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ABSTRACT

This paper proposes a combined observer/controller method that
estimates the states and simultaneously improves the ride comfort
and stability of a full vehicle active suspension system using a sin-
gle inertial measurement unit (IMU) in the presence of noise and
centre of gravity uncertainties. The derived model is based on a
channel-by-channel estimation technique using filtered white noise
excitation signals on all thewheels, as well as active suspension actu-
ators. The transfer functions of the vehicle system are estimated by
analysing the IMUsignals in the frequencydomain. Thederived result
is then used in a linear quadratic regulator to calculate the actuators’
forces to improve the vehicle’s ride comfort and road holding stabil-
ity within the limits of the rattle space. The simulation results show
the efficacy of the proposed approach. Specifically, the observer esti-
mates the actual behaviour of the vehicle with 95% accuracy with
up to 20% uncertainty. Finally, a parametric study has been inves-
tigated to ascertain the applicability of the proposed approach in
estimating the vehicle dynamics with simultaneously improving the
ride comfort and road holding stability.
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1. Introduction

In recent years, particular attention has been paid to improve vehicle stability and ride
comfort by using active suspension systems [1–7]. Such systems improve ride comfort by
isolating the sprung mass from external disturbances that can be caused by terrain and
other irregularities. They achieve vehicle stability, namely, handling stability [8], by ensur-
ing a !rm contact between tires and the road at all times. The challenge is however that the
suspension spring needs to be sti" to guarantee and satisfy several road holding criteria and
in the same time the spring needs to be soft tomitigate disturbances induced by terrain and
weather. In a classical vehicle suspension setting [9], the spring and the damping parame-
ters cannot be e#ciently controlled and adapted to di"erent driving conditions. However,
by using an active suspension system with actuators that work along with the spring and
damper, one can accumulate or dissipate energy from the system [5,10,11].
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Active suspension systems with control techniques [12–14] have been introduced to
improve the performance, handling characteristics and riding of the vehicle by controlling
the suspension system. It has been shown that actuators controlled by optimisation-based
control techniques [15] are e#cient for controlling the active suspension system while
guaranteeing optimal performance. But in such optimisation-based control techniques one
needs to have full-state information to successfully control the actual model while such
information is not always available in practice due to sensor cost, complexity, uncertainties,
noise, or even measurement restrictions. Several observer-based techniques [13,16–18]
and modi!ed Kalman !lters [16,19–24] have been used to overcome such problems. A
survey on how to control active and semi-active suspension system is given in [12]. In this
survey, the authors used a quarter-car model for reviewing the controller design poten-
tial bene!ts and limitations through the application of optimal control theory with an
LQ-based cost function. The work of Yamada et al. [13] has introduced a robust con-
trol technique for an active suspension while also considering actuator constraints and
uncomfortable frequency bands for bounce and pitch accelerations of the sprung mass. In
[7], a nonlinear controller was used for controlling the active suspension of a quarter-car
model with the ultimate goal to improve ride comfort while trying to keep the suspension
de$ection within the limits of the rattle space.

In [16], the authors used a Kalman !lter to estimate the system states, the estimator was
based on somewhat idealised assumption of knowing exactly the road pro!le. The work of
Wenzel et al. [19] proposed a dual extended Kalman !lter to estimate the vehicle states and
other parameters. In order to achieve that, the authors incorporated two parallel !lters, one
for estimating the main vehicle parameters and the other for estimating the vehicle states.
This technique has been shown to improve the accuracy of the estimated parameters and
can handle themodel uncertainties. The works of Pletschen et al. [21–23] proposed similar
approaches with an accuracy of the estimated states being between 70% and 90%.

The recent work of García and Patino [25] has used a Kalman !lter, a particle !lter and
arti!cial neural networks to estimate di"erent states of the quarter-car model by incor-
porating an IMU. However, the e"ect of measurement uncertainties and the accuracy of
the state estimation can negatively a"ect the higher order models. A continuous-time sys-
tem identi!cation technique in a half-car model has been proposed in [26] to estimate the
vehicle suspension model. The aforementioned papers did not obtain the dynamic param-
eters of the actual vehicle model while taking into account the presence of measurement
uncertainties. Our work is motivated by such limitations.

This paper presents amethod for estimating the vehicle dynamicmodel by using system
identi!cation techniques with a single point sensor and centre of gravity (CG) uncertainty.
A combined observer/controller method has been developed to estimate the states and
simultaneously improve the ride comfort and handling stability of a full vehicle active
suspension system. We introduce an e#cient solution to estimate and control the actual
full vehicle with a limited number of sensors in the presence of noise and CG position
uncertainties. A single IMU has been placed on the sprung mass, which leads us to the
successful estimation of all the states while at the same time controlling e#ciently the sus-
pension system to improve ride comfort and handling stability. To achieve this, we use two
steps, !rst, estimating the vehicle dynamic model by analysing all input–output paths of
the transfer functions in the frequency domain, and second, applying a Kalman !lter and a
linear quadratic regulator (LQR) on the estimated state-space model. The latter, allows us
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to calculate the optimal forces to improve the vehicle performance index, i.e. ride comfort
and road holding stability.

