-tolerant ADP-based algorithms are

presented for DT systems [50] that guarantees stability in

the presence of approximation error in the value function

approximation. �

3) Event-Triggered RL [51]: In order to reduce the com-

munication between the controller and the plant, one needs to

use an event-triggered control algorithm. The event-triggering

mechanism determines when the control signal has to be

transmitted so that the resulting event-based control executions

still achieve some degree of performance and stabilize the

system. For the nonlinear DT systems, three neural networks

are used to find the event-triggered-based approximation of

the HJB equation.

The nonlinear system can be represented as

x(k + 1) = W ⋆T
m φm(xm(k))+ ǫm (10)

where W ⋆
m is the target weights of model network from the

hidden layer to the output layer, xm(k) is the input vector of

the hidden layer, and ǫm is the bounded approximation error.

The system (10) using current estimates Ŵm of the ideal

weights W ⋆
m is given as

x̂(k + 1) =
Nmh
∑

i=1
w2mi si (k)

with

si (k) = 1− e−hi (k)

1+ e−hi (k)
i = 1, . . . , Nmh

hi (k) =
n+m
∑

j=1
w1mi, j xmj (k) i = 1, . . . , Nmh

where w1m and w
2
m are the weight matrices. hi is the input of

the i th hidden node, and si is its corresponding output. Nmh

is the number of hidden neurons. xm(k) is the input of the

model network that includes the sampled state vector and the

corresponding control law.

The gradient descent can be used to update the weights of

the network to minimize em = x̂(k + 1)− x(k + 1). The value
function can be approximated by a network similar to (6).

The gradient descent can be used to update the weights of the

network to minimize

ec(k) = J (x(ki))− [J (x̂(ki + 1))+ U(k)]
where J is the output of critic network and defined as

J (x(ki)) =
Nch
∑

l=1
w2cl ql(k)

with

ql(k) = 1− e−pl (k)

1+ e−pl (k)
l = 1, . . . , Nch

pl(k) =
n

∑

j=1
w1cl, j xcj (ki ) l = 1, . . . , Nch

where pl and ql are the input and the output of the hidden

nodes of the critic network, respectively, and Nch is the total

number of the hidden nodes. The input for the critic network,

xc(ki ), is the sampled state vector only, so there are n input

nodes in the critic network.

The sampled state x(ki) is used as input to learn the event-

triggered control law, which is defined as

µ(x(ki)) =
Nah
∑

l=1
w2alvl(k)

with

vl(k) = 1− e−tl(k)

1+ e−tl(k)
l = 1, . . . , Nah

tl(k) =
n

∑

j=1
w1al, j xa j (ki ) l = 1, . . . , Nah

where tl and vl are the input and the output of the hidden nodes

of the action network, respectively. Nah is the total number of

the hidden nodes in the action network.

The gradient descent can be used to update the weights

of the actor network. In [52], the event-triggered finite-time

optimal control scheme is designed for an uncertain nonlinear

DT system.
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4) Q Function for the DT Linear Quadratic Regulation:

For linear systems, the work of [32] proposed an action-

dependent function (Q-function) instead of value function in

the Bellman equation to avoid knowing the system dynamics.

This is termed in the literature as Q-learning [53], [54].

Based on (3) and (5), the DT Q-function is defined as

Q(x(k), u(k)) = xT (k)Qx(k)+ uT (k)Ru(k)

+ x T (k + 1)Px(k + 1), ∀u, x . (11)

Using the dynamics (4), the Q-function (11) becomes

Q(x(k), u(k))

=
[

x(k)

u(k)

]T [

Q + AT P A AT P B

BT P A R + BT P B

] [

x(k)

u(k)

]

.

Define

Q(x(k), u(k)) =
[

x(k)

u(k)

]T [

Sx x Sxu

Sux Suu

] [

x(k)

u(k)

]

= Z T (k)SZ(k)

for a kernel matrix S.

By applying the stationarity condition (∂Q(x(k), u(k))/

∂u(k)) = 0, one has

u⋆(k) = −(R + BT P B)−1BT P Ax(k)

and

u⋆(k) = −S−1
uu Sux x(k).

Algorithm 2 Q-Learning Algorithm for DARE

1: procedure

2: Given admissible policy u0(k)

3: for j = 0, 1, . . . given u j , solve for the value S j+1
using Bellman equation

Z T (k) S j+1 Z(k) =x T (k) Q x(k)+ uT
j (k) R u j (k)

+ Z T (k + 1) S j+1 Z(k + 1),

on convergence, set S j+1 = S j .

4: Update the control policy u j+1(k) using

u j+1(k) = −(Suu)
−1
j+1(Sux) j+1 x(k).

5: go to 3

6: end procedure

Algorithm 2 is a model-free learning approach. This algo-

rithm converges to the global optimal solution, on condition

that a persistence of excitation (PE) condition is satisfied [55].

The PE condition guarantees the uniqueness of the policy

evaluation step at each iteration. However, full information

of the states of the system is needed. In [56], output-feedback

(OPFB) RL algorithms are derived for linear systems. These

algorithms do not require any knowledge of the system

dynamics and, as such, are similar to Q-learning and they

have an added advantage of requiring only measurements of

input/output data and not the full system state.

D. Optimal Tracking Problem

The goal now is to design an optimal control input to

make the states of the system x(k) follow a desired reference

trajectory xd(k). Let us now define the tracking error e(k) as

e(k) = x(k)− xd(k).

In the tracking problem, the control input consists of two

terms: a feedforward term that guarantees tracking and a

feedback term that stabilizes the system.

The feedforward term can be obtained using the dynamics

inversion concept as

ud(k) = g(xd(k))
−1(xd(k + 1)− f (xd(k))).

Consider the following cost functional:

J (e(k), ue(k)) =
∞
∑

i=k

(

eT (i)Qee(i)+ uT
e (i)Reue(i)

)

where Qe � 0 and Re = RT
e ≻ 0. The feedback input

can be found by applying the following stationarity condition,

∂ J (e, ue)/∂ue = 0 as:

u⋆e(k) = −1
2

R−1
e gT (k)

∂ J (e(k + 1))
∂e(k + 1) .

Then, the optimal control input including both feedback and

feedforward terms is

u⋆(k) = ud(k)+ u⋆e(k).

Obtaining the feedforward part of the control input needs

complete knowledge of the system dynamics and the reference

trajectory dynamics. In [57] and [58], a new formulation is

developed that gives both feedback and feedforward parts

of the control input simultaneously and thus enables RL

algorithms to solve the tracking problems without requiring

the complete knowledge of the system dynamics.

Assume now that the reference trajectory is generated by

the following command generator model:

xd(k + 1) = ψ(xd(k))

where xd(k) ∈ R
n . Then, an augmented system can be con-

structed in terms of the tracking error e(k) and the reference

trajectory xd(k) as
[

e(k + 1)
xd(k + 1)

]

=
[

f (e(k)+xd(k))−ψ(xd(k))

ψ(xd(k))

]

+
[

g(e(k)+xd(k))

0

]

u(k)

≡ F(X (k))+ G(X (k))u(k)

where the augmented state is

X (k) =
[

e(k)

xd(k)

]

.

The new cost functional is defined as

J (x(0), xd(0), u(k))

=
∞
∑

i=0
γ i−k ×((x(k)−xd(k))

T Q(x(k)−xd(k))+uT (i)Ru(i))
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where Q � 0 and R = RT ≻ 0. The value function in terms

of the states of the augmented system is written as

V (X (k)) =
∞
∑

i=k

γ i−k(U(X (k), u(k))

=
∞
∑

i=k

γ i−k(X T (i)QT X (i)+ uT (i)Ru(i)) (12)

where

QT =
[

Q 0

0 0

]

and 0 < γ ≤ 1 is the discount factor.

Remark 2: Note that it is essential to use a discounted

performance function for the proposed formulation. This is

because if the reference trajectory does not go to zero, which

is the case of most real applications, then the value is infinite,

without the discount factor as the control input contains a

feedforward part that depends on the reference trajectory and

thus uT (k)Ru(k) does not go to zero as time goes to infinity. �

A difference equivalent to (12) is

V (X (k)) = U(X (k), u(k)+ γ V (X (k + 1)).
The Hamiltonian for this problem is given as

H (X (k), u(k), V ) = X T (k)QT X (k)+ uT (k)Ru(k)

+ γ V (x(k + 1))− V (x(k)).

