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Mixing of two miscible liquids juxtaposed inside a cavity initially separated by.a Mse buoyancy-driven
motion is initiated via impulsive perturbation of divider motion that can genetate t ichtmyer-Meshkov instability,
is investigated experimentally. The measured Lagrangian history of interfztexqsti;;r;l at contains the continuum
mechanics of mixing shows self-similar nearly Gaussian length stretCh %tribu for wide range of control
parameters encompassing approximate Hele-Shaw cell to three-dimensional Cavity. Because of initial configuration
of interface which is parallel to the gravitational field, we show th initial potential energy mixing occurs
through stretching of the interface, that shows frontogenesis, and folding owing to an overturning motion that results
in unstable density stratification and produces an ideal condition«for growth‘of single wavelength Rayleigh-Taylor
instability. The initial perturbation of the interface and ﬂow@ generate Kelvin-Helmbholtz instability and causes
kinks at the interface, which grow into deep fingers durin verturnin‘:)notion and unfold into local whorl structures

that merge and self-organize into the Rayleigh-Taylor morpholegy fR‘F M) structure. For a range of parametric space
th
]{?t\aﬂ

that yields two-dimensional flows, the unfolding instability through a supercritical bifurcation yields an
asymmetric pairwise structure exhibiting smooth RT a sitions to RTM fronts with fractal structures that
contain small length scales for increasing Peclet n «Lhe late stage of the RTM structure unfolds into an internal
breakwave that breaks-down through wall and internalgollision, and sets up the condition for self-induced sloshing
that decays exponentially as the two fluids be&\ bl\y ratified with a diffusive region indicating local molecular

diffusion. \
\

L. INTRODUCTION

Mixing drivendby bu}y-induced flows has wide applications to transport phenomena
in materials processing, fof by errestrial and the microgravity environment of the International
Space Station (ISS). The.centrol of the body force on ISS using vibration platforms allows
accessibility to.a muchyvider range of control parameters and in particular affects the intensity of
flow fields. or%ample, the reduction of flow field intensity in microgravity allows uniform
concentratidn gradient near phase interface in crystal growth processes such as solution,!
solidification?, and physical vapor transport® for technological applications. The
the £oncentration gradient is a desirable characteristic since it affects crystalline

by the buoyancy force, of central importance to these problems is how buoyancy-
s stretch and fold an interface. We introduce an experiment to shed light into mixing
the buoyancy force.
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Publishing The need to address the effects of convection on concentration gradients in solution crystal
growth of organic materials* conducted in microgravity experiments prompted ground-based
experiments® on mixing driven buoyancy-induced flows between two liquids inside rectangular
compartments separated by a barrier consisting of channels. These experiments® were carried out
to investigate effects of convection on mass diffusion in order to shed light on the findings in Ref.
4. The complexity of the channel barrier’ separating the two liquids, does not give direct access to
interface information. The present experiment considers an ideal barpier design that allows the
central question, as to how buoyancy-driven flows advect the interface“getween two miscible
liquids, to be addressed in relation to computational findings in Ref. 6.

The computational experiments® predict the occurrence of a‘symmeiric pairwise Rayleigh-
Taylor morphology (RTM) structure due to the Rayleigh-Taylor instability mechanism for an ideal
initial condition, while the physical experiments consider non<ideal“mitial condition and seeks to
determine how the ideal initial condition of the computagional modg! that yields symmetry can be
approached. Symmetric structures, from the viewpoint of mixing have been used to drive more
efficient mixing’. The experiments considered are fmplemented in search of a symmetric short-
lived coherent structure such as RTM; we show that{inding this symmetric structure remains an
ideal goal that can be approached and presents acchallenge to experimentalists. However the
computational model® shows the basic featureSithat aréyalso observed experimentally, such as the
distinct stages of development of the RTM structure, The early stages of RTM® have been shown
to unfold from an overturning motiont that generates a long wavelength Rayleigh-Taylor
instability; the RTM structure takes several e@nfigurations with respect to a horizontal interface
that depends on the initial potential energy«of the system. The late stages® of the RTM structure
unfold into an internal breakwave ¢hat bredks-down through wall and internal collision, and sets
up the condition for self-induced sleshing‘that decays exponentially as the two fluids become
stably stratified with a diffusiveyegion indicating local molecular diffusion; since these features
are robust they also observed expertmentally.

Mixing is inherentlyx.a trahsient process involving initial segregation of two or more
constituents, such asAwo liquids, and stirring in order to obtain uniformity or homogeneity?®.
Complex patterns emerge’and , dissipate between the two limits of segregation and homogeneity.
Mixing occurs indyvide range of applications involving various mechanism of stirring including:
convection in the Farth’s mantle’, convection of passive tracers in laminar flows due to energy
injection frond moving boundaries!®!* large scale vortical structures sustained by shear flow!>1®,

combustion‘processes!’, and mixing that occurs in the ocean'82? and atmospheric flows?-%.

There exists aflass of mixing flows for which the body force can be caused by deterministic
acceleration, as well as random (stochastic) acceleration known as g-jitter. When the body force is
parallelMg the/interface the effect of deterministic?®-?® and stochastic acceleration components®®-*°
of the body force lends insight into effects of g-jitter on mixing driven by buoyancy-induced flows
in agnicrogravity environment. Flows due to gravitational instability for which the body force is
steady and perpendicular to the interface have been used as a basis to address mixing due to the
Rafyleigh-Taylor instability mechanism®'-’. In our case we consider buoyancy-driven mixing in
which the body force is steady and parallel to the interface initially. Mixing, sometimes used
interchangeably with stirring, according to Ref. 38 consists of stretching and folding of material
lines or surfaces and distribution throughout space with simultaneous diffusion of species and
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Publishieggrgy. The flow field generates stretching and folding of the material line or surface. Our
paradigm for buoyancy-driven mixing, with applications to crystal growth processes, consists of a
flow field generated by the buoyancy force that redistributes a pseudo-material interface in which
molecular mass diffusion is admitted. The experimental model contains the basic elements of
mixing, stretching and folding of an interface caused by a flow field as well as molecular diffusion.

Related to the present experiment is the study of mixing dugl/to Rayleigh-Taylor (RT)
instability®!-” which spans a range of initial perturbation from long to shortayavelengths; the short
wavelength initial perturbation can lead to turbulent mixing. For thé R T\instability problem, it has
been shown in Ref. 39 that the deviation of the interface from‘{lnﬂ\;ty corresponds to a long
11
g

wavelength one-half sawtooth initial perturbation, from adding a s le of tilt 55'< 0 <3°21
to the reference configuration. The addition of a small &angle of*tilt superimposed a two-
dimensional motion on the structure of the perturbed interfa hich.stretched the interface and
contracted its mid-section. The mixing width of the intefface decreased in comparison to the zero
tilt angle RT instability; this was attributed to the stretch eff§:t introduced via the initial tilt*’.
Our model experiment can be viewed as an extensio@he t gle to 90° for reverse or backward
flow and 270° for forward flow. ‘)

| W
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FIG. 1. Interface configuration between two fluids for a cycle of the tilt angle 0<6 <27z with respect to the
gravi atio& field.

NI

A variation of tilt angle from Oto 27 , the Rayleigh-Taylor perturbation cycle, corresponds to
various configuration of the interface with respect to the gravitational field as shown in Fig. 1. In
contrast to tilted interfaces, flat interfaces correspond to € =nz/2 with n=0,1,..4 ; if the

reference configuration of & =0 is taken as the RT instability configuration for which the heavier
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Publishifigid overlays the lighter fluid initially, then =7 corresponds to the stably stratified
configuration. Owing to the sharp jump of density across the interface the unstable configuration
6 = 0, 2 may be characterized as a square wave or step function initial perturbation. Two other

step function initial perturbations exist at d =7/2 and 6@ =37/2 ; however, the interface is
parallel to the gravitational field. The configurations of ¢ =7/2,37/2 have been used

experimentally to investigate frontogenesis**** due to gravity currents indock-exchange flows that
used a barrier to establish the initial condition. The remaining configufations in the RT instability
cycle indicate variations of various sawtooth initial perturbationsedn thiscontext, our model
experiment may be seen within a broader perspective of tilted RT“problems. As shown in Fig. 1,
all flows with initial conditions within the range of 0 < @ <2/<]ead“to stable stratification for

0 =r as a final configuration once transient effects decay. Thestable stratification configuration
has been used in Ref. 43 to address buoyancy-driven instability génerated by chemical reaction at
the interface between two reactant solutions, encompassifig<the Belousov-Zhabotinsky reaction**
in closed and unstirred reactors, which show that reactant solutions with small density difference
yield chemo-hydrodynamic patterns that are asymmetric**yith/respect to the initial contact line
when chemical reaction occurs, and symmetric in absencé.@f chemical reaction.

Within the framework of addressing bugyancy=driven mixing due to steady body force, we
consider two miscible viscous liquids juxtapgsedwyerti¢ally inside a cavity where the orientation
of the interface is parallel to the body forge as inthe forward flow with 8 =37/2 in Fig. 1. The
effect of unsteady body force on mixing hag applications to the study of the effect of induced
vibration on transport processes ifl ‘awmictegravity environment*. Owing to the initial
configuration with @ =37/2 of our expefiments, a divider is needed to separate the liquids
initially between the two compartments of the cavity in order to establish the proper initial
condition. In a microgravity enyizgnment,swhereby the body force is reduced one million-fold, it
is possible to remove the divider and ¢stablish the ideal initial condition of two fluids in intimate
contact at an interface®. However, i this mechanical equilibrium state the two fluids would
simply diffuse while rem@ining stationary and this would preclude the study of the mechanism of
mixing such as stretchifig and folding of the interface.

In ground,basedabopatory condition, by virtue of jump conditions across the interface
due to pressure gradieat and‘density gradient, impending motion occurs which stretches and folds
the interface, Arom baroelinic vorticity generation. Since we cannot establish the ideal initial
condition of undisturbed contact between the two fluids initially that would yield symmetry of the
folding struicture, we approximate this ideal condition through the impulsive velocity perturbation
of divider m@tion Between the two liquids over a range of pulling velocities or injected kinetic
energy; this approximate initial condition introduces asymmetry in the system. One issue that we
seek togesolve is the condition that symmetry is approached in our system, since it can potentially
lgad to more-effective mixing. We show that the effect of high impulsive velocity perturbation at
the, interface, is analogous to shock-driven instability in compressible flow and shock-induced
impulsive acceleration in incompressible nonhomogeneous liquids, and generates short time
Richtmyer-Meshkov instability for certain range of parameters. This occurs through the basic
nmechanism of baroclinic vorticity generation at the interface resulting from interaction of the
pressure gradient and density gradient across the interface
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measuring the Lagrangian history of the interface in Part 1 and the Eulerian flow field velocity
using particle image velocimetry (PIV) in Part 2. The Lagrangian history is determined using a
full-field view (FFV) photographic method to obtain a global view of the interface and planar
laser-induced fluorescence (PLIF) to provide a local view for resolving the local details of a mid-
plane section. The measurement of the flow field velocity is important in terms of understanding
interface motion, since the flow field governs mixing of the interface./The problem is inherently
transient and can also be three-dimensional for certain range of parametersygne issue of interest is
the parametric region for which the problem can be well approxigiated;as twe-dimensional; this
would allow insight to be drawn from the transient two-dimengional omputational model®. To
address this issue, we consider a cavity with a square cross-sectiofd x S«¢m whose depth varies
from 0.2 to 5 cm. This variation in depth spans an approximate two-dimensional Hele-Shaw cell
to a three-dimensional cavity. The Hele-Shaw cell configuratienhasbeen used advantageously in
various problems***’, to render the third dimension negligible thus reducing the problem to two-
dimensions.

In the following sections, we introduce the, expetimental system in Sec. II. In Sec. III, we
describe the experimental model and provide a deseription‘of mixing from which we deduce the
parametric space and the descriptors of mixing such“as its length stretch, interface width, and
mixing efficiency. In Sec IV, we describe the'expcrimenital results and contrast the global view of
the interface using FFV and its local view using PLIF. In Sec. V, we quantify the kinematics of
interface motion from measurements of its [émgth stretch, interface width, mixing efficiency, and
its sloshing characteristic such as its damped natural frequency. In Sec. VI, we describe the local
bifurcation of the interface as a fufiction'ef the control parameters —Grashof or Peclet number,
aspect ratio, and impulsive Reynolds number— from which we deduce a scaling law for the
maximum length stretch. We stmymarize and conclude our findings in Sec. VII.

II. EXPERIMENTAL SYSTEM

Mixing driven/by bueyancy-induced flows is characterized by measuring three primary
metrics of the system(a) the L.agrangian history of the interface length stretch £(t) and (b) its
interface width o), using FFV method for a global view and PLIF for a local view of a plane
cross-section il Pagt 1; and (c) the transient dynamics of the flow field V(x t) using PIV in Part

2. The experimental system used to measure two of the metrics of the system is illustrated in Fig.
13 of Appendix A%We use two different light sources to quantify interface motion, integrating
sphere for the FFV/method and a planar laser sheet using a pulsed laser for the PLIF method. The
description of the components used for interface tracking using FFV, and PLIF, are delineated in
Appendix A.

ITL DESCRIPTION OF EXPERIMENTAL MODEL

The physical description of the experimental model in Fig. 2 shows two viscous miscible
liguids inside an enclosure with an initially prescribed density p, > p, subjected to a steady body
forceg, =ng,. The ratio n denotes a factor by which the standard acceleration of gravity g, on

Earth (n = 1) can be reduced as on the ISS (n = 1x107°). Since the density field is coupled to the
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without any stability threshold. Under an ideal initial condition the interface would be stationary,
the two fluids can potentially be brought into intimate contact at the interface, x = L/2, and motion
of the flow field would follow without any initial disturbance superimposed on the interface
motion. For two fluids with similar thermophysical properties as in Table I of Appendix A, since
the ideal initial condition cannot be obtained in a ground-based laboratory condition, it is
necessary to separate the two fluids initially by a divider. Initial cggt)act of the two fluids is

established by removing the divider with a prescribed impulsive ve W%)) The removal
fo

of the divider introduces an impulsive disturbance on the interfa a short time duration 7,
smaller than the time scale Ty of the bulk fluid 1 << Tp to drive‘mterfage motion. The impulsive
velocity perturbation may be approximated by a pulse functi -?

r ~—
V(L[2,y,2,0)=U, [$)< S - (1)
where $¢¢) and %6 — ) represent a step function at (H‘l—é t= d t=1, in which 7=H/ U, is the
pulse duration that depends on the prescribed pulling ogial U, . The ideal initial condition at t
| -

r
=0, V(L/2,,2,0)=0 corresponds to U, =0 which is defined as the sudden removal of the divider

without any initial disturbance. Such an idN ition is highly desirable since it implies, as
predicted by the computational model®, th try would be obtained in the system for motion
of the interface due to buoyancy-driven flow,_The quest to find symmetry in the system is the
challenge posed to experimentalists in }965&3 of the experiment. As will be shown there is a
range of critical impulsive veloci t) ) for which symmetry can be approached; this is

dependent on the balance between the{%hgte kinetic energy due to divider motion and the driving
initial potential energy of the sy ich is shown in Appendix B.

