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Mixing of two miscible liquids juxtaposed inside a cavity initially separated by a divider, whose   buoyancy-driven 
motion is initiated via impulsive perturbation of divider motion that can generate the Richtmyer-Meshkov instability, 
is investigated experimentally. The measured Lagrangian history of interface motion that contains the continuum 
mechanics of mixing shows self-similar nearly Gaussian length stretch distribution for wide range of  control 
parameters encompassing approximate Hele-Shaw cell to three-dimensional cavity. Because of initial configuration 
of  interface which is parallel  to the gravitational field, we show that at critical initial potential energy mixing occurs 
through stretching of the interface, that shows frontogenesis, and folding owing to an overturning motion that results 
in unstable density stratification and produces an ideal condition for growth of  single wavelength Rayleigh-Taylor 
instability. The initial perturbation of  the interface and flow field generate Kelvin-Helmholtz instability and causes 
kinks at the interface, which grow into deep fingers during overturning motion and unfold into local whorl structures  
that merge and self-organize into the  Rayleigh-Taylor morphology (RTM) structure. For a range of parametric space 
that yields two-dimensional flows, the unfolding of the instability through a supercritical bifurcation yields an 
asymmetric pairwise structure exhibiting smooth RTM that transitions to RTM fronts with fractal structures that 
contain small length scales for increasing Peclet number. The late stage of the RTM structure unfolds into an internal 
breakwave that breaks-down through wall and internal collision, and sets up the condition for self-induced sloshing 
that decays exponentially as the two fluids become stably stratified with a diffusive region indicating local molecular 
diffusion.  

 

 

I. INTRODUCTION 
  

 Mixing driven by buoyancy-induced flows has wide applications to transport phenomena 
in materials processing for both terrestrial and the  microgravity environment of the International 
Space Station (ISS). The control of the body force on ISS using vibration platforms allows 
accessibility to a much wider range of control parameters and in particular affects the intensity of  
flow fields. For example, the reduction of flow field intensity in microgravity allows uniform 
concentration gradient near phase interface in crystal growth processes such as solution,1 
directional solidification2, and physical vapor transport3 for technological applications. The 
uniformity of the concentration gradient is a desirable characteristic since it affects crystalline 
quality, however the coupling of the density field to concentration and or temperature can drive 
intense convective flows, which makes the ideal concentration profile prohibitive.  Since the flow 
field is driven by the buoyancy force, of central importance to these problems is how buoyancy-
driven flows stretch and fold an interface. We introduce an experiment to shed light into mixing 
driven by the buoyancy force. 
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The need to address the effects of convection on concentration gradients in solution crystal 
growth of organic materials4 conducted in microgravity experiments prompted ground-based 
experiments5 on mixing driven buoyancy-induced flows between two liquids inside rectangular 
compartments separated by a barrier consisting of channels. These experiments5 were carried out 
to investigate effects of convection on mass diffusion in order to shed light on the findings in Ref. 
4. The complexity of the channel barrier5 separating the two liquids, does not give direct access to 
interface information. The present experiment considers an ideal barrier design that allows the 
central question, as to how buoyancy-driven flows advect the interface between two miscible 
liquids, to be addressed in relation to computational findings in Ref. 6.  

 
The computational experiments6 predict the occurrence of a symmetric pairwise Rayleigh-

Taylor morphology (RTM) structure due to the Rayleigh-Taylor instability mechanism for an ideal 
initial condition, while the physical experiments consider non-ideal initial condition and seeks to 
determine how the ideal initial condition of the computational model that yields symmetry can be 
approached. Symmetric structures, from the viewpoint of mixing have been used to drive more 
efficient mixing7.  The experiments considered are implemented in search of a symmetric short-
lived coherent structure such as RTM; we show that finding this symmetric structure  remains an 
ideal goal that can be approached and presents a challenge to experimentalists. However the 
computational model6 shows the basic features that are also observed experimentally, such as the 
distinct stages of development of the RTM structure. The early stages of RTM6 have been shown 
to unfold from an overturning motion that generates a long wavelength Rayleigh-Taylor 
instability; the RTM structure takes several configurations with respect  to a horizontal interface 
that depends on  the initial potential energy of the system. The late stages6 of the RTM  structure 
unfold into an internal breakwave that breaks-down through wall and internal collision, and sets 
up the condition for self-induced sloshing that decays exponentially as the two fluids become 
stably stratified with a diffusive region indicating local molecular diffusion; since these features 
are robust they also observed experimentally.                                      
                             

Mixing is inherently a transient process involving initial segregation of two or more 
constituents, such as two liquids, and stirring in order to obtain uniformity or homogeneity8. 
Complex patterns emerge and   dissipate between the two limits of segregation and homogeneity.  
Mixing occurs in a wide range of applications involving various mechanism of stirring including: 
convection in the Earth’s mantle9, convection of passive tracers in laminar flows due to energy 
injection from moving boundaries10-14, large scale vortical structures sustained by shear flow15,16, 
combustion processes17, and mixing that occurs in the ocean18-22  and atmospheric flows23-25.  

 
There exists a class of mixing flows for which the body force can be caused by deterministic 

acceleration, as well as random (stochastic) acceleration known as g-jitter. When the body force is 
parallel to the interface the effect of deterministic26-28 and stochastic acceleration components29,30 
of the body force lends insight into effects of g-jitter on mixing driven by buoyancy-induced flows 
in a microgravity environment.  Flows due to gravitational instability for which the body force is 
steady and perpendicular to the interface have been used as a basis to address mixing due to the 
Rayleigh-Taylor instability mechanism31-37. In our case we consider buoyancy-driven mixing in 
which the body force is steady and parallel to the interface initially. Mixing, sometimes used 
interchangeably with stirring, according to Ref. 38 consists of stretching and folding of material 
lines or surfaces and distribution throughout space with simultaneous diffusion of species and 
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energy.  The flow field generates stretching and folding of the material line or surface. Our 
paradigm for buoyancy-driven mixing, with applications to crystal growth processes, consists of a 
flow field generated by the buoyancy force that redistributes a pseudo-material interface in which 
molecular mass diffusion is admitted. The experimental model contains the basic elements of 
mixing, stretching and folding of an interface caused by a flow field as well as molecular  diffusion. 

 
             Related to the present experiment is the study of mixing due to Rayleigh-Taylor (RT) 

instability31-37 which spans a range of initial perturbation from long to short wavelengths; the short 
wavelength initial perturbation can lead to turbulent mixing.  For the RT instability problem, it has 
been shown in Ref. 39 that the deviation of the interface from planarity corresponds to a long 
wavelength one-half sawtooth initial perturbation, from adding a small angle of tilt 55́΄≤ θ ≤ 3o21΄ 
to the reference configuration. The addition of a small angle of tilt superimposed a two-
dimensional motion on the structure of the perturbed interface which stretched the interface and 
contracted its mid-section. The mixing width of the interface decreased in comparison to the zero 
tilt angle RT instability; this was attributed to the stretching effect introduced via the initial tilt39. 
Our model experiment can be viewed as an extension of the tilt angle to 90o for reverse or backward  
flow and 270o  for forward flow.  

 

 
FIG. 1.  Interface configuration between two fluids for a cycle of the tilt angle 0 2    with respect to the 
gravitational field. 

 
                 A variation of tilt angle from 0to 2 , the Rayleigh-Taylor perturbation  cycle, corresponds to 

various  configuration of the interface with respect to the gravitational field as shown in Fig. 1.  In 
contrast to tilted interfaces, flat interfaces correspond to / 2n   with 0,1, ..4n  ; if the 
reference configuration of  0   is taken as the RT instability configuration for which the heavier 
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fluid overlays the lighter fluid initially, then    corresponds to the stably stratified 
configuration. Owing to the sharp jump of density across the interface the unstable configuration 

0, 2  may be characterized as a square wave or step function initial perturbation. Two other 
step function initial perturbations exist at / 2   and 3 / 2  ; however, the interface is 
parallel to the gravitational field. The configurations of / 2, 3 / 2    have been used  
experimentally to investigate frontogenesis40-42 due to gravity currents in lock-exchange flows that 
used a barrier to establish the initial condition.  The remaining  configurations in the RT instability 
cycle indicate variations of various sawtooth initial perturbations. In this context, our model 
experiment may be seen within a broader perspective of tilted RT problems. As shown in Fig. 1, 
all flows with initial conditions within the range of 0 2    lead to stable stratification for  
   as a final configuration once transient effects decay. The stable stratification configuration  
has been used in Ref. 43  to address buoyancy-driven instability generated by chemical reaction at 
the interface between two reactant solutions, encompassing the Belousov-Zhabotinsky reaction44 
in closed  and unstirred reactors, which show that reactant solutions with small density difference   
yield chemo-hydrodynamic patterns that are asymmetric43 with respect to the initial contact line 
when chemical reaction occurs, and symmetric in absence of chemical reaction. 

 
Within the framework of addressing buoyancy-driven mixing due to steady body force, we 

consider two miscible viscous liquids juxtaposed vertically inside a cavity where the orientation 
of the interface is parallel to the body force as in the forward flow with 3 / 2   in Fig. 1.  The 
effect of unsteady body force on mixing has applications to the study of the effect of induced 
vibration on transport processes in a microgravity environment45. Owing to the initial 
configuration with 3 / 2   of our experiments, a divider is needed to separate the liquids 
initially between the two compartments of the cavity in order to establish the proper initial 
condition. In a microgravity environment, whereby the body force is reduced one million-fold, it 
is possible to remove the divider and establish the ideal initial condition of two fluids in intimate 
contact at an interface45.  However, in this mechanical equilibrium state the two fluids would 
simply diffuse while remaining stationary and this would preclude the study of the mechanism of 
mixing such as stretching and folding of the interface.  

 
In ground-based laboratory condition, by virtue of  jump conditions  across the interface 

due to pressure gradient and density gradient, impending motion occurs which stretches and folds 
the interface, from baroclinic vorticity generation.  Since we cannot establish the ideal initial 
condition of undisturbed contact between the two fluids initially that would yield symmetry of the 
folding structure, we approximate this ideal condition through the impulsive velocity perturbation 
of divider motion between the two liquids over a range of  pulling velocities or injected kinetic 
energy; this approximate initial condition introduces asymmetry in the system. One issue that we 
seek to resolve is the condition that symmetry is approached in our system, since it can potentially 
lead to more effective mixing. We show that the effect of high impulsive velocity perturbation at 
the interface, is analogous to shock-driven instability in compressible flow and shock-induced 
impulsive acceleration in incompressible nonhomogeneous liquids, and generates short time 
Richtmyer-Meshkov instability for certain range of  parameters. This occurs through the basic 
mechanism  of baroclinic vorticity generation at the interface resulting from interaction of the 
pressure gradient and density gradient across the interface. 
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The transient mixing characteristics of two liquids inside a cavity is addressed by  
measuring the Lagrangian history of the interface in Part 1 and the Eulerian flow field velocity 
using particle image velocimetry (PIV) in Part 2. The Lagrangian history is determined using a 
full-field view (FFV) photographic method to obtain a global view of the interface and  planar 
laser-induced fluorescence (PLIF) to provide a local view for resolving the local details of a mid-
plane section. The measurement of the flow field velocity is important in terms of understanding 
interface motion, since the flow field governs mixing of the interface. The problem is inherently 
transient and can also be three-dimensional for certain range of parameters, one issue of interest is 
the parametric region for which the problem can be well approximated as two-dimensional; this 
would allow insight to be drawn from the transient two-dimensional computational model6. To 
address this issue, we consider a cavity with a square cross-section 5 x 5 cm  whose depth varies 
from 0.2  to 5 cm.  This variation in depth spans an approximate two-dimensional Hele-Shaw cell 
to a three-dimensional cavity. The Hele-Shaw cell configuration has been used advantageously in 
various problems46,47, to render the third dimension negligible thus reducing the problem to two-
dimensions.  
  
         In the following sections, we introduce the experimental system in Sec. II. In Sec. III, we 
describe the experimental model and provide a description of mixing from which we deduce the 
parametric space and the descriptors of mixing such as its length stretch, interface width, and 
mixing efficiency. In Sec IV, we describe the experimental results and contrast the global view of 
the interface using FFV and its local view using PLIF. In Sec. V, we quantify the kinematics of 
interface motion from measurements of its length stretch, interface width, mixing efficiency, and 
its sloshing characteristic such as its damped natural frequency. In Sec. VI, we describe the local 
bifurcation of the interface as a function of the control parameters —Grashof or Peclet number, 
aspect ratio, and impulsive Reynolds number— from which we deduce a scaling law for the 
maximum length stretch. We summarize and conclude our findings in Sec. VII. 

 
II. EXPERIMENTAL SYSTEM  
 
 Mixing driven by buoyancy-induced flows is characterized by measuring three primary 
metrics of the system: (a) the Lagrangian history of the interface length stretch ℒ(t) and (b)  its 
interface width δw(t), using FFV method for a global view and PLIF for a local view of a plane 

cross-section in Part 1; and (c) the transient dynamics of the flow field ( , )V x t
r r

 using PIV  in Part 
2.  The experimental system used to measure two of  the metrics of the system is illustrated in Fig. 
13 of Appendix A. We use two different light sources to quantify interface motion, integrating 
sphere for the FFV method and a planar laser sheet using a pulsed laser for the PLIF method. The 
description of the components used for interface tracking using FFV, and PLIF, are delineated in 
Appendix A. 
 