The optimal value can be found [59]

V ⋆(X (k)) = min
u

[U(X (k), u(k))+ γ V ⋆(X (k + 1))]

which is just the DT HJB equation. The optimal control is

then given as

u⋆(X (k)) = argmin
u

[U(X (k), u(k))+ γ V ⋆(X (k + 1))]

= −γ
2

R−1GT (X)

(

∂V ⋆(X (k + 1)
∂X (k + 1)

)

.

E. Approximate Solution Using RL

The solution of the DT HJB tracking equation can be

approximated as follows.

1) Offline PI Algorithm: The PI algorithm is used to find

the solution of DT HJB tracking by iterating on the solution

of the Bellman equation.

The augmented system dynamics must be known in order

to update the control input in Algorithm 3. Convergence

properties of Algorithm 3 are similar to Algorithm 1 and are

not discussed here.

2) Online Actor and Critic Approximators: To obviate the

requirement of complete knowledge of the system dynamics

or reference trajectory dynamics, an actor-critic structure,

similar to (6) and (7), is developed in [57] for solving the

nonlinear optimal tracking problem. In [58], the Q-learning

is used to find the optimal solution for linear systems.

Kiumarsi et al. [60] presented PI and VI algorithms to solve

the linear quadratic tracker (LQT) ARE online without requir-

ing any knowledge of the system dynamics and information

of the states of the system only using the measured input and

output data.

Algorithm 3 PI Algorithm to Find the Solution of Tracking

HJB
1: procedure

2: Given admissible policy u0(k)

3: for j = 0, 1, . . . given u j , solve for the value V j+1(x)
using Bellman equation

V j+1(X (k)) =X T (k)QT X (k)+ uT
j (k) R u j (k)

+ γ V j+1(X (k + 1))

on convergence, set V j+1(X (k)) = V j (X (k)).

4: Update the control policy u j+1(k) using

u j+1(X (k)) = −γ
2

R−1GT (X)(
∂V j+1(X (k + 1))

∂X (k + 1) ).

5: Go to 3

6: end procedure

F. H∞ Control of DT Systems

The H∞ control problem can be considered as a zero-sum

game, where the controller and the disturbance inputs are con-

sidered as minimizing and maximizing players, respectively

[61]–[64]. In the linear systems, the optimal solution to the

zero-sum game problem leads to solving the GARE.

Consider now the dynamics with an added disturbance input

x(k + 1) = f (x(k))+ g(x(k))u(k)+ h(x(k))d(k) (13)

where x(k) ∈ R
n is a measurable state vector, u(k) ∈ R

m

is the control input, d(k) ∈ R
q is the disturbance input,

f (x(k)) ∈ R
n is the drift dynamics, g(x(k)) ∈ R

n×m is the

input dynamics, and h(x(k)) ∈ R
n×q is the disturbance input

dynamics.

Define the cost functional to be optimized as

J (x(0), u(k), d(k)) =
∞
∑

i=0
(Q(x)+uT (i)Ru(i)−β2dT (i)d(i))

where Q(x) � 0, R = RT ≻ 0, and β ≥ β⋆ ≥ 0 with β⋆

the smallest β such that the system is stabilized. The value

function with feedback control and disturbance policies can

be defined as

V (x(k), u(k), d(k)) =
∞
∑

i=k

(Q(x)+uT (i)Ru(i)−β2dT (i)d(i)).

A difference equivalent to this is

V (x(k)) = Q(x)+uT (k)Ru(k)−β2dT (k)d(k)+V (x(k+1)).
We can find the optimal value, by solving a zero-sum differ-

ential game as

V ⋆(x(k)) = min
u
max

d
J (x(0), u, d)

subject to (13). It is worth noting that u(k) is the minimizing

player while d(k) is the maximizing one.

In order to solve this zero-sum game, one needs to solve

the following Hamilton–Jacobi–Isaacs (HJI) equation:
V ⋆(x(k))

= Q(x)+ u⋆T (k)R u⋆(k)− β2d⋆T (k)d⋆(k)+ V ⋆(x(k+1)).
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Given a solution V ⋆ to this equation, one can find the optimal

control and the worst case disturbance as

u⋆(k) = −1
2

R−1gT (x)

(

∂V ⋆(x(k + 1))
∂x(k + 1)

)

and

d⋆(k) = 1

2β2
hT (x)

(

∂V ⋆(x(k + 1))
∂x(k + 1)

)

respectively.

G. Approximate Solution Using RL

In the following sections, on-policy and off-policy RL

algorithms are presented to solve the HJI and GARE

solutions by successive approximations to the Bellman

equations.

1) On-Policy RL to Solve H∞ Control of DT Systems:

The following on-policy RL algorithm is given to solve the

HJI.

Algorithm 4 PI Algorithm to Solve the HJI

1: procedure

2: Given admissible policies u0(k) and d0(k)

3: for j = 0, 1, . . . given u j and d j , solve for the value

V j+1(x(k)) using Bellman equation

V j+1(x(k)) =Q(x)+ uT
j (k) R u j (k)− β2dT

j (k)d j (k)

+ V j+1(x(k + 1)),

on convergence, set V j+1(x(k)) = V j (x(k)).

4: Update the control policy u j+1(k) and disturbance pol-
icy d j+1(k) using

u j+1(k) = −1
2

R−1gT (x)(
∂V j+1(k + 1)
∂x(k + 1) ),

d j+1(k) = 1

2β2
hT (x)(

∂V j+1(x(k + 1))
∂x(k + 1) ).

5: Go to 3.

6: end procedure

The PI algorithm (Algorithm 4) is an offline algorithm

and requires complete knowledge of the system dynamics.

The actor-critic structure can be used to design an online

PI algorithm that simultaneously updates the value function

and policies and does not require the knowledge of the drift

dynamics. The value function and control input are approx-

imated as (6) and (7), respectively. The disturbance input is

approximated as

d̂ j (k) = Ŵ T
d jσd (x(k)) =

Nd
∑

i=1
ŵi

d jσdi (x(k))

where σdi (x(k)) is the basis function for the approximator,

Ŵd j = [ŵ1d j ŵ
2
d j . . . ŵ

Nd

d j ]T is the weight vector, and Nd is the

number of basis functions used.

The weights of the value function and control input approx-

imators are updated using gradient descent as (8) and (8),

respectively. The gradient descent can also be used to update

the weights of the disturbance input approximator.

A Q-learning algorithm is presented in [65] to find the

optimal control input and worst case disturbance input for

linear systems without requiring any knowledge of the sys-

tem dynamics. However, the disturbance input needs to be

updated in a prescribed manner. An off-policy RL algorithm

is presented in [66] that does not need any knowledge of

the system dynamics and the disturbance input does not

need to be updated in a prescribed manner. Fig. 2 shows a

schematic of off-policy RL for solving the zero-sum game

problem.

2) Off-Policy RL for Solving Zero-Sum Game Prob-

lem of DT Systems [66]: Consider the following system

description:

x(k + 1) = Ax(k)+ Bu(k)+ Dd(k) (14)

where x ∈ R
n, u ∈ R

m, and d ∈ R
q are the state, control, and

disturbance inputs, and A, B, and D are constant matrices of

appropriate dimensions. To derive an off-policy RL algorithm,

the original system (14) is rewritten as

x(k + 1) = Akx(k)+B(K 1
j x(k)+u(k))+D(K 2

j x(k)+d(k))

(15)

where Ak = A − B K 1
j − DK 2

j .

In (15), the estimation policies are u j (k) = −K 1
j x(k) and

d j (k) = −K 2
j x(k). By contrast, u(k) and d(k) are the behavior

policies that are actually applied to (14) to generate the data

for learning.

Using the Taylor expansion of the value function V (x(k))

at point x(k + 1) for (14), the value function (5) yields

xT (k)Pj+1x(k)− x T (k + 1)Pj+1x(k + 1)

= xT (k)Qx(k)+ x T (k)
(

K 1
j

)T
RK 1

j x(k)− β2x T (k)
(

K 2
j

)T

× K 2
j x(k)−

(

u(k)+ K 1
j x(k)

)T
BT Pj+1x(k + 1)

−
(

u(k)+ K 1
j x(k)

)T
BT Pj+1Akx(k)

−
(

K 2
j x(k)+ d(k)

)T
DT Pj+1x(k + 1)

−
(

K 2
j x(k)+ d(k)

)T
DT Pj+1Ak x(k). (16)

Remark 3: Note that (16) does not explicitly depend on

K 1
j+1 and K 2

j+1. Also, complete knowledge of the system
dynamics is required for solving (16). In the following, it

is shown how to find (Pj+1, K 1
j+1, K 2

j+1) simultaneously

by (16) without knowing any knowledge of the system

dynamics. �

Given any matrix M ∈ R
n×m , vec(M) ∈ R

nm×1 is transpose
of a vector formed by stacking the rows of matrix M .