Removable
divider

w . FIG. 2. Physical model and initial configuration of two liquids at an interface.
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For buoyancy-driven mixing under ground-based laboratory conditions, with ideal initial
condition of no disturbance U,= 0 as shown in Fig. 2, the interface motion is described by the

advection-diffusion equation

T
aa_c+ (VV)C =D, VC

subjected to the initial condition \&
c, osx<f[2)
C(x,y,2,0)0=C  x=L12 3)
Cy

This equation describes the motion of an initial“material line C at the interface for two-
dimensional motion or a flat surface in thr%% ns. For the heavy fluid on the left the

2)

normalized concentration is C, = 1, whereas light fluid on the right C, =0, and the
interface has the prescribed average Vahgs\\(ﬁ- The length stretch L(t) of the interface is
determined from the Lagrangian histo “ﬁs assshown in Appendix A. The characteristics of the

flow field determine whether or n Eq.\/ls Tlinear or nonlinear, the flow field
(x,y,z,t;A) 4)

as a function of its paranjetric aceA can either be measured using particle image velocimetry
or computed using the pp imate mean field Boussinesq equations,

T
\ p§+(VV)V Np+ IV + pg (5)

Equations(5) exptess the description of the dynamical motion of the flow field, relative to its

measure i j TV in Part 2 and the flow field prediction of the approximate computational
mode y field in Eq. (5), taken independent of pressure, is coupled to the concentration
field

KS p=p(1+AC) (©6)

wmi'eh, B =1/p(0p/0C). Since there is no change of volume during ideal mixing, the condition
of'incompressibility is satisfied,

V.V =0 (7
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PublishiHgwever, there exists a limit in which the condition of incompressibility for two liquids may not
apply under certain microgravity condition as pointed out in Ref. 48; this limit is given by the

T
inequality \g\}l/g< vD,, in which z/co is the characteristic length of the enclosure, and V the
r _
kinematic viscosity. For our experiments, this implies that for ‘g‘<10 " the condition of
r - .
incompressibility does not apply, however for the microgravity experin?ﬁt45 ‘ g‘O (107) satisfied

AN\

The parametric space for the ideal initial condition® of statio interface, that is no initial
ala
bili

the criterion for incompressibility.

disturbance at the interface with U, = 0, is obtained from dimensi lysis using Egs. (2,5,7).
Scaling of Egs. (2,5,7) using the boundary condition of im rm‘y of the concentration field
"""h..h
VC-n=0

o ®)

< &)

along the boundary I, of the cavity with normal 7 to the watl which also satisfies the no-slip

condition \ ‘)
? -
Q\ ©)

along the wall of the cavity shows that thep\t%z?ﬁc space /\; for the ideal problem is a function

of three parameters S ~

\N Gr, Ar,Sc) (10)
.
ation th

However for the non-ideal si we are considering, in which the initial impulsive velocity
approximated by Eq. (1 njgikxdisturbance at the interface, introduces a pseudo-parameter in
the problem characterized as the/impulsive Reynolds number Re:. Thus the enlarged parametric
space becomes £

/ V.
3\ A=A(Gr,Re,, Ar,Sc) (11)

in which thie Grashof number Gr, impulsive Reynolds number Re;, aspect ratio 47 and Schmidt
number ey giv&n ]

—
3 _
_‘K Gr=2P18 M p JUBH W g Y (124, 12b, 12¢, 124)
5 P v 4 H D g

ﬁ&cléem tvely, the Peclet number Pe can be used which is defined as the product of Grashof and
midt number Pe = Gr Sc . However, if the scaling exponents of Gr and Sc are the same then,
a reduced parametric space can be given as

Ko= K¢Pe,Re,, 4r) (13)
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which is also tested using experimental data. The Peclet number Pe represents the ratio of mass
transport by convection driven by the buoyancy force to that of molecular diffusion. The Grashof
number Gr, the ratio of buoyancy to viscous force, represents the intensity of the flow field. The
impulsive Reynolds number Re: is a measure of the injected inertial force relative to viscous force
in the system. This measure occurs over a short time scale 7 relative to the advection time scale
T» of the interface caused by the flow field in response to the initial po‘gétial energy of the system;
in the above equations, the overbars denote average values. The variation ofayidth of the enclosure
W as defined by the aspect ratio allows experimental simulati QM an“approximate two-
dimensional (2D) Hele-Shaw cell to a full three-dimensional (3D )cavity. In relation to a 2D model,
the variation of the z-plane aspect ratio Ar = W/H is used, as shown'1 to determine the range

of aspect ratios for which the 2D approximation applies. In e@riatl of our parametric space,
the ratio of diffusion of momentum to that of mass given by chmidt number in Eq. (12d), in
nto a

which Dy is the binary diffusion coefficient, is takeéh in ount through thermophysical
property variation as shown in Table I of Appendix A. 5
B. Metrics to characterize mixing L j

-

1. Length and time scales \\
S1

Buoyancy-driven mixing is characte eiu\various descriptors which includes, length stretch

%n e mixing efficiency 7J;. In the case of mixing by RT
in

instability’', a similar mixing width of th rface is used to characterize the dynamics of the system
based on the penetration depth of the er fluid. In our system, there is symmetry in terms of penetration
depth of the light and dense fluid, so we'define d, (2) as the average distance between concentration levels
of 0.1 and 0.9. Though our proble imilarity to RT instability, it differs in certain basic factors such
as, the initial condition, the stretchin d folding prior to the birth of RTM, and the late stages. Even
though the mixing width ¢ (t}%s—‘ed as a measure to characterize our system, in the early stages its

L(t), interface width of the mixed region

veraging, the length stretch L(t) serves as a preferred metric for the buoyancy

in which the two fluids become stably stratified, d. (?) is used
advantageously as a metsic/to c'l?'lo e the extent of mass transport and hence can also be used as a global
measure of the miXing effieiericy of the system. We basically have two independent measurements, the

length stretch L{t).to characterize the local kinematics and the mixing width J,,(z) which is related to the

._.
2

)
w2
(¢}

}) characterize the quasi-equilibrium dynamic state of the system. We use the

y
dimensionle$s length stretch, for short time events, as a metric defined as
£
- 4 1(1)-1,
L) =—F— (14)

) L,

(t))is a measure of the elongation of the interface as a function of time and 1 , 1s the initial length

—
Wl’el

e%e face at time zero. Whereas the dimensionless mixing width é:;(f) is defined as
-

. o, (t)-o
5= % 15

wm
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Pu bIISh\!vql& 1 represents the ratio of the mixed width 5W(f ) of the interface, with reference to its initial value o

wo >

and to the width representing a homogeneous mixed region 5wm . 5WO is the diffusive width of the interface

at time t = 0 that depends on the resolution of the interface width initially and o, is the resulting diffusive
width as t— « which is equal to the height of the cavity in the limit.

The transient mixing characteristic of the two liquids is a problem with multiple time and length scales.
In particular three time scales occur, a buoyancy time scale 7, , viscous diffi iw scale T, , and mass

diffusion scale 7, 3
2
\ (16a, 16b, 16¢)
T~

—
where At is the Atwood number 41 = Ap/2p . Th r&s@ me scale of interest depends on
the event® occurring during the mixing process. chasjtcterlstw length scale L. is based on

either the large length scale of the geometry (H, B JV)dand interface width 0, (f) or the small
length scales based on the diffusion of mass }‘%: tum or the striation thickness S(¢) of the
a

b

! W
2

interface defined in Part 2. The small length scale, based on the diffusion of mass and momentum,
may be obtained from the short time soluti (2) for a semi-infinite domain x > L/2 when
the nonlinear advective terms are negligible which is given by,

™

ABt

in which L. =4,/D,, \;glmetry, in analogy the length scale based on the diffusion of

momentum is given ds L

£
negligible adve(;?é s with boundary condition Eq. (8) can be shown to reduce to the one-
v

t . Alternatively, the long time exact solution of Eq. (2) for

dimensional sol enby,
1 2& (- l)l X 2 2 2
[)=—+— cos(2l+ )z — exp—(2[+1)" 7" (D,,/ L")t 18
p )27z§(2l+l) ( )L p—Q2I+1)' 7 (D / L) (18)

In this form, the dependence on the mass diffusion time scale becomes apparent. Equations (17,18)
apply toupicrogravity condition, in particular they show that the one-dimensional solution of the
diffusionequation becomes independent of tilt-angle 6 shown in Fig. 1; in this limit the Rayleigh-
Taylor problem and the buoyancy-driven mixing problem become identical. This observation

?r?ljgs that microgravity condition (ng, =10°g, ) can stabilize the unstable RT arrangement in

ground-based condition(ng, =1g,); this is in contrast to stabilization of RT due to surface or

interfacial tension that occurs in ground-based laboratory condition. This can be understood based
on linear stability theory in Ref. 49, of two viscous superposed equi-viscosity fluids, which
indicates that the maximum growth rate
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: n, =(7mg, At/ 2,)" (19)

corresponding to the most unstable wavelength

A, =4r(V* Ing, Ar)" / (20)

approaches zero under microgravity condition; this is because @stable wavelength

becomes much greater than the cavity size 4, >> L, the unstable RT arrangement in ground-based

condition (ng, =1g,) becomes stabilized in microgravity co it@ (ng, 10° g).
T—

—
2. Experimental mixing efficiency 5
For our experimental configuration, the mixtg' g efficieney can be determined from the ratio
of how much of the initial potential energy is used to'mix f& two liquids in relation to the energy
ever, w
ebre

dissipated by viscosity estimated in Part 2. How é.use a measure of the mixing efficiency
based on the kinematical model'® for interna &x@ ing event which is defined as the ratio of
potential energy gained from the system through th ation of a stratified mixed layer to the total
energy input from the potential energy re he system overturns. We show that the mixing
efficiency determined from energy exchangewis related to the kinematic measurement of the
ea.
e i

interface and provides a convenient \gung f mixing efficiency. In order to quantify the
effectiveness of mixing driven b 1
experimental mixing efficiency
’}\\Aip -APE . @
: Emax - AI)E'mm

similar to Ref. 32 in ermsm change of potential energy between observed initial and final
state weighted in te of the (maximum) / (minimum) change in potential energy which yields
1 iné); this definition is analogous to that used in Ref. 18. The change in
potential energy ofgfgiy em from the initial configuration of unstable stratification to an
is given as

tial potential energy of the system, we define the

g (p(y) — py)dydxdz (22)

O C— 1~
O ey

y. APE =T

—_—
T, is*egt&in potential energy gives rise to a transfer of momentum which involves a loss of
kigetic ehergy and the resulting mixed fluid layer represents an irreversible gain in potential
energy; while the denominator in Eq. (21) represents the maximum potential energy released. For
héieage in which there is no mixing, the heavy fluid settles to the bottom and the light fluid on
top, an energy balance between the two configurations in which the two fluids simply exchange
position shows that this gives rise to the minimum change in potential energy which is given by
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A similar energy balance in which the final configuration results in homogeneous mixing of the
two fluids with a uniform background based on the light fluid shows that a maximum change of
potential energy occurs given as

APE,__ = %Apngo%H / \ (24)

The potential energy change can be scaled with the initial poten&lxew y PE, =1/2Apng ¥ H to

define the potential head or dimensionless mixing height asy = E , where + = wHL is the

volume. This definition allows the mixing efficiency of Eqe(21 be defined in terms of kinematic
measurement of the height of the resulting stratification layer, when the dimensionless mixing

s the simple form of

height is re-scaled as ¥ = y/4h,, the mixing efﬁci&cy t

NG

In the above equation W) =h is the tota \f“qf the resulting mixed stratified layer measured

relative to the bottom of the cavity, and h, ={/2 corresponds to the quasi-equilibrium height for
the case of no mixing. This definitio s from the case of RT instability, for it allows the
efficiency to vary from zero to oné, ywhereas RT varies from zero to one-half®2, The height of the
mixed stratified layer y(¢) is rela ed‘&hﬁn' ing width Jw(?) and defined relative to 4, as

N =h,+06,(5)/2 (26)

The width of the interface “@, (t) is‘measured relative to the stably stratified configuration for the case of
no mixing; this definition t%kes 0 account that the heavy and light fluids penetrate the top and bottom

layer symmetrically/in thé'stably stratified configuration when mixing occurs, and 0, () =2/ as t —o0. .

The expression fory(z)4 Eq. (26) allows a convenient measure of the final configuration of the interface

after the transi (Qlamics decay. 7J; is a global measure of potential energy conversion by the flow field

to drive mixin ich characterizes the approach to a quasi-equilibrium state of a stably stratified

conﬁguratlo wher?as £L(t) characterizes the non-equilibrium local dynamics. An alternative method to

g efficiency based on £(t) is detailed in Part 2 that employs the mechanical mixing

model based on continuum mechanics and shows in Fig. 9 (¢) comparable results to Eq. (25).) (A similar
définition ixing efficiency has been used in Ref. 18 for multiple wavebreaking events inside a tank
an yield%comparable results to experiments in Ref. 19, the main assumption used in the model is that
ing events are localized in small volumes relative to the tank and external source of kinetic

nergy, can be neglected for these events, hence the conversion of kinetic energy of the flow is directly
transferred into gravitational potential energy; the same assumption applies to the single wavebreaking
event in our experiments and our experimental mixing efficiencies are comparable to reported values in
Refs. 18,19).

determine the Sn
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IV. EXPERIMENTAL RESULTS

We discuss experimental results obtained using the full-field view (FFV) method in comparison
to the planar laser-induced fluorescence (PLIF) method for fixed Schmidt number Sc = 3333.

A. Global view of interface: Full-field view (FFV) method (/\3
The essence of buoyancy-driven mixing, stretching and folding of e&erface etween two liquids
from its initial time zero to its final stably stratified configuration driven by the flow field is shown in Fig.
3(a). In contrast to mechanical equilibrium, under microgravity co di(sn SS'with a body force of O (

rfacewat time ¢ = 0, ground-based

_6
10 &,), which would stabilize the initial configuration of the 1
—

condition with a body force of O (/g,) drives buoyancy-induged ﬂovﬁf:le caused by hydrostatic pressure

imbalance due to the body force according to Eq. (5). ThentenSity of the flow field given by Eq. (5), gives

rise to the nonlinearity of the advective terms in the @/;ction— iffusion given by Eq. (2), that causes
m

stretching and folding of the interface. Buoyancy—dri\&%“%i‘ngh shown for the parameter Gr = 3.18 x10°

or Pe = 1.06x10 " given in Table I of AppendixA, ifnpulsive Reynolds numbers of Re; = 1500,
2500, and 3500 and corresponding divider imp Mc ies of U, = 3, 5, 7( cm/s) for a cavity with
width W=Icm .

Insight on the effect of the impulsive veloci %ﬁvider motion on interface configuration may be
obtained from Eq. (B5) of Appendix B, i\cl’pst{te that the total initial energy Ep) consists of injected

kinetic energy KE of divider moti nd\initial potential energy I E; The impulsive velocity,

characterized by impulsive Reyn aNp\ﬂbe s of Re;, affects the injected kinetic energy KE that

determines the approach to symmetry«of the interface structure while the potential energy PE, drives

folding. The characteristic val or the initial potential energy PE, , injected kinetic energy KE, and flow
di

field velocity magnitude ergy balance model are shown as a function of impulsive Reynolds
number Re; in Table II of Ap
£

In relation to inferface.configurations at 1 = 2 s in Fig. 3(a), the relative magnitudes of the initial

potential PE to ig%e&d%etlc energy KE serve as descriptor of interface perturbation or disturbance.

e I of Appendix B, the global injected kinetic energy based on linear KE; and uniform

s for the entire cavity bound the local impulsive kinetic energy based on linear KEi;
ity profiles at the interface region limited by the boundary layer thickness due to
the'local velocity profile approximations accounting for the boundary layer thickness
otion result in local minimum and maximum values of KE;; and KE;y respectively. The
proximations show a range of possible injected kinetic energies, however the local maximum
impulsive kinetic energy KE;y based on uniform velocity in the boundary layer is used as a
pare to the initial potential energy PE, to assess perturbation effects on the interface, and shows
3a'that interface disturbance increases with the increase of injected kinetic energy or impulsive

)n’o&ds number Re; fort=2s. For the range of impulsive Reynolds numbers with 1500 <Re, <3500,
they ratio of initial potential energy to impulsive kinetic energy corresponds to the range of
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Publishiggg < PE / KE, <1194 which shows that as the injected kinetic energy increases symmetry is approached,

and interface disturbance also increases with minimum PE /KE =3.36corresponding to Re; = 3500.

For Re: = 1500, the initial potential energy PE, is greater than the injected kinetic energy KEiu;
thus as shown for t = 2 s, the stretching of the interface is relatively smooth though asymmetric as
the bottom fluid penetrates farther than the top. In contrast, keeping the potential energy constant
and increasing the impulsive Reynolds number to Re:= 3500 att = 2 s shows a perturbed interface
with the increase of KEiv . At the early stages of = 25, density current at the bottom of the cavity

causes frontogenesis due to the sharp density front; this is simila to@enom non that occurs in
lock-exchange flows 04! .

t=0s

Re;= 2500
t=T7s =443

-———— - - —a

Re; = 3500
t=7s =44 s
T o =

!

g

1
=~ |

)

ﬁ
FIG: Evolution of the interface as a function of time showing the effect of impulsive Reynolds number Re;
E?trasting the full-field view (FFV) method and planar-laser induced fluorescence (PLIF) method. (a) Stretching
(R

é/

(a)

fming of interface during mixing by buoyancy-driven flow, that produce the Rayleigh—Taylor morphology
) structure at t = 7 s for Gr = 3.18x10° or Pe = 1.06x10'°, Ar = 0.2, FFV method.