The remainder of the paper is structured as follows. In Section 2, we formulate the
problem and introduce the full vehicle dynamic model with the active suspension system.
The proposed vehicle model takes into account uncertainties in the position of the cen-
tre of gravity. Assuming now that the vehicle dynamics are unknown, Section 3 provides
a method of estimating the mathematical model of the vehicle, which is based on system
identi!cation techniques. In Section 4, we design an observer based on a Kalman !lter for
estimating the vehicle states and feed the result in the optimal control algorithm in order to
control the active suspension system. Section 5, provides a numerical simulation for esti-
mating the vehicle dynamics behaviour while controlling optimally the suspension system
to simultaneously improve the ride comfort and road holding stability within the limits of
the rattle space. Finally, Section 6 concludes and discusses future work.

Notation: The notation used here is standard. λ(A) is the eigenvalues of a matrixA, (.)T

denotes the transpose of a matrix, z̄ is the conjugate of the complex number z, Â is the
estimated value of A in continuous time, Âd is the estimated value of A in discrete time.
The superscript ∗ is used to denote the optimal solution of an optimisation, the super-
script/subscript k is used to denote a value at discrete time k, the subscript s denotes the
sprung mass value while the subscriptm denotes the IMU signals. A � 0 denotes that the
matrixA is positive semide!nite and the notationA ≻ 0 to denote that thematrixA is pos-
itive de!nite. Finally, H(s) denotes the transfer function H in s-domain and H(z) denotes
the transfer function in z-domain.

2. Problem formulation

A linear full vehicle model with seven degree of freedom (DOF) as shown in Figure 1 is
considered for this research because it is su#cient and enough for capturing the vehicle
dynamical behaviour [27–29]. The authors in [29] compared the results of a linear vehi-
cle model with a measured data through an experimental test using the same road input.
These results show a close match between the simulation model and the experimental test,
which gives credence to use a linear vehicle model for estimating the states and optimally
controlling the active suspension system to enhance ride comfort and vehicle stability.

Figure 1. The full vehicle model with the active suspension system.
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The full vehicle model consists of a sprung mass with three DOF in the vertical Zs-
axis (bounce), rotation about Xs-axis (roll) and rotation about Ys-axis (pitch), with four
unsprungmasses in front left, front right, rear left and rear rightwhich have oneDOF in the
vertical directions z1, z2, z3, z4 at front left, front right, rear left and rear right, respectively.

The dynamic equations of the full vehicle system can be derived using the Newton’s
second law as follows [4,30–32],

msz̈s = F! + Ffr + Frl + Frr,

Iyθ̈s = −aF! − aFfr + bFrl + bFrr,

Ixφ̈s = wF! − wFfr + wFrl − wFrr,

mf z̈1 = −F! − kt(z1 − zr1),

mf z̈2 = −Ffr − kt(z2 − zr2),

mr z̈3 = −Frl − kt(z3 − zr3),

mr z̈4 = −Frr − kt(z4 − zr4),

(1)

where ms is the mass of the vehicle body, Ix is the roll moment, Iy is the pitch moment of
inertia about the centre of mass, φs, θs are the roll and pitch angles of the sprung mass, a,b
are the CG locations of the front and rear axles, 2w is the wheel track,mf ,mr stand for the
unsprung mass on front and rear, respectively, kt is the tire spring sti"ness, zr1 , zr2 , zr3 , zr4
are the road displacements at front left, front right, rear left and rear right respectively, and
F!, Ffr, Frl, Frr are the forces generated between the sprung mass at each corner and the
unsprung masses at front left, front right, rear left and rear right, respectively.

The forces are de!ned as follows,

F! := −kf (z! − z1) − cf (ż! − ż1) + F1,

Ffr := −kf (zfr − z2) − cf (żfr − ż2) + F2,

Frl := −kr(zrl − z3) − cr(żrl − ż3) + F3,

Frr := −kr(zrr − z4) − cr(żrr − ż4) + F4,

(2)

where kf is the front spring sti"ness and kr is the rear spring sti"ness, cf , cr are the front and
the rear shock absorber damping coe#cients, and F1, F2, F3, F4 are the active suspension
actuators at the front left, the front right, the rear left and the rear right, respectively.

The dynamics can be simpli!ed by applying the following assumption.

Assumption 1: The angles θs and φs, are small enough and we can write sin θs ≈ θs,
sinφs ≈ φs.

Based on Assumption 1 the dynamic vertical displacements of the sprung mass corners
can be written as,

z! := zs + wφs − aθs,

zfr := zs − wφs − aθs,

zrl := zs + wφs + bθs,

zrr := zs − wφs + bθs.

(3)
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For simplicity let us use the following state-space assignments,

x1 := z! − z1, x2 := zfr − z2, x3 := zrl − z3, x4 := zrr − z4,

x5 := z1 − zr1 , x6 := z2 − zr2 , x7 := z3 − zr3 , x8 := z4 − zr4 ,

x9 := żs, x10 := θ̇s, x11 := φ̇s,

x12 := ż1, x13 := ż2, x14 := ż3, x15 := ż4.

The state-space assignments rewrite (1)–(3) as follows (see Appendix for more details),

Ẋ = AX + BeQ + Bf F,

Y = CX + DeQ + Df F,
(4)

where,

X =
[

x1 x2 x3 . . . x12 x13 x14
]T

,

Y =
[

z̈s θ̈s φ̈s

]T
,

Q =
[

żr1 żr2 żr3 żr4
]T

, F =
[

F1 F2 F3 F4
]T

.