III. DESCRIPTION OF EXPERIMENTAL MODEL 
 

The physical description of the experimental model in Fig. 2 shows  two viscous miscible 
liquids inside an enclosure with an initially prescribed density 

A B   subjected to a steady body 

force y og ng .  The ratio n denotes a factor by which the standard acceleration of gravity go  on 

Earth (n = 1) can be reduced as on the ISS (n = 1 10 6  ). Since the density field is coupled to the 
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body force, for ground-based laboratory conditions impending motion of the two fluids occurs 
without any stability threshold. Under an ideal initial condition the interface would be stationary, 
the two fluids can potentially be brought into intimate contact at the interface, x = L/2, and motion 
of the flow field would follow without any initial disturbance superimposed on the interface 
motion. For two fluids with similar thermophysical properties as in Table I of Appendix A, since 
the ideal initial condition  cannot be obtained in a ground-based laboratory condition, it is 
necessary to separate the two fluids initially by a divider.  Initial contact of the two fluids is 

established by removing the divider with a prescribed impulsive velocity ( ( ))oU s t% .  The removal 

of the divider introduces an impulsive disturbance on the interface for a short time duration , 
smaller than the time scale Tb  of the bulk fluid τ << Tb  to drive interface motion. The impulsive 
velocity perturbation may be approximated by a pulse function  as 

 

                                                        ( 2, , , ) [ ( ) ( )]oV L y z t U s t s t   
r

% %                                                  (1)  

                                                  

where ( )s t% and ( )s t %  represent a step function at time t = 0 and t = τ, in which / oH U   is the 

pulse duration that depends on the prescribed pulling velocity Uo . The ideal initial condition  at    t 

= 0, ( 2, , ,0) 0V L y z 
r

 corresponds to Uo = 0 which is defined as the sudden removal of the divider 
without any initial disturbance. Such an ideal condition is highly desirable since it implies, as 
predicted by the computational model6, that symmetry would be obtained in the system for motion 
of the interface  due to buoyancy-driven flow. The quest to find symmetry in the system is the 
challenge posed to experimentalists in the design of the experiment. As will be shown there is a 
range of critical impulsive velocity Uo ( ( )s t% ) for which symmetry can be approached; this is 
dependent on the balance between the injected kinetic energy due to divider motion and the driving 
initial potential energy of the system which is shown in Appendix B.  
 

 
                                                     FIG.  2.  Physical model and initial configuration of two liquids at an interface. 
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A. Description of mixing: ground-based conditions  
 
For buoyancy-driven mixing under ground-based laboratory conditions, with ideal initial 

condition of no disturbance Uo = 0  as shown in Fig. 2, the interface motion is described by the 
advection-diffusion equation 

 

                                                          2( . ) AB

C
V C D C

t


   



r
                                                   (2) 

 
subjected to the initial condition 
 

                                                

0 / 2

( , , ,0) / 2

/ 2

A

B

C x L

C x y z C x L

C L x L

 
 
  

                                             (3) 

 
 

This equation describes the motion of an initial material line C  at the interface for two-
dimensional motion or a flat surface in three dimensions.  For the heavy fluid on the left the 
normalized concentration is CA  = 1, whereas for the light fluid on the right C B  0 , and the 

interface has the prescribed average value C  0 5. . The length stretch ℒ(t) of the interface is 
determined from the Lagrangian history of C   as shown in Appendix A. The characteristics of the 
flow field determine whether or not Eq. (2) is linear or nonlinear, the flow field  
 

                                                         ( , , , ; )V V x y z t 
r r

                                                          (4) 
 

as a function of its parametric space  can either be measured using particle image velocimetry  
or computed using the approximate mean field Boussinesq equations, 
 

                                              2( . )
V

V V p V g
t

  
      



r
r r r r

                                        (5) 

 
Equations (5) express the description of the dynamical motion of the flow field, relative to its 
measurement using PIV in Part 2 and the flow field prediction of the approximate computational 
model6. The density field in Eq. (5), taken independent of pressure, is coupled to the concentration 
field via 
 

                                                             ( )1 C                                                           (6) 
 

in which, 1/ ( / ).C      Since there is no change of volume during ideal mixing, the condition 
of incompressibility is satisfied, 
 
                                                                     0V  

r
                                                                (7)                          
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However, there exists a limit in which the condition of incompressibility for two liquids may not 
apply under certain microgravity condition as pointed out in Ref. 48; this limit is given by the 

inequality c ABg L D
r %  in which cL%  is the characteristic length of the enclosure, and  the 

kinematic viscosity. For our experiments, this implies that for 1010g 
r

 the condition of 

incompressibility does not apply, however for the microgravity experiment45 2(10 )g r
O  satisfied 

the criterion for incompressibility. 
 

The parametric space for the ideal initial condition6 of stationary interface, that is no initial 
disturbance at the interface with U o  0 , is obtained from dimensional analysis using  Eqs. (2,5,7). 
Scaling of  Eqs. (2,5,7)  using the boundary condition of impermeability of the concentration field 
 
                                                                  0C n  

r
                                                                  (8) 

 

along the boundary b  of the cavity with normal n

 to the wall which  also satisfies the no-slip 

condition 
 

                                                                     0V 
r

                                                                   (9) 
 

along the wall of the cavity shows that the parametric space i  for the ideal problem is a function 

of three parameters  
 

                                                        ( , , )i i Gr Ar Sc                                                          (10) 

 
However for the non-ideal situation that we are considering, in which the initial impulsive velocity 
approximated by Eq. (1) injects a disturbance at the interface, introduces a pseudo-parameter  in 
the problem characterized as the impulsive Reynolds number Rei. Thus the enlarged parametric 
space becomes 
 

                                                     ( ,Re , , )iGr Ar Sc                                                       (11) 

 
in which the Grashof number Gr, impulsive Reynolds number Rei, aspect ratio Ar and Schmidt 
number Sc are given as  
 

                        Gr
ng Ho


 

3

2 , ( )
Re o

i

U s H




% , Ar
W

H
 , 

AB

Sc
D


         (12a, 12b, 12c, 12d) 

 
Alternatively, the Peclet number Pe can be used which is defined as the product of Grashof and 
Schmidt number Pe = Gr Sc . However,  if the scaling exponents of Gr and Sc are the same then,  
a reduced parametric space can be given as  
 

                                                         ( ,Re , )iPe Ar% %                                                       (13) 
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which is also tested using experimental data. The Peclet number Pe represents the ratio of mass 
transport by convection driven by the buoyancy force  to that of molecular diffusion. The Grashof 
number Gr, the ratio of buoyancy to viscous force, represents the intensity of the flow field. The 
impulsive Reynolds number Rei is a measure of the injected inertial force relative to viscous force 
in the system. This measure occurs over a short time scale  relative to the advection time scale 
Tb of the interface caused by the flow field in response to the initial potential energy of the system; 
in the above equations, the overbars denote average values. The variation of width of the enclosure 
W as defined by the aspect ratio allows experimental simulation from an approximate two-
dimensional (2D) Hele-Shaw cell to a full three-dimensional (3D) cavity. In relation to a 2D model, 
the variation of the z-plane aspect ratio Ar = W/H is used, as shown in Fig. 2 to determine the range 
of aspect ratios for which the 2D approximation applies. In the variation of our parametric space, 
the ratio of diffusion of momentum to that of mass given by the Schmidt number in Eq. (12d), in 
which DAB is the binary diffusion coefficient, is taken into account through thermophysical 
property variation as shown in Table I of Appendix A.  
 
B. Metrics to characterize mixing 
  
1. Length and time scales 
 
 Buoyancy-driven mixing is characterized using various descriptors which includes, length stretch 

ℒ(t), interface width of the mixed region δw(t), and the  mixing efficiency E . In the case of mixing by RT 

instability31, a similar mixing width  of the interface is used to characterize the dynamics of the system 
based on the penetration depth of  the denser fluid. In our system, there is symmetry in terms of penetration 
depth of the light and dense fluid, so we define δw (t) as the average distance between concentration levels 
of 0.1 and 0.9. Though our problem has similarity to RT instability, it differs in certain basic factors such 
as, the initial condition, the stretching and folding prior to the birth of RTM, and the late stages. Even 
though the mixing width δw (t) is used as a measure to characterize our system, in the early stages its 
measurement is coarse due to averaging, the length stretch ℒ(t) serves as a preferred metric for the buoyancy 
time scale Tb . In the late stages in which the two fluids become stably stratified, δw (t) is used 
advantageously as a metric to denote the extent of mass transport  and hence can also be used as a global 
measure of  the mixing efficiency of the system. We basically have two independent measurements, the 
length stretch ℒ(t) to characterize the local kinematics and the mixing width δw (t)  which is  related to the 
mixing efficiency to characterize the quasi-equilibrium dynamic state of the system. We use the 
dimensionless length stretch, for short time events, as a metric defined as  

 

                                                             ℒ(t) 
( ) o

o

t 


l l

l
                                             (14)                     

where ( )tl  is a measure of the elongation of the interface as a function of time and ol  is the initial length 

of the interface at time zero. Whereas the dimensionless mixing width 
*( )w t  is defined as  

 

                                                            
* ( )
( ) w wo

w
wm

t
t

 



                                                           (15)                                
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which represents the ratio of the mixed width ( )w t of the interface, with reference to its initial value wo , 

and to the width representing a homogeneous mixed region wm . wo  is the diffusive width of the interface 

at time t = 0 that depends on the resolution of the interface width initially  and δwm is the resulting diffusive 
width as t→  which is equal to the height of  the cavity in the limit. 
 
      The transient mixing characteristic of the two liquids is a problem with multiple time and length scales. 
In particular three time scales occur, a buoyancy time scale Tb , viscous diffusion time scale Tv , and mass 

diffusion scale TD , 

 

                                          
2 21

, ,b v D
ABo

H H
T T T

Dng
At

H


   ,                        (16a, 16b, 16c) 

                                          
where  At  is the Atwood number / 2At    . The particular time scale of interest depends on 
the event6 occurring during the mixing process.  The characteristic length scale Lc is based on 

either the large length scale of the geometry (H, L, W) and interface width ( )w t , or the small 

length scales based on the diffusion of mass and momentum  or the striation thickness ( )S t  of the 
interface defined in Part 2. The small length scale, based on the diffusion of mass and momentum, 
may be obtained from the short time  solution of Eq. (2) for a semi-infinite domain   x ≥ L/2 when 
the nonlinear advective terms are negligible which is given by, 
 

                                                    
( / 2)

( , )
2 AB

x L
C x t Cerfc

D t


                                                    (17)                          

  

in which 4c ABL D t  due to symmetry; in analogy the length scale based on the diffusion of 

momentum is given as 4cL t . Alternatively, the long time exact solution of Eq. (2)  for 

negligible advective terms with boundary condition Eq. (8) can be shown to reduce to the one-
dimensional solution given by, 
 

                    2 2 2

0

1 2 ( 1)
( , ) cos(2 1) exp (2 1) ( / )

2 (2 1)

l

AB
l

x
C x t l l D L t

l L
 








    

                  (18) 

 
In this form, the dependence on the mass diffusion time scale becomes apparent. Equations (17,18) 
apply to microgravity condition,  in particular they show that the one-dimensional solution of the 
diffusion equation becomes independent of  tilt-angle  shown in Fig. 1; in this limit the Rayleigh-
Taylor problem and the buoyancy-driven mixing problem become identical. This observation 

implies that microgravity condition 6( 10 )o ong g can stabilize the unstable RT arrangement in 

ground-based condition ( 1 )o ong g ; this is in contrast to stabilization of RT due to surface or 

interfacial tension that occurs in ground-based laboratory condition. This can be understood based 
on linear stability theory in Ref. 49, of two viscous superposed equi-viscosity fluids,  which 
indicates that the maximum growth rate 
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1/2( / )m o mn ng At                                                        (19) 

 
 corresponding to the most unstable wavelength  
 

                                                        
2 1/34 ( / )m ong At                                                        (20)  

 
approaches zero under microgravity condition; this is because the most unstable wavelength 

becomes much greater than the cavity size m
L  , the unstable RT arrangement in ground-based 

condition ( 1 )
o o

ng g becomes stabilized in microgravity condition 6( 10 )
o o

ng g . 

 
2.  Experimental mixing efficiency 
 
 For our experimental configuration, the mixing efficiency can be determined from the ratio 
of how much of the initial potential energy is used to mix the two liquids in relation to the energy 
dissipated by viscosity estimated in Part 2. However, we use a measure of the mixing efficiency 
based on the kinematical model18 for internal wavebreaking event which is defined as the ratio of 
potential energy gained from the system through the creation of a stratified mixed layer to the total 
energy input from the potential energy released as the system overturns. We show that the mixing 
efficiency determined from energy exchange is related to the kinematic measurement  of the 
interface and provides a convenient measure of mixing efficiency. In order to quantify the 
effectiveness of mixing driven by the  initial potential energy of the system, we define the 
experimental mixing efficiency,  

                                                   min

max min
E

PE PE

PE PE
  


 

                                                           (21) 

 
similar to  Ref. 32 in terms of the change of potential energy between observed initial and final 
state weighted in terms of  the (maximum) / (minimum) change in potential energy which yields 
(uniform mixing) / (no mixing); this definition is analogous to that used in Ref. 18. The change in 
potential energy of the system from the initial configuration of unstable stratification to an 
observed final state is given as 
 

                                                    dydxdzygyPE
W L H

B ))((
0 0 0
                                            (22) 

 
This change in potential energy gives rise to a transfer of momentum which involves a loss of 
kinetic energy and the resulting mixed fluid layer represents an irreversible gain in potential 
energy; while the denominator in Eq. (21) represents the maximum potential energy released. For 
the case in which there is  no mixing, the heavy fluid settles to the bottom and the light fluid on 
top, an energy balance between the two configurations in which the two fluids simply exchange 
position shows that this gives rise to the minimum change in potential energy which is given by 
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min

1

8 oPE ng V H                                                     (23) 

A similar energy balance in which the final configuration results in homogeneous mixing of the 
two fluids with a uniform background based on the light fluid shows that a maximum change of  
potential energy occurs given as  
 

                                                     
max

1

4 oPE ng V H                                                      (24) 

 

The potential energy change can be scaled with the initial potential energy 1/ 2
o o

PE ng V H   to  

define the potential head or dimensionless mixing height  as 
* /

o
y PE PE  , where V WHL is the 

volume. This definition allows the mixing efficiency of Eq. (21) to be defined in terms of kinematic 
measurement of the height of the resulting stratification layer; when the dimensionless mixing 

height  is re-scaled as ohyy 4/*  , the mixing efficiency takes the simple form of 

 

                                                                o
E

o

y h

h
 

                                                               (25) 

In the above equation ( ) oy t h is the total height of  the resulting mixed stratified layer measured 

relative to the bottom of the cavity,  and ho  = H/2 corresponds to the quasi-equilibrium height for 
the case of  no mixing. This definition differs from the case of RT instability, for it allows the 
efficiency to vary from zero to  one, whereas RT varies from zero to one-half32. The height of the 
mixed stratified layer ( )y t is related to the mixing width δw(t) and defined relative to ho as 
 

                                                                ( ) ( )/2o wy t h t                                                         (26) 

The width of  the interface w (t) is measured relative to the stably stratified configuration for the case of 

no mixing; this definition takes into account that  the heavy and light fluids penetrate the top and bottom 

layer symmetrically in the stably stratified configuration when mixing occurs, and ( ) 2
w ot h  as .t  .   