Using aT Wb = (bT ⊗ aT )vec(W ), (14), and Ak = A −
B K 1

j − DK 2
j , the off-policy Bellman equation (16) can be
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rewritten as

(x T (k)⊗ x T (k))vec
(

L1j+1
)

− (x T (k + 1)⊗ x T (k + 1))vec
(

L1j+1
)

+ 2
(

xT (k)⊗
(

u(k)+ K 1
j x(k)

)T )

vec
(

L2j+1
)

−
((

K 1
j x(k)− u(k)

)T ⊗
(

u(k)+ K 1
j x(k)

)T )

vec
(

L3j+1
)

+ 2
(

xT (k)⊗
(

d(k)+ K 2
j x(k)

)T )

vec
(

L4j+1
)

−
((

K 1
j x(k)− u(k)

)T ⊗
(

d(k)+ K 2
j x(k)

)T )

vec
(

L5j+1
)

+
((

d(k)− K 2
j x(k)

)T ⊗
(

u(k)+ K 1
j x(k)

)T )

vec
(

L6j+1
)

+
((

d(k)− K 2
j x(k)

)T ⊗
(

d(k)+ K 2
j x(k)

)T )

vec
(

L7j+1
)

= xT (k)Qx(k)+ x T (k)
(

K 1
j

)T
RK 1

j x(k)

− β2x T (k)
(

K 2
j

)T
K 2

j x(k) (17)

with L1j+1 = Pj+1, L2j+1 = BT Pj+1A, L3j+1 = BT Pj+1B ,

L4j+1 = DT Pj+1A, L5j+1 = DT Pj+1B, L6j+1 = BT Pj+1D,

and L7j+1 = DT Pj+1D that are the unknown variables in the

Bellman equation (17). Then, using (17), one has

ψ j

[

vec
(

L1j+1
)T
vec

(

L2j+1
)T
vec

(

L3j+1
)T
vec

(

L4j+1
)T

vec
(

L5j+1
)T
vec

(

L6j+1
)T
vec

(

L7j+1
)T ]T = φ j (18)

where φ j = [(φ1j )T . . . (φs
j )

T ]T and ψ j = [(ψ1j )T . . . (ψs
j )

T ]T

with φi
j and ψ

i
j defined as in [66]. One can solve (18) using

a least-squares (LS) method.

Algorithm 5 Off-Policy PI to Find the Solution of GARE

1: procedure

2: Set the iteration number j = 0 and start with a

admissible control policy u(k) = −K 1x(k) + e(k)

where e(k) is probing noise.

3: while ‖K 1
j+1 − K 1

j ‖ ≥ ǫ and ‖K 2
j+1 − K 2

j ‖ ≥ ǫ do

4: For j = 0, 1, 2, . . . , solve (18) using LS

ψ j

[

vec(L1j+1)
T
vec(L2j+1)

T
vec(L3j+1)

T
vec(L4j+1)

T

vec(L5j+1)
T
vec(L6j+1)

T
vec(L7j+1)

T
]T

= φ j .

5: Update the control and disturbance gains as

K 1
j+1 = −(R + L3j+1 + L6j+1(β

2I − L7j+1)
−1L5j+1)

−1

× (L2j+1 + L6j+1(β
2I − L7j+1)

−1
L4j+1),

K 2
j+1 =(L7j+1 − β2I − L5j+1(R + L3j+1)

−1L6j+1)
−1

× (L4j+1 − L5j+1(R + L3j+1)
−1

L2j+1).

6: j = j + 1
7: end while

8: end procedure

III. OPTIMAL CONTROL OF CT SYSTEMS

AND ONLINE SOLUTIONS

Consider the nonlinear time-invariant system given as

ẋ(t) = f (x(t))+ g(x(t))u(t) y(t) = l(x(t)) (19)

Fig. 2. Off-policy RL for H∞ control. The behavior disturbance policy is
the actual disturbance from the environment that cannot be specified. On the
other hand, the learned disturbance policy uses the collected data to learn the
worst case policy.

where x(t) ∈ R
n , u(t) ∈ R

m , and y(t) ∈ R
p represent

the state of the system, the control input, and the output of

the system, respectively. f (x(t)) ∈ R
n is the drift dynamics,

g(x(t)) ∈ R
n×m is the input dynamics, and l(x(t)) ∈ R

p

is the output dynamics. It is assumed that f (0) = 0 and

f (x(t)) + g(x(t))u(t) is locally Lipschitz and the system is

stabilizable.

A. Optimal Regulation Problem

The goal in optimal regulation is to design an optimal

control input to assure the states of the system (19) converge

to zero by minimizing a cost functional. The cost functional

is defined as

J (x(0), u) =
∫ ∞

0

r(x, u)dt ≡
∫ ∞

0

(Q(x)+ uT Ru))dt

where Q(x) � 0 and R = RT ≻ 0. The value function for the

admissible control policy can be defined as

V (x, u) =
∫ ∞

t

r(x, u)dτ ≡
∫ ∞

t

(Q(x)+ uT Ru))dτ.

A differential equivalent to this is

r(x, u)+ ∂V

∂x

T

( f (x)+ g(x)u)) = 0, V (0) = 0

and the Hamiltonian is given by

H

(

x, u,
∂V

∂x

T
)

= r(x, u)+ ∂V

∂x

T

( f (x)+ g(x)u).

The optimal value is given by the Bellman optimality equation

r(x, u⋆)+ ∂V ⋆

∂x

T

( f (x)+ g(x)u⋆) = 0 (20)

which is just the CT HJB equation. The optimal control is

then given as

u⋆(t) = argmin
u

(

r(x, u)+ ∂V ⋆

∂x

T

( f (x)+ g(x)u)

)

= −1
2

R−1gT (x)

(

∂V ⋆

∂x

)

. (21)
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B. Approximate Solution Using RL

The following on-policy and off-policy integral RL (IRL)

algorithms are presented to approximate HJB solution by

iterating on the Bellman equations.

1) On-Policy IRL: In [35] and [67], an equivalent for-

mulation of the Bellman equation that does not involve the

dynamics is found to be

V (x(t)) =
∫ t+T

t

(Q(x(τ ))+uT (τ )Ru(τ ))dτ+V (x(t + T ))

(22)

for any time t ≥ 0 and time interval T > 0. This equation

is called IRL Bellman equation. The following PI algorithm

can be implemented by iterating on the above IRL Bellman

equation and updating the control policy.

Algorithm 6 On-Policy IRL Algorithm to Find the Solution

of HJB
1: procedure

2: Given admissible policy u0
3: for j = 0, 1, . . . given u j , solve for the value V j+1(x)

using Bellman equation

V j+1(x(t)) =
∫ t+T

t

(

Q(x)+uT
j Ru j )

)

dτ+V j+1(x(t+T )),

on convergence, set V j+1(x) = V j (x).

4: Update the control policy u j+1(k) using

u j+1(t) = −1
2

R−1gT (x)(
∂V j+1(x)

∂x
).

5: Go to 3.

6: end procedure

The IRL algorithm (Algorithm 6) is online and does not

require the knowledge of the drift dynamics. To implement

Step 3 of Algorithm 6, a neural-network-type structure, similar

to (6) and (7), is used in [67] to approximate the value

function. This algorithm is a sequential RL algorithm in the

sense that the actor (policy improvement) and critic (policy

evaluation) are updated sequentially. Synchronous update laws

for actor and critic were first introduced in [36] to update both

actor and critic simultaneously while assuring system stability.

Later, in [68] and [69], synchronous actor-critic structure

was augmented with system identification to avoid complete

knowledge of the system dynamics.

2) On-Policy IRL With Experience Replay Learning Tech-

nique [70]–[72]: To speed up and obtain an easy-to-check

condition for the convergence of the IRL algorithm, the recent

transition samples are stored and repeatedly presented to the

gradient-based update rule. A similar condition was proposed

in [73] for adaptive control systems. This is a gradient-

decent algorithm that does not only minimize the instantaneous

temporal difference (TD) error but also minimize the TD errors

for the stored transition samples. Assume now that the value

function V (x) can be uniformly approximated as in the IRL

Bellman equation (22)

V̂ (x) = Ŵ T
c φ1(x), ∀x

where φ1(x) : R
n → R

N is the basis function vector and N

is the number of basis functions. Therefore, the approximate

IRL Bellman equation becomes

eB = 1φ1(t)
T Ŵc +

∫ t

t−T

(Q(x)+ ûT Rû)dτ

where 1φ1(t) = φ1(t) − φ1(t − T ) and eB is the TD error

after using current critic approximator weights. To collect data

in the history stack, consider 1φ1(t j ) as evaluated values of

1φ1 at the recorded time t j . Then, define the Bellman equation

error (TD error) at the recorded time t j using the current critic

weights estimation Ŵc as

(eB) j = 1φ1(t j )
T Ŵc +

∫ t j

t j −T

(Q(x(τ ))+ ûT (τ )Rû(τ ))dτ.