The active suspension system is designed to improve ride comfort and road holding sta-
bility within the limits of the suspension de$ection. Hence, three aspects are going to be
considered in our work:

(1) Ride comfort which is related to the sprung mass bounce, roll and pitch accelera-
tions. By reducing these accelerations, good ride comfort will be experienced by the
passengers.

(2) Road holding stability which is de!ned by the tire dynamic load; where to ensure
vehicle stability, the dynamic tire load should not exceed its static load to maintain
uninterrupted contact with the road, which can be expressed as the relative tire loads
and is given by,

η1 :=
kt(z1 − zr1)

g
(

((bms)/(2(a + b))) + mf

) < 1,

η2 :=
kt(z2 − zr2)

g
(

((bms)/(2(a + b))) + mf

) < 1,

η3 :=
kt(z3 − zr3)

g (((ams)/(2(a + b))) + mr)
< 1,

η4 :=
kt(z4 − zr4)

g (((ams)/(2(a + b))) + mr)
< 1,

where η1, η2, η3, η4 are the relative tire loads at front left, front right, rear left and rear
right, and g is the gravitational acceleration.
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(3) And !nally, the suspension de$ection which is limited by the available rattle space as
follow,

µ1 :=
|z! − z1|

zmax
< 1, µ2 :=

|zfr − z2|

zmax
< 1,

µ3 :=
|zrl − z3|

zmax
< 1, µ4 :=

|zrr − z4|

zmax
< 1,

where µ1,µ2,µ3,µ4 are the relative suspension de$ections at front left, front right,
rear left and rear right, and zmax is the maximum rattle space hard limit.

Figure 2, in addition to Figure 1, shows the location of the IMU. The measured signals
for bounce acceleration, roll and pitch velocities are governed by themeasurementmodel of
IMU, where the position uncertainties are denoted by rm.We di"erentiate the IMU angular
velocities to get the angular accelerations.

Referring to (5)–(7), the IMUposition, the velocity and the acceleration vectors r, ṙ, and
r̈ respectively, can be calculated with respect to the world-!xed frame (XG,YG,ZG) as,

r = rs + Ar(φ, θ) rm, (5)

ṙ = ṙs +



φ̇s





0 0 0
cosφs sin θs − sinφs − cosφs cos θs
sinφs sin θs cosφs − sinφs cos θs





+θ̇s





− sin θs 0 cos θs
sinφs cos θs 0 sinφs sin θs

− cosφs cos θs 0 − cosφs sin θs







 rm, (6)

and,

r̈ = r̈s +

(

φ̈s





0 0 0
cosφs sin θs − sinφs − cosφs cos θs
sinφs sin θs cosφs − sinφs cos θs





− φ̇2
s





0 0 0
sinφs sin θs cosφs − sinφs cos θs

− cosφs sin θs sinφs cosφs cos θs





Figure 2. An IMU is placed on the sprung mass with distance (ex , ey , t/2) from the sprung mass centre
of gravity. The IMU signals are different from the actual signals.
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+ θ̈s





− sin θs 0 cos θs
sinφs cos θs 0 sinφs sin θs

− cosφs cos θs 0 − cosφs sin θs



 (7)

− θ̇2s





cos θs 0 sin θs
sinφs sin θs 0 − sinφs cos θs

− cosφs sin θs 0 cosφs cos θs





+ 2φ̇sθ̇s





0 0 0
cosφs cos θs 0 cosφs sin θs
sinφs cos θs 0 sinφs sin θs





)

rm,

where the rotation matrix is,

Ar(φ, θ) =





cos θs 0 sin θs
sinφs sin θs cosφs − sin θs cos θs

− cosφs sin θs sinφs cos θs cos θs



 ,

and the position vectors are de!ned as,

r :=
[

Xm Ym Zm
]T

, rs :=
[

Xs Ys Zs
]T

, rm :=
[

ex ey 0.5t
]T

.

In order to model a potentially noisy IMU, a white Gaussian noise with zero mean and
variance σν is added to the IMU signals as,

ym = sm + ν, (8)

where,

sm :=
[

z̈m θ̈s φ̈s
]T

, ν ∼ N (0, σ 2
ν ).

By writing (8) in the frequency domain one has,

Ym(s) = H(s)U(s) + ν, U(s) =
[

Q F
]T

, (9)

where H(s) is the transfer function and U(s) is the input signal.
Since the IMU signals are in discrete-time domain, the bilinear transformation is

employed to transform the system from continuous-time to discrete-time [33]. In other
words, all transfer functions in (9) can be written as,

H(z) = H(s)

(
2

Ts

(z − 1

z + 1

)
)

, (10)

where H(z) is the transfer function in the discrete-time domain, and Ts ∈ R
+ is the

sampling time.

3. Vehicle dynamic model estimation

The system identi!cation technique proposed in this paper is based on exciting the full
vehiclemodel at thewheels, and the active suspension actuators. A diagramof the proposed
technique is shown in Figure 3.
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Figure 3. Dynamic model estimation diagram. It is shown the steps of estimating the vehicle dynamic
model using only IMU.

