1710.04328v1 [cs.SI] 11 Oct 2017

arxiv

To appear in IEEE Transactions on Visualization and Computer Graphics

What Would a Graph Look Like in This Layout?
A Machine Learning Approach to Large Graph Visualization

Oh-Hyun Kwon, Student Member, IEEE, Tarik Crnovrsanin, and Kwan-Liu Ma, Fellow, IEEE

Gigag Gs005

®

G359

Fig. 1. A projection of topological similarities between 8,263 graphs measured by our RW-LOG-LAPLACIAN kernel. Based on the
topological similarity, our approach shows what a graph would look like in different layouts and estimates their corresponding aesthetic
metrics. We clustered the graphs based on their topological similarities for the purpose of the user study. The two graphs in each pair
are the most topologically similar, but not isomorphic, to each other. The projection is computed with t-SNE [83], and the highlighted
graphs are visualized with FM? layout [37]. An interactive plot is available in the supplementary materials [1].

Abstract—Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives
different information. Selecting a “good” layout method is thus important for visualizing a graph. The selection can be highly subjective
and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection.
However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present
a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels.
For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic
metrics. An important contribution of our work is the development of a new framework to design graph kernels. Our experimental study
shows that our estimation calculation is considerably faster than computing the actual layouts and their aesthetic metrics. Also, our
graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate

that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.

Index Terms—Graph visualization, graph layout, aesthetics, machine learning, graph kernel, graphlet

1 INTRODUCTION

Graphs are popularly used to represent complex systems, such as social
networks, power grids, and biological networks. Visualizing a graph
can help us better understand the structure of the data. Many graph
visualization methods have been introduced [36,43, 86], with the most
popular and intuitive method being the node-link diagram.

Over the last five decades, a multitude of methods have been devel-
oped to lay out a node-link diagram. A graph’s layout results can be
greatly different depending on which layout method is used. Because
the layout of a graph significantly influences the user’s understanding
of the graph [36,46, 56, 57], it is important to find a “good” layout

* All authors are with the University of California, Davis.
E-mail: kw@ucdavis.edu, tecrnovr@ucdavis.edu, ma@cs.ucdavis.edu.

that can effectively depict the structure of the graph. Defining a good
layout can be highly subjective and dependent on the given task. A
suitable starting point for finding a good layout is to use both the aes-
thetic criteria, such as reducing edge crossings, and the user’s visual
inspection.

When the graph is large, computing several graph layouts and select-
ing one through visual inspection and/or aesthetic metrics is, unfortu-
nately, not a practical solution. The amount of time it would take to
compute these various layouts and aesthetic metrics is tremendous. For
a graph with millions of vertices, a single layout can take hours or days
to calculate. In addition, we often must consider multiple aesthetic
metrics to evaluate a single graph layout, since there is no consensus
on which criteria are the most effective or preferable [26]. As graph
data is commonly used in data analysis tasks and is expected to grow

in size at even higher rates, alternative solutions are needed.

One possible solution is to quickly estimate aesthetic metrics and
show what a graph would look like through predictive methods. In the
field of machine learning, several methods have been used to predict
the properties of graphs, such as the classes of graphs. One prominent
approach to predicting such properties is to use a graph kernel. Graph
kernel methods enable us to apply various kernelized machine learning
techniques, such as the Support Vector Machine (SVM) [18], on graphs.

In this paper, we present a machine learning approach that can show
what a graph would look like in different layouts and estimate their
corresponding aesthetic metrics. The fundamental assumption of our
approach is the following: given the same layout method, if the graphs
have similar topological structures, then they will have similar resulting
layouts. Under this assumption, we introduce new graph kernels to
measure the topological similarities between graphs. Then, we apply
machine learning techniques to show what a new input graph would
look like in different layouts and estimate their corresponding aesthetic
metrics. To the best of our knowledge, this is the first time graph kernels
have been utilized in the field of graph visualization.

The primary contributions of this work include:

¢ A fast and accurate method to show what a graph would look like

in different layouts.

* A fast and accurate method to estimate graph layout aesthetic

metrics.

* A framework for designing graph kernels based on graphlets.

* A demonstration of the effectiveness of graph kernels as an ap-

proach to large graph visualization.

We evaluate our methods in two ways. First, we compare 13 graph
kernels, which include two state-of-the-art ones, based on accuracy
and computation time for estimating aesthetic metrics. The results
show that our estimations of aesthetic metrics are highly accurate and
fast. Our graph kernels outperform existing kernels in both time and
accuracy. Second, we conduct a user study to demonstrate that the
topological similarity computed with our graph kernel matches the
perceptual similarity assessed by human users.

2 BACKGROUND

In this section, we present the notations and definitions used in this
paper and introduce graph kernels.

2.1 Notations and Definitions

Let G = (V,E) be a graph, where V = {vy,...,v,} is a set of n vertices
(or nodes), and E = {eh.,.,em |e=(vi,vj), vi,vj € V} is aset of m
edges (or links). An edge e = (v;,v;) is said to be incident to vertex
v; and vertex v;. An edge that connects a vertex to itself e = (v;,v;) is
called a self loop. Two or more edges that are incident to the same two
vertices are called multiple edges. A graph is considered simple if it
contains no self loops or multiple edges. An undirected graph is one
where (v;,v;) € E < (v;,v;) € E. A graph is called unlabeled if there
is no distinction between vertices other than their interconnectivity. In
this paper, we consider simple, connected, undirected, and unlabeled
graphs.

Given a graph G, a graph G’ = (V' E’) is a subgraph of Gif V' CV
and E' C E. A subgraph G' = (V' E') is called an induced (or vertex-
induced) subgraph of G if E' = {(v;,v;) | (vi,vj) € E and v;,v; € V'},
that is, all edges in E, between two vertices v;,v j € V', are also present
in E'. Two graphs G = (V,E) and G’ = (V' E') are isomorphic if
there exists a bijection f:V — V', called isomorphism, such that
(vi,vj) €E & (f(vi),f(v;)) € E forall vj,v; € V.

Suppose we have empirical data (x1,y1),...,(%n,) € X x Y,
where the domain & is a nonempty set of inputs x; and) is a set
of corresponding targets y;. A kernel method predicts the target y of a
new input x based on existing “similar” inputs and their outputs (x;,y;).
A function k : X x X — R that measures the similarity between two
inputs is called a kernel function, or simply a kernel. A kernel function
k is often defined as an inner product of two vectors in a feature space

H:
k(xvx/) = <¢(x)’¢(x/)> = <X7X/>

e ETHAY S
MM LR TR TE

5 5 5 5 5 5 5 5 5
813 814 8is 86 81 818 819 820 821

Fig. 2. All connected graphlets of 3, 4, or 5 vertices.

where ¢ : X — H is called a feature map which maps an input x to a
feature vector x in H.

2.2 Measuring Topological Similarities between Graphs

Based on our assumption, we need to measure the topological similari-
ties between graphs. Depending on the discipline, this problem is called
graph matching, graph comparison, or network alignment. In the last
five decades, numerous approaches have been proposed to this prob-
lem [22,29]. Each approach measures the similarity between graphs
based on different aspects, such as isomorphism relation [48,79,92],
graph edit distance [11], or graph measures [4, 19]. However, many
of these traditional approaches are either computationally expensive,
not expressive enough to capture the topological features, or difficult to
adapt to different problems [64].

Graph kernels have been recently introduced for measuring pairwise
similarities between graphs in the field of machine learning. They allow
us to apply many different kernelized machine learning techniques, e.g.
SVM [18], on graph problems, including graph classification problems
found in bioinformatics and chemoinformatics.

A graph kernel can be considered to be an instance of an R-
convolution kernel [42]. It measures the similarity between two graphs
based on the recursively decomposed substructures of said graphs.
The measure of similarity varies with each graph kernel based on dif-
ferent types of substructures in graphs. These substructures include
walks [35, 50, 85], shortest paths [8], subtrees [72,74,75], cycles [44],
and graphlets [76]. Selecting a graph kernel is challenging as many
kernels are available. To exacerbate the problem, there is no theoretical
justification as to why one graph kernel works better than another for a
given problem [76].

Many graph kernels often have similar limitations as previously
mentioned approaches. They do not scale well to large graphs (time
complexity of O(|V|?) or higher) or do not work well for unlabeled
graphs. To overcome this problem, a graph kernel based on sampling
a fixed number of graphlets has been introduced to be accurate and
efficient on large graphs [64,76].

Graphlets are small, induced, and non-isomorphic subgraph patterns
in a graph [67] (Fig. 2). Graphlet frequencies (Fig. 3) have been used
to characterize biological networks [66,67], identify disease genes [59],
and analyze social network structures [82]. Depending on the defini-
tion, the relative frequencies are called graphlet frequency distribution,
graphlet degree distribution, or graphlet concentrations. While these
works often have different definitions, the fundamental idea is to count
the individual graphlets and compare their relative frequencies of occur-
rence between graphs. A graph kernel based on graphlet frequencies,
called a graphlet kernel, was first proposed by Shervashidze et al. [76].
The main idea is to use a graphlet frequency vector as the feature vector
of a graph, then compute the similarity between graphs by defining the
inner product of the feature vectors.