The configurations of the interface at + = 7 s, stemmed from the overturning motion that
produced the ideal condition for the growth of a single wavelength RT instability, that unfolds to
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Publishiagzairwise RT morphology (RTM) structure which consists of a spike or left penetrating front and
pubole or right penetrating front, analogous to the results in Ref. 50. The two-dimensional
computational model® shows RTM occurs for a range of Grashof numbers and its orientation can
shift from approximately 30° with respect to a horizontal axis as shown for ¢ = 7 s at mid-height
of the cavity, to a 90° orientation as the Grashof number increases. The 90° orientation shown in
the computational model® is analogous to the unstable stratified configuration of the RT instability
when excited via a long wavelength initial perturbation as shown in Refs. 51-55.

In relation to the experiments, the computational model® whi¢h isybased“on the ideal initial
condition, captures the large scale features of the interface morphology; though these features are
predicted to be symmetric. The experiments based on non-ideal ‘mitial*¢ondition show that the
delay caused by the divider motion gives rise to asymmetry. {The lifetime of the short-lived
coherent RTM structure at t = 7 s, with the ubiquitous feature of the Rayleigh-Taylor morphology,
in on the order of 2 5. The roll-up feature at = 7 s neaf the top and bottom edge of the structure
is evident; the image of the top structure is also shown by the lighter penetrating fluid below for
Rei = 1500. Finding two fluids with color contrast which would'show a sharp image of the bottom
structure poses an experimental challenge, as well'ag measurement of the length stretch of the
interface; this is because of the enhanced local mol¢eular diffusion that accompanies folding owing
to the existence of a hyperbolic point in the flow, field as will be shown in Part 2.

A solution to the symmetry problem4iste.inerease the impulsive Reynolds number to Re: =
2500, however, this causes the initiation of Kelvin-Helmholtz (KH) instability waves due to the
intense shearing motion of the divider for t= 2 s.“In comparison to Re; = 1500, there is a transition
between shear instability produced by the felative velocity between the heavy sinking fluid and
lighter rising fluid, and that due to sheardivider motion. The computational model® indicates that
the effect of relative velocity befweenstwo fluids for short times can produce KH instability in
absence of divider motion. The inegease in impulsive Reynolds number to Re; = 2500 causes
further approach to symmetey at ¢ = 7 s, however the features of the short-lived coherent RTM
structure tend to be diffused as“Re; increases; the contrasting events for Rei = 1500 and 2500
capture the challenge posed teyard the search for symmetry in the system.

The effect’of intense §hear motion due to the divider is to cause KH shear instability at the
interface for shert times when Re; increases to 3500. This is illustrated for # = 2 s which shows a
combination ¢f KFH waves near the bottom that transition to billow clouds®® near the top of the
cavity prodficed'by the KH mechanism. The approach to symmetry at # = 7 s shows a modified
morphology of the interface, since the roll-up features become more pronounced. The late stage of
RTM fors >Zs shows the characteristic feature of an internal breakwave®’. As time increases, a
catasttophic global bifurcation® occurs, the RTM structure collides with the wall which is shown
below i the Multimedia view for Re; = 3500 using the PLIF method in section B; this event
afinihilates the RTM structure and causes enhanced local molecular diffusion. Self-induced
sloshing of the interface follows, which decays nearly periodically toward stable stratification; the
net effect of advection and molecular diffusion is indicated by the diffusive region at the interface
at the settling time 7y = 44 s for stratification.

The basic features of stretching and folding and the dynamics toward stratification have been
captured in the computational model®. However in the computational model, symmetry is
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Publishipigdicted because the ideal model problem is considered; that is the interface evolves from its
mniual configuration without any initial impulsive disturbance due to motion of the divider U, = 0.
In the final state, the two fluids then becomes homogeneous or mixed over a much longer time
scale denoted by 7, , the molecular mass diffusion scale. In between the two limits of mixing,

segregation at time zero and approach toward homogenization after stratification, the emergence
of complex patterns occurred for increasing Grashof or Peclet numbegs. In terms of the basic
mixing structures, whorls and tendrils, as originally defined in Ref/58, the RTM structure is
described as whorl-like; examples of whorls and tendrils in relation to bueyancy-driven mixing
occur when the body force field is oscillatory 26-2% or stochastic*® add alsp for steady body force at
high Grashof® or Peclet numbers.

1. Interaction of pressure gradient and density gradient

The effect of the pressure gradient can be considered by éxaminifig its relation to the density gradient
shown for the initial configuration shown in Fig. 3(a) (t=0),-whichigshows that initially there is a hydrostatic
pressure gradient Vp that acts in the vertical direction relative te.the density gradient V p in the horizontal

direction. The coupling of these gradients (V px Vp) ‘yigld the baroclinic vorticity production term in the

vorticity equation that causes flow for the case of low impulsive Reynolds numbers (Re; = 1500 in Fig
. . . . . . . r ! ",

3(a)) in which the interface is relatively, unpesturbed, and vorticity @ =V xV deposition on the

interface for the case of high impulsive Reynolds numbers in which the interface is highly perturbed
(Rei = 20,000 in Fig 3(b).

The vorticity equation can be obtained \from the curl of the Navier-Stokes Eq. (5) and yields
Dar)/Dt = g) . V\l/' - Cf)V {7 + 17V2(1£) + pxVp)/ p> which states that the rate of change of vorticity is
due to vortex tube stretching and twisting in<the first two terms followed by the diffusion of vorticity, and
the baroclinic production of worticity (Vo xVp) due to interaction of density gradient and pressure
gradient. For our two-dimehsional cavity approximation the vortex tube stretching and twisting terms go to
zero and the vorticity egliation simplifies to Dw/Dt =7 Va+ (VpxVp)/ p°. In relation to Fig. 3(a) of
our experimental comfigumation, ghe production of vorticity (VpoxVp>0) ensues for t> 0 caused by
vorticity generated by, the “interaction of the vertical hydrostatic pressure gradient Vp and the
perpendicular density gradient V p which creates a torque that results in overturning motion of the two
fluids whichfbecomes stably stratified (t = 44s) through the decay of vorticity from viscous diffusion.
Note that the interface is relatively unperturbed for the low impulsive Reynolds number scenario of Rei
= 1500 In thestdbly stratified configuration (t = 44s), the density gradient is parallel to the pressure
gradient thus the baroclinic vorticity (V,oxVp =0) goes to zero.

2. Limit of high impulsive Reynolds number

The results for low impulsive Reynolds numbers show that since the divider cannot be removed
ingtantaneously there is a delay in terms of fluid penetration between top and bottom which causes
asymmetry. The limit of instantaneous removal of the divider to approach symmetry via increasing
the impulsive Reynolds number by a factor of six to Re: = 20,000 in Fig. 3(b), shows that impulsive
motion of the thin polyethylene divider of width 0.1 mm produces a wake instability initially, due
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Publishiteghedding of the viscous boundary layer on the face of the divider which generates a vortex sheet
component that is coupled to buoyancy instability due to interaction of density gradientV and
pressure gradient Vp across the interface. The coupling of the vortex sheet component and
buoyancy instability give rise to mixed mode KH and impulsive RT instabilities at the interface
for the short time scale. (The impulsive RT instability is generated by the impulsive velocity

perturbation at the interface given by Eq. 1, analogous to the impulgive RT generated by an
impulsive acceleration field given in Ref. 50 by g = A%S(t) where A‘Qile velocity change
ion.

imparted by the impulsive acceleration and 6(t)is the Dirac delta as) this limit there is a
combination of KH instability waves near the top of the cavity at' &= 4./8 s and impulsive RT

instability near the bottom. \
t=0s

N
=028 s

t=042s

t=456s

(b)
I

F1G, 3. —Continued. (b) Evolution of mixed mode instabilities,Kelvin-Helmholtz and impulsive Rayleigh-Taylor that

generate the Richtmyer-Meshkov instability, at the interface over a short time scale 0 <t <0.42 s due to large impulsive

Reynolds number Re; = 2.0x10* and transition to folding (t > 1.52 s) of a diffused interface for Gr = 3.18x10° or Pe
=1.06x10'%, Ar=0.2, FFV method
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Publishinglhe impulsive RT instability at the bottom-half of the cavity is due to the larger jump in pressure
graaient which excites the short wavelength modes whereas the fluid near the top of the cavity is subjected
to a decrease in pressure gradient, thus the relative shear motion of the divider and the two fluids become
dominant and cause KH waves for short times ¢# < 0.18 s. These structures are similar to the classical shear
instability KH waves® simulated inside tanks. However for ¢ > (.18 s the instability amplifies through the
interaction of the vertical pressure gradient across the perturbed interface with the horizontal density
gradient which creates baroclinic vorticity (Vo x Vp) oriented out of page shosvn at t=0.28 s and generates

an incompressible Richtmyer-Meshkov instability at the interface typified by the ' mushroom structures.

For short times 0.18 s <t <0.42 s, the growth of the interfacial instability is/dominated by the impulsive
RT instability mechanism which is analogous to shock-driven RT instability_known as the Richtmyer-
Meshkov instability*’, as exemplified above for the impulsive velgCity-driven RT instability; coarsening
of the interface over the short time scale results in a nearly diffused interface at  t = 0.42s. According to

linear theory of stability given by Eq. (20), the most unstable Wavelengthy 4, =0.54cm fall within the range

of the measured structures which is approximately 4., %0.625¢m; the'inverse growth rate Eq. (19) of the

instability is predicted to be nnfl ~ 0.37swhich is in the range of the short time scale interval. The KH and

impulsive RT instabilities generated initially servegas a sougce to drive molecular diffusion at the interface
which produce a diffused interface. The stretchifig ofithe diffused interface at ¢ = 1.52 s is in contrast to
the sharp interface for lower impulsive Reynolds number‘in Fig. 3(a); this is because of the small ratio of

driving potential energy to injected impulsive kingtic energy PE /KE, =025 indicating that the injected

impulsive kinetic energy becomes greater\than the driving potential energy. The resulting overturning
motion produces folding of the diffus€diinterface at # = 6.15 s which does not show the features of RTM
shown in Fig. 3(a) as symmetry is, appreached.“This indicates that if the injected kinetic energy is much
greater than the initial potential energysthen the interface becomes diffused and the feature of RTM does
not exist. This finding underscores the'dglicate balance between the injected kinetic energy into the system
to approach symmetric folding“and the propensity of the interface structure of the interface to become
diffused.

3. Relationship betyeen shock<induced RM instability and impulsive velocity-induced RM
instability

Analogy bétween the Richtmyer-Meshkov (RM) instability, for shock-induced compressible gas in a
shock-tube through dinear stability analysis (Ref. 59), and impulsive velocity-induced experiments using
incompressible nonhgmogeneous liquids in a cavity with low and high impulsive Reynolds numbers shown
in Fig. 3(a)*and Fig. 3(b), is made to highlight the similarities and differences between the two systems.
RM ingtability ‘is_thie instability that occurs at a planar interface separating two gases that is impulsively
accelerated by4planar shock wave travelling in the direction of the normal to the interface. The difference
between shocksinduced RM and impulsive velocity-induced RM is that in the former pressure gradient
accelerates a background shear flow normal to the interface whereas in the latter the pressure gradient
accelerates a background rotational flow (see Part 2) in the same direction as the interface.

Consider two hypothetical situations in reference to Fig. 3 of two gases separated by an interface, in
which an incident shock wave moves from the left boundary impinging on the planar interface (Fig. 3(a)),
and'an incident shock wave impinging on a quasi-sinusoidal interface (Fig. 3(b); in this hypothetical
situation the pressure gradient would be normal to the interface or aligned in the same direction as the
density gradient. The coupling of density gradient and pressure gradient amplifies perturbations at the
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Publishiimg face through the mechanism of baroclinic vorticity generation resulting from the misalignment of the
picssure gradient of the shock wave and the density gradient across the interface to generate the Richtmyer-
Meshkov instability for shock-driven instability. In contrast, for our experiments, the hydrostatic pressure
gradient of the two liquids in Fig. 3(a) and Fig. 3(b) is perpendicular to the density gradient across the
interface and two types of scenarios occur, global and local. For the global scenario that occurs with the
low impulsive Reynolds number in Fig. 3(a), the interface remains sharp and the baroclinic vorticity
generation, generates an overturning motion that leads to stratification. Whereas), for the local scenario with
high impulsive Reynolds number in Fig. 3(b), the impulsive velocity-induced perturbation generates kinks
at the interface initially (similar to Fig. 3(a) for Re; = 3500 (t = 2 s) howeyer orfented vertically with an
increase in mode numbers) through KH instability mechanism that amiplifies the interface perturbation
through baroclinic vorticity generation. Since the kinks form a quasi-sinugoidal interface, the vorticity
distribution from coupling of the pressure gradient and density gradieat along the interface results in
increasing amplitude of the sinusoidal-perturbed interface and genérates the mushroom structures (t = 0.28
s) that represent the signature of the Richtmyer-Meshkov instability,

A quasi-sinusoidal perturbed interface has also been generated ifi shock-tube experiments (Refs. 60)
from pulling a thin flat plate horizontally that separates the gases, however, a diffuse interface is created
by this method. Though, the late stages of the instability | between shocked-induced compressible flow and
our impulsive velocity-induced incompressible flow 4nodel differ, but they share the commonality of the
mushroom interface region becoming locally homogengous=In the late stages, the shocked-induced
interaction with the interface transmits a shock wavewand reflects a shock wave or a rarefaction wave from
the interface, and reshock occurs because of reflectionufiom the endwall of the shock tube (Ref. 59);
whereas, in our experiments a global overturfingmotion occurs from global baroclinic vorticity generation
that overturns the entire perturbed interface.

The scenario between the relatively unperturbed interface for low impulsive Reynolds number and
perturbed interface for high impulsive Reynolds,number is also analogous to linear stability analysis (Ref.
59) that considers the collision 6f ‘a.plane shock with a flat interface discontinuity and the resulting
instability when the shape of the initiakinterface discontinuity is perturbed. The initial value problem with
a jump discontinuity constitutés a Riemann problem and the one-dimensional solution of the Riemann
problem for a shock-interface integaction serves as base solution for the small-amplitude, sinusoidally
perturbed interface, of the lincar theory of RM instability (Ref. 59). The results from linear theory were
found to agree with afimpulsive model when the incident shock is weak (Ref. 59). The impulsive model
was developed by Richtmyer (R€f. 50) from the realization that compressible gas shock-driven instability
could be modeled using.incompressible nonhomogeneous liquids, in which the shock is induced through
an impulsive bddy force. The analysis of the impulsive model is based on the Rayleigh-Taylor instability
for constant accelerdtion, however the acceleration term is replaced by an impulsive body force acceleration
(in whichg& = A%@(t),is an instantaneous delta function J(t) acceleration representing the shock and

A is the velegity Jump across the interface imparted by the shock) coined as the impulsive Rayleigh-
Taylon instability (Ref. 50); this is similar to the impulsive accelerating containers of incompressible fluids
experiments in/Ref. (50). A number of experiments have been designed with special arrangement to
generate shock-induced through the body force, and have shown that indeed shock-driven by impulsive
acceleration through the body force can generate RM instability using incompressible nonhomogeneous
fluids (Ref. 50). In our model experimental problem, we show that the Richtmyer-Meshkov instability can
befgenerated from impulsive-velocity perturbation initial condition in Fig. 3(b). Our experiments with the
impulsive velocity initial condition between two fluids serve as analog to impulsive acceleration
experimental model and the impulsive model of linear stability analysis, and show a novel method to
generate short time Richtmyer-Meshkov instability for certain range of parameters shown in Fig. 3(b) for
0.18 s <t<0.42s.
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PublishiBgl.ocal view of interface: Planar laser-induced fluorescence ( PLIF)

In contrast to the FFV method which captures a global view of the interface, a local view
of the mid-plane section of the cavity is shown in Fig. 3(c) using PLIF which captures the local
details of the interface. The refractive index of the two dilute liquids are nearly matched such that
light scattering is negligible, as evidence from the two nearly uniform regions separating the
interface at t = 2 s. There exists local details not captured by the FF\‘{{]Z.e:thod such as the effect
of the injected vorticity due to divider motion produced by the wake, whichis evident near the top
of the interface for Rei = 1500 and 2500 as well as resolution of kifiks due to ‘shear motion of the
divider. Similar observation of vorticity injection was made in Ref."34for the design of a nearly
frictionless barrier to initiate RT instability.