The experience replay-based gradient-decent algorithm for

the critic NN is now given as

˙̂
Wc = −αc

1φ1(t)

(1φ1(t)T1φ1(t)+ 1)2 eB

− αc

l
∑

j=1

1φ1(t j )

(1φ1(t j )T1φ1(t j )+ 1)2
(eB) j .

The first term is a gradient update law for the TD error and

the last term minimizes its stored samples in the history stack.

3) Event-Triggered On-Policy RL [74]: The event-triggered

version of the optimal controller uses the sampled state infor-

mation instead of the true one and (21) becomes

u⋆(x̂i ) = −1
2

R−1gT (x̂i )

(

∂V ⋆(x̂i )

∂x

)

∀t ∈ (ri−1, ri ] and i ∈ N (23)

where ri is the i th consecutive sampling instant and x̂i = x(ri ).

Using the event-triggered controller (23), the HJB equa-

tion (20) becomes ∀x, x̂i ∈ R
n

∂V ⋆

∂x

T (

f (x)− 1

2
g(x)R−1gT (x̂i )

(

∂V ⋆(x̂i)

∂x

))

+ Q(x)+ 1

4

∂V ⋆(x̂i )

∂x

T

g(x̂i)(R
−1)T R−1g(x̂i)

T ∂V ⋆(x̂i )

∂x

= (u⋆(x̂i)− u⋆c)
T R(u⋆(x̂i )− u⋆c) (24)

where u⋆c is given by (21).

To solve the event-triggered HJB equation (24), the value

function is approximated on a compact set � as

V ⋆(x) = W ⋆T
c φ(x)+ ǫc(x), ∀x ∈ R

n (25)

where φ(x) : R
n → R

k is the basis function set vector, k is

the number of basis functions, and ǫc(x) is the approximation

error. Based on this, the optimal event-triggered controller

in (23) can be rewritten as

u⋆(x̂i ) = −1
2

R−1gT (x̂i )

(

∂φ(x̂i )

∂x

T

W ⋆
c + ∂ǫc(x̂i )

∂x

)

t ∈ (ri−1, ri1]. (26)

The optimal event-triggered controller (26) can be approxi-

mated by the actor for all t ∈ (ri−1, ri ] as
u⋆(x̂i ) = W ⋆T

u φu(x̂i )+ ǫu(x̂i ), ∀x̂i , i ∈ N (27)
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where φu(x̂i) : R
n → R

h is the basis function set vector, h is

the number of basis functions, and ǫu(x̂i ) is the approximation

error.

The value function (25) and the optimal policy (27) using

current estimates Ŵc and Ŵu , respectively, of the ideal weights

W ⋆
c and W ⋆

u are given by the following critic and actor

approximators:

V̂ (x) = Ŵ T
c φ(x), ∀x

û(x̂i ) = Ŵ T
u φu(x̂i ), ∀x̂i .

The Bellman error is defined as

ec = Ŵ T
c

∂φ

∂x
( f (x)+ g(x)û(x̂i )))+ r(x, û)

with r(x, û) = Q(x)+ û(x̂i)
T Rû(x̂i ).

The weights Ŵc are tuned to minimize K = (1/2)eT
c ec as

˙̂
Wc = −αc

∂K

∂Ŵc

= −αc

w

(wTw + 1)2 (w
T Ŵc + r(x, û))

with w = (∂φ/∂x)( f (x)+ g(x)û(x̂i ))).

In order to find the update law for the actor approximator,

the following error is defined:

eu = Ŵ T
u φu(x̂i )+

1

2
R−1gT (x̂i )

(

∂φ(x̂i )

∂x

)T

Ŵc, ∀x̂i .

The weights Ŵu are tuned to minimize Eu = (1/2)eT
u eu as

˙̂
Wu = 0, for t ∈ (ri−1, ri ]

and the jump equation to compute Ŵu(r
+
j ) given by

Ŵ+
u = Ŵu(t)− αuφu(x(t))

×
(

Ŵ T
u φu(x(t))+

1

2
R−1gT (x(t))

∂φ(x(t))

∂x

T

Ŵc

)T

for t = ri .

The convergence and stability are proved in [74]. The work

of [75] extended [74] to systems with input constraints and

without requiring the knowledge of the system dynamics.

Event-based RL approaches are also presented in [76]–[78]

for interconnected systems.

4) Off-Policy IRL [79], [80]: In order to develop the off-

policy IRL algorithm, the system dynamics (19) is rewritten as

ẋ(t) = f (x(t))+g(x(t))u j(t)+g(x(t))(u(t)−u j(t)) (28)

where u j (t) is the policy to be updated. By contrast, u(t) is the

behavior policy that is actually applied to the system dynamics

to generate the data for learning.

Differentiating V (x) along with the system dynamics (28)

and using u j+1(t) = −(1/2)R−1gT (x)(∂V j (x)/∂x) give

V̇ j =
(

∂V j (x)

∂x

)

T ( f + gu j )+
(

∂V j (x)

∂x

)T

g(u − u j )

= −Q(x)− u j
T Ru j − 2u j+1T R(u − u j ).

Integrating from both sides of the above equation yields the

off-policy IRL Bellman equation

V j (x(t + T ))− V j (x(t))

=
∫ t+T

t

(

− Q(x)−uT
j Ru j −2u j+1T R(u−u j )

)

dτ. (29)

Iterating on the IRL Bellman equation (29) yields the

following off-policy IRL algorithm.

Algorithm 7 Off-Policy IRL Algorithm to Find the Solution

of HJB
1: procedure

2: Given admissible policy u0
3: for j = 0, 1, . . . given u j , solve for the value V j and

u j+1 using off-policy Bellman equation

V j (x(t + T ))− V j (x(t)) =
∫ t+T

t

(

− Q(x)− uT
j Ru j − 2 u j+1T R (u − u j )

)

dτ.

on convergence, set V j+1 = V j .

4: Go to 3.

5: end procedure

Remark 4: Note that for a fixed control policy u(t) (the

policy that is applied to the system), the off-policy IRL

Bellman equation (29) can be solved for both value function

V j and updated policy u j+1, simultaneously without requiring
any knowledge about the system dynamics. �

To implement the off-policy IRL algorithm (Algorithm 7),

the actor-critic structure, similar to (6) and (7), is used to

approximate the value function and control policy [79].

For a linear system, the off-policy IRL Bellman equation

(see [81]) is given as

xT (t + T )Pj x(t + T )− x T (t)Pj x(t)

=
∫ t+T

t

(

− x T Qx −uT
j Ru j −2u j+1T R(u−u j )

)

dτ. (30)

Iterating on the Bellman equation (30) yields the off-policy

IRL algorithm for the linear systems.

5) Robust Off-Policy IRL [79]: Consider the following

uncertain nonlinear system:

ẋ(t) = f (x(t))+ g(x(t))[u(t)+1(x, w)]
ẇ(t) = 1w(x, w) (31)

where x(t) ∈ R
n is the measured component of the state

available for feedback control, w(t) ∈ R
p is the unmeasurable

part of the state with unknown order p, u(t) ∈ R is the control

input, 1w ∈ R
p and 1 ∈ R are unknown locally Lipschitz

functions, and f (x(t)) ∈ R
n and g(x(t)) ∈ R

n are the drift

dynamics and input dynamics, respectively. In order to develop

the robust off-policy IRL algorithm, the system dynamics (31)

is rewritten as

ẋ(t) = f (x(t))+ g(x(t))u j (t)+ g(x(t))v j (t))

where v j = u +1− u j .



2052 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 6, JUNE 2018

Differentiating V (x) along (31) and using u j+1(t) =
−(1/2)R−1gT (x)(∂V j (x)/∂x) give

V̇ j =
(

∂V j (x)

∂x

)

T ( f + gu j + gv j )

= −Q(x)− u j
T Ru j − 2u j+1T Rv j .