3 APPROACH

Our approach is a supervised learning of the relationship between
topological features of existing graphs and their various layout results.
This also includes the layouts’ aesthetic metrics. Like many supervised
learning methods, our approach requires empirical data (training data)
of existing graphs, their layout results, and corresponding aesthetic
metrics. This generally takes a considerable amount of time, but can

To appear in IEEE Transactions on Visualization and Computer Graphics

1882,
:‘\ 2, "' ‘“ 332, "
5 ., \ —, 4
L
3 - &
H s 'lul‘
I F i
3 &
&
P
e‘~’| fsl 54 gs 8 23 3» 5’7 99 311 13 %’15 17 €’|9§’7| 81 5’1 i’z & | 8 Sw 37 8'9 e‘s’nfswéhéwé’w 221
(a) G333 |V|:122 ‘E‘ 472 (b) G17gg ‘V‘IISS |E|:312
oo e,
o S, 2 2
N |
oo e
° . : 405 05 05 05 05 05 o3 oS o3 o5 o3 30,4 4 4
g ot ol &3 80 @ 83 & gl sis gr g0 8 g gt od &3 6l & 83 & & g s els 817 810 83
(©) Gogs V| =124 |E| =462 (d) Ga0s |V|=19,998 |E|=39,992

Fig. 3. Examples of graphlet frequencies. The x-axis represents connected graphlets of size k € {3,4,5} and the y-axis represents the weighted
frequency of each graphlet. Four graphs are drawn with sfdp layouts [45]. If two graphs have similar graphlet frequencies, i.e., high topological
similarity, they tend to have similar layout results (a and c). If not, the layout results look different (a and b). However, in rare instances, two graphs
can have similar graphlet frequencies (b and d), but vary in graph size, which might lead to different looking layouts.

be considered a preprocessing step as it is only ever done once. The
benefit of machine learning is that as we add more graphs and their
layout results, the performance generally improves.
In this section, we introduce:
1. A framework for designing better graphlet kernels
2. A process of using graph kernels to determine what a graph would
look like in different layouts
3. A method to estimate the aesthetic metrics without calculating
actual layouts

3.1

One of the key challenges of our approach is choosing a graph kernel.
While many graph kernels are available, we focus on sampling based
graphlet kernels because they are computationally efficient and are de-
signed for unlabeled graphs. To improve the performance of a graphlet
kernel, we introduce a framework for designing graphlet kernels. Our
framework consists of three steps:

1. Sampling graphlet frequencies

2. Scaling graphlet frequency vectors

3. Defining an inner product between two graphlet frequency vectors
For each step, we discuss several possible design choices. Our frame-
work defines several new types of graphlet kernels.

Existing studies related to graphlets and graphlet kernels are scat-
tered throughout the literature, including machine learning and network
science. Each of the studies focuses on certain aspects of a graphlet
kernel. Our framework unifies the related works for graphlet kernels.

3.1.1

One of the challenges for constructing a graphlet kernel is computing
the graphlet frequencies. Exhaustive enumeration of graphlets with
k vertices in a graph G is O(|V|¥), which is prohibitively expensive,
even for graphs with a few hundred or more vertices. Thus, sampling
approaches have been introduced to obtain the graphlet frequencies in
a short amount of time with an acceptable error.

Random vertex sampling (RV): Most existing works on graphlet
kernels have sampled graphlets using a random vertex sampling method
[9]. To sample a graphlet of size k, this method randomly chooses k
vertices in V and induces the graphlet based on their adjacency in G.
This step is repeated until the number of sampled graphlets is sufficient.
Since this sampling method randomly chooses k vertices without con-
sidering their interconnectivity in G, it has several limitations. As many
real-world networks are sparse [4], |[E| < O(|V|?), most randomly
sampled graphlets are disconnected. Consequently, the frequency of
disconnected graphlets would be much higher than connected ones. If

Graphlet Kernel Design Framework

Sampling Graphlet Frequencies

disconnected graphlets lack discriminating traits between graphs, and
they outnumber the informative graphlets, comparing graphs becomes
increasingly difficult. While we could only sample connected graphlets
by excluding disconnected ones, this requires a tremendous number
of sampling iterations to sample a sufficient number of connected
graphlets. Since there is no lower bound on the number of iterations for
sampling certain amounts of connected graphlets, using RV to sample
only connected graphlets would lead to undesirable computation times.

Random walk sampling (RW): There are other methods to sample
graphlets based on random walks, such as Metropolis-Hasting random
walk [71], subgraph random walk [88], and expanded Markov chain
[13]. However, they have not been used for designing graphlet kernels
in the machine learning community. Unlike RV sampling, they sample
graphlets by traversing the structure of a given graph. That is, they
search for the next sample vertices within the neighbors of the currently
sampled vertices. Thus, they are able to sample connected graphlets
very well.

3.1.2 Scaling Graphlet Frequency Vector

A graphlet frequency vector x is defined such that each component x;
corresponds to the relative frequency of a graphlet g;. In essence, the
graphlet frequency vector of a graph is the feature vector of the graph.

Linear scale (LIN): Many existing graphlet kernels use linear scal-
ing, often called graphlet concentration, which is the percentage of
each graphlet in the graph. As several works use weighted counts w; of
each graphlet g;, this scaling can be defined as:

Wi
Ywi
Logarithmic scale (LOG): Similar to the vertex degree distribution,
the distribution of graphlet frequency often exhibits a power-law dis-
tribution. This again can cause a significant problem if graphlets that
lack discriminating traits between graphs outnumber the informative
graphlets. Thus, several studies [67,71] used a logarithmic scale of

the graphlet frequency vector to solve this problem. While the exact
definitions of these methods differ, we generalize it using the following

definition:
2 = log (w)
! Z(W,’ + Wb)

where wy, > 0 is a base weight to prevent log0.

Xj =

3.1.3 Defining Inner Product

Several kernel functions can be used to define the inner product in a
feature space H.

Cosine similarity (C0S): Most existing graphlet kernels use the
dot product of two graphlet frequency vectors in Euclidean space, then
normalize the kernel matrix. This is equivalent to the cosine similarity
of two vectors, which is the L,-normalized dot product of two vectors:

!
, x-x
,x)=—"—
X' = T

Gaussian radial basis function kernel (RBF): This kernel is pop-
ularly used in various kernelized machine learning techniques:

) x—x'||?
<X7X > :eXp —W

where o is a free parameter.
Laplacian kernel (LAPLACIAN): Laplacian kernel is a variant of

RBF kernel: ,
<X x’>:exp _HX_X 1
' c

where ||x—x'||; is the L; distance, or Manhattan distance, of the two
vectors.

3.2 What Would a Graph Look Like in This Layout? (WGL)

Graph kernels provide us with the topological similarities between
graphs. Using these pairwise similarities, we design a nearest-neighbor
based method, similar to k-nearest neighbors, to show what a graph
would look like in different layouts. Given a new input graph Gipput,
we find the k£ most topologically similar graphs and show their existing
layout results to the users. Thus, if our assumption is true, users can
expect the layout results of new input graphs by looking at the layout
results of topologically similar graphs.

While graph kernels are able to find topologically similar graphs,
many of them do not explicitly take the size of graphs into account.
In rare cases, it is possible to find topologically similar graphs that
vary in size. For instance, Fig. 3b and Fig. 3d have similar graphlet
frequencies, yet have different layout results. To prevent this, we add
some constraints when we find similar graphs, such as only counting
a graph that has more than half and less than double the number of
vertices in the input graph.

As a result, for the new input graph Gipy, we find kK most similar
graphs as follows:

1. Compute the similarity between existing graphs and Gipput

2. Remove the graphs that do not satisfy a set of constraints

3. Select the k most similar graphs
After we have obtained the k most similar graphs to the input graph
Ginput» We show their existing layout results to the user.

3.3 Estimating Aesthetic Metrics (EAM)

As the aesthetic metrics are continuous values, estimating the aesthetic
metrics is a regression problem. There are several kernelized regression
models, such as Support Vector Regression (SVR) [78], that can be used
for estimating the aesthetic metrics based on the similarities between
graphs obtained by graph kernels. Computing actual aesthetic metrics
of a layout requires a calculation of the layout first. However, our
approach is able to estimate the metrics without calculating actual
layouts.
Training: To estimate the aesthetic metrics, we first need to train a
regression model by:
1. Prepare the training data (layouts and their aesthetic metrics of
existing graphs)
2. Compute a kernel matrix using a graph kernel (pairwise similari-
ties between all graphs in the training data)
3. Train regression model
Estimation: To make an estimation of a new input graph, the fol-
lowing steps are required:
1. Compute similarity between the input graph and other graphs in
the training data
2. Estimate value using the trained regression model

4 EVALUATION 1: ESTIMATING LAYOUT AESTHETIC METRICS

There are several questions we wanted to answer within this evaluation:

* Is our method able to accurately estimate the layout’s aesthetic
metrics without computing the layout?