Re; = 1500 )7\.\

t=7s t=37s
. o —’

Re; = 3500

t=7s t=37s

FIG 3. —Concluded. (¢) Stretching and folding of interface, during mixing by buoyancy-driven flow, that produce
the Rayleigh-Taylor morphology (RTM) structure att =7 s for Gr=3.18x10° or Pe = 1.06x10'?, and Ar=0.2, PLIF
meth
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Publishing The lower limit of impulsive Reynolds number Re; = 1500, for which shear driven instability
due to divider motion is minimal in comparison to the parallel shear flow due to buoyancy at the
interface, shows the evolution of KH instability waves t = 2 s in Fig. 3(c ). In comparison to the
FFV method, the higher resolution of the PLIF method captures the local kinks at the upper section
of the cavity and roll-ups behind the nose of the gravity current that shows frontogenesis near the
bottom. The threshold of the impulsive Reynolds number determines the dominant mechanism,
divider motion or buoyancy flow, for generating shear instability. For Re; = 1500, the early stage
of interface folding at t = 7 s shows two bubbles underneath the RTM“front, the first bubble
transitions to a roll-up behind the head of the RTM front and the segbnd transitiens to an elongated
bubble with RTM morphology; see Multimedia view for Re; = 1500:

The unfolding of the Rayleigh-Taylor morphology is seén maost clearly for Rei=2500 at ¢ = 7
s as well as the asymmetric penetration of the bubble inthe pairwis¢ RTM structure. When the

effect of the injected kinetic energy increases such that the ratié of PE / KE, =3.36 for Re; = 3500

as shown in Table II of Appendix B, the intense Shearing«mbdtion increases the effect of KH
instability waves (¢ = 2 s) at the interface which is shown near the bottom of the cavity whereas
the top region shows kinks; the 3D global view ofithe FFV method in Fig. 3(a) indicated billow
clouds®® produced by the KH mechanism neafthe topstegion of the interface, which is projected
as kinks on the 2D plane view of PLIF. Thus both thé induced shear due to divider motion and
intrinsic shear due to buoyancy-driven flaw.generate KH instability. However as the overturning
motion occurs the shearing motion of the flow produces deep fingers at the location of the kinks
(t = 2s) that grow and form local whorT“structuwes that merge and self-organize into the RTM
structure shown for = 7 s. The RIM frept transitions to internal breakwave and its breakdown
from wall and internal collision generates sloshing which decays toward stable stratification, see
Multimedia view for Rei = 35005 ‘the large'scale features of RTM are self-similar for the range of

Rei shown.
od; see Multimedia view for Rey=.1500 and Re; = 3500.

1. The birth of the RTM structiire

Even thoughdhe birth“ef the RTM structure® is predicted to occur in the neighborhood of
Gr = 3x10° fop2h), careful experiments with Gr = 3.7x10° or Pe = 1.23 x10° show the embryonic
stage of RTMp bg in existence during transition from aspect ratio of 0.2 to 0.3. As shown in Fig.

4 for Re; 71000 and _Ar = 0.2, the initial potential energy PE, is not sufficient to generate unstable

density-stratification so the interface displaces from its equilibrium configuration, mid-height of
the cavity, to.a right tilt at = 19 s; the restoring force of the interface causes the self-induced
sloshing to de¢ay, similar to an overdamped system, which leads to stable density stratification as
shown for 7= 96 s. As the size of the cavity increases to Ar = 0.3, the initial potential energy

reaches the critical value (PE, =1/2¥ng AoH, ¥ =W HL) necessary to generate overturning

maotion that leads to unstable density stratification. The genesis or embryonic stage of the RTM
structure is shown to occur at this value of the aspect ratio. The divider impulsive pulling velocity
U, “1s kept the same for 4r = 0.2 and Ar = 0.3 (Re: = 1000); though, the initial potential energy

and injected impulsive kinetic energy increase, their ratios PE,/ KE, =252 remain equal for
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Publlshlgg: 0.2 and Ar = 0.3 because of volume independence. At this threshold of Re; or PE /KE, ,

the interface is smooth initially; the difference between the interface configurations for Ar = 0.2,
0.3 att = 5 s stems from the increase in initial potential energy which increases the density current
at the bottom of the cavity and leads to frontogenesis. These two cases contrast the relationship
between the injected kinetic energy and the available initial potential energy to drive overturning
motion, and show that there is a delicate balance between potential and ifijected kinetic energy for

which the RTM structure exists. \
Re;= 1000, Ar=0.2 ‘)

t=19s

.\ \
‘\‘\ ‘

2500, Ar =

0.3

Re,- =

IG. 4. Effect of aspect ratio Ar and impulsive Reynolds number Re; on bifurcation of the interface showing
transition from stretching (Ar=0.2) to folding (Ar=0.3) for Re; = 1000 during genesis of the RTM structure
for Gr = 3.7x10° or Pe = 1.23x10°%; and overshoot of the approach to symmetry between Re; = 1500 and
Rei =2500 for Ar=0.3.
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Publishing Subsequent increase in Rei to 1500 improves the symmetry of the system; there is nearly equal
penetration of the bottom and top fluid, at this stage the roll-up feature near the top of the RTM
structure becomes apparent at t = 19 s. A further increase of injection of kinetic energy to Rei =
2500 shows that it is possible to overshoot the point of symmetry, in this case the top fluid
penetrates farther than the bottom (¢ = 5 s) thereby shifting the RTM structure to the right side of
the cavity at t = 19 s; the penetration of the lower density fluid into the heavier fluid at right hand
side underneath the RTM structure is evident. The kinetic energy inje¢ted in the flow due to the
increase of Re; causes local deformation of the interface which_modifies the sharp density
concentration front at# = 5 5 . These experiments show that the ratigof petential to injected kinetic

energy for which symmetry is approached lies in the range of Q.64 <LFE / KE, <1.38in which the

maximum value corresponds to Rei = 1500 for the range of J600's Re <2500,

2. RTM fronts

For high Grashof Gr = 2.69x107 or Peclet Pe & 8.97x10" numbers, the overturning motion
that results in unstable density stratification andéproduces an ideal condition for the growth of a
single wavelength Rayleigh-Taylor instability, unfolds t6-RTM fronts with fractal structures that
contain small length scales, analogous to RT dgiven fronts®>; these RTM fronts are shown in
Fig. 5 for Re;= 5000 at t = 2.6 s and Rei =,1000Q_at #= 2.4 s. The increase in intensity of the flow
field causes a cascade to small length scalesihatshow self-similar structures at smaller and smaller
length scales. An increase to Re; = 20000.showsthe approach to symmetry of the interface structure
at early times at ¢ = 2.0 s for maximum injectedimpulsive kinetic energy with the ratio of potential

to kinetic energy of PE, / KE, =2.12"\jhis is‘analogous to the diffused interface for Gr = 3.16x10°

at equivalent Re; that occurred for adawer initial potential energy with a ratio of PE, / KE, =025
showed in Fig. 3(b).

In comparison to Gf = 341 6x10° which requires Rei O (10°) to approach symmetry, a decade
increase in Gr requirés sinfilar increase to Re; 0 (10%); in search for symmetry we increased the

impulsive velocity from € # 10 cm/s or Re; = 5000 to U, = 40 cm/s or Re; = 20000 shown in
Fig. 5. The developmient of a gravity current that yields frontogenesis is shown for Re: = 5000 at
t = 0.4 s prionfto overturning motion. The effect of asymmetry is most pronounced for Re; = 5000
as the density cturent penetrates a substantial portion of the bottom of the cavity whereas the top
of the cavity isfnearly motionless where the interface configuration is similar to a miniscal shape.
The overturning motion that yields RTM front (r = 2.6 5) with the generic property of self-similar
structres of svhorls within whorls, has also been predicted by the computational model® for
Gr.Q 07). However, imposed symmetry in the computational model, results in internal collision

of the RTM fronts, whereas asymmetry in the experiments causes a relative displacement between
the'R TM fronts resulting in shear motion.

As'Re; increases to 10,000, there is further approach to symmetry based on the distance of the
penetrating front near the top and bottom of the cavity at t = 0.4 s; the interface configuration
shows a mixed mode instability with impulsive RT instability at the lower region and KH waves
in the upper region. The overturning motion at ¢t = 2.4 s, yields localized small scale RTM
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Publishistghctures superimposed on the large scale structure that shows self-similar patterns. The RTM
tronts with the attribute of self-similar small scale structures embedded within a larger structure
indicate the presence of length scales that can possibly approach turbulence length scales. These
length scales are potentially analogous to the small scale structures in Rayleigh-Taylor
turbulence®®3”- °; analogous dissipative structures occur in turbulent round jets, as shown in

Ref. 62.

Re; = 5000
t= 26s

O
t=2.6s, arig Rei=10000 att=2.4s; and evolution of short wavelength impulsive Rayleigh-Taylor instability
s the Richtmyer-Meshkov instability over short time scale t = 0.2 s for increasing impulsive
Reynﬁls number Re;j =20000 for Ar= 0.2 showing approach to symmetry of a diffused interface at t= 2s.

rface characteristics with nearly equi-penetrating fronts or mushroom structures for
=.20,000 at t = 0.2 s are analogous to shock-driven RT instability or the Richtmyer-Meshkov
ihstability>*%3; similar instability mechanism occurs for the impulsive velocity-driven RT
instability of our experiments as the shock-driven RT instability in compressible flow and the
impulsive acceleration RT instability in incompressible nonhomogeneous liquids—the interaction
of the vertical pressure gradient across the perturbed interface with the horizontal density gradient
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Publishi&gates baroclinic vorticity and generates an incompressible Richtmyer-Meshkov instability. In
comparison to Fig. 3(b) with Gr = 3.16x10° and Re; = 20,000, which showed mixed mode KH
and impulsive RT instabilities at the interface for + = 0.28 s, the increase in buoyancy effects
relative to injected impulsive kinetic energy as Gr increases to 2.69x1( leads to the development
of shorter wavelength impulsive RT instability at # = (.2 s with an increase in number of modes
which spreads throughout the entire initial interface length. Comparison with linear theory shows
that as nonlinearity increases for Gr = 2.69x10’, the disparity betwegh linear theory from Egs.

(19, 20) and experiment also increases. The maximum wavelength. A, ®0.2cm predicted from
linear theory is more than twice as less than the value of the_experimental measurement
A, =0.54cm and the characteristic time of evolution of the instability n .~ 0.1s follows a similar

trend with the experimental value of 7= 0.2 s.

There is loss of memory of the short wavelength instability“during overturning motion as
inferred from the interface structure for Re; = 20,000_at ¢arly times at t = 2.0 s. This is similar to

the findings for Gr = 3.16x10° at Re, =20000 of & diffused interface for which RTM does not
exist that occurred for high impulsive kinetic energy«KE, Aifi comparison to initial potential energy

PE | that is, for PE /KE, =025, The mixing“efficiency ds also increased in this limit as evidenced

from the large diffusive region of the stablyustratified configuration at ¢ = 37 s; the increase of
injected kinetic energy relative to initial potehtial energy showed similar effect for Gr = 3.16x10°

and Rei = 20,000. For the range of tmpulsive Reynolds number S000<Re <20000 for Gr =
2.69x107, the ratio of potential to kiftetic energy lies in the range of 2.12<PE /KE <11.99; the
lower bound that corresponds t0«R€=20000 indicates that there is a critical injected impulsive
kinetic energy KE, for which the formation of RTM front is inhibited that occurs at high

impulsive Reynolds numbexs.

V. MEASUREMENT OEKINEMATICS OF THE INTERFACE

The kingmaticsf interface motion is quantified from the measurement of the length stretch

L(t) of the interfage, width o, (f)of the interface, and mixing efficiency 7J;; whereas its sloshing

characteri§tic, suchas its damped frequency fd is measured experimentally from the time history

of the Jéngth streteh which is compared to the theory of oscillations of two superposed liquids and
to a harmonie(oscillator model of interface sloshing.

A, Timedistory of length stretch of the interface

The Lagrangian history of the length stretch £(t) of the interface contains the continuum

mechanics of buoyancy-driven mixing. The time history of the length stretch of the interface,
measured from the FFV method using image processing techniques, is shown in Figs. 6(a, b) for
a selected range of aspect ratios Ar = (0.1, 0.2, 0.5 with impulsive Reynolds number of Re; = 1500,
and for Ar = 0.04, 1.0 with Rei= 2500 and Gr = 3.18x10°. The trends of the data indicate that
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Publishistgeiching and folding of the interface during mixing is self-similar. For Re; = 1500, as the aspect
rauo increases from Ar = 0.1 (W = 0.5 cm) to Ar = 0.2 (W = I cm) there is a transition from linear
to exponential length stretch of the interface, since the interface does not fold in the region
0< Ar <£0.1. The transition from asymmetry towards symmetry as the impulsive Reynolds number
Rei increases also occurs even when there is only stretching of the interface (47 = 0.1) relative to
the horizontal and vertical line at center of cavity, as also illustrated in Fig. 4 for Gr = 3.7x10°
with A7 = 0.2 ; beyond the maximum length stretch there is subsequen‘téitraction of the interface
toward stratification, though sloshing occurs however its amplitude is too small to be discernable
in Fig. 6a for Ar = 0.1. For increasing aspect ratio Ar = (.2, the ca st@hic collision of the RTM
structure with the wall causes an increase in the maximum len%txtch of the interface. The

arl

variation of aspect ratio from 0.04 to 1.0, shows a transition to a aussian distribution of
the length stretch. ‘)

Ar
--g--- 0.04
—o— 1.0

L(t)

FIG. 6. Time history of lefigth stretc interface of L(t), using FFV method, for increasing aspect ratio Ar at fixed
Gr=3.18x109, or PeZZI.O 0'° (@) Rei = 1500, (b) Re; = 2500.

Following thebreakdown of the interface from wall collision of RTM for Ar = 0.2, there is a
sharp chan length stretch beyond its maximum £max; the interface contracts over a very short

time intepVal }n neighborhood of 2 seconds. The wall collision of RTM caused by the
overturningwiotion gives rise to self-induced sloshing, denoted by the zero values of the length
stretcll for ¢ >0 s. This event of sloshing generated by the flow field itself without sustained
extern. driv@g force which shows only the first mode, serves as an example of self-induced
sloshing een two superposed liquids, in contrast to self-induced free-surface sloshing
addressed in Ref. 62 that also shows the occurrence of second mode sloshing. The exponential
dec f’sloshing has the characteristic of a damped harmonic oscillator. As the aspect ratio
%’e&ges further to Ar = 0.5, there is similarity of the length stretch distribution, with a resulting
increase in maximum length stretch. Similar trends are shown for Re: = 2500, however at
Ar = (.04 there is no folding, the interface only stretches and for 47 = 1.0 in which the maximum
length stretch occurs there is an increase in amplitude of sloshing with a slow decay; this occurs
through several cycles of sloshing toward stratification.
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i. Self-induced sloshing of the interface

The time history of the length stretch of the interface in Figs. 6(a,b) indicates that the kinematics of
interface motion has two time scales. A short time scale to denote divider disturbance and resulting
stretching and folding which lead to wall and internal collision, represented by Tsr, followed by a long
time scale 7y to denote settling time to the stably stratified configuration whichépans Tsr < ¢ < T;. Sloshing
decays over the time scale Tsr < ¢ < Trand approximated as the long time resgg'g of the interface to initial
input disturbance over the time scale 0 <t < Tsr. For the long time scale} tll‘lse%%y rate of sloshing as
shown in Figs. 6(a,b) depends on the aspect ratio and shows that as the aspect ratio increases it takes longer
for sloshing to decay; this event can contribute to the overall moleculwon at the interface resulting

in an increase in mixing width d,.,(?).

The damped natural frequency fd is calculated from the.tim igl?l‘ of the length stretch of the
interface by averaging over the representative time interval. The haracteristic trend of the damped
frequency fdof sloshing in Fig. 7 for Gr =3.18 x 106§'ndicat at for 0< Ar <0l, the approximate

Hele-Shaw cell configuration, the interface exhibits (Figu6(a)) overdamped behavior as it approaches the
stably stratified configuration; thus there is a long petied oscillation in the range of 0< Ar<0l1. The
damped frequency of sloshing for the range 0.h< Ar £1.0 shows underdamped oscillation of the

interface with a conditionally periodic frequency theaspect ratio increases. Though there is an increase
in intensity of the flow field for 0.5 < Ar < | to the increase in volume with a corresponding
increase in the initial potential energy of the system, the damped frequency approaches an asymptotic value.

o

The experimental trend of the edfrequency /., as a function of aspect ratio Ar compares

favorably to a damped harmonic oscilla odel given by Eq. C4 in Appendix C which shows
from scaling that the undampercllﬁs\KaLﬁrequency is given as,

1/2

g\\ 0, = ng, ()1 @7)
{ 4
es th

Equation (27) in(1/
when the characteristic [ength scale is the width L of the cavity, which is in qualitatively agreement
with the trend ¢ experimental data in Fig. 7. Since the effective wavenumber k. = 2/L = 24r/W

the frequency scales with the square root of aspect ratio as f, ~ Ar

me order of magnitude as the first mode wavenumber k =g/ bk (%: L, g=1)
predicted.fi the/theory of oscillations of two superposed fluids®® shown below, Eq. (27) yields

o =0912rad ’SS , which is on the same order as the sharp interface inviscid theory &=0.893rad/s
given by Eq=(29) below, for the small wavelength approximation.