Integrating both sides of the above equation yields the robust

off-policy IRL Bellman equation

V j (x(t + T ))− V j (x(t))

=
∫ t+T

t

(

− Q(x)− uT
j Ru j − 2u j+1

T Rv j

)

dτ. (32)

Using an actor-critic structure, similar to (6) and (7), for V j

and u j+1 in (32), yields

Nc
∑

i=1
ŵi

cj [φci (x(t + T ))− φci (x(t))]

=
∫ t+T

t



−Q(x)−ûT
j Rû j −2

(

Na
∑

i=1
ŵi

a jσai (x(k))

)T

Rv j



 dτ.

(33)

Iterating on the IRL Bellman equation (33) provides the

following robust off-policy IRL algorithm.

Algorithm 8 Robust Off-Policy IRL Algorithm

1: procedure

2: Given admissible policy u0
3: for j = 0, 1, . . . given u j , solve for the value V j and

u j+1 using off-policy Bellman equation

Nc
∑

i=1
ŵi

cj [φci (x(t + T ))− φci (x(t))] =

∫ t+T

t

(

−Q(x)−ûT
j Rû j −2 (

Na
∑

i=1
ŵi

a j σai (x(k)))
TR v j

)

dτ,

on convergence, set V j+1 = V j .

4: Go to 3.

5: end procedure

C. Optimal Tracking Problem

The goal here is to design an optimal control input to

make the states of the system x(t) track a desired reference

trajectory xd(t).

Define the tracking error as

e(t) = x(t)− xd(t).

Similar to DT systems, standard techniques find the

feedback and feedforward parts of the control input sepa-

rately using complete knowledge of the system dynamics.

In [82] and [83], a new formulation is developed that gives

both feedback and feedforward parts of the control input

simultaneously and thus enables RL algorithms to solve the

tracking problems without requiring complete knowledge of

the system dynamics.

Assume that the reference trajectory is generated by the

command generator model

ẋd(t) = hd(xd(t))

where xd(t) ∈ R
n . An augmented system can be constructed

in terms of the tracking error e(t) and the reference trajectory

xd(t) as

Ẋ(t) =
[

ė(t)

ẋd(t)

]

=
[

f (e(t)+ xd(t))− hd(xd(t))

hd (xd(t))

]

+
[

g(e(t)+ xd(t))

0

]

u(t) ≡ F(X (t))+ G(X (t))u(t)

(34)

where the augmented state is

X (t) =
[

e(t)

xd(t)

]

.

The cost functional is defined as

J (x(0), xd(0), u(t))

=
∞
∫

0

e−η(τ−t) × ((x(τ )− xd(τ ))
T Q(x(τ )− xd(τ ))

+ uT (τ )Ru(τ ))dτ

where Q � 0 and R = RT ≻ 0. The value function in terms

of the states of the augmented system yields

V (X (t)) =
∫ ∞

t

e−η(τ−t)r(X, u)dτ

= (X T (τ )QT X (τ )+ uT (τ )Ru(τ ))dτ (35)

where

QT =
[

Q 0

0 0

]

and η ≥ 0 is the discount factor.
A differential equivalent to this is the Bellman equation

r(X, u)− ηV + ∂V

∂X

T

(F(x)+ G(X)u) = 0, V (0) = 0

and the Hamiltonian is given by

H

(

X, u,
∂V

∂X

T
)

= r(X, u)− ηV + ∂V

∂X

T

(F(X)+ G(X)u).

The optimal value is given by

r(X, u⋆)− ηV ⋆ + ∂V ⋆

∂X

T

(F(X)+ G(X)u⋆) = 0

which is just the CT HJB tracking equation. The optimal

control is then given as

u⋆(t) = argmin
u

(

r(X, u)− ηV ⋆ + ∂V ⋆

∂X

T

(F(X)+ G(X)u)

)

= −1
2

R−1GT (x)

(

∂V ⋆

∂X

)

.
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D. Approximate Solution Using RL

Using the value function (35) and in a similar manner to

the off-policy and on-policy IRL algorithms for the optimal

regulation, the following off-policy and on-policy IRL algo-

rithms are developed to find the optimal solution of CT HJB

tracking equation.

1) On-Policy IRL: Similar to Algorithm 6 for the opti-

mal regulation, the following on-policy IRL algorithm is

presented in [83] to solve the CT HJB equation online

and without requiring the knowledge of the internal system

dynamics.

Algorithm 9 On-Policy IRL Algorithm to Find the Solution

of HJB
1: procedure

2: Given admissible policy u(0)
3: for j = 0, 1, . . . given u j , solve for the value V j+1(X)

using Bellman equation

V j+1(X (t)) =
∫ t+T

t

e−η τ (

X T (τ )QT X (τ )

+ uT
j (τ )Ru j (τ )

)

dτ + e−η T V j+1(X (t + T )),

on convergence, set V j+1(X) = V j (X).

4: Update the control policy u j+1(t) using

u j+1(t) = −1
2

R−1gT (X)(
∂V j+1(X)

∂X
).

5: Go to 3.

6: end procedure

The IRL algorithm (Algorithm 9) is an online algorithm and

does not require the knowledge of the internal system dynam-

ics. In [83], an actor-critic structure, similar to (6) and (7), is

used to implement Algorithm 9. In [82], the quadratic form

of value function, xT (t)Px(t), is used in the IRL Bellman

equation for the linear systems to find the solution of LQT

ARE.

2) Off-Policy IRL: Similar to off-policy IRL for optimal

regulation, for the augmented system (34) and the discounted

value function (35), the following off-policy IRL algorithm is

developed in [84] to avoid the requirement of the knowledge

of the system dynamics.

Algorithm 10 Off-Policy IRL Algorithm to Find the Solution

of HJB
1: procedure

2: Given admissible policy u0
3: for j = 0, 1, . . . given u j , solve for the value V j+1 and

u j+1 using off-policy Bellman equation

e−η T V j+1(X (t + T ))− V j+1(X (t)) =
∫ t+T

t

e−η τ(−Q(X)−uT
j Ru j −2 u j+1T R (u−u j )

)

dτ,

on convergence, set V j+1 = V j .

4: Go to 3.

5: end procedure

To implement off-policy IRL algorithm (Algorithm 10),

the actor-critic structure, similar to (6) and (7), is used to

approximate the value function and control policy [84].

Remark 5: Most of the existing solutions to optimal control

problems are presented for affine systems. Extensions of RL

algorithms for nonaffine systems are considered in [85] for

optimal regulation and in [86] for optimal tracking control

problems. �

E. H∞ Control of CT Systems

The CT system dynamics in the presence of disturbance

input is considered as

ẋ(t) = f (x(t))+ g(x(t))u(t)+ h(x(t))d(t) (36)

where x(t) ∈ R
n is a measurable state vector, u(t) ∈ R

m is the

control input, d(t) ∈ R
q is the disturbance input, f (x(t)) ∈ R

n

is the drift dynamics, g(x(t)) ∈ R
n×m is the input dynamics,

and h(x(t)) ∈ R
n×q is the disturbance input dynamics. The

performance index to be optimized is defined as

J (x(0), u, d) =
∫ ∞

t

(Q(x)+ uT Ru − β2dT d)dτ

where Q(x) � 0, R = RT ≻ 0, and β ≥ β⋆ ≥ 0 with β⋆

the smallest β such that the system is stabilized. The value

function can be defined as

V (x(t), u, d) =
∫ ∞

t

(Q(x)+ uT Ru − β2dT d)dτ.

A differential equivalent to this is the Bellman equation

Q(x)+ uT Ru − β2dT d

+ ∂V

∂x

T

( f (x)+ g(x)u + h(x)d) = 0 V (0) = 0

and the Hamiltonian is given by

H

(

x, u, d,
∂V

∂x

T
)

= Q(x)+ uT Ru − β2dT d + ∂V

∂x

T

( f (x)+g(x)u+h(x)d).

Define the two-player zero-sum differential game as

V ⋆(x(t)) = min
u
max

d
J (x(0), u, d)

subject to (36).

In order to solve this zero-sum game, one needs to to solve

the following HJI equation:

Q(x)+ (u⋆)T Ru⋆ − β2(d⋆)T d⋆

+ ∂V ⋆

∂x

T

( f (x)+ g(x)u⋆ + h(x)d⋆) = 0.

Given a solution to this equation, one has

u⋆ = −1
2

R−1gT (x)
∂V ⋆

∂x

d⋆ = 1

2β2
hT (x)

∂V ⋆

∂x
.
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F. Approximate Solution Using RL

The following PI algorithms can be used to approximate the

HJI solution by iterating on the Bellman equation.

1) On-Policy IRL: In [87], an equivalent formulation of the

Bellman equation that does not involve the dynamics is found

to be

V (x(t − T )) =
∫ t

t−T

(r(x(τ ), u(τ ), d(τ ))dτ + V (x(t))

for any time t ≥ 0 and time interval T > 0. This equation is

called the IRL Bellman equation.