The excitation signals are !ltered white noises with zero mean and variance σu [34] as
follows,

u(t) = L(q)e(t),

where, q is the backward shift operator, i.e. q = z−1, and L(q) is a !rst order low pass !lter,
i.e. L(z−1) = (z−1 + 1)/((π − 2/π)z−1 − (2/π)), with breaking frequency ωb = π/Ts

used to eliminate the false response at the Nyquist frequency.
The channel-by-channel excitation signals are shown in Figure 4, where, !ltered signals

of amplitude |Zr| ≤ 0.1m and frequency 0.05:100Hz, and of amplitude |Fi| ≤ 100N and
frequency 0.05:100Hz are generated at the wheels and the actuators, respectively.

During this process, the excitations and the IMU signals will be recorded for further
analysis. Here, the transfer functions are estimated by analysing the IMU signals in the
frequency domain to determine the locations and numbers of poles and zeros. In order to
estimate the noise power of the IMU, all the excitation signals are set to zero, i.e. Zr = 0
and Fi = 0, and the IMU signals are recorded at the steady-state in order to calculate the
bias and the standard deviation σν as a calibration process for the IMU.

The noise power can now be estimated by using,

σ 2
ν = E

[

y2m|sm = 0
]

.

The IMU response signal and the noise in the time and the frequency domains are
shown in Figure 5 during the excitation process, where, the discrete Fourier transform [35]
is used to transform the signals from the time to the frequency domain and to calculate the
power spectral density of the IMU signals.
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Figure 4. The excitation signals in time and frequency domains.

Figure 5. IMU output responses during the excitation process. (a) Front left wheel, (b) Rear right wheel,
(c) Front left actuator, (d) Rear right actuator.



10 T. ATTIA ET AL.

Assuming that the noise ν is uncorrelated with the output signal sm, then the power of
the output signals can be calculated from (8) as follows,

σ 2
y = E

[

y2m

]

= E
[

(Sm + ν)2
]

= E
[

S2m + 2Smν + ν2
]

,

σ 2
y = E

[

s2m

]

+ E
[

ν2
]

= σ 2
s + σ 2

ν ,

σ 2
s = σ 2

y − σ 2
ν .

In order to identify the unknown system dynamics given by (4), we have to estimate 24
input–output paths of frequency response functions (FRFs) in (11),









Za
m

θas

φa
s









=









H11 H12 · · · H17 H18

H21 H22 · · · H27 H28

H31 H32 · · · H37 H38



















Zr1
:

Zr4
F1
:
F4











, (11)

where Za
m, θ

a
s ,φ

a
s represent the acceleration values of the IMU in frequency domain.

After applying the discrete Fourier transform, we can rewrite (9) as,

Ym(mf ) = H(mf )U(mf ) + ν(mf ), (12)

where f is the frequency resolution given as f = 1/NTs, and N, is the number of data
samples used.

The next step is to multiply (12) with the input conjugate Ū while assuming that the
input is uncorrelated with the noise signal to write,

Ū(mf )Ym(mf ) = H(mf )Ū(mf )U(mf ) + Ū(mf )ν(mf ),

Suy(mf ) = H(mf )Suu(mf ) + Suν(mf ). (13)

Using (13), the FRF can be estimated as follows,

H(mf ) =
Suy(mf )

Suu(mf )
, (14)

where Suu(mf ), Suy(mf ) are the auto-spectrum and cross-spectrum of the input–input and
input–output signals respectively.

From (11) and (14), the FRFs can be estimated as,

H11(mf ) =
SŻr1 Z̈m

(mf )

SŻr1 Żr1
(mf )

, H12(mf ) =
SŻr2 Z̈m

(mf )

SŻr2 Żr2
(mf )

, H13(mf ) =
SŻr3 Z̈m

(mf )

SŻr3 Żr3
(mf )

,

H14(mf ) =
SŻr4 Z̈m

(mf )

SŻr4 Żr4
(mf )

, H15(mf ) =
SF1Z̈m

SF1F1(mf )
, H16(mf ) =

SF2Z̈m
SF2F2(mf )

,
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H17(mf ) =
SF3Z̈m

SF3F3(mf )
, H18(mf ) =

SF4Z̈m
SF4F4(mf )

, H21(mf ) =
SŻr1 θ̈s

(mf )

SŻr1 Żr1
(mf )

, (15)

H22(mf ) =
SŻr2 θ̈s

(mf )

SŻr2 Żr2
(mf )

, H23(mf ) =
SŻr3 θ̈s

(mf )

SŻr3 Żr3
(mf )

, H24(mf ) =
SŻr4 θ̈s

(mf )

SŻr4 Żr4
(mf )

,

H25(mf ) =
SF1θ̈s(mf )

SF1F1(mf )
, H26(mf ) =

SF2θ̈s(mf )

SF2F2(mf )
, H27(mf ) =

SF3θ̈s(mf )

SF3F3(mf )
,

H28(mf ) =
SF4θ̈s(mf )

SF4F4(mf )
, H31(mf ) =

SŻr1 φ̈s
(mf )

SŻr1 Żr1
(mf )

, H32(mf ) =
SŻr2 φ̈s

(mf )

SŻr2 Żr2
(mf )

,

H33(mf ) =
SŻr3 φ̈s

(mf )

SŻr3 Żr3
(mf )

, H34(mf ) =
SŻr4 φ̈s

(mf )

SŻr4 Żr4
(mf )

, H35(mf ) =
SF1φ̈s

(mf )

SF1F1(mf )
,

H36(mf ) =
SF2φ̈s

(mf )

SF2F2(mf )
, H37(mf ) =

SF3φ̈s
(mf )

SF3F3(mf )
, H38(mf ) =

SF4φ̈s
(mf )

SF4F4(mf )
.