\ <
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FIG. 7. Damped natural frequency f;, of sloshing as a function of @spect ra%o

Pe = 1.06x10'? at Re; = 2500. C

2. Superposed fluid model of sloshing
-
The sloshing event may be compared,to the thedry of oscillation of two superposed fluids
with a sharp® and diffused®’ interface, AcCerding to the theory of surface waves in two-

dimensions, the frequency &% of oscillatigns“efi.the common boundary (C = 0.5) of two
superposed inviscid liquids®® with a shdrp.interface which is confined vertically between horizontal
planes and unbounded in the horiz<<al irection L >> H is given by

& \._\ngok(pA —Ps) (28)
COthk(H /2)+ p, coth k(H /2)
in which kH/2 is a di %ss wavenumber with k =27 /A4°; for small wavelength 20,
cothkH /2 — 1, thu the/na al'frequency for the gth mode oscillation for our system becomes
/ /4
_ qr
5\ &9 =,|ng, (%)Af (29)

in which 4 is the e number; for Gr = 3.18 x 10° only first order mode g = I is observed in
our experiments. Lf the length scale 20 in Eq. (29) is on the order of the width of the cavity L, it

experiméntal trend in Fig. 7. In contrast to the sharp interface theory of Eq. (28), Ref. 67 shows
th

aged'on the work in Ref. 68, the frequency of oscillation 5% 9 for a diffused interface is given as

8% - ng kAt (30)
(1+ tanh kow)

énce of frequency on the square root of the aspect ratio is also comparable with the
at

an interface that has a piecewise density variation with a finite interface of width ow ,
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equation (30) reduces to Eq. (28) when the width of the interface approaches zero, ow — 0, for
small wavelength 2oapproximation. According to the theoretical prediction of Eq. (28) for a sharp
interface &o=0.856rad /s, which is on the order of the measured experimental value ® = 0.696

rad/s for a nearly two-dimensional cavity with 4r = (0.2 as shown in Table III of Appendix C,

whereas Eq. (29) yields &0=0893rad/s which shows that the small wévelength approximation

does not appreciably affect the frequency. The difference between prédicted and measured value
of the frequency is attributed to the neglect of viscous effects, finit€ interfaceqwidth, and infinite
extent L—0 approximation of the theory which is not borne out in oug éxperiments. However, for
cavity size in whichA O (1.6L), Eq. (29) shows that nearly equivalent agreement with theory can

be obtained. On the other hand, the diffused interface model 6f Eq) (30) shows that &9=0.7167ad/s

for a nominal interface width of 6w = I c¢m, whichgCempares favorably with experimental
measurements. The effect of a diffused interface is tQ effectively decrease the frequency of
oscillation of the interface as the diffused width o wsincréases.4Given the similarity between the
damped harmonic oscillator model of Eq. (27) and,theSuperposed fluid theory of Eq. (29), the
natural frequency predicted from scaling arguments given by Eq. (27) of w» = 0.712 rad/s falls
close to the experimental value of @ = 0.696 #gd/s asghown in Table III of Appendix C.

B. Mixing width of interface and mixing efficiency

In contrast to the length stretch “*£(f) of*the interface that shows a smooth variation as a
function of time up to the point whéte sloshing occurs as shown in Figs. 6(a,b), the mixing width

0, (?) of the interface in Fig. 8 ,showg that‘there exists expansion and contraction of the mixed

region during the time interval“ef foelding up to its breakdown. Initially the width increases
smoothly during the stretching event O <t <3 s. The interval in which folding occurs which leads
to the breakdown of the RTM steucture due to wall collision, 3 s <t < 10 s, shows local expansion
and contraction of thenixed width of the interface. The catastrophic bifurcation® in which the
RTM structure collidés with the wall, and sets-up the condition for self-induced sloshing, results
in enhanced local molecular diffusion; there is a sharp increase of the mixing width in the interval
10 s <t < 18 s cHaraeterizing this event. The damping of sloshing for t > 18 s which results in a
stably stratified mixed region shows that the mixing width increases slowly with time and becomes
limited by molecular diffusion. These results show that the mixing width varies as a power law

function Of time 5;(t)~tp with an exponent 2 < p < 3 ; this is analogous to turbulent RT

instability- thatsshéws a quadratic time dependence of the mixing width that scales as ~Afg, r

which'is attributed to the short wavelength initial perturbation®?, however when a long wavelength
pérturbation.is added to the short wavelength initial perturbation, it is noted in Ref. 52 that the
quadraticitime dependence ceases to be valid.
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FIG. 8. Time history of interface width dw"(t) for Gr = 3.18x !@)r Pe =4:06x10', Ar=0.2,and Re; = 1500.

The relationship between the mixing efficiency #J;@nd the mixing width dw(?) is given by

Eqs. (25,26). In this respect the mixing efficien %ﬁ[;ri sed in terms of the mixing width given by
=0 (T )/ 2 , in which ¢ =Ty is the s tt%g\ﬁ or stable stratification, represents the ratio

of the quasi- equ111br1um mixed width 5w( ed by the total energy input into the system
relative to a uniform mixed backgroun ho The mixing efﬁ01ency can also be expressed

in terms of the dimensionless mixe dt W?T) from Eq. (15)as 77, =0, (T )+9,,/2h,, fora
very thin interface 1n1t1a11y N, =0, (T ). For practical applications Eq. (25) is

used to calculate the experlmental mixing efficiency; the mixing efficiency 7J;, estimated from the

potential energy balance f Eq. (21), represents a measure of energy conversion between

initial and final configira of he interface which is indicative of a quasi-equilibrium state of

the system, whereas £(t) isa meagure of non-equilibrium states. In terms of a metric to characterize

the kinematics of the interface] we find that the length stretch £(t) is a preferred descriptor of the

transient kinematic \&hse hort time events of stretching and folding. However, the long time
ad to

kinematics which stably stratified configuration are conveniently described by the mixing
width dw(?)

£

111\6 ect 81 aspect ratio Ar, impulsive Reynolds number Rei, and Grashof number Gr on

the e erime;sta mixing efficiency 7], are shown in Figs. 9(a,b,c). For a fixed Grashof number

@ Isive Reynolds number Re;, the mixing efficiency 7J; increases as aspect ratio Ar
s

es{Fig. 9(a)). For Ar—>0 the efficiency 7} —0 because there is no folding of the interface

nd mild stretching for Ar = 0.04; this region leads to the no mixing case. However, as Ar increases
the potential energy PE, of the system increases for fixed injected kinetic energy KE and results

in an increase of the mixing efficiency 7.
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mixing efficiency by a factor of two beyond Re; > 4000 due to the large injected impulsive kinetic
energy KE;; into the system. In the range 1000 < Rei < 2500 the mixing efficiency increases as
symmetry is approached which is in agreement with the observation in Ref. 7. The results show

that for the maximum injected impulsive kinetic energy KE,, relative to the initial potential
energy PE, with a ratio of PE, / KE, = 0.25the mixing efficiency increase by a factor of

two for Re; =20000. The mixing efficiency approaches an asym otﬁvalue or Re, >10000,

this implies that the system becomes saturated or the injected k1ﬂ§;‘\Fl rgy does not appreciably

affect the mixing efficiency beyond a certain threshold of Re; e fix Rei = 2500 and Ar =
0.2 to investigate the effect of Gr on the mixing efficienc n in Fig. 9(c); the results show
that the mixing efficiency 7}, increase as Gr increases, Which means that an increase in the initial
potential energy of the system increases the mixing efficiency. Comparison of our results with the
mechanical model of mixing in Part 2 denoted by thefsquare ol, indicate reasonable proximity
with the experiment for nominal Gr = 3.16x10°. ‘)
\ )
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9. Mixing efficiency 77, as a function of : (a) aspect ratio Ar for Gr = 3.18x10° or Pe = 1.06x10'°, Re; = 2500,

impulsive Reynolds number Re; for Gr = 3.18x10° or Pe = 1.06x10'%, Ar = 0.2, and (c) Grashof number Gr for
Ars 0.2 and Rej = 2500; comparison to the mechanical model of mixing in Part 2 shown by the open square symbol.
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The local characteristics of the interface motion as a function of time show that there can
be a transition from stretching to folding; under certain conditions folding gives birth to the RTM
structure that can approach symmetry. We quantify the observed behavior of the interface based
on its bifurcation sequence in parametric space for a given metric. The bifurcation type as a
parameter unfolds is based on the geometric classification given in Reff69. As metric we use the
maximum length stretch £max of the interface,

imax = imax(Al", Rei, Gl", SC) (31)

shown in Figs. 6(a,b); the Schmidt number Sc is held fix€d tol reduce the parametric set. We
investigate the unfolding of the solution for a reduced paramettic s€t by varying one parameter
while keeping all others fixed to find the critical parametric spage

A= AC(AI"C, Reic, Grc) (32)

whose loci of points in a plane represent either a transitionfrom stretching to folding or asymmetric
to nearly symmetric RTM structure; the pagametric space can also be expressed in terms of the
critical Peclet number as Ac = Ac(Are, Reic, Peg). The critical values are used to define critical
boundaries on a plane for which a particular chazacteristic feature of the solution exists, that can
also be used as operational curves. Thie effectiof multiple parameter variation is analogous to a
mathematical experiment on the first vagiation’® “of the initial potential energy SPE, and injected
impulsive kinetic energy 0KFE on aVirtual €hange of the parametric space, owing to a perturbation

of the total initial energy OF, {Sincé\wewse two different experimental systems to measure the

length stretch £(t) of the interface, 'we contrast the difference between the two measurements that
used FFV and PLIF methods:

A. Effect of initial potential energy perturbation

1. Variation of Ar

In order to form a global picture in parametric space we consider the bifurcation of £max as a function

of aspect ratio Ar,impulsive Reynolds number Re;, and Grashof number Gr or Peclet number Pe which
represents‘a,co-dimension three problem; the Peclet number Pe = GrSc is used interchangeably with the
Grashof number as the control parameter. The effect of the Schmidt number Sc is subsequently taken into
account by considering liquid mixtures with a range in thermophysical properties as shown in Table I of
Appendix A. The bifurcation point in parametric space can be perturbed through variation of the total initial

energy 5ET0 of the system consisting of its potential energy PE = C ArGr and injected impulsive kinetic
energy KE=C Ar Rei2 from Eqs. (B3-B5) of Appendix B, where the constant C, =1/ 2pLV°.
We first consider the effect of the initial potential energy perturbation JPE, on the variation of aspect

ratio dAr and Grashof number dGr. The variation in aspect ratio dAr represents perturbation of the initial
potential energy 0PE, of the system owing to a change in volume, in which 0PE, = C,GrdAr for fixed Gr
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constant C; Since the initial potential energy drives the characteristics of mixing quantified by Lmax,

we consider the effect of a variation of the aspect ratio on £max to find the critical aspect ratio. Figure 10(a)
shows that as the cavity varies from an approximate Hele-Shaw cell to a three dimensional configuration
the critical aspect ratio separates the region of stretching from folding, and the length stretch approaches an
asymptotic value. For fixed Gr = 3.18 x 10® or Pe = 1.06x10", the interface undergoes a supercritical
bifurcation in the neighborhood of Ar. = 0.15 which separates the stretching’and folding region. In the
region where the interface stretches, the short-lived coherent RTM structure §hown in Figs. 3(a,c) does not
exist; however, the RTM structure occurs at the bifurcation point.

The bifurcation of the interface as a function of 4r and Gr réquiresithat the impulsive Reynolds
number Re; should be a fixed optimum value. We show in Fig. 10(a)the implication of operating below an
optimum value of Re;. Ideally Re; should be selected such that thefe is negligible effect on Lmax; operating
below an optimum Re; implies that there is an effect on the length stretch beyond the critical aspect ratio as
shown by contrasting the results for Re;= 1500 and 2500. A§ the aspectwatio of the cavity increases, the
initial potential energy available to fold the interface also_increases, it becomes necessary to increase the
impulsive velocity of the divider so as to minimize effectfon the length stretch of the interface. Even though
one can operate at Rei= 1500 for Ar < 0.5, as Ar 7 ihe ITength stretch decrease shown by the data in
Fig. 10(a) is caused by the delay of the divider motion Which inHibits the stretching and folding event; the
increase of the impulsive Reynolds number to Re;< 2500 prevents potential interface contraction effects
caused by delay of the divider.

The bifurcation of the interface for varteus fixed Gr as Ar is varied, shown in Fig. 10(b) in
relation to Gr = 3.18x10° or Pe=I1Q6%]0""for fixed Re; = 2500, indicates that for a given
critical aspect ratio Ar. there is a fixed ‘eritical initial potential energy PE,c for transition from
stretching to folding. The effect of\a‘wariation of PE, on the variation of aspect ratio dAr for
fixed Grashof numbers Gr, shotysdhat\an crease to Gr = 2.69x10” or Pe = 8.97x10" requires
a decrease in the critical aspectwatio“to Arc = 0.08. On the other hand, as Gr decreases to
Gr =3.7x10° or Pe = 1.23x]0° the Ssystem compensates for the lower energy available to drive
folding by an increase in<€ritical'aspect ratio to Arc = (.3; these trends verify the direct relationship
of Gr and aspect ratiof dAr given'by SPE,. For Gr = 3.7x1(° as Ar varies from 0.04 to 1, Lmax

increases from 2.0 t0+7.64 comparison with the computational model® shows Lmax = 7.2 which
indicates that the 2D apprexifnation of the cavity is approached asymptotically.

2. Variation of Gr

We coéusidér the“effect of perturbing the initial potential energy 6PE, through a variation of
oGr forafixed Anf which implies 0PE, = C, ArdGr, to determine the critical Grashof number that
separates stretching and folding. In Fig. 10(c) we show that a supercritical bifurcation occurs in
themngighborhood of Gr. = 4.0 10’ which separates stretching from folding for a fixed aspect ratio
of Ar = (:2; this critical value is on the same order of magnitude as predicted by the computational
model® in'which Gre = 3.0x10° showed the birth of the RTM structure. The difference between
experiment and model is attributed to initial condition effects due to divider disturbance which is
nof taken into account in the 2D model, and the 2D approximation of the cavity. The impulsive
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FIG. 10. Loca ‘ércayn sequence of the maximum length stretch L£max of the interface as a function of its parametric space

_—
(Ar, Grj Rei) for S§ 33. (a) Bifurcation of interface &£max showing transition region from stretching to folding as aspect ratio

increaSes for various impulsive Reynolds number Re;i for Gr = 3.18x10° or Pe = 1.06x10!? using the FFV method, for

;?ison * corresponds to PLIF method. (b) Effect of variation of Grashof number Gr on bifurcation point of £max, represented
vertical bars, as aspect ratio Ar increases for Rei = 2500 using the PLIF method. (c) Bifurcation of interface as Grashof
mbe increases for fixed aspect ratio Ar = 0.2 showing transition from stretching to folding using FFV method, data
Wc%qupding to [*] were also taken from microgravity experiments in Ref. 45, for comparison * corresponds to PLIF method. (d)
cct of increasing the impulsive Reynolds number Rei on interface bifurcation showing that the approach to symmetry lies
between asymmetric folding using FFV method, Gr = 3.18x10° or Pe = 1.06x10'°, Ar = 0.2; (e) Effect of variation of Grashof

number Gr on the critical impulsive Reynolds number Re;, using PLIF method.
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environment* and Gr = 6.36x107 or Pe = 2.12x10"!, for cases 4-7 in Table I of Appendix A.
For the highest Grashof number Gr = 6.36x10’, it is necessary to increase the impulsive velocity

to U, =7 am/s so that L£max would not be affected by delay of divider motion as we had previously

discussed. The effect of increasing the aspect ratio, can also be inferred from the relation
OPE, = C,AréGr, which indicates that the critical Grashof number would decrease, whereas a
decrease in aspect ratio would increase Gre.