* Is our method able to quickly obtain the estimations?

* Does our graph kernels, derived from our framework, outperform
state-of-the-art graph kernels in terms of computation time and
estimation accuracy?

‘We describe the experimental design, apparatus, implementation, and
metrics used in the study. We also answer each of these questions in
the results section.

4.1 Experimental Design

We perform 10-fold cross-validations to compare 13 different graph
kernels in terms of their accuracy and computation times for estimating
four aesthetic metrics on eight layout methods.

4.1.1

We started by collecting around 3,700 graphs from [21], which in-
cludes, but not limited to, social networks, web document networks,
and geometric meshes. Without loss of generality, graphs with multiple
connected components were broken down into separate graphs (one
connected component to one graph). After that, we removed any graph
with less than 100 vertices, as there would be little benefit from a ma-
chine learning approach since most layout methods are fast enough for
small graphs. This left us with a total of 8,263 graphs for our study.
The graphs range from 100 vertices, and 100 edges up to 113 million
vertices and 1.8 billion edges. More details about the graphs, such as
characteristic measures and layout results, can be found in [1].

Not all graphs were used for each layout method, as some layout
algorithms failed to compute the results within a reasonable amount of
time (10 days) or ran out of memory. Exact numbers of graphs used for
each layout are reported in [1].

Datasets

4.1.2 Kernels

‘We compare a total of 13 graphlet kernels. Using our framework, 12
graphlet kernels are derived from a combination of 2 graphlet sampling
methods (RV and RW) x 2 types of graphlet frequency vector scaling
(L1N and LOG) x 3 inner products (COS, RBF, and LAPLACIAN). We
denote a kernel derived from our framework by a combination of the
above abbreviations. For example, RW-LOG-LAPLACIAN denotes a
graphlet kernel which samples graphlets based on a random walk, uses a
log scaled graphlet frequency vector, and computes the similarity using
the Laplacian kernel function. We also compare with state-of-the-art
graphlet kernels. The original graphlet kernel [76] can be constructed
using our framework and is included in the 12 kernels (RV-LIN-COS).
Lastly, the 13™ graph kernel is a Deep Graphlet Kernel (DGK) [91].

We used a sampling method from Chen et al. [13] as the RW sam-
pling. For all kernels, we sampled 10,000 graphlets of 3, 4, and 5
vertices for each graph. The graphlets of 3, 4, and 5 vertices are widely
used due to computational costs. Also, the graphlets of 6 or more
vertices are rare [71]. RW sampling considers only connected graphlets,
as in [13], while RV sampling counts both connected and disconnected
graphlets, as in [76,91]. All kernel matrices are normalized such that
the similarity between a graph and itself has a value of 1.

4.1.3 Layouts

The process of laying out a graph has been actively studied for over five
decades. Several studies [23,24,36, 81, 86] provide a comprehensive
review of these layout methods. While there are methods designed for
specific purposes, such as orthogonal layout methods [52], in this work,
we focus on two-dimensional layout methods that draw all edges in
straight lines. Due to the volume of layout methods proposed, eval-
uating all the methods is impractical. For this evaluation, we used
eight representative layout methods of five families based on groupings
found in [36,86]. Our selection process prioritized methods that have
been popularly used, have a publicly available implementation, and
have a proven track record over other state-of-the-art methods.

To appear in IEEE Transactions on Visualization and Computer Graphics

Force-directed methods: Force-directed methods are based on a
physical model of attraction and repulsion. They are among the first
layout methods to be developed and are some of the most commonly
used layout methods today. In general, force-directed layout methods
fall within two groups: spring-electrical [27,30,32] and energy-based
approaches [20,49]. We selected one from each group: Fruchterman-
Reingold (FR) [32] from spring-electrical approaches and Kamada-
Kawai (KK) [49] from energy-based approaches.

Dimension reduction based method: Dimension reduction tech-
niques, including multidimensional scaling (MDS) or principal com-
ponent analysis (PCA), can be used to lay out a graph using the
graph-theoretic distance between node pairs. PivotMDS [10] and
High-Dimensional Embedder (HDE) [41] work by assigning several
vertices as the pivots, then constructing a matrix representation with
graph-theoretic distances of all vertices from the pivots. Afterward,
dimension reduction techniques are applied to the matrix. We selected
HDE [41] in this family.

Spectral method: Spectral layout methods use the eigenvectors of
a matrix, such as the distance matrix [16] or the Laplacian matrix [53]
of the graph, as coordinates of the vertices. We selected the method by
Koren [53] in this family.

Multi-Level methods: Multilevel layout methods are developed
to reduce computation time. These multilevel methods hierarchically
decompose the input graph into coarser graphs. Then, they lay out the
coarsest graph and use the vertex position as the initial layout for the
next finer graph. This process is repeated until the original graph is laid
out. Several methods can be used to lay out the coarse graph, such as a
force-directed method [34,37,40,45,87], a dimension reduction based
method [17], or a spectral method [31,54]. We selected sfdp [45] and
FM? [37] in this family.

Clustering based methods: Clustering based methods are designed
to emphasize graph clusters in a layout. When the graph size is large,
users tend to ignore the number of edge crossings in favor of well-
defined clusters [84]. We selected the Treemap based layout [60] and
the Gosper curve based layout [61] from this family, which utilizing
the hierarchical clustering of a graph to lay out the graph.

4.1.4 Aesthetic Metrics

Aesthetic criteria, e.g., minimizing the number of edge crossings, are
used for improving the readability of a graph layout. Bennett et al. [7]
reviewed various aesthetic criteria from a perceptual basis. Aesthetic
metrics enable a quantitative comparison of the aesthetic quality of
different layouts. While there are many aesthetic criteria and metrics
available, many of them are informally defined or are defined only for
specific types of layout methods. Many also do not have a normalized
metric for comparing graphs of different sizes, or are too expensive to
compute (e.g., symmetry metric in [68] is O(n”)). In this evaluation,
we chose four aesthetic metrics because they have a normalized form,
are not defined only for specific types of layouts, and can be computed
in a reasonable amount of time.

Crosslessness (m.) [68]: Minimizing the number of edge crossings
has been found as one of the most important aesthetic criteria in many
studies [46,52,69,70]. The crosslessness m, is defined as

C
-)
me = Cmax
1,

where c is the number of edge crossings and cmax is the approximated
upper bound of the number of edge crossings, which is defined as

if cmax >0

otherwise

e = EUEZY 15 (dea(v) (dee() 1)
vev

Minimum angle metric (m,) [68]: This metric quantifies the cri-
teria of maximizing the minimum angle between incident edges on a
vertex. It is defined as the average absolute deviation of minimum
angles between the incident edges on a vertex and the ideal minimum

angle 6(v) of the vertex:

1
\4

0 (V) - 6min (V)

o(v)

360°

- 1—
a deg(v)

, 0(v) =
vev

where 6, (v;) is the minimum angle between the incident edges on
the vertex.

Edge length variation (1) [38]: Uniform edge lengths have been
found to be effective aesthetic criteria for measuring the quality of a
layout in several studies [52]. The coefficient of variance of the edge
length (Icy) has been used to quantify this criterion [38]. Since the
upper bound of the coefficient of variation of n values is v/n—1 [51],

we divide oy by \/|E| — 1 to normalize:

lov s

m:
" VIE-

where [; is the standard deviation of the edge length and /,, is the mean
of the edge length.

Shape-based metric (m;) [28]: Shape-based metric is a more recent
aesthetic metric and was proposed for evaluating the layouts of large
graphs. The shape-based metric m; is defined by the mean Jaccard
similarity (MJS) between the input graph Ginput and the shape graph
Gsi

My = MIS (G, Gs), MIS(G1,Gy) = - y° MO0

\V\ IN1(v) UN2(v)]

veV
where G| = (V,E;) and G, = (V, E;) are two graphs with the same
vertex set and N;(u) is the set of neighbours of v in G;. We use the
Gabriel graph [33] as the shape graph.

4.2 Apparatus and Implementation

We perform 10-fold cross-validations of €-SVR implemented by [12].
To remove random effects of the fold assignments, we repeat the whole
experiment 10 times and report mean accuracy metrics (Table 1).

We obtained the implementation of DGK [91] from the authors. The
implementation of each layout method was gathered from: sfdp [65],
FM? [14], FR [65], KK [14], Spectral [39], and Treemap [60] and
Gosper [61] are provided by the authors. Other kernels and layout
methods were implemented by us. For crosslessness (m.), a GPU-based
massively parallel implementation was used. For other metrics, parallel
CPU-based implementations written in C++ were used. The machine
we used to generate the training data and to conduct the experiment
has two Intel Xeon processors (E5-4669 v4) with 22 cores (2.20 GHz)
each, and two NVIDIA Titan X (Pascal) GPUs.