Algorithm 11 On-Policy IRL for Regulation in Zero-Sum

Games (H∞ Control)

1: procedure

2: Given admissible policy u0
3: for j = 0, 1, . . . given u j

4: for i = 0, 1, . . . set d0 = 0, solve for the value V
(i)
j (x)

using Bellman’s equation

Q(x)+
(

∂V i
j

∂x

)T
(

f (x)+ g(x)u j + h(x)d i
)

+ uT
j Ru j

− β2(d i )T d i = 0, V i
j (0) = 0,

d i+1 = 1

2β2
hT (x)(

∂V i
j

∂x
),

on convergence, set V j+1(x) = V i
j (x).

5: Update the control policy u j+1 using

u j+1 = −1
2

R−1gT (x)(
∂V j+1
∂x

).

6: Go to 3.

7: end procedure

The PI algorithm (Algorithm 11) is an offline algorithm

and requires complete knowledge of the system dynamics.

Actor-critic structure as (6) and (7) can be used to implement

an online PI algorithm that simultaneously updates the value

function and policies and does not require the knowledge of

the drift dynamics. Various update laws are developed for

learning actor, critic, and disturbance approximators’ weights

by minimizing the Bellman error [88]–[90].

2) Off-Policy IRL [80]: In order to develop the off-policy

IRL algorithm for the H∞ control, the system dynamics (36)

is rewritten as

ẋ(t) = f (x(t))+ g(x(t))u j (t)+ g(x(t))(u(t)− u j (t))

+ h(x(t))d j (t)+ g(x(t))(d(t)− d j (t))

where u j (t) and d j (t) are the policies to be updated. By

contrast, u(t) and d(t) are the behavior policies that are

actually applied to the system dynamics to generate the data

for learning.

Differentiating V (x) along with the system dynamics (28)

and using u j+1(t) = −(1/2)R−1gT (x)(∂V j (x)/∂x) and

d j+1(t) = (1/2β2)hT (x)(∂V j (x)/∂x) give

V̇ j =
(

∂V j (x)

∂x

)

T ( f + gu j + hd j )+
(

∂V j (x)

∂x

)T

g(u−u j )

+
(

∂V j (x)

∂x

)T

h(d − d j ) = −Q(x)− u j
T Ru j

+ β2d j
T d j − 2u j+1T R(u − u j )+ 2β2d j+1T (d − d j ).

Integrating from both sides of the above equation yields the

H∞ off-policy IRL Bellman equation

V j (x(t + T ))− V j (x(t))

=
∫ t+T

t

(

− Q(x)−u j
T Ru j +β2d j

T d j −2uT
j+1R(u−u j )

+ 2β2dT
j+1(d − d j )

)

dτ. (37)

Iterating on the IRL Bellman equation (37) yields the

following off-policy IRL algorithm.

Algorithm 12 Off-Policy IRL Algorithm to Find the Solution

of HJI
1: procedure

2: Given admissible policy u0
3: for j = 0, 1, . . . given u j and d j , solve for the value

V j , u j+1 and d j+1 using off-policy Bellman equation

V j (x(t + T ))− V j (x(t)) =
∫ t+T

t

(

− Q(x)− u j
T R u j+

β2 d j
T d j − 2 u j+1T R (u − u j )+ 2 β2 d j+1T (d − d j )

)

dτ,

on convergence, set V j+1 = V j .

4: Go to 3.

5: end procedure

Note that for a fixed control policy u(t) and the actual

disturbance (the policies that are applied to the system),

the off-policy IRL Bellman equation (37) can be solved for

value function V j , learned control policy u j+1, and learned
disturbance policy d j+1 simultaneously, and without requiring
any knowledge about the system dynamics.

To implement the off-policy IRL algorithm (Algorithm 12),

the actor-critic structure, similar to (6) and (7), is used

to approximate the value function, control, and disturbance

policies [80].

In [88], an off-policy IRL algorithm is presented to find the

solution of optimal tracking control problem without requiring

any knowledge about the system dynamics and reference

trajectory dynamics.

G. Nash Games

In this section, online RL-based solutions to noncooperative

games, played among N agents, are considered.

Consider the N-player nonlinear time-invariant differential

game

ẋ(t) = f (x(t))+
N

∑

j=1
g j (x(t))u j (t)
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where x ∈ R
n is a measurable state vector, u j (t) ∈ R

m j are the

control inputs, f (x) ∈ R
n is the drift dynamics, and g j (x) ∈

R
n×m j is the input dynamics. It is assumed that f (0) = 0 and

f (x)+
∑N

j=1 g j (x)u j is locally Lipschitz and that the system

is stabilizable.

The cost functional associated with each player is defined as

Ji (x(0), u1, u2, . . . , uN ) =
∫ ∞

0

(ri (x, u1, . . . , uN ))dt

≡
∫ ∞

0



Qi (x)+
N

∑

j=1
uT

j Ri j u j



 dt

∀i ∈ N := {1, 2, . . . , N}
where Qi (·)� 0, Rii = RT

ii ≻ 0,∀i ∈N , and Ri j = RT
i j � 0,

∀ j 6= i ∈ N with N := {1, 2, . . . , N}.
The value for each player can be defined as

Vi (x, u1, u2, . . . , uN )

=
∫ ∞

t

(ri (x, u1, . . . , uN ))dτ, ∀i ∈ N , ∀x, u1, u2, . . . , uN .

Differential equivalents to each value function are given by

the following Bellman equations:

ri (x, u1, . . . , uN )+ ∂Vi

∂x

T



 f (x)+
N

∑

j=1
g j (x)u j



 = 0

Vi (0) = 0, ∀i ∈ N .

The Hamiltonian functions are defined as

Hi

(

x, u1, . . . , uN ,
∂Vi

∂x

T
)

= ri (x, u1, . . . , uN )+
∂Vi

∂x

T



f (x)+
N

∑

j=1
g j (x)u j



 , ∀i ∈ N .

By applying the stationarity conditions, the associated feed-

back control policies are given by

u⋆i = argmin
ui

Hi

(

x, u1, . . . , uN ,
∂V ⋆

i

∂x

T
)

= −1
2

R−1
ii gT

i (x)
∂Vi

∂x
, ∀i ∈ N .

After substituting the feedback control policies into the

Hamiltonian, one has the coupled Hamilton–Jacobi (HJ)

equations

0 = Qi (x)+
1

4

N
∑

j=1

∂V j

∂x

T

g j (x)R
−T
j j Ri j R−1

j j gT
j (x)

∂V j

∂x

+ ∂Vi

∂x

T



f (x)− 1
2

N
∑

j=1
g j (x)R

−1
j j gT

j (x)
∂V j

∂x



 , ∀i ∈ N .

(38)

H. Approximate Solution Using RL

A PI algorithm is now developed by iterating on the

Bellman equation to approximate the solution to the coupled

HJ equations.

Algorithm 13 PI for Regulation in Nonzero-Sum Games

1: procedure

2: Given N-tuple of admissible policies µk
i (0), ∀i ∈ N

3: while ‖V
µ(k)

i − V
µ(k−1)

i ‖ ≥ ǫiac,∀i ∈ N do

4: Solve for the N-tuple of costs V k
i (x) using the

coupled Bellman equations

Qi (x)+
∂V k

i

∂x

T
(

f (x)+
N

∑

i=1
gi (x)µ

k
i

)

+ µk
i

T
Riiµ

k
i

+
N

∑

j=1
µk

j

T
Ri jµ

k
j = 0, V µk

i (0) = 0.

5: Update the N-tuple of control policies µk+1
i , ∀i ∈ N

using

µk+1
i = −1

2
R−1

ii gT
i (x)

∂V k
i

∂x

T

.

6: k = k + 1
7: end while

8: end procedure

1) On-Policy IRL: It is obvious that (38) requires the com-

plete knowledge of the system dynamics. In [87], an equivalent

formulation of the coupled IRL Bellman equation that does not

involve the dynamics is given as

Vi (x(t − T )) =
∫ t

t−T

ri (x(τ ), u1(τ ), . . . , uN (τ ))dτ

+ Vi (x(t)), ∀i ∈ N

for any time t ≥ 0 and time interval T > 0.

Let the value functions V ⋆
i be approximated on a compact

set � as

V ⋆
i (x) = W T

i φi (x)+ ǫi (x), ∀x, ∀i ∈ N

where φi (x) : R
n → R

Ki , ∀i ∈ N , are the basis function basis

set vectors, Ki , ∀i ∈ N , is the number of basis functions, and

ǫi (x) is the approximation error.