2. Variation of Gr

We consider the effect of perturbing the initial potential enetgy oPE£, through a variation of
oGr for a fixed Ar, which implies 6PE, = C, ArdGr, to determing the eritical Grashof number that
separates stretching and folding. In Fig. 10(c) we show(that a supercritical bifurcation occurs in
the neighborhood of Gr. = 4.0 10’ which separates stretching fram folding for a fixed aspect ratio
of Ar = (.2; this critical value is on the same order of magnitude-as predicted by the computational
model® in which Gre = 3.0x10° showed the birth ofithe RTM structure. The difference between
experiment and model is attributed to initial conditign effects due to divider disturbance which is
not taken into account in the 2D model, and the 2D approximation of the cavity. The impulsive

velocity was kept fixed at Uy =5 cam/ s | with thte gxception of data points obtained in microgravity

environment® and Gr = 6.36x107 or Pe =2.12%10", for cases 4-7 in Table I of Appendix A.
For the highest Grashof number Gr =6,36.<1 (0"t is necessary to increase the impulsive velocity

to U, =7 cm/ S so that Lmax woulddigt be'affected by delay of divider motion as we had previously

discussed. The effect of increasing\the,aspect ratio, can also be inferred from the relation
OPE, = C,AréGr, which indicates,that the critical Grashof number would decrease, whereas a
decrease in aspect ratio would increasg Gre.

The microgravity data in Kig. 10(c) for the high Grashof number cases (4,5,7) in Table I of
Appendix A were taken at‘a g-level of 10° g,*, thus reducing the Grashof numbers to 3.18, 26.9

and 29.6 respectively. Those' results®® show that the interface is stabilized, therefore does not
stretch and remains frezen 1n the vertical configuration. Thus the length stretch £(t) approaches
zero and provides the low limit in Grashof number which is in agreement with the computational
model® that'shows £max = 0 for Gr < 37.3. Experiments in the neighborhood of 0 < Gr < 6x10*

are challénging to perform on the ground; a low gravity environment can be used advantageously
to invgstigatesthis’' range of parameters. As we had pointed-out we employed two methods to
measute the length stretch of the interface, FFV and PLIF; the data in Figs.10(a,c,d) and Figs.
10(b,e) ‘eontrast respectively the difference between FFV and PLIF methods for measuring the
length stretch. Owing to higher resolution afforded by the PLIF method the maximum length
stretch Lmax differs between the two methods beyond the bifurcation point, however, the shape of
L(®) is not appreciably affected; thus the same trend as shown in Figs. 6(a,b) is represented by the
PLIF method except for a change in magnitude of £max. We find that below or in the neighborhood
of the bifurcation point the two methods show good agreement, for reference we show
corresponding data points using PLIF in Figs. 10(a,c,d) for points below and above the bifurcation
point denoted by the symbol *.
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b. Effect of injected kinetic energy perturbation
1. Variation of Re;

The length stretch may be perturbed through a variation of the initial potential energy JPE, or
a variation of the injected impulsive kinetic energy JKE . The variatiOn of the injected kinetic

energy JKE given as 0KE=2C ArRe 6Re indicates Grashof number independence for fixed aspect

ratio, and an aspect ratio dependence as JKE=C Re d4r for fixedRéi. The unfolding of the

solution as the impulsive velocity or Re; increases shows in FiglO0d*that the RTM structure
bifurcates from asymmetric to a nearly symmetric structyre at a critical impulsive Reynolds
number Reic = 2800 for Gr = 3.18x10° and becomes asymmgtric again as Re; increases. This
sequence of events indicate a change in the structural stabilitysof the RTM structure as the
impulsive Reynolds number increases; structural stability, in th¢ sense that the bifurcation from
asymmetry to near symmetry is caused by pertufbation of“the flow field owing to injected
impulsive kinetic energy into the system. In relation<to the bifurcation point, asymmetric folding
gains stability as the system approaches symmetrie folding for increasing Re; from the left or
below the bifurcation point and loses stability torasymmetric folding for increasing Re; on the right
or above the bifurcation point.

The fundamental issue being the{optimum,impulsive velocity Uo(% for which the injected

impulsive kinetic energy in the system compensates the initial potential energy so as to approach
symmetry. The bifurcation point whichaepresents the approach to symmetric folding, bounded on
the left by asymmetric foldingfas.Reidecteases and on the right by asymmetric folding as Rei
increases, indicates that there is a'marrow parametric space for which the approach to symmetry
occurs. Even though the wvariation of¢ 6KE is independent of Gr, and the variation of 6PE, is
independent of Re;, theilcombingd interaction shown by the maximum length stretch Lmax in Fig.

10(e) indicates an invgrse retationship between the injected impulsive kinetic energy to approach
symmetry and availablg potential energy for folding. The inverse relationship between dRe; and Gr
on Lmax indicatesthat as'Re;fncreases it is necessary to increase the Grashof number to approach
symmetric folding andyghows relative to Gr = 3.18x10° that the critical impulsive Reynolds
number decre@ses 1o Re. = 2.0x10° for Gr = 3.7x10°, likewise when Gr increases to Gr = 2.69x10’
the criticalfRe;. =25 %107 also increases. In contrast to the other cases, for Gr = 2.69x10" Lmax
increases for Re; < /500; this limiting data point which is outside of our immediate interest shows
that fof lew mjeoted impulsive kinetic energy in relation to the initial potential energy, the wake
of the\divider{exhibits the characteristic interface shape of meniscal breakoff’! illustrated in Fig.
5 forRers 5000 at t = 0.4 s, due to attachment of the interface to the trailing edge of the divider
in whichdhere is a common line of contact between the liquid-liquid interface.
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The variation of the initial potential energy dPE, and the injected kinetic energy JKFE that
yields the critical parametric space Accan be used to identify the co-existence of folding and the
approach to symmetry in the system. We have shown that the initial potential energy can be
perturbed by either a variation in aspect ratio d4 ( Figs. 10(a,b)) or a variation in Gr (Fig. 10(c)),
which yield the critical parameters Arc and Gre. A succinct representati{éa of the findings is shown
in Fig. 11(a) which shows the critical boundary in the control space (G, Arc) that separates
stretching and folding. Similarly we also showed that the injected kineti¢ energy can be perturbed
O0KE by a variation in impulsive Reynolds number JdRe; (Figs. 40(dse)) which yields the critical
Re;.. Likewise the control space (Gr, Rei) in Fig. 11(b) shows suc&ﬂtl};; t the critical boundary,
that represents the transition from asymmetric to nearly’ symmetri

folding, has a narrow
parametric range since asymmetry lies on either side of the ¢

ical beundary. The co-existence of
folding and the approach to symmetry can be representell by the exitical boundary in the space of
Rei. and Ar. shown in Fig. 11(c).
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arametric space (Gr, Ar., Reic) with Sc = 3333. The critical boundary which: (a) separates stretching and folding
in the control space of Gr and Ar,; (b) shows that the approach to symmetry lies between asymmetric folding in
the control space of Gr and Re;c; (c) satisfies both criteria for folding and the approach to symmetry in the control
space of Rei. and Ar, .
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Keic and Arc for which folding occurs and symmetry is approached. The operational application
of the critical boundaries denoted by Figs. 11(a,b,c) which represents regions of 2D flow, may be
illustrated as follows: for a given Grashof number Gr there is a critical aspect ratio Ar. for folding
(Fig. 11(a)) as well as a critical impulsive Reynolds number Reic (Fig. 11(b)) for the approach to
symmetry; folding gives birth to the RTM structure, in order for RTM to approach symmetry then
there is a unique combination of (Reic, Arc) that satisfies the criterion fof folding and the approach
to symmetry. For example the critical Grashof number of Gre = 4.0 1 shown in Fig. 10(c) which
is obtained from Ar = 0.2 and Re: = 2500 does not necessarily iniply that the RTM structure is
nearly symmetric; approach to symmetry can be found from the corréspénding critical Arc and Reic
from Figs. 11(a,b), that shows Ar. = 0.29 and Reic = 2030 whichis denoted in Fig. 11(c) as a
reference value. Therefore the critical boundary denoted jh the spaee (Rei, Arc) signifies the
operational curve that satisfies both criteria, hence the co-existente ofifolding and the approach to
symmetry.

The operational application of Figs. 11(a,b,c) cafl be used«ofind the critical Grashof or Peclet
number for folding to occur at Ar = 0.2 as well as its.efitical impulsive Reynolds number Reic to
approach symmetry. Since the birth of folding is Showny if Fig. 4 to occur during the transition
from Ar = 0.2to Ar = 0.3 at Gr=3.7 x 10° or Péw 1.23 % 1(’, the data point for Ar = 0.3 represents
the approximate minimum aspect ratio for which feldifig occurs for the given Grashof or Peclet
number. However, it is the corresponding esitical Grashof or Peclet number for which folding
occurs at Ar = (0.2 that is of interest. The bifureation diagram in Fig. 11(a) shows that at Ar. =0.2
folding occurs for the critical value of Gz."=.1.33%10° or Pe. = 4.43 x 1(°, and the critical Re;. for
the RTM structure to approach syminetryi§'Re;c = 2200 from Fig. 11(b). In contrast, for decreasing
critical Grashof number Gr.= 4 xI(%, itis shown in Fig. 11(a) that there is an increase in critical
aspect ratio to Ar. = 0.29; the tfend-af the data indicates that the critical Gr. lies along the critical
boundary in Fig. 11(c) and Gr. d€eteases along the critical boundary as the critical aspect ratio
increases. The critical value. Gr. ="1.33 x 10° represents a limiting minimum value for the
existence of folding at thewcriticalaspect ratio 4r. = 0.2. The critical boundary in Fig. 11(c) serves
to demarcate the region whigh/separates stretching and folding as well as the approach of
asymmetric RTM strueture to néar symmetry.

D. Scaling of length stretch based on bifurcation diagram

Thesbifturgation sequences shown in Figs. 10(a-e) may be used to construct a predictive
model for{the maximum length stretch £max of the interface. We investigate a power law model”

for thesmaximum Jéngth stretch of the form

Lmax~ Gr’ Ar* Re,” Sc* (33)
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FIG. 12. The maximum length stretch £max as a functign o(\zhe p‘ablmetric space of the system (Gr, Ar, Re;, Sc)
showing power law relationship with system parameters. 7 -

For the range of experimental parameters sth ble I of Appendix A, we have investigated
vity mTfTon ng = lmgo (Gr = 3.18) as well as cases
5 and 7, which provide limiting data p 'W ification of the data in Table I of Appendix A for

Lmax shows in Fig. 12 that its functignal relationship using the power law model of Eq. (33) can be
represented by, "\
&

case 4 (Gr =3.18 x10°) for microgr

Y

mae=2.1Gr"° 4r*? Relfl/ s (34)

for the following lipdits: Gr<636x107 or 1.06x10* < Pe<2.12x10" , 0.04 < Ar < 1.0,

100<Re, <2x10°, dn

the power law llows. prediction over a continuous range of parameters within the above
intervals whe e7a§eri tal data is lacking. According to the above model the aspect ratio and
Grashof n ave the dominant functional relationship as they govern transition from
stretching/to folding; the impulsive Reynolds number which governs the structural stability of
folding, tr éon {rom asymmetry to near symmetry, shows an inverse functional relationship.
The S¢hmidt nugiber incorporates the effect of viscosity jump as well as molecular diffusion. A
more mmo§ parameter over the Grashof number used to characterize mixing is the Peclet
n@mber epresents the ratio of mass transport by convection to that of molecular diffusion.
An alternative functional relationship for £max can be expressed as a function of Pe by setting
\%= in Eq. (33) to yield

=~

/>> }/ Since it is not practical to vary the range of variables continuously,

Lomax~ Pe? Ar¢ Re.’ (35)

The data fit to this model indicates
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Lmax=2.4Pe"° 4r** Re, " (36)

and shows greater scatter of the data when superimposed on Fig. 12 which seems to indicate that
the Schmidt number parameter is independent and can be used as an additional parameter. In
analogy to our model experiment, application to chemical reaction with fast reactant kinetics in
which the interface acts as a boundary between segregated reactants’*{ show an analogous length
of reaction interface that scales as Pe'’® for the regime which is confrelled by kinematics.

VII. SUMMARY AND CONCLUSIONS

The mixing characteristic of two miscible viscous liquids driven by transient buoyancy-
induced flows is investigated from measurements of its-length _stretch and interface width that
contain the continuum mechanics of mixing, stemming from the Lagrangian history of the
interface motion measured using full-field view_method (FFV) and planar laser-induced
fluorescence (PLIF). Buoyancy-driven mixing odcurs_through stretching and folding of the
interface, generated by an overturning motion that results in unstable density stratification and
produces an ideal condition for the growth of a singlegvavelength Rayleigh-Taylor instability with
an asymmetric pairwise spike and bubble*¢onfiguration exhibiting the Rayleigh-Taylor
morphology (RTM). The late stage of RTM unfolds«o an internal breakwave and its breakdown
occurs through wall and internal collisionwhtehisets up the condition for self-induced sloshing
that decays exponentially with a resulting ‘diffusive region at the interface indicating local
molecular diffusion.

The approach to symmetry of\theghort-lived coherent RTM structure is dependent on the
injected kinetic energy in the systiemecharacterized by an impulsive Reynolds number while the
transition from stretching to folding,is dependent on initial potential energy characterized by
Grashof or Peclet number. The stretching event shows density currents that cause frontogenesis
owing to the sharp dengity«{ront; while, the folding event shows a transition from a smooth RTM
structure to RTM frgnts withefractal structures that contain small length scales for increasing
Grashof or Peclet nimbgt. The dependence of length stretch on aspect ratio for fixed Grashof or
Peclet number showed a tednsition to a nearly Gaussian distribution for increasing aspect ratio
which indicated self-similarity of buoyancy-driven mixing.

Thednterfaeg is characterized by a co-dimension three bifurcation of the maximum length
stretch in ‘par@metric space—Grashof or Peclet number, aspect ratio, and impulsive Reynolds
numbg¢r—for a‘geometric range from an approximate two-dimensional Hele-Shaw cell to a three-
dimensional cavity. In particular for fixed aspect ratio the impulsive Reynolds number quantifies
the approaeh to symmetry, from the initial condition which is set through the impulsive
perturbation of the divider motion that has the characteristics of transient Couette-Poiseuille flows
for the'short time scale; whereas, the Grashof or Peclet number determines the control space that
separates stretching and folding. The bifurcation of the length stretch of the interface in parametric
space indicates that the birth of RTM occurs through a supercritical bifurcation as Grashof or
Peclet number increases for fixed aspect ratio which is in agreement with the approximate
computational model. The maximum length stretch scales as a power law function of the control
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number—and shows reasonable agreement with experimental data. The critical control space for
the co-existence of folding and the approach to symmetry for the short-lived coherent RTM
structure depends on the critical impulsive Reynolds number, and aspect ratio for a given Schmidt
number at critical Grashof or Peclet number.

Low impulsive Reynolds numbers generate Kelvin-Helmholtz (KH) instability at the
interface for the short time scale and affect the approach to symmetry. Whereas high impulsive
Reynolds numbers excite short wavelength instability initially du€ to the (impulsive) Rayleigh-
Taylor (RT) instability mechanism, that diffuses the interface and“ahibits the formation of the
RTM structure when the injected impulsive kinetic energy becomes e@mparable to the initial
potential energy, and serves as an analog to shock-induced RT instability exemplified by the
Richtmyer-Meshkov instability. The instability mechanism fer thesmpulsive velocity-driven RT
instability of our experiments, is similar to the shock-induced R Tunstability in compressible flow
and the impulsive acceleration RT instability in incomptessible nonhomogeneous liquids—and
showed that the interaction of the vertical pressure gfadient aetoSs the perturbed interface with the
horizontal density gradient creates baroclinic verticityy and generates an incompressible
Richtmyer-Meshkov instability.