4.3 Accuracy Metrics

Root-Mean-Square Error (RMSE) measures the difference between
measured values (ground truth) and estimated values by a model. Given
a set of measured values) = {y1,...,y, } and a set of estimated values
Y ={y,...,Yn}, the RMSE is defined as:

RMSE(V,) =, |~ Z

The coefficient of determination (R2) shows how well a model “fits”
the given data. The maximum R? score is 1.0 and it can have an arbitrary
negative value. Formally, it indicates the proportion of the variance in
the dependent variable that is predictable from the independent variable,
which is defined as:

R =1-Y =50 [L0i-

where y, is the mean of measured values y;.

4.4 Results

We report the accuracy and computation time for estimating the aes-
thetic metrics.

Table 1. Estimation accuracy of the two most accurate kernels and the state-of-the-art kernels. We report Root-Mean-Square Error (RMSE) and the
coefficient of determination (R?) of estimation of four aesthetic metrics on eight layout methods.

Kernel sfdp FM? FR KK Spectral HDE Treemap Gosper
RMSE R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE R?
Rank 1 me | 0175 9043 .0468 7319 0257 .8480 .0346 8223 1120 .6947 0903 8130 .0836 .6399 .0857 .6199
RW-LOG- m, | 1011 .8965 1041 .8919 .0982 9004 1024 .8876 1153 .8793 1152 .8666 1053 8552 1071 .8580
LAPLACIAN my | 0055 9021 0048 8531 0055 9028 0105 4549 0505 .6203 0155 .5961 0047 8666 .0066 8444
mg | 0514 9060 0474 9325 0417 8533 .0485 9084 0534 9031 0486 .8942 0112 8429 .0323 7495
me | .0176 9036 0446 7568 .0279 8218 .0350 .8182 1138 .6845 .0917 .8072 .0841 .6356 .0882 .5976
E%{l’l—(LZOG— mg | 1070 .8840 1102 .8788 1023 .8920 .1061 8793 1193 .8706 1202 8546 1101 8416 1125 8434
RBF my; | .0062 .8793 .0050 8412 .0059 .8874 .0106 4497 .0519 .5992 .0167 .5291 .0052 8417 .0073 8127
mg | .0556 .8900 .0542 9116 .0459 8227 .0547 .8833 .0576 8875 .0537 .8708 .0116 .8299 .0323 7491
Rank 11 me | .0387 5312 0771 2716 .0577 2364 .0783 .0916 1533 4280 1770 2827 1324 .0978 1336 .0763
RV-LIN- mg | 2883 1581 .2907 1570 2817 1805 2850 1292 3019 1723 2978 .1080 2688 .0557 2726 .0801
Cos [76] my | .0168 .0972 0121 .0561 .0169 .0895 .0138 .0609 .0812 .0200 .0239 .0403 .0116 2026 .0156 1378
my | 1721 —.0552| .1904 | —.0890| .0984 1850 1653 | —.0656| .1777 | —.0729| .1538 | —.0606| .0246 2373 .0628 .0521
me | .0399 .5029 .0783 .2500 .0583 2207 .0803 .0448 1564 4041 1804 2541 1358 .0489 1345 .0630
Rank 12 my | 2891 1536 2924 1467 2837 .1690 2862 1217 3052 1537 .3003 .0930 2716 .0357 2754 .0612
DGK [91] my | .0175 .0246 0126 | —.0134| .0177 .0047 .0140 .0294 .0811 .0203 .0243 .0018 .0128 .0029 .0185 | —.3883
mg | 1756 | —.0982| .1928 | —.1171| .1077 .0236 1676 | —.0953| .1807 | —.1094| .1550 | —.0771| .0286 | —.0846| .0682 | —.1187
100 —— Estimation 106
z)
§ . y; p sfdp § ,
§D 10 / — FM? §D 10 —— Estimation
3 - 3
§ 102 § 102 e
2 — KK Q — My
g HDE g m
s s
2, Spectral 2, — my
g 01 Treemap g 01
10 10* 100 108 Gosper 10 10* 100 108

number of vertices (log scale)

(a) Layout computation and estimation time.

number of vertices (log scale)

(b) Aesthetic metric computation and estimation time.

Fig. 4. Computation time results in log scale. The plots show estimation times for our RW-LOG-LAPLICAN kernel, which has the highest accuracy.
The plot on the left shows layout computation time while the plot on the right shows aesthetic metric computation time. As the number of vertices
increases, the gap between our estimation and layout methods enlarges in both layout time and aesthetic metric computation time. Some layout
methods could not be run on all graphs due to computation time and memory limitation of the implementation. Treemap and Gosper overlap in the
layout plot because the majority of the computation time is spent on hierarchical clustering.

4.4.1 Estimation Accuracy

Due to space constraints, we only reported the results of the two most
accurate kernels and state-of-the-art kernels [76,91] in Table 1. The
results shown are mean RMSE (lower is better) and mean R2 (higher
is better) from 10 trials of 10-fold cross-validations. The standard
deviations of RMSE and R? are not shown because the values are
negligible: all standard deviations of RMSE are lower than .0006, and
all standard deviations of R? are lower than .0075. We ranked the
kernels based on the mean RMSE of all estimations.

The most accurate kernel is our RW-LOG-LAPLACIAN kernel. Ex-
cept for the crosslessness (m.) of FM3, our RW-LOG-LAPLACIAN
kernel shows best estimation results in both RMSE and R? score for
all four aesthetic metrics on all eight layout methods. The second
most accurate kernel is our RW-LOG-RBF kernel and is the best for
crosslessness (m.) of FM3.

Our RW-LOG-LAPLACIAN kernel (mean RMSE = .0557 and mean
R? = .8169) shows an average of 2.46 times lower RMSE than existing
kernels we tested. The original graphlet kernel [76] (mean RMSE
= .1366 and mean R?> = .1216), which is denoted as RV-LIN-COS,
ranked 11", The DGK [91] (mean RMSE = .1388 and mean R? =
.0540) ranked 12

Within the kernels we derived, the kernels using RW sampling show
higher accuracy (mean RMSE = .0836 and mean R?> = .6247) than
ones using RV sampling (mean RMSE = .1279 and mean R? = .2501).
The kernels using LOG scaling show higher accuracy (mean RMSE
= .0955 and mean R? = .5279) than ones using LIN (mean RMSE

=.1160 and mean R? = .3469). The kernels using LAPLACIAN as the
inner product show higher accuracy (mean RMSE = .0956 and mean
R? = .5367) than ones using RBF (mean RMSE = .1047 and mean
R? = .4393) and COs (mean RMSE = .1169 and mean R? = .3362).

4.4.2 Computation Time

Since some algorithms are implemented in parallel while others are
not, we report CPU times. The estimation time is comprised of the
computation steps required for estimation in Sect. 3.3. Our RW-L0OG-
LAPLACIAN kernel, which shows the best estimation accuracy, also
shows the fastest computation time for estimation. On average, it takes
.14093 seconds (SD = 1.9559) per graph to make the estimations. Fig. 4
shows the computation time for layouts and their aesthetic metrics.

Most of the time spent on estimation was devoted to sampling
graphlets. The RW sampling [13] shows fastest computation time,
with an average of .14089 seconds (SD = 1.9559) per graph. The
graphlet sampling for DGK take longer than RW, with an average of
3.38 seconds (SD = 7.88) per graph. The RV sampling take the longest
time, with an average of 6.81 seconds (SD = 7.04).

4.5 Discussion

Our graph kernels perform exceptionally well in both estimation ac-
curacy and computation time. Specifically, RW-LOG-LAPLACIAN
outperforms all other kernels in all metrics except crosslessness (m.)
on the FM?. RW-LOG-RBF is the best performing kernel on FM?3’s
crosslessness (m.) and is the second best kernel. Existing graph kernels
are ranked in the bottom three of all kernel methods we tested.

To appear in IEEE Transactions on Visualization and Computer Graphics

A possible explanation for this is that certain types of graphlets are
essential for accurate estimation. The kernels using RW sampling,
which samples connected graphlets very efficiently, show a higher
accuracy than other kernels. While disconnected graphlets are shown
to be essential for classification problems in bioinformatics [76], for
our problem, we suspect that connected graphlets are more important
for accurate estimation.

Other sampling methods are not suitable for sampling connected
graphlets. There are 49 possible graphlets, where the size of each
graphletis k € {3,4,5}, and 29 of them are connected graphlets (Fig. 2).
However, when we sample 10,000 graphlets per graph using RV sam-
pling, on average only 1.913% (SD = 6.271) of sampled graphlets are
connected graphlets. Furthermore, 35.77% of graphs have no connected
graphlets in the samples even though all graphs are connected, making
it impossible to effectively compare graphs.

The kernels using LOG scaling show more accurate estimations than
the ones using LIN. We suspect this is because of the distribution of
graphlets, which often exhibit a power-law distribution. Thus, when
using LOG scaling, a regression model is less affected by the graphlets
with overwhelming frequencies and becomes better at discriminating
graphs with different structures.