Assuming current weight estimates Ŵic,∀i ∈ N , the

outputs of the critic are given by

V̂i (x) = Ŵ T
icφi (x), ∀x, i ∈ N .

Using a similar procedure as used for zero-sum games, the

update laws can be rewritten as

Ẇic

= −αi

1φi (t)

(1φi (t))T1φi (t)+ 1)2

×



1φi (t)
T Ŵic +

∫ t

t−T



Qi (x)+ ûT
i Rii ûi

+
N

∑

j=1
ûT

j Ri j û j



 dτ



 , ∀i ∈ N
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and

˙̂
Wiu = −αiu



(Fi Ŵiu − L i1φi (t)
T Ŵic)

− 1

4

N
∑

j=1

(

∂φi

∂x
gi (x)R

−T
ii Ri j R−1

ii gi(x)
T ∂φi

∂x

T
)

Ŵiu
1φi (t)

T

(1φi (t)T1φi (t)+ 1)2 Ŵ j c



, ∀i ∈ N

respectively, with 1φi (t) := φi (t)− φi (t − T ).

In [91], a model-free solution to nonzero-sum Nash games

is presented. To obviate the requirement of complete knowl-

edge of the system dynamics, system identification is used

in [92].

IV. GRAPHICAL GAMES

Interactions among agents are modeled by a fixed strongly

connected graph G = (VG, EG) defined by a finite set VG =
{n1, . . . , nN } of N agents and a set of edges EG ⊆ VG × VG
that represent interagent information exchange links. The set

of neighbors of a node ni is defined as the set of nodes with

edges incoming to ni and is denoted by Ni = {n j : (n j , ni ) ∈
EG}. The adjacency matrix is AG = [αi j ]N×N with weights

αi j > 0 if (n j , ni ) ∈ EG and zero otherwise. The diagonal

degree matrix D of the graph G is defined as D = diag(di )

with the weighted degree di =
∑

j∈Ni
αi j .

Let the agents dynamics be modeled as

ẋi (t) = Axi (t)+ Bi ui (t), xi (0) = xi0, t ≥ 0

where xi (t) ∈ R
n is a measurable state vector, ui (t) ∈

R
mi , i ∈ N := {1, . . . , N}, is each control input (or player),
and A ∈ R

n×n and Bi ∈ R
n×mi , i ∈ N , are the plant and

input matrices, respectively.

The leader node/exosystem dynamics are

ẋ0 = Ax0.

The agents in the network seek to cooperatively asymptoti-

cally track the state of a leader node/exosystem, i.e., xi (t) →
x0(t),∀i ∈ N while simultaneously satisfying distributed cost

functional.

Define the neighborhood tracking error for every

agent as

δi :=
∑

j∈Ni

αi j (xi − x j )+ gi (xi − x0), ∀i ∈ N (39)

where gi is the pinning gain. gi 6= 0 if agent is pinned to the

leader node. The dynamics of (39) are given by

δ̇i = Aδi + (di + gi )Biui −
∑

j∈Ni

αi j B j u j , ∀i ∈ N (40)

with δi ∈ R
n .

The cost functional associated to each agent i ∈ N has the

following form:

Ji (δi (0); ui , uNi
)

= 1

2

∫ ∞

0

ri (δi , ui , uNi
)dt, ∀i ∈ N

≡ 1

2

∫ ∞

0



δT
i Qiδi +uT

i Rii ui +
∑

j∈Ni

uT
j Ri j u j



 dt, ∀i ∈ N

with user-defined matrices Qi � 0, Rii ≻ 0, and Ri j � 0,

∀i, j ∈ N , of appropriate dimensions and (
√

Qi , A), ∀i ∈ N ,

are detectable.

It is desired to find a graphical Nash equilibrium [93] u⋆i
for all agents i ∈ N in the sense that

Ji (δi (0); u⋆i , u⋆Ni
) ≤ Ji (δi (0); ui , u⋆Ni

), ∀ui , i ∈ N .

This can be expressed by the following coupled distributed

minimization problems:

Ji (δi (0); u⋆i , u⋆Ni
) = min

ui

Ji (δi (0); ui , u⋆Ni
), ∀i ∈ N

with the dynamics given in (40).

The ultimate goal is to find the distributed optimal value

functions V ⋆
i , ∀i ∈ N defined by

V ⋆
i (δi (t)) := min

ui

∫ ∞

t

1

2



δT
i Qiδi + uT

i Rii ui

+
∑

j∈Ni

uT
j Ri j u j



 dt, ∀t, δi , i ∈ N .

(41)

One can define the Hamiltonians associated with each agent’s

neighborhood tracking error (40) and each V ⋆
i given in (41)

as follows:

Hi

(

δi , ui , uNi
,
∂V ⋆

i

∂δi

)

=
∂V ⋆

i

∂δi

T


Aδi + (di + gi)Bi ui −
∑

j∈Ni

αi j B j u j





+ 1

2
δT

i Qiδi + 1

2
uT

i Rii ui + 1

2

∑

j∈Ni

uT
j Ri j u j ,

∀δi , ui , ∀i ∈ N .

According to the stationarity condition, the optimal control for

each i ∈ N can be found to be

u⋆i (δi ) = argmin
ui

Hi

(

δi , ui , uNi
,
∂V ⋆

i

∂δi

)

= −(di + gi)R
−1
ii BT

i

∂V ⋆
i

∂δi

, ∀δi (42)

that should satisfy the appropriate distributed coupled HJ

equations

Hi

(

δi , u⋆i , u⋆Ni
,
∂V ⋆

i

∂δi

)

= 0, ∀i ∈ N .
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Assume that the value functions are quadratic in the neigh-

borhood tracking error, i.e., V ⋆
i (δi ) : R

n → R

V ⋆
i (δi ) = 1

2
δT

i Piδi , ∀δi ,∀i ∈ N (43)

where Pi = PT
i > 0 ∈ R

n×n , ∀i ∈ N , are the unique matri-

ces that solve the following complicated distributed coupled

equations:

δT
i Pi



Aδi − (di + gi)
2Bi R−1

ii BT
i Piδi

+
∑

j∈N
αi j (d j + g j )B j R−1

j j BT
j Pj δ j





+



Aδi − (di + gi)
2Bi R−1

ii BT
i Piδi

+
∑

j∈N
αi j (d j + g j )B j R−1

j j BT
j Pj δ j





T

× Piδi +
∑

j∈Ni

(d j + g j )
2δT

j Pj B j R−T
j j Ri j R−1

j j BT
j Pjδ j

+ (di + gi)
2δT

i Pi Bi Rii BT
i Piδi + δT

i Qiδi = 0, ∀i ∈ N .

Using (43), the optimal control (42) for every player i ∈ N

can be written as

u⋆i (δi ) = −(di + gi )R
−1
ii BT

i Piδi , ∀δi .

A. Approximate Solution Using RL

A PI algorithm is now developed to solve distributed cou-

pled HJ equations as follows.

Algorithm 14 PI for Regulation in Graphical Games

1: procedure

2: Given N-tuple of admissible policies µk
i (0), ∀i ∈ N

3: while ‖V
µ(k)

i (δi )− V
µ(k−1)

i (δi )‖ ≥ ǫiac, ∀i ∈ N do

4: Solve for the N-tuple of costs V k
i (x) using the

coupled Bellman equations,

δT
i Qii δi +

∂V k
i

∂δi

T

(Aδi + (di + gi)Biµ
k
i −

∑

j∈Ni

αi j B jµ
k
j )

+ µk
i

T
Riiµ

k
i +

∑

j∈Ni

µk
j

T
Ri jµ

k
j = 0, V µk

i (0) = 0.

5: Update the N-tuple of control policies µk+1
i ,∀i ∈ N

using

µk+1
i = −(di + gi )R

−1
ii BT

i

∂V k
i

∂δi

T

.

6: k = k + 1
7: end while

8: end procedure

The PI algorithm (Algorithm 14) is an offline algorithm. We

now show how to develop an online RL-based algorithm for

solving the coupled HJ equations.

Assume there exist constant weights Wi and such that

the value functions V ⋆
i are approximated on a compact

set � as

V ⋆
i (δi ) = W T

i φi (δi )+ ǫi (δi ), ∀δi , i ∈ N

where φi (δi ) : R
n → R

Ki , ∀i ∈ N , are the basis function set

vectors, Ki is the number of basis functions, and ǫi (δi ) is the

approximation error.

Assuming current weight estimates Ŵic,∀i ∈ N , the

outputs of the critic are given by

V̂i (δi ) = Ŵ T
icφi (δi ), ∀i ∈ N .