The estimated FRFs using (15) are shown in Figure 6. Such FRFs can be represented in
a rational form by following [36] as,

H(z, θ) =
Sm(z, θ)

U(z, θ)
=

∑nb
r=0 brz

−r

∑na
r=0 arz

−r
, (16)

where ar, br are the polynomial coe#cients of poles and zeros respectively, and θ =

[a0 a1 · · · ana b0 b1 · · · bnb]
T. Now by using (8) and (16), we can write the input–output

function as,

Skm(z) =

Np
∑

i=0

θi Uk−i(z),

Yk
m(z) = Skm(z) + νk =

Np
∑

i=0

θi Uk−i(z) + νk,

Yk
m(z) = Tk(z) θk(z) + νk,

(17)

where,

















YN
m

Y
(N−1)
m

:

Y
(Np)
m

:

Y2
m

Y1
m


















︸ ︷︷ ︸

Ym

=













U(N−1) U(N−2) · · · U(N−Np+1) U(N−Np)

U(N−2) U(N−3) · · · U(N−Np) U(N−Np−1)

: : :
U(Np−1) U(Np−2) · · · U1 U0

: : :
U1 U0 · · · U(2−Np+1) U(2−Np)

U0 U−1 · · · U(1−Np+1) U(1−Np)













︸ ︷︷ ︸

T















b1
b2
:

bNp−1

:

bNp















︸ ︷︷ ︸

θ

+

















νN

ν(N−1)

:

ν(Np)

:

ν2

ν1

















︸ ︷︷ ︸

ν

.

We are now able to rewrite the system as a series of output and input measurements Yk
m

and Uk−i at each sample k=N with an unde!ned number of coe#cients θi equal to Np.
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Figure 6. Comparison between some of the estimated and the reduced frequency response functions.

We are ready to solve these equations by applying the weighted least-squares approach
to (17) for estimating coe#cients θ̂WLS, where the weighted matrix will be the series of
coherence values γ 2

yu which measures how the response is correlated to the excitation,

Coherence : γ 2
yu(mf ) =

|Syu(mf )|2

Suu(mf )Syy(mf )
,

Estimated measurement : Ŷk
m(z) = Tk(z)θ̂k(z),

Estimated measurementerror : Ỹk
m(z) = Yk

m(z) − Ŷk
m(z), (18)

In order to have a good model estimator, the estimated measurement error in (18) should
be very small as an indication that the proposed estimated signals equal the true value. So,
the cost function will be in the quadratic form as follows,

JWLS := [Ỹk
m]

T (γ 2
yu)

k Ỹk
m.

Taking now the gradient, (∂JWLS)/(∂θ̂WLS) = 0 we get the following,

θ̂WLS =
[

TT
k (γ 2

yu)
k Tk

]−1
TT
k (γ 2

yu)
k Tk. (19)

Remark 1: Note that the poles in the z-domain for all transfer functions are estimated by
solving (19). Theoretically, all 24 transfer functions must have the exact same set of poles
since they are all associated with the same dynamical system. But, each transfer function
was estimated independently, the poles may not be exactly at the same locations as shown
in Figure 7. For that reason, we will use a model reduction technique to eliminate the weak
states which will have small e"ect on the overall response.

The derived reduced model is based on the Hankel singular values for the estimated
model by using the Lyapunov balancing model [37]. The Hankel singular values σi can be
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Figure 7. The locations of the poles of all the transfer functions in the Z-domain. It is shown that the
poles for different transfer function are clustered at the same locations.

computed as,

σi =
√

λi(PO),

P(Âd, B̂d) =
[

B̂d ÂdB̂d . . . Ân−1
d B̂d

]

, O(Âd, Ĉd) =








Ĉd

ĈdÂd
...

Ĉn−1
d Âd







,

where λi(·) is the eigenvalues of the product of controllability and observability Grami-
ans P , and O respectively. The relative strength for each state in the estimated model is
shown in Figure 8. Based on the strongest 14 states, the reduced model is calculated and
evaluated as shown in Figure 6, which demonstrates the accuracy of the reduced model in
comparison with the estimated model.

4. Optimisation-based control

In this section, the duality between the Kalman !lter and the linear quadratic regulator
(LQR) is used as a tool for improving the ride comfort and the road holding stability of a
full vehicle model.
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Figure 8. The Hankel singular values for each state. The model reduction has been calculated based on
the ‘strongest’ 14 states while at the same time eliminating the ‘weak’ states which are under the cutoff
threshold line.

4.1. Observer design

The goal of the observer is to estimate the plant states and dynamics with an acceptable
level of accuracy at di"erent driving and operating conditions. In order to achieve that, we
will formulate an optimal output tracking problem.

Using (20) and (21), the observer dynamics are given by,

X̂k+1 = ÂdX̂k + B̂edQk + B̂fdFk, (20)

ŷk = ĈdX̂k + D̂edQk + D̂edFk. (21)

Remark 2: Note that the observer dynamics is the estimatedmodel in Section 3,Where Âd,
B̂ed , B̂fd , Ĉd, D̂ed , D̂fd are the estimated discrete state matrices from the reduced model (see
Figure 3). According to thewell known separation principle the observer and the controller
can be designed separately, i.e. the controller gain can be computed independently of the
observer gain.