The expression for ( )y t in Eq. (26) allows a convenient measure of the final configuration of the interface 

after the transient dynamics decay. E  is  a global measure of potential energy conversion by the flow field 

to drive mixing which characterizes the approach to a quasi-equilibrium state of a stably stratified 
configuration, whereas ℒ(t) characterizes the non-equilibrium local dynamics. An alternative method to 

determine the mixing efficiency based on  ℒ(t) is  detailed in Part 2 that employs the mechanical mixing 
model based on continuum mechanics and shows in Fig. 9 (c) comparable results to Eq. (25).)  (A similar 
definition of mixing efficiency has been used in Ref. 18 for multiple wavebreaking events inside  a tank 
and yields comparable results to experiments in Ref. 19, the main assumption used in the model is that 
wavebreaking events are localized in small volumes relative to the tank and external source of kinetic 
energy can be neglected for these events, hence the conversion of kinetic  energy of the flow is directly 
transferred into  gravitational potential energy; the same assumption applies to the single wavebreaking 
event in our experiments and our experimental mixing efficiencies are comparable to reported values in 
Refs. 18,19). 
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IV. EXPERIMENTAL RESULTS 

 
   We discuss experimental results obtained using the full-field view (FFV) method in comparison 
to the planar laser-induced  fluorescence (PLIF) method for fixed Schmidt number Sc = 3333. 

 
A. Global view of interface: Full-field view (FFV) method 

 
    The essence of  buoyancy-driven mixing, stretching and folding of  the interface between two liquids 
from its initial time zero to its final stably stratified configuration driven by the flow field is shown in Fig. 

3(a). In contrast to mechanical equilibrium, under microgravity condition on ISS with a body force of O (

10 6 go ), which would stabilize the initial configuration of the interface  at time t = 0, ground-based 

condition with a body force of O (1go) drives  buoyancy-induced flow field caused by  hydrostatic pressure 
imbalance due to the body force according to Eq. (5). The intensity of the flow field given by Eq. (5), gives 
rise to the nonlinearity of the advective terms  in the advection–diffusion given by Eq. (2), that causes 
stretching and folding of the interface. Buoyancy-driven mixing is shown for the parameter Gr = 3.18×106 

or Pe = 1.06×10 10   given in Table I of Appendix A,  with  impulsive Reynolds numbers of  Rei = 1500, 
2500, and 3500 and corresponding divider impulsive velocities of  Uo = 3, 5, 7( cm/s) for a cavity with 
width W=1cm . 

Insight on the effect of the impulsive velocity of the divider motion on interface configuration  may be 

obtained from Eq. (B5) of Appendix B, which states that the total initial energy ToE  consists of injected 

kinetic energy KE of divider motion and initial potential energy .oPE The impulsive velocity, 

characterized by impulsive Reynolds numbers of  Rei, affects the injected kinetic energy KE  that 
determines the approach to symmetry of the interface structure while the potential energy  PEo drives 
folding. The characteristic values for the initial potential energy  PEo , injected kinetic energy KE, and flow 
field velocity magnitude UC  from energy balance model are shown as a function of impulsive Reynolds 
number Rei   in Table II of Appendix B.  

 
In relation to interface configurations at t = 2 s in Fig. 3(a), the relative magnitudes of the initial 

potential o
PE  to  injected kinetic energy KE  serve as descriptor of interface perturbation or disturbance. 

According to Table II of Appendix B, the global injected kinetic energy based on linear KEL and uniform 
KEU velocity profiles for the entire cavity bound the local impulsive kinetic energy based on linear KEiL 
and uniform KEiU velocity profiles at the interface region limited by the boundary layer thickness due to 
divider motion;  the local velocity profile approximations accounting for the boundary layer thickness 
owing to divider motion result in local minimum and maximum values of KEiL and KEiU respectively. The 
various approximations show a range of possible injected kinetic energies, however the local maximum 
value  of the impulsive kinetic energy KEiU  based on uniform velocity in the boundary layer is used as a 
basis to compare to the initial potential energy PEo to assess perturbation effects on the interface, and shows 
in Fig. 3a that interface disturbance increases with the increase of injected kinetic energy or impulsive 

Reynolds number  Rei  for t = 2 s.  For the range of impulsive Reynolds numbers with 1500 Re 3500,
i

   

the ratio of initial potential energy to impulsive kinetic energy corresponds to the range of 
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3.36 / 11.94
o iU

PE KE   which shows that as the injected kinetic energy increases symmetry is approached, 

and interface disturbance also increases with minimum / 3.36
o iU

PE KE  corresponding to  Rei = 3500. 

For Rei = 1500, the initial potential energy  PEo is greater than the injected kinetic energy KEiU; 
thus as shown for t = 2 s, the stretching of the interface is relatively smooth though asymmetric as 
the bottom fluid penetrates farther than the top. In contrast, keeping the potential energy constant 
and increasing the impulsive Reynolds number to  Rei = 3500 at t = 2 s shows a perturbed interface 
with the increase of KEiU . At the early stages of t = 2 s,  density  current at the bottom of the cavity 
causes frontogenesis due to the sharp density front; this is similar to phenomenon that occurs in 
lock-exchange flows 40,41 . 

 

 
FIG. 3.  Evolution of the interface as a function of time showing the effect of impulsive Reynolds number Rei 
constrasting the full-field view (FFV) method and planar-laser induced fluorescence (PLIF) method. (a) Stretching 
and folding of interface during mixing by buoyancy-driven flow, that produce the Rayleigh–Taylor morphology 
(RTM) structure at t = 7 s for Gr = 3.18×106  or Pe = 1.06×1010, Ar = 0.2, FFV method.  

The configurations of the interface at t = 7 s, stemmed from the overturning motion that 
produced the ideal condition for the growth of a single wavelength RT instability, that unfolds to 
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a pairwise RT morphology (RTM) structure which consists of  a spike or left penetrating front and 
bubble or right penetrating front, analogous to the results in Ref. 50.  The two-dimensional 
computational model6 shows RTM occurs for a range of Grashof numbers and its orientation can 
shift from approximately  300 with respect to a horizontal axis as shown for t = 7 s at mid-height 
of the cavity, to a 90o orientation as the Grashof number increases. The 90o orientation shown in 
the computational model6 is analogous to the unstable stratified configuration of the RT instability 
when excited via a long wavelength initial perturbation as shown in Refs. 51-55.  

 
In relation to the experiments, the computational  model6  which is based on the ideal initial 

condition, captures the large scale features of the interface morphology, though these features are 
predicted to be symmetric. The experiments based on non-ideal initial condition show that the 
delay caused by the divider motion gives rise to asymmetry. The lifetime of the short-lived 
coherent RTM structure at t = 7 s, with the ubiquitous feature of the Rayleigh-Taylor morphology, 
in on the order of 2 s.  The roll-up feature at t = 7 s  near the top and bottom edge of the structure 
is evident; the image of the top structure is also shown  by the lighter penetrating fluid below for 
Rei = 1500.  Finding two fluids with color contrast which would show a sharp image of the bottom 
structure poses an experimental challenge, as well as measurement of the length stretch of the 
interface; this is because of the enhanced local molecular diffusion that accompanies folding owing 
to the existence of a hyperbolic point in the flow field as will be shown in Part 2. 

 
 A solution to the symmetry problem is to increase the impulsive Reynolds number to Rei = 

2500, however, this causes the initiation of  Kelvin-Helmholtz (KH) instability waves due to the 
intense shearing motion of the divider for t = 2 s.  In comparison to Rei = 1500, there is a transition 
between shear instability produced by the relative velocity between the heavy sinking fluid and 
lighter rising fluid, and that due to shear divider motion. The computational model6 indicates that 
the effect of relative velocity between two fluids for short times can produce KH instability in 
absence of divider motion. The increase in impulsive Reynolds number to Rei = 2500 causes  
further approach  to symmetry at t = 7 s, however the features of the short-lived coherent RTM 
structure tend to be diffused as Rei increases; the contrasting events for Rei = 1500 and 2500 
capture the challenge posed toward the search for symmetry in the system. 

  
  The effect of intense shear motion due to the divider is to cause KH shear instability at the 

interface for short times when Rei increases to 3500. This is illustrated for t = 2 s which shows a 
combination of KH waves near the bottom that transition to billow clouds56  near the top of the 
cavity produced by the KH mechanism. The approach to symmetry at t = 7 s shows a modified 
morphology of the interface, since the roll-up features become more pronounced. The late stage of 
RTM for t > 7 s shows the characteristic feature of an internal breakwave57. As time increases, a 
catastrophic global bifurcation6 occurs, the RTM structure collides with the wall which is shown 
below in the Multimedia view for Rei = 3500 using the PLIF method in section B; this event 
annihilates the RTM structure and causes enhanced local molecular diffusion. Self-induced 
sloshing of the interface follows, which decays nearly periodically toward stable stratification; the 
net effect of advection and molecular diffusion is indicated by the diffusive  region at the interface 
at the settling time Tf  = 44 s for stratification. 

  
The basic features of stretching and folding and the dynamics toward stratification have been 

captured in the computational model6.  However in the computational model, symmetry is 
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predicted because the ideal model problem is considered; that is the interface evolves from its 
initial configuration without any initial impulsive disturbance due to motion of the divider Uo = 0. 
In the final state,  the two fluids then becomes homogeneous or mixed over a much longer time 
scale denoted by TD , the molecular mass diffusion scale. In between the two limits of mixing, 
segregation at time zero and approach toward homogenization after stratification, the emergence 
of complex patterns occurred for increasing Grashof or Peclet numbers. In terms of the basic 
mixing structures, whorls and tendrils,  as originally defined in Ref. 58, the RTM structure is 
described as whorl-like;  examples of whorls and tendrils in relation to buoyancy-driven mixing 
occur when the body force field is oscillatory 26-28 or stochastic30 and also for steady body force at 
high Grashof6 or Peclet numbers.  

 
1. Interaction of pressure gradient and density gradient  
 

     The effect of the  pressure gradient can be considered by examining its relation to the density gradient 
shown for the initial configuration shown in Fig. 3(a) (t=0), which shows that initially there is a hydrostatic 
pressure gradient p   that acts in the vertical direction relative to the density gradient  in the horizontal 

direction. The coupling of  these gradients ( p)   yield the baroclinic vorticity production term in the 

vorticity equation that causes flow for the case of low impulsive Reynolds numbers (Rei = 1500  in Fig 

3(a))  in which the interface is relatively unperturbed, and vorticity V
rr

   deposition on the 

interface for the case of high impulsive Reynolds numbers in which the interface is highly perturbed 
(Rei = 20,000 in Fig 3(b). 

     The vorticity equation can be obtained from the curl of the Navier-Stokes Eq. (5) and yields 
2 2D / Dt V - V + + ( p)/       

r rr r r r
        which states that the rate of change of vorticity is 

due to vortex tube stretching and twisting in the first two terms followed by the diffusion of vorticity,  and 
the baroclinic production of vorticity ( p)   due to interaction of density gradient and pressure 

gradient. For our two-dimensional cavity approximation the vortex tube stretching and twisting terms go to 

zero and the vorticity equation simplifies to 2 2D / Dt + ( p)/     
r r

    . In relation to Fig. 3(a) of 

our experimental configuration, the production of vorticity ( p > 0)    ensues for  t > 0  caused by 

vorticity generated by the  interaction of the vertical hydrostatic pressure gradient p   and the 

perpendicular density gradient  which creates a torque that results in overturning motion of the two 

fluids which becomes stably stratified (t = 44s)   through the decay of  vorticity from viscous diffusion.  

Note that the interface is relatively unperturbed for the low impulsive Reynolds number scenario of Rei 

= 1500 . In the stably stratified configuration (t = 44s) , the density gradient is parallel to the pressure 

gradient thus the baroclinic vorticity ( p = 0)   goes to zero. 