Our estimation times are fast and scale well, as shown in Fig. 4. At
around 200 vertices, our estimation times become faster than all other
layout computation times. Our estimation times also outperform the
computations of the four aesthetic metrics past 1,000 vertices. As the
size of a graph increases, the differences become larger, to the point
that our RW-LOG-LAPLACIAN takes several orders of magnitude less
time than both layout computation and metric computation. Normally
the layout has to be calculated in order to calculate aesthetic metrics.
This is not the case for our estimation as the aesthetic metrics can be
estimated without the layout result, leading to a considerable speed up.

It is interesting to see that each sampling method shows differ-
ent computation times, even though we sampled the same amount of
graphlets. A possible explanation for this discrepancy can be attributed
to locality of reference. We stored the graphs using an adjacency list
data structure in memory. Thus, RW sampling, which finds the next
sample vertices within the neighbors of currently sampled vertices,
tends to exhibit good locality. On the other hand, RV sampling chooses
vertices randomly, thus it would show poor locality which leads to
cache misses and worse performance. The sampling method of DGK is
a variant of RV. After one graphlet is randomly sampled, its immediate
neighbors are also sampled. This would have better locality than RV
and could explain the better computation time.

In terms of training, except for DGK, all other kernels spend neg-
ligible times computing the kernel matrix, with an average of 5.99
seconds (SD = 3.26). However, computing the kernel matrix of DGK
takes a considerable amount of time because it requires computation of
language modeling (implemented by [73]). On average it take 182.96
seconds (SD = 9.31).

Since there are many parameters of each layout method, and most
parameters are not discrete, it is impossible to test all combinations
of parameter settings. To simplify the study, we only used default
parameters for each layout method. It is possible to apply our approach
to different predefined parameter settings on the same layout method.
However, generating new training data for multiple settings can be time
consuming.

5 EVALUATION 2: WHAT WouLD A GRAPH LOOK LIKE IN
THIS LAYOUT?

In this section, we describe our user study that evaluates how well our
WGL method (Sect. 3.2) is able to find graphs that users assess as being
perceptually similar to the actual layout results.

5.1 Experimental Design

We designed a ranking experiment to compare topological similarity
ranks (r1) obtained by our WGL method and perceptual similarity
ranks (rp) assessed by humans. That is, if both our WGL method and
participants’ choices match, then we can conclude our WGL method is
able to find perceptually similar graphs to the actual layout results.

Target Choices

Select the most similar
graph.

Fig. 5. A task from the user study. For each task, the participants were
given one target graph and nine choice graphs. They were then asked to
rank the three most similar graphs in order of decreasing similarity. The
three images on the right show the central nodes of (a), (b), and (c).

5.1.1 Task

For each task, participants were given one target graph and nine choice
graphs. An example of a task given to participants is shown in Fig. 5.
They were asked to rank the three most similar graphs to the target
graph in order of decreasing similarity. The instructions were given as
such, “select the most similar graph.” for the first choice and “select
the next most similar graph.” for the second and third choice. To avoid
biases, we did not specify what is “similar” and let the participants
decide for themselves. In each task, the same layout method was used
for target and choice graphs. We did not notify this to the participants.
To test our approach using graphs with different topological structures
and different layout methods, we used 72 tasks comprised of nine
graphs and eight layout methods.

While other task designs are possible, such as participants ranking all
nine graphs or individually rating all nine choices, during our pilot study
we found that these task designs are overwhelming to the participants.
The participants found it very difficult to rank between dissimilar graphs.
For example, in Fig. 5, selecting the fourth or fifth most similar graph
is challenging as there is little similarity to the target graph after the
first three choices. Also, the focus of our evaluation is to determine
how well our WGL method is able to find similar graphs, not dissimilar
graphs. Thus, we only need to see which graphs our participants
perceive as similar in the task, which simultaneously reduces task load
when compared to ranking all nine graphs.

5.1.2 Graphs

To gather an unbiased evaluation, the target graphs and their choice
graphs must be carefully selected.

Selecting target graphs. To test our approach on graphs with dif-
ferent topological structures, we select nine target graphs as follows:
We clustered the 8,263 graphs into nine groups using spectral cluster-
ing [77]. For each cluster, we select ten representative graphs which
have the highest sum of topological similarity within the cluster (i.e.,
the ten nearest graphs to the center of each cluster). Then, we randomly
select one graph from these ten representative graphs to be the target
graph. Fig. 1 shows the selected nine target graphs in FM? layout [37].

Selecting choice graphs. To test our approach on graphs with dif-
ferent topological similarities obtained by graph kernels, we select
nine choice graphs for each target graph as follows: We compute nine
clusters of graphs based on the topological similarity between a graph
and the target graph using Jenks natural breaks [47], which can be seen
as one dimensional k-means clustering. We designate one of the nine
choice graphs to represent what our approach would predict. This is
done by selecting the graph with the highest similarity to the target
graph from the cluster nearest to the target graph. For the other eight
clusters, we randomly select one choice graph from a set of ten graphs
that have the highest sum of similarity within the cluster (i.e., the ten
nearest graphs to the center of each cluster). These can be considered as

(a) per topological similarity rank (rr)

(b) per layout methods (rp = 1)

(c) per target graphs (rt = 1)

100

S

E- 75 perceptual
= similarity
2 5 rank (rp)
s [B

g 2

g 25 3

el

e

e D == =

0

N >< A
Y

«

o) 5 o

B @“ & ¢

Fig. 6. Summary of the user study results. (a) response rate of perceptual similarity rank (rp) for each topological similarity rank (rt

&

cﬁ&

Q.\'

&

«\\ ,\u
o & ©

o o (i o o (¥ o

). The plot in the

middle (b) shows the response rate on topological similarity rank of 1 per layout method while the plot on the right (c) shows per target graph.

Table 2. Descriptive statistics of perceptual similarity rank (rp). u: mean, SD: standard deviation, /»: median, and IQR: interquartile range. Our

predicted choices are ranked on average 1.35 by the participants.

1 2 3 4 5 6 7 8 9 Sfdp FM? | FR KK |HDE SpCt. Tree. | Gos. Gssz | G2123 | G2331 | G3ear | G3833 | Gasas | Gezra | Gross | Graes

1 |1.35|3.36(3.45|3.68 3.31(3.45|3.82(3.74|3.83 1.16 [1.19 | 1.21 | 1.29 | 1.14 | 1.65 | 1.84 | 1.35 145 | 1.07 | 2 |1.02 | 185|127 |1.32|1.17 | 1.06
SD| .82 | .96 | .84 | .71 | 91 | .84 | .53 | .63 | .53 46 | 55| .6 | .63 | .58 | 1.14 | 1.17 | .81 98 | 36 | 94 | 17 | 1.18 | .74 | .86 | .53 | .34
pl 1 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
IOR| O 1 1 0 1 1 0100 0 0 0 0 0 1 2 0 0 0 1 0 2 0 0 0 0

(a) per topological similarity rank (rr)

representative graphs of each cluster. A list of the selected nine choice
graphs for each target graph can be found in [1].
When we select a choice graph, we filter out graphs that have less

than half or more than double the amount of vertices as the target graph.
This can be considered as a constraint in our WGL method Sect. 3.2.

To evaluate under the condition that isomorphic graphs to the target
graph are not present in the training data, we also filter out graphs that
have the same number of vertices and edges as the target graph.

The clustering approach based on topological similarity can be used
for defining a topological classification of graphs. However, it would
require further analysis of resultant clusters.

5.2 Apparatus

We used our RW-LOG-LAPLACIAN kernel to compute the topological
similarity between graphs. Although other kernels can be used, we
decided on one that shows the highest estimated accuracy in the first
evaluation and provides the best chance to see if a kernel can find
perceptually similar graphs.

The experiment was conducted on an iPad Pro which has a 12.9 inch
display with 2,732x2,048 pixels. Each of the graphs were presented
in 640x 640 pixels. All vertices were drawn using the same blue color
(Red: .122, Green: .467, Blue: .706, Alpha: .9) and edges were drawn
using dark grey color (R: .1, G: .1, B: .1, A: .25), as shown in Fig. 5.

5.3 Procedure

Prior to the beginning of the experiment, the participants were asked
several questions about demographic information, such as age and
experience with graph visualization. To familiarize participants with
the system, eight training tasks were given, at which time they were
allowed to ask any questions to the moderator. Once the training was
done, the moderator did not communicate with the participant. The 72
tasks were presented in randomized order to the participants. The nine

choice graphs of each task were also presented in a randomized order.

For each task, we asked the participants to briefly explain why he or
she selected the particular graph (think aloud protocol).

5.4 Participants

We recruited 30 (9 females and 21 males) participants for our user
study. The ages of the participants ranged from 18 to 36 years, with
the mean age of 26.67 years (SD = 3.68). Most of the participants

were from science and engineering backgrounds: 22 computer science,

2 electrical and computer engineering, 2 cognitive science, 1 animal

(b) per layout methods (rp = 1)

(c) per target graphs (rp = 1)

science, 1 political science, and 1 literature. 28 participants indicated
that they had seen a graph visualization (e.g., a node-link diagram),
21 had used one, and 16 had created one before. On average, each
participant took 28.94 minutes (SD = 11.49) to complete all 72 tasks.