In particular the initial perturbation“qf the_inferface and flow field for low impulsive
Reynolds numbers that generates KH instabilityscauses kinks at the interface, which grow into
deep fingers during overturning motion and tmfold into local whorl structures that merge and self-
organize into large length scale RTM stiticture. However an increase in Grashof or Peclet number
causes a cascade to small length geales that produce RTM fronts with self-similar structures at
smaller and smaller length scale. Fellewing breakdown of the RTM structure, the exponential
decay of sloshing occurs over“a narrow frequency band for aspect ratios that yield folding and
results in a stably stratified configuration. From the time history of the length stretch, the finding
that the damped frequencys0fsloshing increases as the square root of aspect ratio for fixed Grashof
or Peclet number is compagable te the normalized frequency from the damped harmonic oscillator
model of interface slo§hing and the characteristic frequency predicted from inviscid theory of two
superposed fluids. The observed interface structure and its characterization indicate that for a
critical Grashof orPecletnuniber, two-dimensional approximation applies in the neighborhood of
the critical aspeet ratio,and impulsive Reynolds number that separate respectively stretching and
folding, and tfansition from asymmetry to near symmetry. In addition, our experimental model—
with the digtingtighing feature of an impulsive-velocity initial condition at the interface between
two nonh@mogeneous liquids—shows a novel method for generating short time Richtmyer-
Meshkey, instabilify in incompressible liquids.
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A. Full-field view method for interface tracking

We used the full-field view (FFV) photographic method to capture the kinematics of
interface motion on a charge-coupled device (CCD) sensor whose output is recorded in real time
on a video recorder for the experimental set-up in Fig. 13. The basic, operation consisted of
removing the divider to establish the initial condition necessary to fo the Lagrangian history

of interface motion and measure its length stretch £(t). A unifo

created using a 12 inch diameter integrating sphere, Lab sphere mo

approximately one inch from the back of the cavity test cell. The
internal source, Oriel light source attached to a PhotoMax ill

supply, and integrates that radiation to create a uniform field

exit port serves as a source of radiation that is diffusive
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wered by HP 6030 power
lightayithin the sphere. The sphere
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across the plane of the exit port is uniform and nearly L bertlsn. The motion of the interface is
captured by a Sony color video camera (DXC-950 %'C:CD) andrecorded on a Panasonic AG-6040
time-lapse video recorder for off-line processin a@ra produces high-quality images due
to its % inch three-chip power hole-accumulated“diode-CCD which contains approximately
380,000 (768 (horizontal) x 494 (vertical)) efteetive pixels. The FFV method provides a global

view of the interface structure.
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FiG13. Experimental set-up (not to scale) to quantify interface motion using full-field view (FFV) method; for the
planar laser-induced fluorescence (PLIF) method detailed in Part 2, we used a planar laser sheet in place of the Oriel
light source; (VCR, videocassette recorder; CCD, charge-coupled device; BCTV, broadcast television).
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We used a Gemini-PIV (200MJ, 30 Hz) Nd:YAG pulsed laser for planar laser-induced
fluorescence (PLIF) measurements of the interface structure, detailed in Part 2, in place of the
Oriel light source. The low concentration of rhodamine 6G dye used in the left chamber of the
cavity in Fig. 13 acted as a conserved passive scalar which yielded the instantaneous interface
structure similar to the works in Refs. (62,74). The measured moleculaf diffusivity of rhodamine

6G dye in water has been reported in Ref. 75 with a value of D#F3.0x10: ‘cnt'/s and yields a
Schmidt number Sc = 3333 for V =0.0lcni/s as shown in Talle I below for cases (1-6).

1. Cavity test cell and mechanism

The initial configuration of two liquids (A, B) in§id¢ a cavity separated by a divider prior
to establishing the initial condition from removal of the divider,%s shown in Fig. 13. The motion
of the divider is controlled by specifying a desired mbtion trajecfory on the Compumotor indexing
drive (Parker Compumotor SX6 system) that is communicated to the stepping motor (ZETA6104
model); the motion trajectory allows approximationof a pulse function as shown by Eq. (1).

The cavity consists of an enclosure with height A, width L, and depth W with respective
dimensions of Scm, Scm and the following,_range*0.2, 0.5, 1.0, 1.5, 2.0, 2.5, and 5.0 cm of depths
as shown in Fig. 13 which allows experimental simulation from approximate two-dimensional
Hele-Shaw cell to a three-dimensional‘¢configuration with aspect ratios Ar of: 0.04, 0.1, 0.2, 0.3,
0.4, 0.5, and 1.0. The enclosure is ndade freifi transparent acrylic material to allow for visualization
of interface kinematics. The liquids ar¢antroduced inside the two chambers through capillary steel
tubes at the top of the cavity uSigg.a syringe with a hypodermic needle; precautionary measures
are taken to remove gas bubbles due.to air entrapment. The enclosure consists of two sections, 2.5
cm each, separated by a thin-polyethylene divider of thickness 0.01 cm. The two compartments
are sealed by keeping the'eavity test cell under compression using adjustable spring loaded clamps
at the four corners offthe cayity, and by using a thin film of vacuum grease between the two
compartments; the yaeuum grease is effective for sealing the compartments against leakage as well
as to reduce friction whenithe divider is removed.

C. Image processing technique

Pést-processing of the video recordings using image processing techniques common to the
full-fieldwiews(FFV) and planar laser-induced fluorescence (PLIF) methods are described below.

1. Measurement of normalized concentration level of the interface

The normalized concentration level curves of the interface are determined as a function of
intensity for a given image from calibration of concentration as a function of image intensity
shown'in Fig. 14(a). The image intensity is based on gray levels which span 0 to 255 representing
respectively a black to white background image. The normalized concentration profile of the
interface C calibrated as a function of intensity /is shown in Fig. 14(a), in which the measured

average intensity of the interface corresponds to Z with initial (/;,, {.) and final 7  value
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Publishifeg the stably stratified configuration. The intensity profile at y = H/2 for the initial configuration
1s shown in Fig. 14(b); the intensity jump at x = 2.5 cm corresponds to the interface region, since
the water and deuterium oxide and dye solution C4, has a greater absorbance for incident photons,
its intensity is lower compared to the water and deuterium oxide solution Cp, on the right hand

side.

For the background i image acqulred at time zero, the average i tensuy profile for the left
and the right side of the image (/;,, I, ) corresponding respect e 1n1t1a1 normalized
concentratlons C4 and Cs, on the left and right hand side of the 1s shown in Fig. 14(b);
Ii = (I o T Lo )/ 2 gives the value of the intensity correspondln erage concentration C

of the interface initially at x=L/2. The final average intensity o the homogeneous region I is
measured for a special case of the final configuration when théswo ﬂulds become homogenous
over a long time scale. Figure 14(a) shows, from the mea red 1§ensmes( Y 1 and [ )

that the normalized concentration varies hnearly with )) tensity which provides a means to

determine the concentration
L

(AT)

band 0.0 < C < 1.0 as a function of 'nten} which is also used for measurement of the interface
length stretch £(t) =C(¢), its widt NQ nd height y(?) .

N

250
S = 200 ¢ CB, Imax
=~ >
S % 150}
J< g
= £
3 o 100 |
8 E CA‘ ;I"I"Iln
L L L ) 0 L L L s " n 1 1 L
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Image intensity (/) (b) x (cm)
I (,bahbratlon of concentration as a function of image intensity measurements showing (a) normalized

em{atlon C as a function of intensity /; (b) intensity profile at y = H/2 for the initial configuration of the
interface.
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To quantify the kinematics of interface motion, we used Matlab to determine the metrics
of the interface such as, length stretch £(t), interface width ow(z), and height y(7); we also used

the photo-editing programs in CorelPhoto-paint to operate on bitmap images and the image trace
contour to operate on fuzzy regions. Quantification of the images i§ processed using image
enhancement operations in MATLAB such as image trace contour,‘edge _detection, and image
histogram, and special functions to provide Euclidean distance between a setwf pixels. Since the

length stretch £(t) of the interface is proportional to the number of pixels, its measurement is

determined by summing the number of pixels of the interface, Similarly the interface width ow(z)
during mixing and height y(?) after final stratification are meésured.

D. Parametric range of experiments

To investigate buoyancy-driven mixing, welused-arange of dilute mixtures of de-ionized

water (F{O) and deuterium oxide (D0), as well ‘as_mixtufes of 1,2propylene-glycol (Pp.) and

ethylene-glycol (Et.) with water which containedia volume fraction in the range of 2% to 22%, as
shown in Table I. We consider liquid pairs to stmulate-both zero and finite jump in viscosity; the

nearly zero jump in viscosity was obtained“uging dilute mixtures of the solute 2,0 and solvent

O which contained volume fraction on.thé order of 2% with a methylene blue dye of very low
y Y ry

concentration. Whereas, mixtures ofigthylene and propylene-glycol with de-ionized water resulted
in finite viscosity jumps. For celorgontrast we used either methylene blue dye or rhodamine 6G
dye for fluid A, and kept fluid B clear.

The specific gravity waSuneasured for the fluid pairs using calibrated hydrometers (Chase
Instruments) with variéus range m specific gravity; for dilute mixtures of water with deuterium
oxide we used a hydrometer with specific gravity range from 0.9950 to 1.0110 which has a
precision error within 000005, whereas for alcohol mixtures the range runs from 1.000 to 1.070,
with a precisionierror of H000025. The density can be calculated from the specific gravity using

s=p/p, avhere AS/ §=Ap/ p in which sand p are average values. The reference values for

the densityof water p = (0, =0.997040gm/ cm’ at 25°C) and kinematic viscosity of various

mixtufes’® werétdken at ambient laboratory condition. The dye concentration is kept the same for
all fluid pairs;jthe contrast between the blue and clear region facilitated tracking of the interface.
The diffusion coefficient for methylene blue dye and water has been reported in Refs. 5 to have a

valtie.of D=3.0x10"°cnt’ / s which is equivalent to the rhodamine 6G dye in water reported in

Ref. %5 and implies equivalent Schmidt number Sc =3333 for both systems, since the viscosities
are also equal for cases (1-6) in Table I; whereas, the diffusion coefficients of alcohols with water
have been reported in Refs. 76.
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I'he limiting condition Ap/p =0 for case 0 allows the testing of simulated microgravity condition. We

use small amounts of D,0 in HO to adjust S, and Sy for cases 1-6, this allows the attainment of the low

values of density jump across the liquid interface. The kinematic viscosity values in cases 7-12 assume
ideal mixtures that have linear variation in viscosity from the reference value. The jump in density varies

within the range 5x10° <Ap/p <5.19x10” and viscosity jump range of 0.00

isegsity
e

v<1.77; in analogy to the

Atwood number based on density A¢=1/2(Ap/p), one based on ay be expressed as

At =1/2(Av/v) . The low jump in density implies that the liquid p

Boussinesq fluids, the jump in viscosity serves as a damping parameter. n though cases 7 and 11 are
identical in density jump, Ap/ p=0.02817, there is a substantial diffgrence.dn viscosity jump Av/v, which

is reflected in the decrease in Grashof number due to dampling causediby the viscous force. Given the

are well approximated as

precision of our hydrometer the reliable limit of As/s “i(ioo asbhown for case 1, this implies a low

limit of Gr = 6.13x10* for liquids with nearly zero jump in Vi@josity, however for alcohol mixtures it is
possible to reach lower limits due to the larger viscosi ValueL

TABLE 1. Parametric range of experimen@\.

\ N _,, AV
Case Fluids A/B —= — Gr Sec
S4 Sp S ~ W P v
\Qz cm?/s
A
0 H,O+Dye+D ,0 1.0023 1.00 \001 0.01 0 0 0 -—-
/ H,0+D,0O
1 H,O+DyetD,O  (0.9993 9925 .01 0.01 0.00005 0.00 6.13x10* 3333
/ H,O+D,O
2 H,O+Dye+D,0  ().99 0.99 0.01 0.01 0.00025 0.00 3.06x10° 3333
/H,O+D,0
32 H,0+DyetD,O  1.9000 A 09997 0.01 0.01 0.0003 0.00 3.7x10° 3333
/H,0+D,0O
4ab 2{2%“]3)}’31320 .0023 {.9997 0.01 0.01 0.00259 0.00 3.18x10° 3333
20+Dy
52b H,0+Dye+D 1.02 0.9998 0.01 0.01 0.02196 0.00 2.69%x107 3333
/H,0+D,0 5
0.99925 0.01 0.01 0.05191 0.00 6.36x107 3333
0.9975 0.01158 0.01 0.02817 0.14643 2.96x107 1079
0.9975 0.01316 0.01 0.05176 0.27288 4.73x107 1158
0.9975 0.08598 0.01 0.01542 1.58325 8.20x10° 4799
1.013 0.01158 0.08598 0.01275 1.52522 6.56x10° 4878
0.9975 0.16196 0.01 0.02817 1.76739 4.67x10° 8598
b ~%‘+H20+Dye 1.026 1.0135 0.01158 0.08598 0.01226 1.52522 6.31x10° 4878
/ p.+ HzO

aThe complete range of aspect ratios were addressed for these cases; the Peclet number is given by Pe = GrSc .
"Experiments also conducted in a microgravity (10 g,) environment Ref. 45 for aspect ratio Ar = (.2; 1,2propylene
glycol (Pp.), ethylene glycol (Et.).
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APPENDIX B: CHARACTERISTIC OF IMPULSIVE PERTURBATION OF DIVIDER MOTION

The relationship between the initial potential energy which drives the flow field and folds
the interface, and the injected kinetic energy perturbation which determines the transition from
asymmetric to nearly symmetric RTM structure is considered. We show that the injected kinetic
energy due to divider motion depends on the approximation of the log elocity profile near the
divider; in particular we consider the uniform and linear Couette veloeity approximations.
The impulsive velocity perturbation of divider motion is approximated as a start-up or time
development Couette flow in which the transient leads asympt&'{ma\to the steady state linear

&

velocity profile. We contrast the effect of divider motion fosimulated microgravity (107°go)
condition using Ap =0 and ground-based (1go) applicatiofis_using Ap™> 0, and deduce various

approximations for the characteristic velocity of the flow/freld an energy balance model.

AN

The approach of the interface toward a syhﬂc&alcture, requires that kinetic energy be

injected into the system given as, \
HL T

KE :lp X, V,z,t)dxdydz (B1)

00

1. Uniform velocity approximation

r

which yields for plane average loc izedwaﬂbl flow where V' (x,y,z,t) = v(x,t),

AN

The approximation v o' first considered which corresponds to uniform flow due to divider
motion, since it yieldS thesmaxigum kinetic energy that can be injected into the flow field, thus
provides an uppe(Mbo . The injected kinetic energy for the uniform velocity approximation

yields, \
) KE, =L 530> (B3)

2 o
in which the volume is # = WHL and the subscript u denotes uniform; the corresponding initial

potential e y o/ﬁthe system is given as,
=

™ |

PWH j V2 (x,t)dx (B2)

3 PE, = %ApngﬁLH (B4)

-
ere =(p,—p,). The injected kinetic energy serves as a source of initial disturbance or

perturbation to the system and can affect symmetry, whereas the initial potential energy PE,
E’czi&a\tes the flow field that drives interface motion and cause folding. Because of the coupling

een KE and PE,, the problem may be also looked from the viewpoint of how the total initial
eneérgy of the system

E,=KE+FE (BS)
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Publishidges interface motion to generate folding and approach symmetry. For the ideal initial condition
of zero perturbation or disturbance corresponding to U =0 considered in the computational
model® , interface motion is driven by potential energy only which yields symmetric RTM
structures. However, experimentally a finite U, is required which necessitates the injection of

kinetic energy in the system. This indicates that there is a delicate balance between the initial
potential energy PE, available for interface motion that yields interfage folding and the injected
kinetic energy KFE that controls the approach to symmetry. If the injected Kigetic energy becomes
too large then the initial disturbance is superimposed on the entit€ time history of the transient
mixing process.

The ideal condition of having the two non-homogedeous fluids.in intimate contact at an
interface, with the configuration shown in Fig. 2, is possible under microgravity condition

(ng, = 10° g,) since mechanical equilibrium is achieved n this limit: This ideal condition has been
achieved by removing the divider in a microgravity~envitgnment at a low impulsive pulling
velocity U, on the order of 0.2 cm/s*. Since the body.force'is miniscule, this implies that the total

initial energy
E,, = %%[;Uj + ng  HAp] (B6)

can become very small, since the buoyancy«{ermeisnegligible and the inertia term can be made as
small as possible. The advantage of @ unicrogravity environment is that the impulsive pulling
velocity can be infinitesimally small so\as net.to disturb the interface, whereas in ground-based
laboratory condition the low velogity limit is not practical for our problem. In addition the
microgravity condition serves as a modekenvironment to test the classical Couette flow model in
which the effect of buoyancy doespnotaffect the boundary layer at the interface induced by divider
motion. The ideal initial condition, Ta,which the interface is stationary has been used to study the
effect of vibrational distusbancen the stability of the interface between two miscible liquids under
microgravity condition®’. “However, this precludes the study of mixing due to steady body force
since the interface isfstabilizéd in microgravity condition without the vibrational input.