2. Limit of high impulsive Reynolds number 
 
The results for low impulsive Reynolds numbers show that since the divider cannot be removed 

instantaneously there is a delay in terms of fluid penetration between top and bottom which causes 
asymmetry. The limit of instantaneous removal of the divider to approach symmetry via increasing 
the impulsive Reynolds number by a factor of six to Rei = 20,000 in Fig. 3(b), shows that impulsive 
motion of the thin  polyethylene divider of width 0.1 mm produces a wake instability initially, due 
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to shedding of the viscous boundary layer on the face of the divider which generates a vortex sheet 
component that is coupled to buoyancy instability due to  interaction of  density gradient   and 
pressure gradient p  across the interface. The coupling of the vortex sheet component and 
buoyancy instability give rise to mixed mode KH and impulsive  RT instabilities at the interface 
for the short time scale. (The impulsive RT instability is generated by  the impulsive velocity 
perturbation at the interface given by Eq. 1,  analogous to the impulsive RT generated by an 
impulsive acceleration field given in Ref. 50 by V (t)g %  where  V%  is the velocity change 
imparted by the impulsive acceleration  and (t) is the Dirac delta function. In this limit there is a 
combination of KH instability waves near the top of the cavity at t = 0.18 s and  impulsive RT 
instability near the bottom.  

 

FIG. 3. –Continued. (b) Evolution of  mixed mode instabilities,Kelvin-Helmholtz and impulsive Rayleigh-Taylor that 
generate the Richtmyer-Meshkov instability, at the interface over a short time scale 0 < t ≤ 0.42 s due to large impulsive 
Reynolds number Rei = 2.0×104 and transition to folding  (t  > 1.52 s) of a diffused interface for Gr = 3.18×106 or Pe 
= 1.06×1010, Ar = 0.2, FFV method 
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     The impulsive  RT instability at the bottom-half of the cavity is due to the larger jump in pressure 
gradient which excites the short wavelength modes whereas the fluid near the top of the cavity is subjected 
to a decrease in pressure gradient, thus the relative shear motion of the divider and the two fluids become 
dominant and cause KH waves for short times t ≤ 0.18 s. These structures are similar to the classical shear 
instability KH waves56 simulated inside tanks. However for t > 0.18 s the instability amplifies through the 
interaction of the vertical pressure gradient across the perturbed interface with the horizontal density 
gradient which creates baroclinic vorticity ( p)  oriented out of page shown at t = 0.28 s and generates 

an incompressible Richtmyer-Meshkov instability at the interface typified by the mushroom structures. 

    For short times 0.18 s < t ≤ 0.42 s, the growth of the interfacial instability is dominated by the impulsive 
RT instability mechanism  which is analogous to shock-driven RT instability known as the Richtmyer-
Meshkov instability50, as exemplified above for the impulsive velocity-driven RT instability;  coarsening 
of the interface over the short time scale results in a nearly diffused interface at      t = 0.42s. According to 

linear theory of stability given by Eq. (20),  the most unstable wavelength 0.54
m

cm   fall within the range 

of the measured structures which is approximately exp
0.625cm  ; the inverse growth rate Eq. (19) of the 

instability is predicted to be 
1

0.37s
m

n

 which is in the range of the short time scale interval. The KH and 

impulsive RT instabilities generated initially serve as a source to drive molecular diffusion at the interface 
which produce a diffused interface. The stretching of the diffused interface  at t = 1.52 s is in contrast to 
the sharp interface for lower impulsive Reynolds number in Fig. 3(a); this is because of the small ratio of 

driving potential energy to injected impulsive kinetic energy / 0.25
o iU

PE KE  , indicating that the injected 

impulsive kinetic energy becomes greater than the driving potential energy. The resulting overturning 
motion produces folding of the diffused interface at t = 6.15 s which does not show the features of RTM 
shown in Fig. 3(a) as symmetry is approached. This indicates that if the injected kinetic energy is much 
greater than the initial potential energy, then the interface becomes diffused and the feature of RTM does 
not exist.   This finding underscores the delicate balance between the injected kinetic energy into the system 
to approach symmetric folding and the propensity of the interface structure of the interface to become 
diffused. 

3. Relationship between shock-induced RM instability and impulsive velocity-induced RM 
instability 

 
 Analogy between the Richtmyer-Meshkov (RM) instability, for shock-induced compressible gas in a 

shock-tube through linear stability analysis (Ref. 59), and impulsive velocity-induced experiments using  
incompressible nonhomogeneous liquids in a cavity with low and high impulsive Reynolds numbers shown 
in Fig. 3(a) and Fig. 3(b),  is made to highlight the similarities and differences between the two systems. 
RM instability is the instability that occurs at a planar interface separating two gases that is impulsively 
accelerated by planar shock wave travelling in the direction of the normal to the interface. The difference 
between shock-induced RM and impulsive velocity-induced RM is that in the former pressure gradient 
accelerates a background shear flow normal to the interface whereas in the latter the pressure gradient 
accelerates a background rotational flow (see Part 2) in the same direction as the interface.  

 
Consider two hypothetical situations in reference to Fig. 3 of two gases separated by an interface, in 

which an incident shock wave moves from the left boundary impinging on the planar interface (Fig. 3(a)), 
and an incident shock wave impinging on a quasi-sinusoidal interface (Fig. 3(b); in this hypothetical 
situation the pressure gradient would be normal to the interface or aligned in the same direction as the 
density gradient. The coupling of density gradient and pressure gradient amplifies perturbations at the 
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interface through the mechanism  of baroclinic vorticity generation resulting from the misalignment of the 
pressure gradient of the shock wave and the density gradient across the interface to generate  the Richtmyer-
Meshkov instability for shock-driven instability. In contrast, for our experiments, the hydrostatic pressure 
gradient of the two liquids in Fig. 3(a) and Fig. 3(b) is perpendicular to the density gradient across the 
interface and two types of scenarios occur, global and local. For the global scenario that occurs with the 
low impulsive Reynolds number in Fig. 3(a), the interface remains sharp and the baroclinic vorticity 
generation, generates an overturning motion that leads to stratification. Whereas, for the local scenario with 
high impulsive Reynolds number in Fig. 3(b), the impulsive velocity-induced perturbation generates kinks 
at the interface initially (similar to Fig. 3(a) for Rei = 3500 (t = 2 s) however oriented vertically with an 
increase in mode numbers) through KH instability mechanism  that  amplifies the interface perturbation 
through  baroclinic vorticity generation.  Since the kinks form a quasi-sinusoidal interface, the vorticity 
distribution from coupling of the pressure gradient and density gradient along the interface results in 
increasing amplitude of the sinusoidal-perturbed interface and generates the mushroom structures (t = 0.28 
s) that represent the signature of the  Richtmyer-Meshkov instability.  

 
A quasi-sinusoidal perturbed interface has also been generated in shock-tube experiments (Refs. 60) 

from pulling a thin flat plate horizontally that  separates  the gases, however,  a diffuse interface is created 
by this method. Though, the late stages of the instability  between shocked-induced compressible flow and 
our impulsive velocity-induced incompressible flow model differ, but they share the commonality of the 
mushroom interface region becoming locally homogeneous. In the late stages, the shocked-induced 
interaction with the interface transmits a shock wave and reflects a shock wave or a rarefaction wave  from  
the interface, and reshock occurs because of reflection from the endwall of the shock tube (Ref. 59); 
whereas, in our experiments a global overturning motion occurs from global baroclinic vorticity generation 
that overturns the entire perturbed interface. 

 
     The scenario between the relatively unperturbed interface for low impulsive Reynolds number and 
perturbed interface for high impulsive Reynolds number is also analogous to linear stability analysis (Ref. 
59) that considers the collision of a plane shock with a flat interface discontinuity and the resulting 
instability when the shape of the initial interface discontinuity is perturbed.  The initial value problem with 
a jump discontinuity constitutes a Riemann problem and the one-dimensional solution of the Riemann 
problem for a shock-interface interaction serves as base solution for the small-amplitude, sinusoidally 
perturbed interface, of the linear theory of RM instability (Ref. 59). The results from linear theory were 
found  to agree with an impulsive model when the incident shock is weak (Ref. 59). The impulsive model 
was developed by Richtmyer (Ref. 50)  from the realization that compressible gas shock-driven instability 
could be modeled using incompressible nonhomogeneous liquids, in which the shock is induced through 
an impulsive body force. The analysis of the impulsive model is based on the Rayleigh-Taylor instability 
for constant acceleration, however the acceleration term is replaced by an impulsive body force acceleration 
(in which u (t)g %   is an instantaneous delta function (t)  acceleration  representing the shock and  

u%  is the velocity jump across the interface imparted by the shock) coined as the impulsive Rayleigh-
Taylor instability (Ref. 50); this is similar to the impulsive accelerating containers of incompressible fluids 
experiments in Ref. (50). A number of experiments have been designed with special arrangement to 
generate shock-induced through the body force, and have shown that indeed shock-driven by impulsive 
acceleration through the body force can generate RM instability using incompressible nonhomogeneous 
fluids (Ref. 50). In our model experimental problem, we show that the  Richtmyer-Meshkov instability can 
be generated from impulsive-velocity perturbation initial condition in Fig. 3(b). Our experiments with the 
impulsive velocity initial condition  between two fluids serve as analog to impulsive acceleration 
experimental model and the impulsive model of linear stability analysis, and show a novel method to 
generate  short time Richtmyer-Meshkov instability for certain range of parameters  shown in Fig. 3(b) for 
0.18 s < t ≤ 0.42 s.  
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B. Local view of interface: Planar laser-induced fluorescence ( PLIF) 
  

 In contrast to the FFV method which captures a global view of the interface, a local view 
of the mid-plane section of the cavity is shown in Fig. 3(c) using PLIF which captures the local 
details of the interface. The refractive index of the two dilute liquids are nearly matched such that 
light scattering is negligible, as evidence from the two nearly uniform regions separating the 
interface at t = 2 s. There exists local details not captured by the FFV method  such as the effect 
of the injected vorticity due to divider motion produced by the wake, which is evident near the top 
of the interface for Rei = 1500 and 2500 as well as resolution of kinks due to shear motion of the 
divider. Similar observation of vorticity injection was made in Ref. 34 for the design of a nearly 
frictionless barrier to initiate RT  instability.  

 

 
FIG 3. –Concluded. (c)  Stretching and folding of interface, during mixing  by buoyancy-driven flow, that produce 

the Rayleigh–Taylor morphology (RTM) structure at t = 7 s  for Gr = 3.18×106 or Pe = 1.06×1010, and  Ar = 0.2, PLIF 
meth  
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The lower limit of impulsive Reynolds number Rei = 1500, for which shear driven instability 
due to divider motion is minimal in comparison to the parallel shear flow due to buoyancy at the 
interface, shows the evolution of KH instability waves t = 2 s in Fig. 3(c ). In comparison to the 
FFV method, the higher resolution of the PLIF method captures the local kinks at the upper section 
of the cavity and roll-ups behind the nose of the gravity current that shows frontogenesis near the 
bottom. The threshold of the impulsive Reynolds number determines the dominant mechanism, 
divider motion or buoyancy flow, for generating shear instability. For Rei = 1500, the early stage 
of interface folding at t = 7 s shows two bubbles underneath the RTM front, the first bubble 
transitions to a roll-up behind the head of the RTM front and the second transitions to an elongated 
bubble with RTM morphology; see Multimedia view for Rei  = 1500.  
 

The unfolding of the Rayleigh-Taylor morphology is seen most clearly for Rei = 2500 at t = 7 
s as well as the asymmetric penetration of the bubble in the  pairwise RTM structure. When the 

effect of  the injected kinetic energy increases such that the ratio of / 3.36
o iU

PE KE  for Rei = 3500 

as shown in Table II of Appendix B, the intense shearing motion increases the effect of KH 
instability waves (t = 2 s) at the interface which is shown near the bottom of the cavity whereas 
the top region shows kinks; the 3D global view of the FFV method in Fig. 3(a) indicated billow 
clouds56 produced by the KH mechanism near the top region of the interface, which is projected 
as kinks on the  2D plane view of PLIF.  Thus both the induced shear due to divider motion and 
intrinsic shear due to buoyancy-driven flow generate KH instability. However as the overturning 
motion occurs the shearing motion of the flow produces deep fingers at the location of the kinks   
(t = 2s) that grow and form local whorl structures that merge and self-organize into the RTM  
structure shown for t = 7 s. The RTM front transitions to internal breakwave and its breakdown 
from wall and internal collision generates sloshing which decays toward stable stratification, see 
Multimedia view for Rei  = 3500;  the large scale features of RTM are self-similar for the range of 
Rei shown. 
od;  see Multimedia view for Rei  = 1500 and Rei  = 3500. 

 
1. The birth of the RTM structure  

 
Even though the birth of the RTM structure6 is predicted to occur in the neighborhood of           

Gr = 3×105 for 2D, careful experiments with Gr = 3.7×105 or Pe = 1.23×109 show the embryonic 
stage of RTM to be in existence during transition from aspect ratio of 0.2 to 0.3. As shown in Fig. 

4 for Rei = 1000 and  Ar = 0.2, the initial potential energy o
PE  is not sufficient to generate unstable 

density stratification so the interface displaces from its equilibrium configuration, mid-height of 
the cavity, to a right tilt at t = 19 s; the restoring force of the interface causes the self-induced 
sloshing to decay, similar to an overdamped system, which leads to  stable density stratification as 
shown for t = 96 s. As the size of the cavity increases to Ar = 0.3, the initial potential energy 

reaches the critical value ( 1/ 2 , )
oc c o c c

PE Vng H V WHL    necessary to generate overturning 

motion that leads to unstable density stratification. The genesis or embryonic stage of the RTM 
structure is shown to occur at this value of the aspect ratio. The divider impulsive pulling velocity 
Uo  is kept the same for Ar = 0.2 and Ar = 0.3 (Rei = 1000); though, the initial potential energy 

and  injected impulsive  kinetic energy increase, their ratios / 2.52
o iU

PE KE   remain equal for           
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Ar = 0.2 and Ar = 0.3  because of volume independence.  At this threshold of  Rei or / ,
o iU

PE KE  

the interface is smooth initially; the difference between the interface configurations for Ar = 0.2, 
0.3 at t = 5 s stems from the increase in initial potential energy which increases the density current 
at the bottom of the cavity and leads to frontogenesis. These two cases contrast the  relationship 
between the injected kinetic energy and the available initial potential energy to drive overturning 
motion, and show that there is a delicate balance between potential and injected kinetic energy for 
which the RTM structure exists.  