Using the current weight estimates, the approximate

Lyapunov-like equations are given by

Ĥi(·) = ri (δi (t), ûi , ûNi
)

+ ∂Vi

∂δi

T



Aδi + (di + gi)Bi ûi −
∑

jNi

αi j B j û j





= ei , ∀i ∈ N (44)

where ei ∈ R,∀i ∈ N , are the residual errors due to

approximation and

ûi = −(di + gi)R
−1
ii BT

i

∂φi

∂δi

T

Ŵiu , ∀i ∈ N

where Ŵiu denote the current estimated values of the ideal

weights Wi .

The critic weights are updated to minimize the square

residual errors ei in order to guarantee that Ŵic →
Wi , ∀i ∈ N . Hence, the tuning law for the critic is

given as

Ẇic

= −αi

∂φi

∂δi

(

Aδi + (di + gi)Bi ûi −
∑

j∈Ni
αi j B j û j

)

12

×











∂φi

∂δi



Aδi +(di +gi)Bi ûi −
∑

j∈Ni

αi j B j û j









T

× Ŵic + 1
2
δT

i Qiδi +ûT
i Rii ûi +

∑

j∈Ni

ûT
j Ri j û



, ∀i ∈ N
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where αi > 0 is a tuning gain, and for the actor is given as

˙̂
Wiu

= −αiu



Fi Ŵiu −L i





∂φi

∂δi



Aδi + (di + gi )Bi ûi

−
∑

j∈Ni

αi j B j û j





T

Ŵic







− 1

4

∑

j∈Ni





∂φi

∂δi

Bi R−T
ii Ri j R−1

ii BT
j

∂φi

∂δi

T



 Ŵiu

×





∂φi

∂δi

(

Aδi +(di +gi)Bi ûi −
∑

j∈Ni
αi j B j û j

)

1





T

Ŵic







∀i ∈ N

where αiu > 0 is a tuning gain, and Fi , L i ≻ 0 are matrices

that guarantee stability of the system and

1 =











∂φi

∂δi



Aδi + (di + gi)Bi ûi −
∑

j∈Ni

αi j B j û j









T

× ∂φi

∂δi



Aδi +(di +gi)Bi ûi −
∑

j∈Ni

αi j B j û j



+1





2

.

V. APPLICATIONS

RL has been successfully applied in many fields. Two of

such fields are presented below.

A. Robot Control and Navigation

In the last decade or so, the application of RL in robotics has

increased steadily. In [94], RL is used to design a kinematic

and dynamic tracking control scheme for a nonholonomic

wheeled mobile robot. Reference [95] uses the RL in the

network-based tracking control system of the two-wheeled

mobile robot, Pioneer 2-DX. The neural network RL is

used to design a controller for an active simulated three-

link biped robot in [96]. In [97], an RL based actor-critic

framework is used in control of a fully actuated six degrees-

of-freedom autonomous underwater vehicle. Luy et al. [98]

use RL to design robust adaptive tracking control laws with

optimality for multiwheeled mobile robots’ synchronization

in communication graph. Reference [99] presents an optimal

adaptive consensus-based formation control scheme over finite

horizon for networked mobile robots or agents in the presence

of uncertain robot/agent dynamics. In [100], IRL approach

is employed to design a novel adaptive impedance control

for robotic exoskeleton with adjustable robot bebavior. IRL

is used in control of a surface marine craft with unknown

hydrodynamic parameters in [101]. In [102], RL is used

along with a stabilizing feedback controller such as PID or

linear quadratic regulation to improve the performance of the

trajectory tracking in robot manipulators.

A mobile robot navigation task refers to plan a path with

obstacle avoidance to a specified goal. RL-based mobile robot

navigation mainly includes robot learning from expert demon-

strations and robot self-learning and autonomous navigation.

In the former, the examples of standard behaviors are provided

to the robot and it learns from these data and generalize over

all potential situations that are not given in the examples

[103]–[112]. In the later, RL techniques are used to train the

robot via interaction with the surrounding environment. Stabil-

ity is not a concern in this type of the task. Yang et al. [113]

used continuous Q-learning for autonomous navigation of

mobile robots. Lagoudakis and Parr [114] proposed the LS PI

for robot navigation task. In this paper, and some other similar

works [115]–[117], neural networks are used to approximate

the value function and the environment is assumed static.

An autonomous agent needs to adapt its strategies to cope with

changing surroundings and solve challenging navigation tasks

[118], [119]. The methods in [115] and [116] are designed for

environments with dynamic obstacle.

B. Power Systems

There have existed several applications of RL in power

systems. The work of [120] proposes the PI technique based

on actor-critic structure for automatic voltage regulator sys-

tem for its both models neglecting and including sensor

dynamics. In [121], a game-theory-based distributed controller

is designed to provide the desired voltage magnitude and

frequency at the load. The optimal switching between different

typologies in step-down dc–dc voltage converters is investi-

gated in [122]. The control of boost converter is presented

in [123] using RL-based nonlinear control strategy at attaining

a constant output voltage. In [124], RL is used for distributed

control of dc microgrids to establish coordination among active

loads to collectively respond to any load change. In [125], RL

is applied to the control of an electric water heater with 50

temperature sensors.

VI. CONCLUSION

In this paper, we have reviewed several RL techniques

for solving optimal control problems in real time using data

measured along the system trajectories. We have presented

families of online RL-based solutions for optimal regulation,

optimal tracking, Nash, and graphical games. The complete

dynamics of the systems do not need to be known for these

RL-based online solution techniques. As another approach to

speed up the learning by reuse of data, experience replay

technique used in RL was discussed. These algorithms are fast

and data efficient because of reuse of the data for learning.

The design of static RL-based OPFB controllers for non-

linear systems has not been investigated yet. Also existing

RL-based H∞ controllers require the disturbance to be mea-

sured during learning. Another interesting and important open

research direction is to develop novel deep RL approaches for

feedback control of nonlinear systems with high-dimensional

inputs and unstructured input data. Deep neural networks can

approximate a more accurate structure of the value function

and avoid divergence of the RL algorithm and consequently
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instability of the feedback control system. Deep RL for

feedback control, however, requires developing new learning

algorithms that assure the stability of the feedback system in

the sense of Lyapunov during the learning.

REFERENCES

[1] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. New York,
NY, USA: Wiley, 2012.

[2] R. F. Stengel, Optimal Control and Estimation (Dover Books on
Mathematics). Mineola, NY, USA: Dover, 1986.

[3] D. Liberzon, Calculus of Variations and Optimal Control Theory—A

Concise Introduction. Princeton, NJ, USA: Princeton Univ. Press, 2011.
[4] M. Athans and P. L. Falb, Optimal Control: An Introduction to the

Theory and Its Applications (Dover Books on Engineering). Mineola,
NY, USA: Dover, 2006.

[5] D. E. Kirk, Optimal Control Theory: An Introduction (Dover Books
on Electrical Engineering). Mineola, NY, USA: Dover, 2012.

[6] A. E. Bryson, Applied Optimal Control: Optimization, Estimation and

Control. New York, NY, USA: Halsted, 1975.
[7] W. M. McEneaney, Max-Plus Methods for Nonlinear Control and

Estimation. Basel, Switzerland: Birkhäuser, 2006.
[8] W. H. Fleming and W. M. McEneaney, “A max-plus-based algorithm

for a Hamilton–Jacobi–Bellman equation of nonlinear filtering,” SIAM

J. Control Optim., vol. 38, no. 3, pp. 683–710, 2000.
[9] M. T. Hagan, H. B. Demuth, M. Beale, and O. De Jesús, Neural

Network Design, 2nd ed. New York, NY, USA: Martin, 2014.
[10] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-

tives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.
[11] C. Bishop, Pattern Recognition and Machine Learning. New York, NY,

USA: Springer-Verlag, 2006.
[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. New York, NY,
USA: Springer-Verlag, 2009.

[13] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
Cambridge, MA, USA: MIT Press, 2012.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 1, 2nd ed. Cambridge, MA, USA: MIT Press, 2017.

[15] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Scientific, 1996.

[16] W. B. Powell, Approximate Dynamic Programming. Hoboken, NJ,
USA: Wiley, 2007.

[17] X.-R. Cao, Stochastic Learning and Optimization. New York, NY,
USA: Springer, 2007.

[18] H. Zhang, D. Liu, Y. Luo, and D. Wang, Adaptive Dynamic Program-
ming for Control. London, U.K.: Springer-Verlag, 2013.

[19] D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic

Programming With Applications in Optimal Control. Springer, 2017.
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