We assume thatQk is the disturbance input for the actual plant and it is not available for
measurement. We can then rewrite (20) and (21) as,

X̂k+1 = ÂdX̂k + B̂fdFk + L(ymk
− ŷk), (22)

ŷk = ĈdX̂k + D̂fdFk, (23)

where L is a correction term added to the observer states to achieve ymk
→ ŷk.
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It is desired to obtain the optimal value L which minimises the following cost function
over in!nite horizon,

JL =
1

2

∞
∑

k=0

[(ymk
− ŷk)

TM(ymk
− ŷk) + LTRL], (24)

where R ≻ 0,M � 0 are symmetric matrices. (24) can be solved in terms of the constraints
(22) and (23) using optimal control theory [15,38].

The Hamiltonian for the system is,

HL = λT[ÂdX̂k + B̂fdFk + L(ymk
− ŷk)] +

1

2
[(ymk

− ŷk)
TM(ymk

− ŷk) + LTRL].

The optimal control can be found by using the stationarity condition ∂HL
∂L = 0 as follows,

L∗ = −
(

R + B̂TfdPB̂fd
)−1

B̂Tfd

(

PÂdX̂k + g
)

.

Now, we need to solve the following coupled equations,

ÂT
dPÂd − P − ÂT

dPB̂fd
(

R−1 + B̂TfdPB̂fd
)−1

B̂TfdPÂd + ĈT
dMĈd = 0, (25)

g = ÂT
d

(

I + PB̂fdR
−1B̂Tfd)

−1g − ĈT
dMymk

.

4.2. Control design

After estimating the plant states using the observer model, the controller can be computed
by using LQR. In order to improve the ride comfort and the road holding stability, the
aim of this controller is to minimise the sprung mass bounce, pitch and roll accelerations
and the dynamic tire loads without violating the maximum limits of the rattle space by
including the states in theweightedmatrixM. In other words, the goal is to !nd a controller
F = [F1, F2, F3, F4]T that minimises the cost function ,

JF =
1

2

∞
∑

k=0

[X̂T
kMX̂k + FTk RFk], (26)

which can be solved in terms of the constraints (22) using the di"erential Riccati
equation (25) to !nd G,

Fk = −GX̂k,

where,

G =
(

R−1 + B̂TfdPB̂fd
)−1

B̂TfdPÂd,

ÂT
dPÂd − P − ÂT

dPB̂fd
(

R−1 + B̂TfdPB̂fd
)−1

B̂TfdPÂd + M = 0.
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Figure 9. Optimal control diagram based on the augmented system of the actual vehicle model, the
observer and the LQR state-feedback controller.

Based on the output-feedback controller design described in Figure 9, the augmented
system has the following form,

[

Xk+1

X̂k+1

]

=

[

Ad −BfdGk

LkCd Âd − LkĈd − B̂fdGk − Lk(Dfd − D̂fd)Gk

]

︸ ︷︷ ︸

Aaug

[

Xk

X̂k

]

+

[

Bed
0

]

︸ ︷︷ ︸

Baug









Zk
r1

Zk
r2

Zk
r3

Zk
r4









(27)

[

ymk

ŷk

]

=

[

Cd −DfdGk

0 Ĉd − D̂fdGk

]

︸ ︷︷ ︸

Caug

[

Xk

X̂k

]

+

[

Ded

0

]

︸ ︷︷ ︸

Daug









Zk
r1

Zk
r2

Zk
r3

Zk
r4









+

[

νk
0

]

. (28)

5. Simulation results

In order to show the e"ectiveness and the robustness of the proposed framework, a numer-
ical simulation has been used for validation. Where, we will !rstly introduce two types of
road excitation. Then, evaluating the observer performance for estimating the actual vehi-
cle states with di"erent CG uncertainties. Finally, demonstrating the LQG framework for
controlling the active suspension system to improve the ride comfort and the road holding
stability.

The vehicle parameters that were considered for the simulation are shown in Table 1.
This vehicle is a passenger car adopted from [4] with maximum rattle space 8 cm. The
Performance Index (PI) is assessed in terms of the following aspects:
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Table 1. Vehicle parameters.

Sprung mass (ms) 2160 kg
Front unsprung mass (m1,2) 85 kg
Rear unsprung mass (m3,4) 60 kg
Front spring stiffness (Kf ) 96,861 N/m
Rear spring stiffness (Kr ) 52,310 N/m
Tire spring stiffness (Kt ) 200,000 N/m
Front damping coefficient (Cf ) 2460 Ns/m
Rear damping coefficient (Cr ) 2281 Ns/m
CG location from front axle (a) 1.524 (m)
CG location from rear axle (b) 1.156 (m)
Wheel track (2w) 1.450 (m)
Pitch mass moment of inertia (Iy ) 4140 (kgm2)

Roll mass moment of inertia (Ix ) 946 (kgm2)
Rattle space limit(Zmax ) 8 (cm)

• The peak and RMS values of the sprung mass accelerations;

RMS

(

z̈m, θ̈s, φ̈s

)

=

√
√
√
√

1

k

k
∑

i=1

(

z̈km, θ̈
k
s , φ̈

k
s

)2

.