 

 
FIG. 4.  Effect of aspect ratio Ar and  impulsive Reynolds number Rei  on bifurcation of the interface showing 
transition from stretching  (Ar = 0.2) to folding  (Ar = 0.3) for Rei  = 1000  during  genesis of  the RTM structure 
for   Gr = 3.7×105 or Pe = 1.23×109; and overshoot of the approach to symmetry between Rei  = 1500 and                 
Rei  = 2500 for Ar = 0.3. 
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Subsequent increase in Rei to 1500 improves the symmetry of the system; there is nearly equal 
penetration of the bottom and top fluid, at this stage the roll-up feature near the top of the RTM 
structure becomes apparent at t = 19 s. A further increase of injection of kinetic energy to  Rei = 
2500 shows that it is possible to overshoot the point of symmetry, in this case the top fluid 
penetrates farther than the bottom (t = 5 s) thereby shifting the RTM structure to the right side of 
the cavity at t = 19 s; the penetration of the lower density fluid into the heavier fluid at right hand 
side underneath the RTM structure is evident. The kinetic energy injected in the flow due to the 
increase of Rei  causes local deformation of the interface which modifies the sharp density 
concentration front at t = 5 s . These experiments show that the ratio of potential to injected kinetic 

energy for which symmetry is approached lies in the range of 0.64 / 1.38
o iU

PE KE  in which the 

maximum value corresponds to Rei = 1500 for the range of 1500 Re 2500
i

  .   
 

2. RTM fronts 
 

For high Grashof  Gr = 2.69×107 or Peclet  Pe = 8.97×1010 numbers, the overturning motion 
that results  in unstable density stratification and produces an ideal condition for the growth of a 
single wavelength Rayleigh-Taylor instability, unfolds to RTM fronts with fractal structures that 
contain small length scales,  analogous to RT driven fronts35;  these RTM fronts are shown in      
Fig. 5 for Rei = 5000 at t = 2.6 s and Rei = 10000 at t = 2.4 s. The increase in intensity of the flow 
field  causes a cascade to small length scales that show self-similar structures at smaller and smaller 
length scales. An increase to Rei = 20000 shows the approach to symmetry of the interface structure 
at early times at  t = 2.0 s for maximum injected impulsive kinetic energy with the ratio  of potential 

to kinetic energy of / 2.12
o iU

PE KE  ; this is analogous to the diffused interface for Gr = 3.16×106 

at equivalent Rei that occurred for a lower initial potential energy with a ratio of / 0.25
o iU

PE KE 

showed in Fig. 3(b).  
 
In comparison to Gr = 3.16×106 which requires Rei O (103) to approach symmetry, a decade 

increase in Gr requires similar increase to Rei O (104) ;  in search for symmetry we increased the 
impulsive velocity from Uo = 10 cm/s or Rei = 5000  to Uo = 40 cm/s or Rei = 20000 shown in     
Fig. 5.  The development of a gravity current that yields frontogenesis is shown for Rei = 5000 at 
t = 0.4 s prior to overturning motion. The effect of asymmetry is most pronounced for Rei = 5000 
as the density current penetrates a substantial portion of the bottom of the cavity whereas the top 
of the cavity is nearly motionless where the interface configuration is similar to a miniscal shape. 
The overturning motion that yields RTM front (t = 2.6 s)  with the generic property of self-similar 
structures of whorls within whorls, has also been predicted by the computational model6 for            
Gr O (107). However, imposed symmetry in the computational model, results in internal collision 
of the RTM fronts, whereas asymmetry in the experiments causes a relative displacement between 
the RTM fronts resulting in shear motion.   

 
As Rei increases to 10,000, there is further approach to symmetry based on the distance of the 

penetrating front near the top and bottom of the cavity at t = 0.4 s; the interface configuration 
shows a mixed mode instability with impulsive RT instability at the lower region and KH waves 
in the upper region. The overturning motion at t = 2.4 s, yields localized small scale RTM 
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structures superimposed on the large scale structure that shows self-similar patterns. The RTM 
fronts with the attribute of self-similar small scale structures embedded within a larger structure 
indicate the presence of  length scales that can possibly approach turbulence length scales. These 
length scales are potentially analogous to the small scale structures in Rayleigh-Taylor 
turbulence36,37, 61;  analogous dissipative structures occur in turbulent round jets, as shown in       
Ref.  62.  

 
FIG. 5.  Transition to RTM  fronts for an increase to  Gr = 2.69×107 or Pe = 8.97×1010  shown for Rei = 5000 at   
t = 2.6 s, and Rei = 10000  at t = 2.4 s;  and  evolution of short wavelength impulsive Rayleigh-Taylor instability  
that generates the Richtmyer-Meshkov instability over  short time scale t = 0.2 s  for increasing impulsive 
Reynolds number Rei  = 20000  for Ar = 0.2 showing approach to symmetry of a diffused interface at   t =  2 s. 

Interface characteristics with nearly equi-penetrating fronts or mushroom structures for            
Rei = 20,000 at t = 0.2 s are analogous to shock-driven RT instability or the Richtmyer-Meshkov 
instability50,63; similar instability mechanism occurs for the impulsive velocity-driven RT 
instability of our experiments as the shock-driven RT instability in compressible flow and the 
impulsive acceleration RT instability in incompressible nonhomogeneous liquids—the interaction 
of the vertical pressure gradient across the perturbed interface with the horizontal density gradient 
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creates baroclinic vorticity and generates an incompressible Richtmyer-Meshkov instability. In 
comparison to Fig. 3(b) with Gr = 3.16×106 and Rei = 20,000, which showed mixed mode KH 
and impulsive  RT instabilities at the interface for t = 0.28 s,  the increase in buoyancy effects 
relative to injected impulsive kinetic energy as Gr increases to 2.69×107 leads to the development 
of  shorter wavelength impulsive RT instability at t = 0.2 s with an increase in number of modes 
which spreads throughout the entire initial interface length. Comparison with linear theory shows 
that as nonlinearity increases for Gr = 2.69×107, the disparity between linear theory from Eqs. 

(19, 20) and experiment also increases. The maximum wavelength 0.2
m

cm   predicted from 

linear theory is more than twice as less than the value of the experimental measurement 

exp
0.54cm  , and the characteristic time of evolution of the instability 

1
0.1s

m
n


  follows a similar 

trend with the experimental value of   t = 0.2 s.  
 
There is loss of memory of the short wavelength instability during overturning motion as 

inferred from the interface structure for Rei = 20,000  at early times at t = 2.0 s. This is similar to 

the findings for  Gr = 3.16×106 at Re 20000
i
  of a diffused interface for which RTM does not 

exist that occurred for high impulsive kinetic energy iU
KE  in comparison to initial potential energy  

o
PE , that is, for / 0.25

o iU
PE KE  . The mixing efficiency is also increased in this limit as evidenced 

from the large diffusive region of the stably stratified configuration at t = 37 s; the increase of 
injected kinetic energy relative  to initial potential  energy showed similar effect for  Gr = 3.16×106 

and Rei = 20,000.  For the range of impulsive Reynolds number 5000 Re 20000
i

  for  Gr = 

2.69×107, the ratio of potential to kinetic energy lies in the range of 2.12 / 11.99
o iU

PE KE  ; the 

lower bound  that corresponds to Re 20000
i
  indicates that  there is a critical injected impulsive 

kinetic energy 
C

iU
KE  for which the formation of RTM front is inhibited that occurs at  high 

impulsive Reynolds numbers. 
 
V. MEASUREMENT OF KINEMATICS OF THE INTERFACE 
 
 The kinematics of interface motion is quantified from the measurement of the length stretch 
ℒ(t) of the interface, width ( )

w
t of the interface, and mixing efficiency E ; whereas its sloshing 

characteristic, such as its damped frequency df  is measured experimentally from the time history 

of the length stretch which is compared to the theory of oscillations of two superposed liquids and 
to a harmonic oscillator model of interface sloshing.  
 
A. Time history of length stretch of the interface 

 
 The Lagrangian history of the length stretch ℒ(t)  of the interface contains the continuum 

mechanics of buoyancy-driven mixing. The time history of the length stretch of the interface, 
measured from the FFV method using image processing techniques, is shown in Figs. 6(a, b)  for 
a selected range of aspect ratios Ar = 0.1, 0.2, 0.5  with impulsive Reynolds number of Rei = 1500, 
and for Ar = 0.04, 1.0  with Rei = 2500 and Gr = 3.18×106. The trends of the data indicate that 
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stretching and folding of the interface during mixing is self-similar. For Rei = 1500, as the aspect 
ratio increases from Ar = 0.1 (W = 0.5 cm) to Ar = 0.2 (W = 1 cm) there is a transition from linear 
to exponential length stretch of the interface, since the interface does not fold in the region 
0 0.1Ar  . The transition from asymmetry towards symmetry as the impulsive Reynolds number 
Rei increases also occurs even when there is only stretching of the interface (Ar = 0.1) relative to 
the horizontal and vertical line at center of cavity, as also illustrated in Fig. 4 for Gr = 3.7×105 
with Ar = 0.2 ; beyond the maximum length stretch there is subsequent contraction of the interface 
toward stratification, though sloshing occurs however its amplitude is too small to be discernable 
in Fig. 6a  for Ar = 0.1. For increasing aspect ratio Ar = 0.2, the catastrophic collision of the RTM 
structure with the wall causes an increase in the maximum length stretch of the interface. The 
variation of aspect ratio from 0.04 to 1.0, shows a transition to a nearly Gaussian distribution of 
the length stretch. 

 

 
FIG. 6. Time history of length stretch of interface of ℒ(t), using FFV method, for increasing aspect ratio Ar at  fixed 
Gr = 3.18×106, or  Pe = 1.06×1010 (a) Rei  = 1500, (b) Rei  = 2500. 

 
Following the breakdown of the interface from wall collision of RTM for Ar = 0.2, there is a 

sharp change in length stretch beyond its maximum ℒmax; the interface contracts over a very short 
time interval in the neighborhood of 2 seconds. The wall collision of RTM caused by the 
overturning motion gives rise to self-induced sloshing, denoted by the zero values of the length 
stretch for t > 10 s. This event of sloshing generated by the flow field itself without sustained 
external driving force which shows only the first mode, serves as an example of self-induced 
sloshing between two superposed liquids, in contrast to self-induced free-surface sloshing  
addressed in Ref. 62 that also shows the occurrence of second mode sloshing. The exponential 
decay of sloshing has the characteristic of a damped harmonic oscillator. As the aspect ratio 
increases further to Ar = 0.5, there is  similarity of the length stretch distribution, with a resulting 
increase in maximum length stretch. Similar trends are shown for Rei = 2500, however at                  
Ar = 0.04 there is no folding, the interface only stretches and for Ar = 1.0 in which the maximum 
length stretch occurs there is an increase in amplitude of sloshing with a slow decay; this occurs 
through several cycles of sloshing toward stratification. 
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1. Self-induced sloshing of  the interface  

 
 The time history of the length stretch of the interface in Figs. 6(a,b) indicates that the kinematics of 

interface motion has two time scales. A short time scale  to denote divider disturbance and resulting 
stretching and folding which lead to wall and internal collision,   represented by TSF, followed by a long 
time scale Tf  to denote settling time to  the stably stratified configuration which spans TSF < t ≤ Tf . Sloshing 
decays over the time scale TSF < t ≤ Tf and approximated as the long time response of the interface to  initial 
input disturbance over the time scale 0 ≤ t ≤ TSF.  For the long time scale Tf, the decay rate of sloshing as 
shown in Figs. 6(a,b) depends on the aspect ratio and shows that as the aspect ratio increases it takes longer 
for sloshing to decay; this event can contribute to the overall  molecular diffusion at the interface resulting 
in an increase in mixing width δw(t).  

 

The damped natural frequency df  is calculated from the time signal of the length stretch of the 

interface by averaging over the representative time interval. The characteristic trend of the damped 

frequency df of sloshing in Fig. 7 for  Gr = 318 106.  indicates that for 0 01 Ar . , the approximate 

Hele-Shaw cell configuration, the interface exhibits (Fig. 6(a)) overdamped behavior as it approaches the 
stably stratified configuration; thus there is a long period oscillation in the range of 0 01 Ar . . The 
damped frequency of sloshing for the range 0.1 1.0Ar   shows underdamped oscillation of the 
interface with a conditionally periodic frequency65 as the aspect ratio increases. Though there is an increase 
in intensity of the flow field for 0.5 1.0Ar   due to the increase in volume with a corresponding 
increase in the initial potential energy of the system, the damped frequency approaches an asymptotic value.   

 

     The experimental trend of the damped frequency df  as a function of aspect ratio Ar compares 

favorably to a damped harmonic oscillator model given by Eq. C4 in Appendix C which shows 
from scaling that the undamped natural frequency is given as, 

 

                                                              
2

( )n ong At
L

                                                          (27) 

 

Equation (27) indicates that the frequency scales with the square root of aspect ratio as 
1/ 2~

n
f Ar  

when the characteristic length scale is the width L of the cavity, which is in qualitatively agreement 
with the trend of the experimental data in Fig. 7. Since the effective wavenumber ke = 2/L = 2Ar/W 

with H=L is on the same order of magnitude as the first mode wavenumber /k q  % ( , 1)L q  %  
predicted from the theory of oscillations of two superposed fluids66 shown below, Eq. (27) yields 

0.712 /s
n

rad  , which is on the same order as the sharp interface inviscid theory 1
0.893 /srad %  

given by Eq. (29) below, for the small wavelength approximation.  
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FIG. 7.  Damped natural frequency df  of sloshing  as a function of aspect ratio Ar for Gr = 3.18×106 or                   

Pe = 1.06×1010 at Rei  = 2500. 
  