5.5 Results

For each task, the nine choices receive a topological similarity rank
(rt) from one to nine in order of decreasing topological similarity. We
define predicted choice as the choice graph that our method ranks as
the most topologically similar to the target graph (rr = 1). Based on
the responses by the participants, the three choices receive a perceptual
similarity rank (rp) from one to three, where one is the first chosen
graph. Choices not selected by the participants are ranked rp = 4.
Results of our evaluation can be found in Fig. 6.

Overall, 80.46% of the time, participants’ responses for rank one
(rp = 1) match our predicted choices (rr = 1). 90.27% of participants’
responses within rank one and rank two (rp = {1,2}) contain the pre-
dicted choices, and 93.80% of responses within ranks one, two, and
three (rp = {1,2,3}) contain the predicted choice. A Friedman test
(non-parametric alternative to one-way repeated measures ANOVA)
shows a significant effect of the topological similarity rankings (1) on
the perceptual similarity rankings (rp) with ¥%(8) = 6343.9, p < .0001.
The mean rp of the predicted choices is 1.35 (SD = .82 and /IQR = 0),
which is clearly different than other choices (rt > 1) as shown in
Table 2. Post-hoc analysis with Wilcoxon signed-rank tests using
Bonferroni correction confirms that the predicted choices are ranked
significantly higher (p < .0001) than all other choices.

To see the effect layout methods have on participants’ responses,
we break down the responses with a topological similarity rank of
one (rr = 1), or predicted choice, by each layout method. Except for
Spectral and Treemap, the predicted choices are ranked in more than
78.52% (up to 93.33%) of participants’ responses as being the most per-
ceptually similar. In more than 94.44% (up to 99.26%) of participants’
responses, the predicted choices are within the three most perceptually
similar graphs (rp = {1,2,3}), as shown in Fig. 6b. For Spectral, the
predicted choices are ranked in 72.22% of participants’ responses as
being the most similar graph, and 84.07% of responses as being within
the three most similar graphs. For Treemap, the predicted choices
are ranked in 59.63% of participants’ responses as the most similar
graph, and 82.59% of responses as being within the three most similar
graphs. A Friedman test shows a significant effect of layout method
on perceptual similarity rankings (rp) with ¥%(7) = 200.85, p < .0001.

To appear in IEEE Transactions on Visualization and Computer Graphics

Except for Spectral and Treemap, the mean rp of the predicted choices
for each layout method is close to 1, from 1.16 to 1.35 (SD = .46-.81
and /QR = 0), as shown in Table 2b. The means rp of Spectral and
Treemap are 1.65 (SD = 1.14 and IQR = 1) and 1.84 (SD = 1.17 and
IQOR = 2), respectively. Post-hoc analysis shows that the predicted
choices with Treemap are ranked significantly lower than the predicted
choices with other layout methods (p < .0001) except for Spectral.
The predicted choices with Spectral are also ranked by participants as
being significantly lower than the predicted choices with other layout
methods (p < .05) except for Gosper and Treemap.

We also break down the responses for the topological similarity rank
of one (rr = 1) by each target graph. Except for G331 and G3g33,
the predicted choices are ranked in more than 79.58% (up to 98.33%)
of responses as being the most similar, and more than 92.08% (up to
99.99%) of responses as being within the three most similar graphs
(rp = {1,2,3}), as shown in Fig. 6¢. For G331, the predicted choices
are ranked in 32.92% of all responses as being the most similar graph,
78.33% of responses as being within the two most similar graphs, and
89.16% of responses as being within the three most similar graphs.
For Gsg33, the predicted choices are ranked in 60.42% of participants’
responses as being the most similar graph, 73.33% of responses as
being within the two most similar graphs, and 81.67% of responses as
being within the three most similar graphs. A Friedman test shows a
significant effect of target graphs on perceptual similarity rankings (rp)
with x2(8) = 511, p < .0001. Except for G»33; and Gsgs3, the mean
rp of the predicted choices for each target graph is close to 1, from
1.06 to 1.45 (SD = .34-.98 and IQR = 0), as shown in Table 2b. The
means rp of G331 and G3gzz are 2 (SD = .94 and IQR = 1) and 1.85
(8D = 1.18 and IQR = 2), respectively. Post-hoc analysis shows that
the predicted choices of G331 and G3g33 are ranked significantly lower
than predicted choices of other target graphs (p < .0001).

5.6 Discussion

The results of the user study show that in more than 80% of partici-
pants’ responses, the predicted choices are ranked as being the most
perceptually similar graph to the target graphs. Also, more than 93%
of the responses ranked the predicted choices as being within the three
most perceptually similar graphs. Thus, we believe our WGL method is
able to provide the expected layout results that are perceptually similar
to the actual layout results.

When we analyze participants’ responses for the predicted choices
(rr = 1) for each layout separately, we find that the predicted choices
with Spectral and Treemap layouts are ranked lower than with other
layouts. The common reasons given by participants for selecting choice
graphs with Spectral layout were “line shape” and “number of vertices”.
We notice that the Spectral layouts have many nodes that overlap each
other. Treemap, on the other hand, produces similar looking graphs
due to its geometric constraints. This observation was mirrored by
many participants who said “they all look similar” for the choices with
Treemap layout. Common reasons for selecting choice graphs with
Treemap layout were “edge density”” and “overall edge direction”.

It is interesting to see how people perceive certain structures as more
important than others. For instance, when we look at the responses on
target graphs separately, we notice that target graph G331 has different
response patterns. Target graph G331 and its choice graph are shown
in Fig. 5. Participants’ responses for rp = 1 are split between two
choices, Fig. 5b and Fig. S5c. The common reasons why the participants
ranked Fig. 5c as the most similar to Fig. 5a were “density”, “shape”,
and “number of edges”. On the other hand, the common reason why
the participants ranked Fig. 5b as the most similar to Fig. 5a was “the
number of central nodes”. Our method also chose Fig. Sc as the most
similar graph because of the general structure matching the target graph,
but ranked Fig. 5b as being second most similar 7r = 2. In the case of
target graph G331, the number of nodes in the center held more value
to some participants than the overall structure.

In our user study, only one similar graph was chosen and shown by
our system per target graph. In a real system, the user would be given
several similarly looking graphs, including isomorphic graphs. Thus,
the real system would show more layouts closer to the actual one.

6 RELATED WORK

Only a handful of studies have used topological features for visualizing
graphs. Perhaps this is why there is a scarcity of studies applying
machine learning techniques to the process of visualizing a graph [25].

Niggemann and Stein [63] introduced a learning method to find an
optimal layout method for a clustered graph. The method constructs a
handcrafted feature vector of a cluster from a number of graph measures,
including the number of vertices, diameter, and maximum vertex degree.
Then, it attempts to find an optimal layout for each cluster. However,
these features have been proved as not expressive enough to capture
topological similarities in many graph kernel works [64].

Behrisch et al. [6] proposed a technique called Magnostics, where
a graph is represented as a matrix view and image-based features are
used to find similar matrices. One of the challenges of a matrix view is
the vertex ordering. Depending on the ordering, even the same graph
can be measured as a different graph from itself. Graph kernels do not
suffer from the same problem since they measure the similarity using
only the topology of the graph.

Several techniques have used machine learning approaches to im-
prove the quality of a graph layout [25]. Some of these techniques used
evolutionary algorithms for learning user preferences with a human-in-
the-loop assessment [3, 5,55, 80], while others have designed neural
network algorithms to optimize a layout for certain aesthetic crite-
ria [15, 58, 89]. One major limitation of these techniques is that models
learned from one graph are not usable in other graphs. Since these
techniques often require multiple computations of layouts and their
aesthetic metrics, the learning process can be highly time-consuming.
These techniques can benefit from our approach by quickly showing
the expected layout results and estimating the aesthetic metrics.

Many empirical studies have been conducted to understand the rela-
tion between topological characteristics of graphs and layout methods.
The main idea is to find the “best” way to lay out given graphs [36]. To
achieve this, Archambault et al. [2] introduced a layout method which
first recursively detects the topological features of subgraphs, such as
whether a subgraph is a tree, cluster, or complete graph. Then, each sub-
graph is laid out using the suitable method according to its topological
characteristics. A drawback of this method is that the feature detectors
are limited to five classes. Our kernel can be utilized for heterogeneous
feature detection with less computational cost.

A number of recent studies investigated sampling methods for large
graph visualization. Wu et al. [90] evaluated a number of graph sam-
pling methods in terms of resulting visualization. They found that
different visual features were preserved when different sampling strate-
gies were used. Nguyen et al. [62] proposed a new family of quality
metrics for large graphs based on a sampled graph.

7 CONCLUSION

We have developed a machine learning approach using graph kernels for
the purpose of showing what a graph would look like in different layouts
and their corresponding aesthetic metrics. We have also introduced a
framework for designing graphlet kernels, which allows us to derive
several new ones. The estimations using our new kernels can be derived
several orders of magnitude faster than computing the actual layouts
and their aesthetic metrics. Also, our kernels outperform state-of-the-art
kernels in both accuracy and computation time. The results of our user
study show that the topological similarity computed with our kernel
matches perceptual similarity assessed by human users.