• The RMS values of the relative tire loads;

RMS

(

η1, η2, η3, η4

)

=

√
√
√
√

1

k

k
∑

i=1

(

ηk1, η2,
k ηk3, η

k
4

)2

.

• The peak values of the relative suspension de$ection; (µ1,µ2,µ3,µ4).

5.1. Road excitation

Two road pro!les are considered for analysing the performance of the proposed scheme:

(1) A bumpy road pro!le.
(2) A road pro!le of class C of ISO-8608.

The two road pro!les are applied to the actual system (4) and (8) with di"erent vehicle
speeds.

5.1.1. Bumpy road

This road pro!le consists of two successive sinusoidal road excitation signals as illustrated
in (29) and in Figure 10(a). This formulation of road pro!le will introduce bounce, pitch
and roll motion simultaneously and is given by,

zr1,2 =

{
h
2 (1 − cos ωt) if 0 6 t 6

2λ
V

0 otherwise,

zr3,4 =

{
h
2 (1 − cos ω(t − τ)) if τ 6 t 6

(

τ + 2λ
V

)

0 otherwise,

(29)
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Figure 10. Two road profiles used for evaluating the proposed framework. (a) a bumpy road profilewith
vehicle speed 20m/s, (b) ISO-8606 class C road profile with vehicle speed 10m/s.

Figure 11. Open loop validation. It is shown that the response of the estimated model matches the
response of the actual vehicle model. (a) The open loop diagram, (b) Comparison between actual and
estimated model.

where, the bump height is h=0.1mwith wave length λ = 20m and the vehicle speedV =

20m/s are used for the analysis, τ is the time lag between front and rear wheels, i.e. τ =

(a + b)/V , with ω is the road pro!le frequency, i.e. ω = (2πV)/λ.This road pro!le has an
amplitude of 10 cm, which is 25% higher than the rattle space limit.

5.1.2. ISO Class C road profile

According to ISO-8608, all roads are classi!ed from class A to class H [39] based on the
power spectral density (PSD) of the road pro!le. Class A road has a minor degree of
roughness and class H are included all roads with a high degree of roughness.

The PSD of the road pro!le can be calculated as [40],

Gd(n) = Gd(n0).

(
n

n0

)−2

, (30)

where,Gd(n0) is the road roughness coe#cient,n is the spatial frequency,n0 is the reference
spatial frequency. In this simulation, we selected class C road which can be classi!ed as an
average degree of road roughness as shown in Figure 10(b). Two di"erent road pro!les are
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Figure 12. Observer behaviour.

Figure 13. The robustness of the observer for estimating the actual states with 0%, 5%, 10%, 15% and
20% CG uncertainties. (a) CG position uncertainties, (b) Block digram for evaluating the model uncer-
tainties, (c) Estimated error for different CG position uncertainties, (d) Probability distribution for the
estimated error.
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Figure 14. Comparison between active and passive systemusing a bumpy road profile. (a) sprungmass
accelerations, (b) relative suspension deflection, (c) relative tire loads. It is shown that the sprung mass
accelerations and the relative tire loads for the active suspension have been reduced within the limits of
the available rattle space.
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Figure 15. Comparison between active and passive system using ISO class C road profile. (a) sprung
mass accelerations, (b) relative suspension deflection, (c) relative tire loads. It is shown that the sprung
mass accelerations and the relative tire loads for the active suspension have been reduced within the
limits of the available rattle space.
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applied on front left tire and front right tire with a time lag τ between front and rear wheels,
i.e. τ = (a + b)/V , with vehicle speed V =10m/s.

5.2. Dynamic behaviour

In order to demonstrate the performance of the estimated model we applied the bumpy
road pro!le as excitation signals to the actual and estimated models after setting the active
suspension actuators to zero as shown in Figure 11(a).

The response of the actual and the estimated signals are demonstrated in Figure 11(b),
where it reveals a successful matching between the estimated model and the actual model.
The estimated model from Section 3 succeeded to capture the actual vehicle dynamics in
estimating the sprung mass accelerations, which will allow using this estimated model in
controlling the active suspension system of the actual vehicle to improve the ride comfort
and road holding stability.

The observer behaviour using the Kalman !lter is evaluated !rst by setting the actual
model at di"erent initial conditions with respect to the estimated model. It can be seen
from Figure 12 that the observer succeeded to track the actual model after 0.3 second.

In order to evaluate the accuracy of the observer for robustly estimating the actual
vehicle states with CG uncertainties, we calculated the estimated error, ys − ŷ, for dif-
ferent positions of IMU as shown in Figure 13. We evaluated the observer behaviour
with rm = 0%, 5%, 10%, 15% and 20% with respect to the CG position. The results of the
estimated error and its probability distribution illustrate that the observer can estimate the
actual behaviour of the vehicle model with 95% accuracy with up to 20% CG uncertainty.

In terms of evaluating the improvement of ride comfort and road holding stability of
the active system over the passive system, we !rstly applied the bumpy road pro!le to the
proposed augmented system in (27) and (28). It can be seen fromFigure 14 that theKalman
!lter and LQR succeed tominimise the sprungmass accelerations and the relative tire loads
within the limits of the suspension rattle space.