2. Superposed fluid model of sloshing 

 
 The sloshing event may be compared to the theory of oscillation of two superposed fluids 

with a sharp66  and diffused67 interface. According to the theory of surface waves in two-
dimensions, the frequency %  of oscillations of the common boundary (C = 0.5)  of two 
superposed inviscid liquids66 with a sharp interface which is confined vertically between horizontal 
planes and unbounded in the horizontal direction L >> H is given by 

 

                                           2 ( )

coth ( / 2) coth ( / 2)
o A B

A B

ng k

k H k H

 
 





%                                       (28) 

 
in which kH/2 is a dimensionless wavenumber with 2 /k   %; for small wavelength % , 
coth / 2 1kH  , thus the natural frequency for the qth mode oscillation for our system becomes 
 

                                                          ( )q o

q
ng At




% %                                                       (29) 

 
in which q is the mode number;  for Gr = 318 106.   only first order mode q = 1 is observed in 
our experiments. If the length scale % in Eq. (29) is on the order of the width  of the cavity L,  it 

can be shown that the frequency scales as 
1/2

1 ~ Ar%  which shows that the theoretical prediction 
of the dependence of frequency on the square root of the  aspect  ratio is also comparable with the 
experimental trend in Fig. 7. In contrast to the sharp interface theory of Eq. (28), Ref. 67 shows 
that for an interface that has a piecewise density variation with a finite interface of width w , 

based on the work in Ref. 68, the frequency of oscillation D%  for a diffused interface is given as 
 

                                                         
(1 tanh )

o
D

ng kAt

k w






%                                                      (30) 

http://dx.doi.org/10.1063/1.5023026


29 
 

 
Equation (30) reduces to Eq. (28) when the width of the interface approaches zero, 0w  , for 
small wavelength %approximation.  According to the theoretical prediction of Eq. (28) for a sharp 
interface 0.856 / srad % , which is on the order of the measured experimental value ω = 0.696 
rad/s for a nearly two-dimensional cavity with  Ar = 0.2 as shown in Table III of Appendix C, 

whereas Eq. (29) yields 1
0.893 /srad %  which shows that the small wavelength approximation 

does not appreciably affect the frequency. The difference between predicted and measured value 
of the frequency is attributed to the neglect of viscous effects, finite interface width, and infinite 
extent L approximation of the theory which is not borne out in our experiments. However, for 
cavity size in which λ O (1.6L), Eq. (29) shows that nearly equivalent  agreement with theory can 

be obtained. On the other hand, the diffused interface model of Eq. (30) shows that 0.716 /s
D

rad %  
for a nominal interface width of w  = 1 cm, which compares favorably with experimental 
measurements. The effect of a diffused interface is to effectively decrease the frequency of 
oscillation of the interface as the diffused width w  increases. Given the similarity between the 
damped harmonic oscillator model of Eq. (27) and the superposed fluid theory of Eq. (29), the 
natural frequency predicted from scaling arguments given by Eq. (27) of  ωn = 0.712 rad/s  falls 
close to the experimental value of  ω = 0.696 rad/s  as shown in Table III of Appendix C. 
 
B. Mixing width of interface and mixing efficiency 

 
 In contrast to the length stretch ℒ(t) of the interface that shows a smooth variation as a 
function of time up to the point where sloshing occurs as shown in Figs. 6(a,b), the mixing width  

*( )w t of the interface in Fig. 8  shows that there exists expansion and contraction of the mixed 

region during the time interval of folding up to its breakdown. Initially the width increases 
smoothly during the stretching event 0 s < t ≤ 3 s. The interval in which folding occurs which leads 
to the breakdown of the RTM structure due to wall collision, 3 s < t ≤ 10 s, shows local expansion 
and contraction of the mixed width of the interface. The catastrophic bifurcation6 in which the 
RTM structure collides with the wall, and sets-up the condition for self-induced sloshing, results 
in enhanced local molecular diffusion; there is a sharp increase of the mixing width in the interval 
10 s < t ≤ 18 s characterizing this event. The damping of sloshing  for t > 18 s which results in a 
stably stratified mixed region shows that the mixing width increases slowly with time and becomes 
limited by molecular diffusion. These results show that the mixing width varies as a power law 

function of time 
*( ) ~ p
w t t  with an exponent 2 3p  ; this is analogous to turbulent RT 

instability that shows a quadratic time dependence of the mixing width  that scales as 
2~ oAtg t

which is attributed to the short wavelength initial perturbation52, however when a long wavelength 
perturbation is added to the short wavelength initial perturbation, it is noted in Ref. 52 that the 
quadratic time dependence ceases to be valid. 
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FIG. 8. Time history of  interface width δw*(t) for Gr = 3.18×106  or Pe = 1.06×1010,  Ar = 0.2, and  Rei  = 1500. 

 The relationship between the mixing efficiency  E  and the mixing width δw(t) is given by 
Eqs. (25,26). In this respect the mixing efficiency expressed in terms of the mixing width given by

( ) / 2E w f oT h  , in which t =Tf  is the settling time for stable stratification, represents the ratio 

of the quasi-equilibrium mixed width δw(Tf) generated by the total energy input into the system 
relative to a uniform mixed background of width 2ho. The mixing efficiency can also be expressed 

in terms of the dimensionless mixed width δ*
w(Tf) from Eq. (15) as  

*( ) / 2E w f wo oT h    , for a 

very thin interface initially /2 0wo oh   and 
*( )E w fT  .   For practical applications Eq. (25) is 

used to calculate the experimental mixing efficiency; the mixing efficiency E , estimated from the 
potential energy balance model of Eq. (21), represents a measure of energy conversion between 
initial and final configuration of the interface which is indicative of a quasi-equilibrium state of 
the system, whereas ℒ(t) is a measure of non-equilibrium states. In terms of a metric to characterize 
the kinematics of the interface, we find that the length stretch ℒ(t)  is a preferred descriptor of the 
transient kinematics of the short time events of stretching and folding. However, the long time 
kinematics which lead to a stably stratified configuration are conveniently described by the mixing 
width δw(t). 
 
 The effect of aspect ratio Ar, impulsive Reynolds number Rei, and  Grashof number Gr on 

the experimental mixing efficiency E , are shown in Figs. 9(a,b,c). For a fixed Grashof number 

Gr and impulsive Reynolds number Rei, the mixing efficiency E  increases as aspect ratio Ar 

increases (Fig. 9(a)). For Ar 0 the efficiency 0E   because there is no folding of the interface 
and mild stretching for Ar = 0.04; this region leads to the no mixing case. However, as Ar increases 
the potential energy  PEo of the system increases for fixed injected kinetic energy KE and results 

in an increase of  the mixing efficiency E .  
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             The effect of  injected kinetic energy (Fig. 9(b)), for fixed Gr and Ar, is to increase the 
mixing efficiency  by a factor of two beyond  Rei  > 4000 due to the large injected impulsive kinetic 

energy iUKE  into the system. In the range 1000 ≤ Rei ≤ 2500 the mixing efficiency increases as 

symmetry is approached which is in agreement with the observation in Ref. 7.  The results show 

that for the maximum injected impulsive kinetic energy iUKE  relative to the initial potential 

energy  oPE  with a ratio of / 0.25o iUPE KE  the mixing efficiency E  can increase by a factor of 

two for Re 20000.i   The mixing efficiency approaches an asymptotic value for   Re 10000i  , 

this implies that the system becomes saturated or the injected kinetic energy does not appreciably 
affect the mixing efficiency beyond a certain threshold of Rei. Lastly, we fix Rei = 2500 and Ar = 
0.2 to investigate the effect of  Gr on the mixing efficiency shown in Fig. 9(c); the results show 

that the mixing efficiency  E   increase as Gr increases, which means that an increase in the initial 
potential energy of the system increases the mixing efficiency. Comparison of our results with the 
mechanical model of mixing in  Part 2 denoted by the square symbol, indicate reasonable proximity 
with the experiment for nominal Gr = 3.16×106 . 
 
 
 

 

FIG. 9.  Mixing efficiency E
  as a function of : (a)  aspect ratio Ar for Gr = 3.18×106 or Pe = 1.06×1010, Rei = 2500, 

(b)  impulsive Reynolds number  Rei  for Gr = 3.18×106 or Pe = 1.06×1010, Ar = 0.2, and (c)  Grashof number Gr for 
Ar = 0.2 and  Rei  = 2500; comparison to the mechanical model of mixing in Part 2 shown by the open square symbol. 
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VI. BIFURCATION OF INTERFACE 
 

  The local characteristics of the interface motion as a function of time show that there can 
be a transition from stretching to folding; under certain conditions folding gives birth to the RTM 
structure that can approach symmetry.  We quantify the observed behavior of the interface based 
on its bifurcation sequence in parametric space for a given metric. The bifurcation type as a 
parameter unfolds is based on the geometric classification given in Ref. 69. As metric we use the 
maximum length stretch ℒmax  of the interface, 
 
                                         ℒmax = ℒmax(Ar, Rei, Gr, Sc)                                               (31) 

 
shown in Figs. 6(a,b); the Schmidt number Sc is held fixed to reduce the parametric set. We 
investigate the unfolding of the solution for a reduced parametric set by varying one parameter 
while keeping all others fixed to find the critical parametric space 
 
                                                           Λc = Λc(Arc, Reic, Grc)                                                     (32) 

 
whose loci of points in a plane represent either a transition from stretching to folding or asymmetric 
to nearly symmetric RTM structure; the parametric space can also be expressed in terms of the 
critical Peclet number as Λc = Λc(Arc, Reic, Pec). The critical values are used to define critical 
boundaries on a plane for which a particular characteristic feature of the solution exists, that can 
also be used as operational curves. The effect of multiple parameter variation is analogous to a 
mathematical experiment on the first variation70  of the initial potential energy δPEo and injected 
impulsive kinetic energy δKE on a virtual change of the parametric space, owing to a perturbation 

of the total initial energy  To
E . Since we use two different experimental systems to measure the 

length stretch ℒ(t) of the interface, we contrast the difference between the two measurements that 
used FFV and PLIF methods. 
 
A. Effect of initial potential energy perturbation  
 
1. Variation of Ar 
 
     In order to form a global picture in parametric space we consider the bifurcation of ℒmax as a function 
of aspect ratio Ar, impulsive Reynolds number Rei, and Grashof number Gr or Peclet number Pe which  
represents a co-dimension three problem;  the Peclet number Pe = GrSc is  used interchangeably with the 
Grashof number as the control parameter. The effect of the Schmidt number Sc is subsequently taken into 
account by considering liquid mixtures with a range in thermophysical properties as shown in Table I of  
Appendix A. The bifurcation point in parametric space can be perturbed through variation of the total initial 

energy ToE  of the system consisting of its potential energy o o
PE C ArGr  and injected impulsive kinetic 

energy
2Reo iKE C Ar  from Eqs. (B3-B5) of Appendix B, where the constant 

21/ 2 .oC L    

 
     We first consider the effect of the initial potential energy perturbation δPEo  on the variation of aspect 
ratio δAr and Grashof number δGr. The variation in  aspect ratio δAr  represents perturbation of the initial 
potential energy δPEo  of the system owing to a change in volume, in which δPEo = CoGrδAr for fixed Gr 
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and constant oC . Since the initial potential energy drives the characteristics of mixing quantified by ℒmax, 

we consider the effect of a variation of  the aspect ratio on ℒmax to find the critical aspect ratio. Figure 10(a) 
shows that as the cavity varies from an approximate Hele-Shaw cell to a three dimensional configuration 
the critical aspect ratio separates the region of stretching from folding, and the length stretch approaches an 
asymptotic value. For fixed Gr = 318 106.  or Pe = 1.06×1010, the interface undergoes a supercritical 
bifurcation in the neighborhood of Arc = 0.15 which separates the stretching and folding region. In the 
region where the interface stretches, the short-lived coherent RTM structure shown in Figs. 3(a,c) does not 
exist; however, the RTM  structure occurs at  the bifurcation point.  
 
 The bifurcation of the interface as a function of Ar and Gr requires that the impulsive Reynolds 
number Rei should be a fixed optimum value. We show in Fig. 10(a) the implication of operating below an 
optimum value of Rei. Ideally Rei should be selected such that there is negligible effect on ℒmax; operating 
below an optimum Rei implies that there is an effect on the length stretch beyond the critical aspect ratio as  
shown by contrasting the results for Rei = 1500 and 2500. As the aspect ratio of the cavity increases, the 
initial potential energy available to fold the interface also increases, it becomes necessary to increase the 
impulsive velocity of the divider so as to minimize effect on the length stretch of the interface. Even though 
one can operate at        Rei = 1500 for Ar < 0.5, as Ar  1 the length stretch decrease shown by the data in 
Fig. 10(a) is caused by the delay of the divider motion which inhibits the stretching and folding event; the  
increase of the impulsive Reynolds number to Rei = 2500 prevents potential interface contraction effects 
caused by delay of  the divider. 
 

The bifurcation of the interface for  various fixed  Gr as Ar is varied, shown in Fig. 10(b) in 
relation to Gr = 3.18×106  or  Pe=1.06×1010  for fixed Rei = 2500, indicates that for a given  
critical aspect ratio Arc  there is a fixed critical initial potential energy PEoc for transition from 
stretching to folding.  The effect of a variation of δPEo on the variation of aspect ratio δAr for  
fixed Grashof numbers Gr, shows that an increase to Gr = 2.69×107 or  Pe = 8.97×1010  requires 
a decrease  in the critical aspect ratio to Arc = 0.08. On the other hand, as Gr decreases to                    
Gr = 3.7×105  or Pe = 1.23×109  the system compensates for the lower energy available to drive 
folding by an increase in critical aspect ratio to Arc = 0.3; these trends verify the direct relationship 
of Gr and aspect ratio  δAr given by  δPEo . For Gr = 3.7×105 as Ar varies from 0.04 to 1, ℒmax 
increases from 2.0 to 7.6; comparison with the computational model6  shows  ℒmax = 7.2 which 
indicates that the 2D approximation of the cavity is approached asymptotically. 
 