In our work, we have only considered a subset of layout methods.
A possible future direction is to include more layout methods with
additional parameter settings for each method. Mechanical Turk could
be used to conduct such an experiment at scale. Another possible
future direction of this work is to introduce a new layout method which
quickly predicts the actual layout instead of just showing the expected
results of the input graph. We hope this paper opens a new area of study
into using machine learning approaches for large graph visualization.

ACKNOWLEDGMENTS

This research has been sponsored in part by the U.S. National Science
Foundation through grants IIS-1320229 and IIS-1528203.

REFERENCES

(1]
[2]

(3]

(4]

[3]

(6]

[7

—

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

The Supplementary Materials. http://graphvis.net/wgl.

D. Archambault, T. Munzner, and D. Auber. TopoLayout: Multilevel
Graph Layout by Topological Features. /IEEE Transactions on Visualiza-
tion and Computer Graphics, 13(2):305-317, 2007.

B. Bach, A. Spritzer, E. Lutton, and J.-D. Fekete. Interactive Random
Graph Generation with Evolutionary Algorithms. In Proc. Graph Drawing,
pages 541-552, 2012.

A.-L. Barabdsi. Network Science. Cambridge University Press, 2016.

H. J. C. Barbosa and A. M. S. Barreto. An Interactive Genetic Algo-
rithm with Co-evolution of Weights for Multiobjective Problems. In Proc.
Annual Conference on Genetic and Evolutionary Computation, pages
203-210, 2001.

M. Behrisch, B. Bach, M. Hund, M. Delz, L. V. Rden, J. D. Fekete, and
T. Schreck. Magnostics: Image-Based Search of Interesting Matrix Views
for Guided Network Exploration. IEEE Transactions on Visualization and
Computer Graphics, 23(1):31-40, 2017.

C. Bennett, J. Ryall, L. Spalteholz, and A. Gooch. The Aesthetics of Graph
Visualization. In Proc. Eurographics Conference on Computational Aes-
thetics in Graphics, Visualization and Imaging, Computational Aesthetics,
pages 57-64, 2007.

K. M. Borgwardt and H. P. Kriegel. Shortest-path Kernels on Graphs. In
Proc. IEEE International Conference on Data Mining, pages 74-81, 2015.
K. M. Borgwardt, T. Petri, S. V. N. Vishwanathan, and H.-P. Kriegel. An
Efficient Sampling Scheme for Comparison of Large Graphs. In Proc.
Mining and Learning with Graphs, 2007.

U. Brandes and C. Pich. Eigensolver Methods for Progressive Multidi-
mensional Scaling of Large Data. In Proc. Graph Drawing, pages 42-53,
2006.

H. Bunke and G. Allermann. Inexact Graph Matching for Structural
Pattern Recognition. Pattern Recognition Letters, 1(4):245-253, 1983.
C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector
Machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1-27:27,2011.

X. Chen, Y. Li, P. Wang, and J. C. Lui. A General Framework for Esti-
mating Graphlet Statistics via Random Walk. Proc. VLDB Endowment,
10(3):253-264, 2016.

M. Chimani, C. Gutwenger, M. Jiinger, G. W. Klau, K. Klein, and
P. Mutzel. The Open Graph Drawing Framework (OGDF). In R. Tamassia,
editor, Handbook of Graph Drawing and Visualization, chapter 17. CRC
Press, 2013.

A. Cimikowski and P. Shope. A Neural-Network Algorithm for a Graph
Layout Problem. IEEE Transactions on Neural Networks, 7(2):341-345,
1996.

A. Civril, M. Magdon-Ismail, and E. Bocek-Rivele. SDE: Graph Drawing
Using Spectral Distance Embedding. In Proc. Graph Drawing, pages
512-513, 2005.

J. D. Cohen. Drawing Graphs to Convey Proximity: An Incremental Ar-
rangement Method. ACM Transactions on Computer-Human Interaction,
4(3):197-229, 1997.

C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning,
20(3):273-297, 1995.

L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Char-
acterization of Complex Networks: A Survey of Measurements. Advances
in Physics, 56(1):167-242, 2007.

R. Davidson and D. Harel. Drawing Graphs Nicely Using Simulated
Annealing. ACM Transactions on Graphics, 15(4):301-331, 1996.

T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software, 38(1):1:1-1:25, 2011.

M. Dehmer and F. Emmert-Streib, editors. Quantitative Graph Theory:
Mathematical Foundations and Applications. Chapman and Hall/CRC
Press, 2014.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
Drawing Graphs: An Annotated Bibliography. Computational Geometry:
Theory and Applications, 4(5):235-282, 1994.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1998.

R. dos Santos Vieira, H. A. D. do Nascimento, and W. B. da Silva. The
Application of Machine Learning to Problems in Graph Drawing A Litera-
ture Review. In Proc. International Conference on Information, Process,
and Knowledge Management, pages 112—118, 2015.

C. Dunne and B. Shneiderman. Improving Graph Drawing Readability by

10

[27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]
[42]

[43]

[44]

(45]

[46]

[47]
(48]
(49]

(501

(51]

[52]

(53]

Incorporating Readability Metrics: A Software Tool for Network Analysts.
Technical Report HCIL-2009-13, University of Maryland, 2009.

P. Eades. A Heuristic for Graph Drawing. Congressus Numerantium,
42:149-160, 1984.

P. Eades, S.-H. Hong, A. Nguyen, and K. Klein. Shape-Based Quality
Metrics for Large Graph Visualization. Journal of Graph Algorithms and
Applications, 21(1):29-53, 2017.

F. Emmert-Streib, M. Dehmer, and Y. Shi. Fifty Years of Graph Matching,
Network Alignment and Network Comparison. Information Sciences,
346-347:180-197, 2016.

A. Frick, A. Ludwig, and H. Mehldau. A Fast Adaptive Layout Algorithm
for Undirected Graphs. In Proc. Graph Drawing, pages 388—403, 1994.
Y. Frishman and A. Tal. Multi-Level Graph Layout on the GPU. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1310-1319,
2007.

T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-
directed Placement. Software: Practice and Experience, 21(11):1129—
1164, 1984.

K. R. Gabriel and R. R. Sokal. A New Statistical Approach to Geographic
Variation Analysis. Systematic Biology, 18(3):259-278, 1969.

P. Gajer and S. G. Kobourov. GRIP: Graph Drawing with Intelligent
Placement. Journal of Graph Algorithms and Applications, 6(3):203-224,
2002.

T. Girtner, P. Flach, and S. Wrobel. On Graph Kernels: Hardness Results
and Efficient Alternatives. In B. Scholkopf and M. K. Warmuth, editors,
Learning Theory and Kernel Machines, pages 129—143. Springer Berlin
Heidelberg, 2003.

H. Gibson, J. Faith, and P. Vickers. A Survey of Two-dimensional Graph
Layout Techniques for Information Visualization. Information Visualiza-
tion, 12(3-4):324-357, 2013.

S. Hachul and M. Jiinger. Drawing Large Graphs with a Potential-Field-
Based Multilevel Algorithm. In Proc. Graph Drawing, pages 285-295,
2004.

S. Hachul and M. Jiinger. Large-Graph Layout Algorithms at Work: An
Experimental Study. Journal of Graph Algorithms and Applications,
11(2):345-369, 2007.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring Network Structure,
Dynamics, and Function using NetworkX. In Proc. Python in Science
Conference, pages 11-15, 2008.

D. Harel and Y. Koren. A Fast Multi-Scale Method for Drawing Large
Graphs. Journal of Graph Algorithms and Applications, 6(3):179-202,
2002.

D. Harel and Y. Koren. Graph Drawing by High-Dimensional Embedding.
Journal of Graph Algorithms and Applications, 8(2):195-214, 2004.

D. Haussler. Convolution Kernels on Discrete Structures. Technical Report
UCSC-CRL-99-10, University of California, Santa Cruz, 1999.

I. Herman, G. Melancon, and M. S. Marshall. Graph Visualization and
Navigation in Information Visualization: A Survey. IEEE Transactions
on Visualization and Computer Graphics, 6(1):24-43, 2000.

T. Horvath, T. Gértner, and S. Wrobel. Cyclic Pattern Kernels for Predic-
tive Graph Mining. In Proc. ACM SIGKDD Conference on Knowledge
Discovery And Data Mining, pages 158-167, 2004.

Y. Hu. Efficient and High Quality Force-Directed Graph Drawing. Mathe-
matica Journal, 10(1):37-71, 2005.

W. Huang, S.-H. Hong, and P. Eades. Effects of Sociogram Drawing
Conventions and Edge Crossings in Social Network Visualization. Journal
of Graph Algorithms and Applications, 11(2):397-429, 2007.