Figure 15 shows the results of sprung mass accelerations, relative suspension de$ec-
tion and relative tire loads using ISO class C road pro!le. The proposed controller scheme
gives a better ride comfort than the passive system and keeps the relative tire loads and the

Table 2. Summary of simulation results for the two road profiles.

Bumpy road ISO road

Performance index Measure Passive Active Passive Active

Ride comfort Peak Z̈m 3.855 0.662 1.397 0.624
RMS Z̈m 1.638 0.302 0.454 0.193
Peak θ̈s 2.163 0.215 1.242 0.563
RMS θ̈s 0.971 0.107 0.443 0.164
Peak φ̈s 0.969 0.089 1.797 0.740
RMS φ̈s 0.420 0.043 0.595 0.225

Road holding RMS η1 0.202 0.067 0.122 0.115
RMS η2 0.146 0.021 0.121 0.128
RMS η3 0.217 0.029 0.071 0.092
RMS η4 0.249 0.042 0.072 0.095

Rattle space Peakµ1 0.322 0.802 0.198 0.252
Peakµ2 0.230 0.747 0.192 0.379
Peakµ3 0.690 0.854 0.202 0.310
Peakµ4 0.772 0.865 0.226 0.372
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Figure 16. Improvement of ride comfort and road holding stability based on active suspension. It is
shown that the sprung mass accelerations and the relative tire loads have been reduced at different
vehicle speed with respect to passive system.

relative suspension de$ections within the hard limits to ensure road holding stability and
safety. the simulation results for the two road pro!les are summarised in Table 2.

The robustness of the proposed approach was examined through a parametric study.
The reduction of the RMS values of the sprung mass accelerations and the dynamic tire
loads are evaluated with di"erent vehicle speeds from 15 up to 50m/s using the bumpy
road pro!le. The results are illustrated in Figure 16, where the average reduction of RMS
values for the sprung mass accelerations and the relative tire loads were not signi!cantly
impacted by the vehicle speed which ascertain the applicability of the proposed approach
in estimating the vehicle dynamics with simultaneously improving the ride comfort and
road holding stability.

6. Conclusion

The vehicle dynamics estimation and optimal control techniques are introduced for a full
vehicle active suspension system using a noisy IMU with CG position uncertainties. We
have estimated the dynamics and the states by using system identi!cation techniques on
separate channels. Such identi!cation techniques used excitation signals that let us to esti-
mate the system transfer functions. The response of the estimatedmodel shows satisfactory
performance in the presence of measurement uncertainties with a 95% accuracy. Then,
an output-feedback controller was designed to improve ride comfort and road holding
stability. Finally, simulation results are presented to demonstrate the e#ciency and quanti-
!ed performance of the proposed scheme. Future work will focus on applying plug-n-play
learning techniques that do not require any o*ine computations to the actual nonlinear
model.
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Appendix. State-space representation of vehicle model

The matrices A,Be,Bf ,C,De,Df ,Q, F are de!ned according to the sate-space representation of
vehicle model in Section 2 as follows,

A =
[

A1 A2 · · · A14 A15
]

.



26 T. ATTIA ET AL.

Where,

A1 =
[

0 0 0 0 0 0 0 0 1 − a w − 1 0 0 0
]

, A2 =
[

0 0 0 0 0 0 0 0 1 − a − w 0 − 1 0 0
]

,

A3 =
[

0 0 0 0 0 0 0 0 1 b w 0 0 − 1 0
]

, A4 =
[

0 0 0 0 0 0 0 0 1 b − w 0 0 0 − 1
]

,

A5 =
[

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
]

, A6 =
[

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
]

,

A7 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
]

, A8 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
]

,

A9 =
1

ms




























−kf
−kf
−kr
−kr
0
0
0
0

−2(cf + cr)
2(acf − bcr)

0
cf
cf
cr
cr




























T

, A10 =
1

Iy




























akf
akf
bkr
bkr
0
0
0
0

2(acf − bcr)
−2(a2cf + b2cr)

0
−acf
−acf
bcr
bcr




























T

, A11 =
w

Ix




























−kf
kf

−kr
kr
0
0
0
0
0
0

−2w(cf + cr)
cf

−cf
cr

−cr




























T

,

A12 =
1

mf




























kf
0
0
0

−kt
0
0
0
cf

−acf
wcf
−cf
0
0
0




























T

, A13 =
1

mf




























0
kf
0
0
0

−kt
0
0
cf

−acf
−wcf
0

−cf
0
0




























T

, A14 =
1

mr



























0
0
kr
0
0
0

−kt
0
cr
bcr
wcr
0
0

−cr
0



























T

, A15 =
1

mr


























0
0
kr
0
0
0

−kt
0
0
0
cr
bcr

−wcr
−cr


























T

,
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Be =



























0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



























, Bf =









































0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1

ms

1

ms

1

ms

1

ms
−a

Iy

−a

Iy

b

Iy

b

Iy
w

Ix

−w

Ix

w

Ix

−w

Ix
−1

mf
0 0 0

0
−1

mf
0 0

0 0
−1

mr
0

0 0 0
−1

mr









































.

And,

C =
[

A9 A10 A11
]T

, De =





0 0 0 0
0 0 0 0
0 0 0 0



 , Df =










1

ms

1

ms

1

ms

1

ms
−a

Iy

−a

Iy

b

Iy

b

Iy
w

Ix

−w

Ix

w

Ix

−w

Ix
.