2. Variation of Gr 
         

We consider the effect of perturbing  the initial potential energy δPEo   through a variation of 
δGr for a fixed Ar, which  implies δPEo = Co ArδGr,  to determine the critical Grashof number that 
separates stretching and folding. In Fig. 10(c) we show that a supercritical bifurcation occurs in 
the neighborhood of Grc = 4.0×105 which separates stretching from folding for a fixed aspect ratio 
of Ar = 0.2; this critical value is on the same order of magnitude as predicted by the computational 
model6 in which  Grc = 3.0×105  showed the birth of the RTM structure. The difference between 
experiment and model  is attributed to  initial condition effects due to divider disturbance which is 
not taken into account in the 2D model, and the 2D approximation of the cavity. The impulsive  
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FIG.  10. Local bifurcation sequence of the maximum length stretch ℒmax of the interface as a function of its parametric space 

(Ar, Gr, Rei) for Sc = 3333. (a) Bifurcation of interface ℒmax  showing transition region from stretching to folding as aspect ratio 

Ar of cavity increases for various impulsive Reynolds number Rei for Gr = 3.18×106 or Pe = 1.06×1010 using the FFV method, for 

comparison * corresponds to PLIF method. (b) Effect of variation of Grashof number Gr on bifurcation point of ℒmax, represented 

by the vertical bars,   as aspect ratio Ar increases  for Rei  = 2500 using the  PLIF method. (c) Bifurcation of interface as Grashof 
number Gr increases for fixed aspect ratio Ar = 0.2  showing transition from stretching to folding using FFV method, data 
corresponding to  were also taken from microgravity experiments in Ref. 45, for comparison * corresponds to PLIF method. (d) 
Effect of increasing the impulsive Reynolds number Rei on interface bifurcation showing  that the approach to symmetry  lies 
between asymmetric folding using FFV method, Gr = 3.18×106 or Pe = 1.06×1010, Ar = 0.2; (e) Effect of variation of Grashof 
number Gr on the critical impulsive Reynolds number Rei, using PLIF method.  
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velocity was kept fixed at 0
5 /U cm s , with the exception of data points obtained in microgravity 

environment45 and  Gr = 6.36×107  or Pe = 2.12×1011, for  cases 4-7 in Table I of Appendix A. 
For the highest Grashof number Gr = 6.36×107, it is necessary to increase the impulsive velocity 

to 0
7 /U cm s  so that ℒmax would not be affected by delay of divider motion as we had previously 

discussed. The effect of increasing the aspect ratio, can also be inferred from the relation               
δPEo = CoArδGr, which indicates that the critical Grashof number would decrease, whereas a 
decrease in aspect ratio would increase Grc . 
 
2. Variation of Gr 
         

We consider the effect of perturbing  the initial potential energy δPEo   through a variation of 
δGr for a fixed Ar, which  implies δPEo = Co ArδGr,  to determine the critical Grashof number that 
separates stretching and folding. In Fig. 10(c) we show that a supercritical bifurcation occurs in 
the neighborhood of Grc = 4.0×105 which separates stretching from folding for a fixed aspect ratio 
of Ar = 0.2; this critical value is on the same order of magnitude as predicted by the computational 
model6 in which  Grc = 3.0×105  showed the birth of the RTM structure. The difference between 
experiment and model  is attributed to  initial condition effects due to divider disturbance which is 
not taken into account in the 2D model, and the 2D approximation of the cavity. The impulsive 

velocity was kept fixed at 0 5 /U cm s , with the exception of data points obtained in microgravity 

environment45 and  Gr = 6.36×107  or Pe = 2.12×1011, for  cases 4-7 in Table I of Appendix A. 
For the highest Grashof number Gr = 6.36×107, it is necessary to increase the impulsive velocity 

to 0 7 /U cm s  so that ℒmax would not be affected by delay of divider motion as we had previously 

discussed. The effect of increasing the aspect ratio, can also be inferred from the relation               
δPEo = CoArδGr, which indicates that the critical Grashof number would decrease, whereas a 
decrease in aspect ratio would increase Grc . 

 
  The microgravity data in Fig. 10(c) for the high Grashof number cases (4,5,7) in Table I of 

Appendix A were taken at a g-level of og610 45, thus reducing the Grashof numbers to 3.18, 26.9 

and 29.6 respectively. Those results45 show that the interface is stabilized, therefore does not 
stretch and remains frozen in the vertical configuration. Thus the length stretch ℒ(t) approaches 
zero and  provides the low limit in Grashof number which is in agreement with the computational 
model6 that shows  ℒmax = 0 for Gr ≤ 37.3. Experiments in the neighborhood of 40 6 10Gr    
are challenging to perform on the ground; a low gravity environment can be used advantageously 
to investigate this range of parameters. As we had pointed-out we employed two methods to 
measure the length stretch of the interface, FFV and PLIF; the data in Figs.10(a,c,d)  and Figs. 
10(b,e) contrast respectively the difference between FFV and PLIF methods for measuring the 
length stretch. Owing to higher resolution afforded by the PLIF method the maximum length 
stretch ℒmax differs between the two methods beyond the bifurcation point, however, the shape of  
ℒ(t) is not appreciably affected; thus the same trend as shown in Figs. 6(a,b) is represented by the 
PLIF method except for a change in magnitude of ℒmax. We find that below or in the neighborhood 
of the bifurcation point the two methods show good agreement, for reference we show 
corresponding data points using PLIF in Figs. 10(a,c,d) for points below and above the bifurcation 
point denoted by the symbol *.  
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B. Effect of injected kinetic energy perturbation 

   
1. Variation of  Rei 
           

The length stretch may be perturbed through a variation of the initial potential energy δPEo  or 
a variation of the injected impulsive kinetic energy δKE . The variation of the injected kinetic 

energy δKE given as 2 Re Re
i io

KE C Ar    indicates Grashof number independence for fixed aspect 

ratio, and an aspect ratio dependence as  
2Re
io

KE C Ar  for fixed Rei .  The unfolding of the 

solution as the impulsive velocity or Rei increases shows in Fig. 10d that the RTM structure 
bifurcates from asymmetric to a nearly symmetric structure at a critical impulsive Reynolds 
number Reic = 2800 for Gr = 3.18×106  and becomes asymmetric again as Rei increases. This 
sequence of events indicate a change in the structural stability of the RTM structure as the 
impulsive Reynolds number increases; structural stability in the sense that the bifurcation from 
asymmetry to near symmetry is caused by perturbation of the flow field owing to injected 
impulsive kinetic energy into the system.  In relation to the bifurcation point, asymmetric folding 
gains stability as the system approaches symmetric folding for increasing Rei  from the left or 
below the bifurcation point and loses stability to asymmetric folding for increasing Rei on the right 
or above the bifurcation point.  

 

 The fundamental issue being the optimum impulsive velocity ( )oU s% for which the injected 

impulsive kinetic energy in the system compensates the initial potential energy so as to approach  
symmetry. The bifurcation point which represents the approach to symmetric folding, bounded on 
the left by asymmetric folding as Rei decreases and on the right by asymmetric folding as Rei 
increases, indicates that there is a narrow parametric space for which the approach to symmetry  
occurs.  Even though the variation of  δKE  is independent of Gr, and the variation of δPEo  is 
independent of  Rei , their combined interaction shown by the maximum length stretch ℒmax in Fig. 
10(e) indicates an inverse relationship between the injected impulsive kinetic energy to approach 
symmetry and available potential energy for folding. The inverse relationship between δRei  and Gr 
on ℒmax  indicates that as Reic  increases it is necessary to increase the Grashof number to approach 
symmetric folding and shows relative to Gr = 3.18×106,  that  the critical impulsive Reynolds 
number decreases to  Reic = 2.0×103  for Gr = 3.7×105, likewise when Gr increases to Gr = 2.69×107 
the critical Reic = 1.25×104 also increases.  In contrast to the other cases, for  Gr = 2.69×107 ℒmax  
increases for Rei < 1500; this limiting data point which is outside of  our immediate interest shows 
that for  low injected impulsive kinetic energy in relation to the initial potential energy, the wake 
of the divider exhibits the characteristic interface shape of meniscal breakoff71  illustrated in Fig. 
5 for Rei = 5000 at t = 0.4 s, due to attachment of the interface to the trailing edge of the divider 
in which there is a common line of contact between the liquid-liquid interface. 
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C. Critical boundaries 
 

 The variation of the initial potential energy δPEo and the injected kinetic energy δKE that 
yields the critical parametric space Λc can be used to identify the co-existence of folding and the 
approach to symmetry in the system. We have shown that the initial potential energy can be 
perturbed by either a variation in aspect ratio δA ( Figs. 10(a,b)) or a variation in δGr (Fig. 10(c)), 
which yield the critical parameters Arc and Grc. A succinct representation of the findings is shown 
in Fig. 11(a) which shows the critical boundary in the control space (Gr, Arc) that separates 
stretching and folding. Similarly we also showed that the injected kinetic energy can be perturbed 
δKE  by a variation in impulsive Reynolds number δRei  (Figs. 10(d,e)) which yields the critical  
Reic. Likewise the control space (Gr, Reic) in Fig. 11(b) shows succinctly that the critical boundary, 
that represents the transition from asymmetric to nearly symmetric folding, has a narrow 
parametric range since asymmetry lies on either side of the critical boundary. The co-existence of  
folding and the approach to symmetry can be represented by the critical boundary in the space of 
Reic  and  Arc shown in Fig. 11(c).  
 

 
FIG. 11. The co-existence of folding and approach to symmetry denoted by critical boundaries for variation of the 
parametric space (Gr, Arc,  Reic) with Sc = 3333. The critical boundary which: (a)  separates stretching and folding 
in the control space of  Gr and Arc; (b) shows that the approach to symmetry lies between asymmetric folding in 
the control space of Gr and Reic; (c) satisfies  both criteria for folding and the approach to symmetry in the control 
space of  Reic  and Arc . 

http://dx.doi.org/10.1063/1.5023026


38 
 

  The critical boundaries signify that for a given Grashof number there are unique values of  
Reic  and   Arc for which folding occurs and  symmetry is approached.  The operational application 
of the critical boundaries denoted by Figs. 11(a,b,c) which represents regions of 2D flow,  may be 
illustrated as follows: for a given Grashof number Gr there is a critical aspect ratio Arc for folding 
(Fig. 11(a)) as well as a critical impulsive Reynolds number Reic (Fig. 11(b)) for the approach to 
symmetry; folding gives birth to the RTM structure, in order for RTM to approach symmetry  then 
there is a unique combination of (Reic, Arc) that satisfies the criterion  for folding and the approach 
to symmetry. For example the critical Grashof number of Grc = 4.0×105 shown in Fig. 10(c)  which 
is obtained from Ar = 0.2 and Rei = 2500 does not necessarily imply that the RTM structure is  
nearly symmetric; approach to symmetry can be found from the corresponding critical Arc and Reic  
from Figs. 11(a,b), that shows Arc = 0.29 and Reic = 2030 which  is denoted in Fig. 11(c) as a 
reference value.  Therefore the critical boundary denoted in the space (Reic, Arc) signifies the 
operational curve that satisfies both criteria, hence the co-existence of folding and the approach to 
symmetry.  
 
      The operational application of Figs. 11(a,b,c) can be used to find the critical Grashof or Peclet 
number for folding to occur at Ar = 0.2 as well as its critical impulsive Reynolds number Reic  to 
approach symmetry. Since the birth of folding is shown  in Fig. 4 to occur during the transition 
from Ar = 0.2 to Ar = 0.3  at Gr = 3.7 × 105  or Pe = 1.23 × 109, the data point for Ar = 0.3  represents 
the approximate minimum aspect ratio for which folding occurs for the given Grashof  or Peclet 
number.  However, it is the corresponding critical Grashof or Peclet number  for which folding 
occurs at Ar = 0.2 that is of interest. The bifurcation diagram in Fig. 11(a)  shows  that at Arc  = 0.2 
folding occurs for the critical value of Grc = 1.33×106  or Pec = 4.43 × 109, and the critical  Reic  for 
the RTM structure to approach symmetry is Reic = 2200 from Fig. 11(b). In contrast, for decreasing 
critical Grashof number  Grc = 4 ×105, it is shown in Fig. 11(a) that there is an increase in critical 
aspect ratio to  Arc = 0.29; the trend of the data indicates that the critical Grc lies along the critical 
boundary in Fig. 11(c) and  Grc decreases along the critical boundary as the critical aspect ratio 
increases.  The critical value   Grc = 1.33 × 106  represents a limiting minimum value for the 
existence of folding at the critical aspect ratio Arc = 0.2.  The critical boundary in Fig. 11(c) serves 
to demarcate the region which separates stretching and folding as well as the approach of 
asymmetric RTM structure to  near symmetry.  
 
D. Scaling of length stretch based on bifurcation diagram 
 
 The bifurcation sequences shown in Figs. 10(a-e) may be used to construct a predictive 
model for the maximum length stretch ℒmax of the interface. We investigate a power law model70 
for the maximum length stretch of the form 
 

                                              ℒmax ~ ReiGr Ar Sc                                                  (33)   
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FIG. 12. The maximum length stretch ℒmax as a function of  the parametric space of the system (Gr, Ar, Rei, Sc) 
showing power law relationship with system parameters. 