G. F. Jenks. The Data Model Concept in Statistical Mapping. International
Yearbook of Cartography, 7:186-190, 1967.

F. Kaden. Graphmetriken und Distanzgraphen. ZKI-Informationen, Akad.
Wiss. DDR, 2(82):1-63, 1982.

T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected
Graphs. Information Processing Letters, 31(1):7-15, 1989.

H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for Graphs. In K. Tsuda,
B. Scholkopf, and J.-P. Vert, editors, Kernels and Bioinformatics, pages
155-170. MIT Press, 2004.

J. Katsnelson and S. Kotz. On the Upper Limits of Some Measures of
Variability. Archiv fiir Meteorologie, Geophysik und Bioklimatologie, Serie
B, 8(1):103-107, 1957.

S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. HOLA: Human-like
Orthogonal Network Layout. IEEE Transactions on Visualization and
Computer Graphics, 12(1):349-358, 2016.

Y. Koren. Drawing Graphs by Eigenvectors: Theory and Practice. Com-

http://graphvis.net/wgl

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63

[tr?

[64]
[65]
[66]

[67

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]
[79]

[80]

To appear in IEEE Transactions on Visualization and Computer Graphics

puters and Mathematics with Applications, 49(11-12):1867-1888, 2005.
Y. Koren, L. Carmel, and D. Harel. ACE: A Fast Multiscale Eigenvectors
Computation for Drawing Huge Graphs. In Proc. IEEE Symposium on
Information Visualization, pages 137-144, 2002.

T. Masui. Evolutionary Learning of Graph Layout Constraints from
Examples. In Proc. ACM Symposium on User Interface Software and
Technology, pages 103—108, 1994.

C. McGrath, J. Blythe, and D. Krackhardt. Seeing Groups in Graph Layout.
Connections, 19(2):22-29, 1996.

C. McGrath, J. Blythe, and D. Krackhardt. The Effect of Spatial Arrange-
ment on Judgments and Errors in Interpreting Graphs. Social Networks,
19(3):223-242, 1997.

B. Meyer. Self-Organizing Graphs — A Neural Network Perspective of
Graph Layout. In Proc. Graph Drawing, pages 246-262, 1998.

T. Milenkovié, V. MemiSevi¢, A. K. Ganesan, and N. Przulj. Systems-
Level Cancer Gene Identification from Protein Interaction Network Topol-
ogy Applied to Melanogenesis-related Functional Genomics Data. Journal
of the Royal Society Interface, 7(44):423-437, 2010.

C. W. Muelder and K.-L. Ma. A Treemap Based Method for Rapid Layout
of Large Graphs. In Proc. IEEE Pacific Visualization Symposium, pages
231-238, 2008.

C. W. Muelder and K.-L. Ma. Rapid Graph Layout Using Space Filling
Curves. [EEE Transactions on Visualization and Computer Graphics,
14(6):1301-1308, 2008.

Q. H. Nguyen, S. H. Hong, P. Eades, and A. Meidiana. Proxy Graph:
Visual Quality Metrics of Big Graph Sampling. IEEE Transactions on
Visualization and Computer Graphics, 23(6):1600-1611, 2017.

0. Niggemann and B. Stein. A Meta Heuristic for Graph Drawing: Learn-
ing the Optimal Graph-Drawing Method for Clustered Graphs. In Proc.
Working Conference on Advanced Visual Interfaces, pages 286—289, 2000.
Nino Shervashidze. Scalable Graph Kernels. PhD thesis, Universitit
Tiibingen, 2012.

T. P. Peixoto. The graph-tool Python Library. https://graph-tool.
skewed.de, 2014.

N. Przulj. Biological Network Comparison Using Graphlet Degree Distri-
bution. Bioinformatics, 23(2):e177-e188, 2007.

N. Przulj, D. G. Corneil, and I. Jurisica. Modeling Interactome: Scale-free
or Geometric? Bioinformatics, 20(18):3508-3515, 2004.

H. C. Purchase. Metrics for Graph Drawing Aesthetics. Journal of Visual
Languages and Computing, 13(5):501-516, 2002.

H. C. Purchase, J.-A. Allder, and D. Carrington. Graph Layout Aesthetics
in UML Diagrams: User Preferences. Journal of Graph Algorithms and
Applications, 6(3):255-279, 2002.

H. C. Purchase, C. Pilcher, and B. Plimmer. Graph Drawing Aesthetics—
Created by Users, Not Algorithms. IEEE Transactions on Visualization
and Computer Graphics, 18(1):81-92, 2012.

M. Rahman, M. A. Bhuiyan, M. Rahman, and M. A. Hasan. GUISE: A
Uniform Sampler for Constructing Frequency Histogram of Graphlets.
Knowledge and Information Systems, 38(3):511-536, 2014.

J. Ramon and T. Girtner. Expressivity versus Efficiency of Graph Kernels.
In Proc. International Workshop on Mining Graphs, Trees and Sequences,
2003.

R. Rehtifek and P. Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proc. LREC Workshop on New Challenges for NLP
Frameworks, pages 45-50, 2010.

N. Shervashidze and K. M. Borgwardt. Fast Subtree Kernels on Graphs.
In Proc. Conference on Neural Information Processing Systems, pages
1660-1668, 2009.

N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine
Learning Research, 12:2539-2561, 2011.

N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borg-
wardt. Efficient Graphlet Kernels for Large Graph Comparison. In Proc.
International Conference on Artificial Intelligence and Statistics, pages
488-495, 2009.

J. Shi and J. Malik. Normalized Cuts and Image Segmentation. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888—
905, 2000.

A.J. Smola and B. Scholkopf. A Tutorial on Support Vector Regression.
Statistics and Computing, 14(3):199-222, 2004.

F. Sobik. Graphmetriken und Klassifikation Strukturierter Objekte. ZKI-
Informationen, Akad. Wiss. DDR, 2(82):63—122, 1982.

M. Sponemann, B. Duderstadt, and R. von Hanxleden. Evolutionary Meta

11

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

(911

[92]

Layout of Graphs. In Proc. Diagrams, pages 16-30, 2014.

R. Tamassia, editor. Handbook of Graph Drawing and Visualization. CRC
Press, 2013.

J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph Frequencies: Map-
ping the Empirical and Extremal Geography of Large Graph Collections.
In Proc. International Conference on World Wide Web, pages 1307-1318,
2013.

L. van der Maaten and G. Hinton. Visualizing High-Dimensional Data
Using t-SNE. Journal of Machine Learning Research, 9(Nov):2579-2605,
2008.

F. van Ham and B. Rogowitz. Perceptual Organization in User-Generated
Graph Layouts. IEEE Transactions on Visualization and Computer Graph-
ics, 14(6):1333-1339, 2008.

S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt.
Graph Kernels. Journal of Machine Learning Research, 11:1201-1242,
2010.

T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van Wijk,
J.-D. Fekete, and D. Fellner. Visual Analysis of Large Graphs: State-
of-the-Art and Future Research Challenges. Computer Graphics Forum,
30(6):1719-1749, 2011.

C. Walshaw. A Multilevel Algorithm for Force-Directed Graph-Drawing.
Journal of Graph Algorithms and Applications, 7(3):253-285, 2003.

P. Wang, J. C. S. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan. Effi-
ciently Estimating Motif Statistics of Large Networks. ACM Transactions
on Knowledge Discovery from Data, 9(2):8:1-8:27, 2014.

R.-L. Wang and O. K. Artificial Neural Network for Minimum Crossing
Number Problem. In Proc. International Conference on Machine Learning
and Cybernetics, volume 7, pages 4201-4204, 2005.

Y. Wu, N. Cao, D. Archambault, Q. Shen, H. Qu, and W. Cui. Evaluation
of Graph Sampling: A Visualization Perspective. IEEE Transactions on
Visualization and Computer Graphics, 23(1):401-410, 2017.

P. Yanardag and S. Vishwanathan. Deep Graph Kernels. In Proc. ACM
SIGKDD Conference on Knowledge Discovery And Data Mining, pages
1365-1374, 2015.

B. Zelinka. On a Certain Distance between Isomorphism Classes of
Graphs. Casopis pro péstovdni matematiky, 100(4):371-373, 1975.

https://graph-tool.skewed.de
https://graph-tool.skewed.de

	Introduction
	Background
	Notations and Definitions
	Measuring Topological Similarities between Graphs

	Approach
	Graphlet Kernel Design Framework
	Sampling Graphlet Frequencies
	Scaling Graphlet Frequency Vector
	Defining Inner Product

	What Would a Graph Look Like in This Layout? (WGL)
	Estimating Aesthetic Metrics (EAM)

	Evaluation 1: Estimating Layout Aesthetic Metrics
	Experimental Design
	Datasets
	Kernels
	Layouts
	Aesthetic Metrics

	Apparatus and Implementation
	Accuracy Metrics
	Results
	Estimation Accuracy
	Computation Time

	Discussion

	Evaluation 2: What Would a Graph Look Like in This Layout?
	Experimental Design
	Task
	Graphs

	Apparatus
	Procedure
	Participants
	Results
	Discussion

	Related Work
	Conclusion