2. Couette-PoiScuille flows induced by divider motion: microgravity application

The impulsive velocity of the divider motion introduces a boundary layer localized near
the interfaee at shoxt times on the order of 7. The effect of the removal of the divider on the injected
kinetic energy is approximated by assuming a linear velocity input v(x,t) in Eq. (B2) which
represénts steady Shear Couette flow for sustained motion of the divider, when buoyancy force is

negligible as in a microgravity environment #ng —0 or the case of homogeneous fluids Ap =0

this appreximation renders convective acceleration negligible due to negligible buoyancy force.
Even thomgh motion of the divider is not sustained experimentally, the steady Couette flow
approximation yields insight into the asymptotic solution. In this regard, for the experimental
eonfiguration shown in Fig. 2, the steady state velocity profile may be obtained from a balance

between the vertical pressure gradient and viscous force as shown by Eq. (5) (;_K]?V/dX2 =dp/dy)

for the domain 0<x < L/2 which satisfies the boundary condition that v=0at x =0 and v = U,
atx = L/2 and yields the solution,
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=2U, 24+ PU, - (1-22 B7
v(x) 2U0L+PU02L(1 2L) B7)

in which P* is a dimensionless pressure gradient given as P =(L/2uU )/(~dp,/dy) and
p,=p+pngy is the total hydrostatic pressure which includes the g%/ity term. Equation (B7)

shows that the general velocity profile of Couette-Poiseuille flows:consists of a superposition

between the linear first term Couette shear flow due to divider motiOn %1 a parabolic second term

or Poiseuille flow due to the pressure gradient. The deviatior%fs\velocity profile from its
mension

linearity (P* = 0) depends on the sign and magnitude of the di s pressure gradient P”;
for P* > (/P" < 0, pressure decreases/increases in the directign (hlow he velocity profile in Eq.
(B7) is positive over the width of the cavity for P*> 0; w erea or P*< 0, the velocity profile can
become negative over a portion of the cavity in which b ckﬂow5 y occur near the wall at rest.
The kinetic energy for the asymptotic soliition.may-be approximated from the linear
velocity distribution from the center plane x = L/2 of‘the cﬁ)ider to the left x = 0 and right x = L

walls, with corresponding boundary conditionig:/SK—O Au(L) = 0 and interior condition v(L/2) =

Uo; assuming that the pressure gradient is ne e linear velocity profile,

% 0<x<L/2
v S (BS)
\\ “(L-x) Lj2<x<L

as implied from Eq. (B7) is used t tegrate the kinetic energy equation of Eq. (B2) between the

limit 0 < x <L or use of s ry conditions for either of the half space 0 < x <L/2orL/2< x
<L yields,
=— p-VU ? (B9)

in which the sub notes a linear VClOClty profile. The kinetic energy injection into the
flow for the s c solution given by Eq. (B9) corresponds to the case of a homogeneous
fluid Ap =0 £sinc the effect of buoyancy is absent and the flow field is initially quiescent. This
limiting cage whieh corresponds to Gr = 0, simulated microgravity condition, and to no change in
potential @nergy APE of the system provides a means to isolate the effect of divider motion. In this
case there.is ba{kground flow, generated by a change in potential energy, superimposed on the

flow field due)to ivider motion.
—
To model the impulsive velocity profile of divider motion, the initial disturbance may be
ap ;ited as a suddenly accelerated divider which moves parallel to the stationary flat wall at
ﬁﬂ?stance L/2. This analogy corresponds to the problem of flow formation or start-up transient in
uette motion””, for an infinite plate in the vertical direction: that is the problem of how the
velocity profile varies with time tending asymptotically to a linear distribution as the divider in
Fig. 2 is removed. The short time velocity profile due to divider motion which serves as a model
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Publishisfthe impulsive velocity perturbation may be obtained from the approximate one-dimensional
Navier-Stokes equation of Eq. (5),

g_jz 722_j (B10)
X

U, and v(L,t) = 0 for the right wall. Even though the condition at thé centerline implies a step

change in velocity for all time, the effect of an impulse for a short tim: c\l@\cgl be derived from

a step solution using superposition. The pressure can only be a function of time for this flow; hence

it is absorbed into the velocity by a change in variable: that is, VX (1/p)dp/ dy)dt. For the
d

with the initial condition: t <0, v(x,0) = 0 for all x, and boundary cor.?ions fort> 0, v(L/2,t) =
S

domain, L/2 < x < L, a similarity solution’’ can be o amj
complementary error function given as

= erfe(C )= Y enfe 2+ —.77)&5
= erfen—erfe(2n, — 1) + erfe(2n, +ﬁ\fcﬁ)l — )+ erfe(dn, 1) — ot

the form of a series of
T—

(B11)

where 17=(x—L/2)/ 2Vt and n=L/ mundary layer thickness J, measured relative

to divider motion at x = L/2, may be appreximated to lic between the values for which v/Uo =
0.01,nm=2.0and v/Uo=0.48, n=0.5; h%u ary layer thickness is defined as the distance from

the centerline at x = L/2 for which v/{Jo #40.1. The approximate value of the boundary layer
thickness for both sides of the intek&&g 206 becomes,
%: 4.67HU, (B12)
The long time solution fér the velocity distribution for L/2 <x <L which gives insight into the
functional form of thefveloci rturbation can be obtained alternatively in terms of a Fourier
series’® as V.
/ 4

\ x, 21 4nr*v’ 2nmx
—=2(l-5)-=) — - t)si BI13
3 (-7 ﬂznexp( 7 Dsin— (B13)

U

0 n=1

This form“of’ the/solution shows that the asymptotic value of the Fourier series vanishes

exponéntially I—C; the linear Couette flow solution is approached in this limit. For
impulsively a%celerated flow, the impulsive kinetic energy equation,

—
5 1 L/2+6
KE, = pWH j V2 (x,1)dx (B14)

\ L12-5

~
may be integrated within the boundary layer, by approximating the velocity profile to be similar
to the linear case of Eq. (B8) with the inclusion of the boundary layer thickness,


http://dx.doi.org/10.1063/1.5023026

! I P | This manuscript was accepted by Phys. Fluids. Click here to see the version of record. | 51

PublishiRgyy= U, / LYx—L/2+6), 0 < x < .72, and V(x) = QU, / LYL/2+8—x) for L/2<x< L, and

shifting the coordinate to L/2. The impulsive kinetic energy injected becomes,

4_ ,(sY
KE =—p¥U*| = B15
=3P [Lj (B15)

in which subscript i denotes impulsive. The impulsive injected kinetic CNKEI' is equal to the
asymptotic KEL of Eq. (B9) for Couette flow when the boundary 1 er@tends o the wall 6 = L/2.
Whereas, the injected kinetic energy for the linear velocity proﬁl%h\z 1/3KEu1is one-third that

of the uniform velocity profile of Eq. (B3) which indicates that uniform profile serves as a
maximum bound.

—
elds a cubic dependence of the boundary
f KEi because the inertia term becomes
n be used in Eq. (B14) to find the

The first order approximation of the velocity profile
layer thickness on KE; which predicts the minimum boun

small. However, an impulsive uniform velocity approxii
maximum bound of injected kinetic energy KE, whi

(B16)

In between the two limits, that bounds Bﬁum KE; of Eq. (B15) for which the inertia term
is small and maximum KEiU give%i. (§1 6) for which the inertia term can become on the
higherQr

same order as the buoyancy term, er approximations of the velocity profile can lead to
a range of possible values for l?;%

3. Characteristic veloci sa‘s
For short ch act;rist ime, an energy balance model for a frictionless conservative

system can lead '?/use estifnate of the characteristic velocity U . From an energy balance, it
can be shown a&shhiwgtic energy (1/ 2/_)VUf) over a short time interval is equal to the difference
in potential energdy between the initial and final state (APE_=*/4)Hig Ao=(1/2)PE)) plus

injected Kigeti€ energy into the system. The approximate forms of the velocity profile in the
neighborhoodwf the divider namely—uniform, linear, and their impulsive approximations—yield
the fo owingsex ressions for the characteristic velocity from the energy balance model,

—
&5 UCU = V U02 + ngoHAt (B17)
< z

U, = U:;’ +ng HA, (B18)
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Ciy, 3 L go t
Ua, = \/ 20, %JrngoHAf (B20)

M%B ); the expression

tion of 7 to emphasize its

in which 0=2.3JVr and the Atwood number A7 = Ap /25 = (p,

for the boundary layer thickness near the interface is expressed a§.a

dependence on pulse duration 7=/, / U, . The characteristic elﬁcit is a function of the inertia
t

terms that represent injected kinetic energy due to divider ion-and the buoyancy terms that

represent initial potential energy of the system per unit ass PE,N@¥ . For a short duration pulse

7 —0 that generates a boundary layer flow the potential e rgySan be dominant over the kinetic
energy input, whereas for a long pulse duration 7 A%hin V)%ic 0 =L/2 Egs. (B19, B20) reduce
t

respectively to Egs. (B18), (B17) which corresponid to the approximation of linear velocity Couette
flow and constant velocity uniform flow.

L
TABLE II. The initial potential energy PE and inj c&nergy KE' and corresponding characteristic

ecte
. . \ . . .
velocity U, of flow field contrasting ground-based Gr's,3.18x10° or Pe = 1.06x10'% and simulated microgravity

conditions (Gr = 0) for Ar=20.2.
(Gr=0) .\

Gr = 3J8x106 or Pe = 1.06x 10"

U~ Re Pr \M)‘@U KE, Ur Un/Uw Uy
cm/s erg erg o/ erg erg cm/s  cm/s /cm/s cm/s
LN
0 0 0/0 0 252 252/252 252
3 1500 3 4 37 0.06/13.3 112.5 3.06  2.52/272 392
5 2500 . 1(3(1. 0.08/28.7 312.5 3.83 252294 5.60
7 3500 ‘k%\ 4.2  0.09/47.4 612.5 476  2.52/3.19 7.44
10 50 5159. 4159 0.11/79.8 1247.6 629  2.52/3.57 10.31
20 0(390 59.3 1663.4 0.16/229.5 4990.2 11.82 2.52/497 20.16
40 00 /1593 6653.6 0.22/638.7 19960.7 2323 2.52/7.64  40.08
& Gr=20
5. %,.2500 0 104.1  0.08/28.7 3123 290 0.081/1.52 5.0
i —
he long duration pulse 7=H/U  is of practical relevance to microgravity experiments in
}wh\the divider can be pulled infinitely slow to achieve mechanical equilibrium between two

non-homogeneous fluids. For fast divider pulling or large impulsive velocity in a microgravity
environment, the inertia term in Egs. (B17-B20) becomes dominant over the buoyancy term. The
predicted magnitude of the characteristic velocities from Eqs. (B17-B20) are shown in Table II as
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unitorm, Eq. (B9) linear, and Eqgs. (B15,B16) impulsive—for a range of impulsive Reynolds

numbers Re€; . The Grashof numbers Gr = 0 and Gr = 3.18x10° correspond respectively to cases

0 and 4 in Table I for aspect ratio Ar = 0.2. Relative to the initial potential energy PE, = 159.3
ergs for Gr=3.18x10°% at Ar = 0.2, the potential energy for Gr =3.73x10° is PE, = 18.3 ergs
for Ar=02and PE, =27.5 ergs for Ar = 0.3, whereas for Gr=2.69x10" there is a substantial
increase in initial potential energy to PE, = 1356.7 ergs with the large jump in density for Ar =
0.2. The usefulness of the characteristic velocity expressions Eqs#(Bl7-B20), assessed against
experimental measurements of the magnitude of the velocity field in/Part 2 shows reasonable
approximation of the characteristic velocities from Eqgs. (B17) and (B48) for a limited range of
Rei, while Egs. (B19) and (B20) apply for the entire range of Reiconsidered as shown in Table II.

APPENDIX C: DAMPED HARMONIC OSCILLATOR MODEL OF SLOSHING

The transient response characteristic of sloshingssuch“ag its’damped natural frequency fd is
quantified experimentally from the time signal ofith€ length stretch of the interface, and its
undamped natural frequency f,, approximated using.a seéond order model of a damped harmonic

oscillator. This approximation applies since©nlythe first mode of sloshing is observed for Gr =
318 x10° or Pe = 1.06x10 '? analogous te a solid body of a mechanical system.

For the damped harmonic oscillatéranodelof sloshing, the undamped natural frequency and
damping ratio is estimated from the experimental data for the underdamped cases using the method
of logarithmic decrement” ; the estimationof the logarithmic decrement J from the time signal

is given as
| %
L P
0, = ; In % (C1)
Pn+1

in which Z{;’and 2/;;”” corregpond to the maximum discrete amplitude of oscillations of the length

stretch separated-by n oycles as shown in Figs. 6(a,b). Sloshing is approximated as the long time
response of the intérface to initial input disturbance over the time scale 7y which leads to stable
stratification.

The "damped natural frequency fd is estimated from the time signal of the length stretch of

the intégface from Figs. 6(a,b) by averaging over the representative time interval. The damping
ratio & is caleulated from

9,

- \Jar? +5d2

and the undamped natural frequency of the interface can be estimated from

(€2)
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(C3)

in which @, =27f,. The experimentally calculated values of the damped natural frequency

(fd,a)d), undamped natural frequency (fn, a),,), and damping ratio {/can be used to compare
with an approximate second-order model of a damped oscillator such s\

S

Babn B w’L=f(r) (C4)
where £(¢) is the input that generates mixing, over the s oﬁ‘%le Tsr that includes the

disturbance due to divider motion and the resulting stretghing ming of the interface, which
sets-up the condition for self-induced sloshing; @), is the({nﬂab' ed undamped natural frequency
of the system given by Eq. (27) in terms of system@'iiable tained from the standard form of
Eq. (C4), and L(¢) is the length stretch ratio 1)/ ith t‘h) property thatat f = 0, L(0)=1. We

consider the initial condition response of Ed, (C4 le'1"step function input modeled with the
condition that L(z)=0 for t <0Oand L(¢) t >0, and used the transient response as

performance characteristics to predict th udQ;i natural frequency and damping ratio. For an
underdamped system, 0 < & <1, the tr n;g&@o se from Eq. (C4) yields

.
I_Vlf J 120 (C5)

,f+tan

which corresponds to the'sgttling time 75 of the system. The settling time Ts can be measured in

The damping ratio & in Eqg¢ (eﬁgn be estimated from the speed of decay of the transient response

terms of the time c@nstant / 560,, of the envelop curves; for a 2% tolerance band of the

response, Ts is gi}él as £

AN 4

L=—- (C6)

o,
£
Com nﬁ'fg Egs*(C3) and (C6) shows that the damping ratio én, subscript ,, denotes the second-

order del, can be estimated from

5 16

== C7
\ > T’w, +16 €7
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Publish e damped frequency @) and the settling time 7s of the system, are obtained from the time signal

and used to estimate the damping ratio & and undamped natural frequency @,, of the second-

order model. Table III shows a comparison between calculated values of the undamped natural
frequency and damping ratio from the experimental time signal to the prediction of the second-
order model Eq. (C4), and the inviscid theory of oscillation of two superposed fluids for a sharp
&0 and diffused &4, interface. The results from the second-order moﬂhow that as the aspect
ratio of the cavity increases the model compares favorably to the experimental measurements as
well as the inviscid theory of oscillation of two superposed fluids % approximation.

TABLE III. Comparison of undamped natural frequency to prediction fr rmonic oscillator model, denoted by
subscript m, of interface sloshing and the inviscid theory of two superposed fliitds.for sharp &% and diffused (9’/9)
interface for a range of aspect ratios and fixed Gr=3.18x10° or Pe(= 1706 x<10J° .

Ar ® & ) 8 &%,
rad/s “ C %ﬂﬁ\ rad/s

rad/s rad/s
0.04 0.023 0.8 0.03 0922
0.10 0.612 0.561 0.5 & 339 - -
0.20 0.696 0.280 .6‘9%\ 0.266 0.856 0.716
0.50 0.649 0.198 0226 o= e
1.0 0.619 0174 ¢ 06 0.195 = -

The disparity between mode \erment of the undamped natural frequency for Ar <
0.1 is attributed to the low number o lations from the time signal. The model is expected to
hold for 2D flows which are bo the neighborhood of Ar = 0.2; however for Ar > 0.5,
though the flow field is expected to trapsition to 3D, the model predicts relatively well. The closest

matching condition betw. en%ﬁl and experiment occurs at Ar = (.2; the prediction of the model

(w,=0.693rad/s, & hows reasonable agreement to the experimental measurements

(@=0.696 rad /s, & an(}/ the approximated undamped natural frequency @ =0.712rad/s
given by Eq. (27)from scaling and, the inviscid theory of oscillation of two superposed fluids for
a diffused inteffac %r this approximate 2D cavity. The decrease in damping ratio from £=0.8
for Ar = 0.04 t0&'= 0 174 for Ar = 1.0 as the aspect ratio increase indicates a decrease in viscous

10 the elose proximity of the walls for small aspect ratios, hence the system response
lugéish. In contrast to the approximate damped oscillator model of Eq. (C4) for

becomes.les
singl mode,S1 re general model of a damped parametric harmonic oscillator for higher mode
numbers, based on linearized quasipotential equations, that describes the displacement of the
interface®between two fluids in which one has a density much smaller than the other Oy << 0,
% described in Ref. 80 for the underdamped limit.
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