 
For the range of experimental parameters shown in Table I of Appendix A, we have investigated 

case 4 ( 61018.3 Gr )  for microgravity45 condition oo gng 610  (Gr = 3.18) as well as cases 

5 and 7,  which provide limiting data points. Rectification of the data in Table I of Appendix A for 
ℒmax shows in Fig. 12 that its functional relationship using the power law model of Eq. (33) can be 
represented by, 
 

                                          ℒmax
1 101 9 2/5 1 112.1 ReiGr Ar Sc                                          (34) 

 
for the following limits: 73.18 6.36 10Gr    or 4 111.06 10 2.12 10Pe    , 0.04  Ar  1.0, 

4100 Re 2 10i   , and Sc >> 1. Since it is not practical to vary the range of variables continuously, 

the power law model allows prediction over a continuous range of parameters  within the above 
intervals where experimental data is lacking. According to the above model the aspect ratio and 
Grashof number have the dominant functional relationship as they govern transition from 
stretching to folding; the impulsive Reynolds number which governs the structural stability of 
folding, transition from asymmetry to near symmetry, shows an inverse functional relationship. 
The Schmidt number incorporates the effect of viscosity jump as well as molecular diffusion.  A 
more common parameter over the Grashof number used to characterize mixing is the Peclet 
number that represents the ratio of mass transport by convection to that of  molecular diffusion. 
An alternative functional relationship for ℒmax  can be expressed as a function of  Pe by setting
    in Eq. (33) to yield  

 

                                         ℒmax ~ ReiPe Ar                                                          (35) 

 
The data fit to this model indicates  
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                                      ℒmax
1/101/10 2/52.4 ReiPe Ar                                               (36) 

 
and shows greater scatter of the data when superimposed on Fig. 12 which seems to indicate that 
the Schmidt number parameter is independent and  can be used as an additional parameter.  In 
analogy to our model experiment, application to chemical reaction with fast reactant kinetics in 
which the interface acts as a boundary between segregated reactants73  show an analogous length 
of reaction interface that scales as 1 / 8P e  for the regime which is controlled by kinematics. 
 
VII.  SUMMARY AND CONCLUSIONS 

 
The mixing characteristic of two miscible viscous liquids driven by transient buoyancy-

induced flows is investigated from measurements of its length stretch and interface width that 
contain the continuum mechanics of mixing, stemming from the Lagrangian history of  the  
interface motion measured using full-field view method (FFV) and planar laser-induced 
fluorescence (PLIF). Buoyancy-driven mixing occurs through stretching and folding of the 
interface, generated by an overturning motion that results in  unstable density stratification and 
produces an ideal condition for the growth of a single wavelength Rayleigh-Taylor instability with 
an asymmetric pairwise spike and bubble configuration exhibiting the Rayleigh-Taylor 
morphology (RTM). The late stage of RTM unfolds to an internal breakwave and its breakdown  
occurs through wall and internal collision which sets up the condition for self-induced sloshing 
that decays exponentially with a resulting diffusive region at the interface indicating local 
molecular diffusion.  

  
The approach to symmetry of the short-lived coherent RTM structure is dependent on the 

injected kinetic energy in the system characterized by an impulsive Reynolds number  while the 
transition from stretching to folding is dependent on initial potential energy characterized by 
Grashof or Peclet number. The stretching event shows density currents that cause frontogenesis 
owing to the sharp density front; while, the folding event shows a transition from a smooth RTM 
structure to RTM fronts with fractal structures that contain small length scales for increasing 
Grashof or Peclet number. The dependence of length stretch on aspect ratio for fixed Grashof or 
Peclet  number showed a transition to a nearly Gaussian distribution for increasing aspect ratio 
which indicated self-similarity of buoyancy-driven mixing. 

 
          The interface is characterized by a co-dimension three bifurcation of the maximum length 
stretch in parametric space—Grashof or Peclet number, aspect ratio, and impulsive Reynolds 
number—for a geometric range from an approximate two-dimensional Hele-Shaw cell to a three-
dimensional cavity. In particular for fixed aspect ratio the  impulsive Reynolds number  quantifies 
the approach to symmetry, from the initial condition which is set through the impulsive 
perturbation of the divider motion that has the characteristics of transient Couette-Poiseuille flows 
for the short time scale; whereas, the Grashof or Peclet number determines the control space that 
separates stretching and folding. The bifurcation  of the length stretch of the interface in parametric 
space indicates that the birth of RTM occurs through a supercritical bifurcation as Grashof or 
Peclet number increases for fixed aspect ratio which is in agreement with the approximate 
computational model. The maximum length stretch scales as a power law function of the control 
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parameters—Grashof or Peclet number, aspect ratio, impulsive Reynolds number, and Schmidt 
number—and shows reasonable agreement with experimental data. The critical control space for 
the co-existence of folding and the approach to symmetry for the short-lived coherent RTM 
structure depends on the critical impulsive Reynolds number, and aspect ratio for a given  Schmidt 
number at critical Grashof or Peclet number.  

Low impulsive Reynolds numbers generate Kelvin-Helmholtz (KH) instability at the 
interface for the short time scale and affect the approach to symmetry. Whereas high impulsive 
Reynolds numbers excite short wavelength instability initially due to the (impulsive) Rayleigh-
Taylor (RT) instability mechanism, that diffuses the interface and inhibits the formation of the 
RTM structure when the injected impulsive kinetic energy becomes comparable to the initial 
potential energy, and serves as an analog to shock-induced RT instability exemplified by the 
Richtmyer-Meshkov instability.  The instability mechanism  for the impulsive velocity-driven RT 
instability of our experiments,  is similar to the  shock-induced RT instability in compressible flow 
and the impulsive acceleration RT instability in incompressible nonhomogeneous liquids—and 
showed that the interaction of the vertical pressure gradient across the perturbed interface with the 
horizontal density gradient creates baroclinic vorticity and generates an incompressible 
Richtmyer-Meshkov instability. 

 
 In particular the initial perturbation of the interface and flow field for low impulsive 

Reynolds numbers that generates KH instability causes kinks at the interface, which grow into 
deep fingers during overturning motion and unfold into local whorl structures that merge and self-
organize into large length scale RTM structure. However an increase in Grashof or Peclet number 
causes  a cascade to small length scales that produce RTM fronts with self-similar structures at 
smaller and smaller length  scale. Following breakdown of the RTM structure, the exponential 
decay of sloshing  occurs over a narrow frequency band for aspect ratios that yield folding and  
results in a stably stratified configuration.  From the time history of the length stretch, the finding 
that the damped frequency of sloshing increases as the square root of aspect ratio for fixed Grashof 
or Peclet number is comparable to the normalized frequency from the  damped harmonic oscillator 
model of  interface sloshing and the characteristic frequency predicted from inviscid theory of two 
superposed fluids. The observed interface structure and its characterization indicate that for a 
critical Grashof or Peclet number, two-dimensional approximation applies in the neighborhood of 
the critical aspect ratio and impulsive Reynolds number that separate respectively stretching and 
folding, and transition from asymmetry to near symmetry. In addition, our experimental model—
with the distinguishing feature of  an impulsive-velocity initial condition at the interface between 
two nonhomogeneous liquids—shows a novel method  for generating short time Richtmyer-
Meshkov  instability in incompressible liquids. 
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APPENDIX A: EXPERIMENTAL COMPONENTS AND MEASUREMENT SYSTEM 

A. Full-field view method for interface tracking 

We used the full-field view (FFV) photographic method to capture the kinematics of  
interface motion on a charge-coupled device  (CCD) sensor whose output is recorded in real time 
on a video recorder for the experimental set-up in Fig. 13. The basic operation  consisted of 
removing the divider to establish the initial condition necessary to follow the Lagrangian history 
of interface motion and  measure its length stretch ℒ(t).  A uniform background light source is 

created using a 12 inch diameter integrating sphere, Lab sphere model US-120, which is positioned 
approximately one inch from the back of the cavity test cell. The sphere collects radiation from an 
internal source, Oriel light source attached to a PhotoMax illuminator powered by HP 6030 power 
supply, and integrates that radiation to create a uniform field of light within the sphere. The sphere 
exit port serves as a source of radiation that is diffusively emitted from the exit plane; luminance 
across the plane of the exit port is  uniform and nearly Lambertian. The motion of the interface is 
captured by a Sony color video camera (DXC-950 3-CCD) and recorded on a Panasonic AG-6040 
time-lapse video recorder for off-line processing. The camera produces high-quality images due 
to its ½ inch three-chip power hole-accumulated diode CCD which contains approximately 
380,000 (768 (horizontal) × 494 (vertical)) effective pixels. The FFV method provides a global 
view of the interface structure. 

                                                
FIG 13.  Experimental set-up (not to scale) to quantify interface motion using full-field view (FFV) method;  for the 
planar laser-induced fluorescence (PLIF) method detailed in Part 2, we used a planar laser sheet  in place of the Oriel 
light source; (VCR, videocassette recorder; CCD, charge-coupled device; BCTV, broadcast television). 
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B. Light source using planar laser sheet  

     We used a Gemini-PIV (200MJ, 30 Hz) Nd:YAG pulsed laser for planar laser-induced 
fluorescence (PLIF) measurements of the interface structure, detailed in Part 2, in place of the 
Oriel light source. The low concentration of  rhodamine 6G dye used in the left chamber of the 
cavity in Fig. 13 acted as a conserved passive scalar which yielded the instantaneous interface 
structure similar to the works in Refs. (62,74). The measured molecular diffusivity of rhodamine 

6G dye in  water has been reported in Ref. 75  with a value of  
-6 2D=3.0 10 cm / s  and yields a  

Schmidt number Sc = 3333 for 
2  0.01cm /s    as shown in Table I below for cases (1-6).  

1. Cavity test cell and mechanism  
  
The initial configuration of two liquids (A, B) inside a cavity separated by a divider prior 

to establishing the initial condition from removal of the divider, is shown in  Fig. 13. The motion 
of the divider is controlled by specifying a desired motion trajectory on the Compumotor indexing 
drive (Parker Compumotor SX6 system) that is communicated to the stepping motor (ZETA6104 
model); the motion trajectory allows approximation of a pulse function as shown by Eq. (1).  

 
The cavity consists of an enclosure with height H, width L, and depth W with respective 

dimensions of 5cm, 5cm and the following  range: 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, and  5.0 cm of depths 
as shown in Fig. 13 which allows experimental simulation from approximate two-dimensional 
Hele-Shaw cell to a three-dimensional configuration with aspect ratios Ar of: 0.04, 0.1, 0.2, 0.3, 
0.4, 0.5, and 1.0. The enclosure is made from transparent acrylic material to allow for visualization 
of interface  kinematics. The liquids are introduced inside the two chambers through capillary steel 
tubes at the top of the cavity using a syringe with a hypodermic needle; precautionary measures 
are taken to remove gas bubbles due to air entrapment. The enclosure consists of two sections, 2.5 
cm each, separated by a thin polyethylene divider of thickness 0.01 cm.  The two compartments 
are sealed by keeping the cavity test cell under compression using adjustable spring loaded clamps 
at the four corners of the cavity, and by using a thin film of vacuum grease between the two 
compartments; the vacuum grease is effective for sealing the compartments against leakage as well 
as to reduce friction when the divider is removed.  
 

C. Image processing technique 

Post-processing of the video recordings using image processing techniques common to the 
full-field view (FFV) and planar laser-induced fluorescence (PLIF) methods are described below. 

1. Measurement of normalized concentration level of the interface 

The normalized concentration level curves of the interface are determined as a function of 
intensity for a given image from calibration of  concentration as a function of image intensity 
shown in Fig. 14(a). The image intensity is based on gray levels which span 0 to 255 representing 
respectively a black to white background image. The normalized concentration profile of the 
interface C calibrated as a function of intensity I is shown in Fig. 14(a), in which the measured 

average intensity of the interface corresponds to iI  with initial ( Imin , Imax )  and final fI  value 
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for the stably stratified configuration.  The intensity profile at y = H/2 for the initial configuration 
is shown in Fig. 14(b); the intensity jump at x = 2.5 cm corresponds to the interface region, since 
the water and deuterium oxide and  dye solution CA,  has a greater absorbance for incident photons, 
its intensity is lower compared  to the water and deuterium oxide solution CB,  on the right hand 
side. 

 
For the background image acquired at time zero, the average intensity profile for the left 

and the right side of the image ( Imin , Imax ) corresponding respectively to the initial normalized 
concentrations, CA and CB, on the left and right hand side of the cavity is shown in Fig. 14(b); 

max min( ) 2iI I I   gives the value of the intensity corresponding to the average concentration C

of the interface initially at x=L/2. The final average intensity of the homogeneous region I f   is 

measured   for a special case of the final configuration when the two fluids become homogenous  

over a long time scale. Figure 14(a) shows, from the measured intensities ( Imin , Imax , iI  and I f ), 

that the normalized concentration varies linearly with intensity which provides a means to 
determine the concentration 

 

                                                                
max

min max

I I
C

I I





                                                     (A1)                           

 
band 0.0 ≤ C ≤ 1.0 as a function of intensity, which is also used for measurement of  the interface 

length stretch  ℒ(t) ( )C t ,  its width δw(t), and height y(t) . 
 
 

 
FIG. 14. Calibration of concentration as a function of image intensity measurements showing (a) normalized  

concentration C  as a function  of intensity I ; (b) intensity profile at y = H/2 for the initial configuration of the 
interface. 
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2. Measurement of interface metrics  
 

To quantify  the kinematics of interface motion, we  used Matlab  to determine the metrics  
of the interface such as, length stretch  ℒ(t), interface width δw(t), and height y(t); we also used   
the  photo-editing programs  in CorelPhoto-paint to operate on bitmap images and the image trace 
contour to operate on fuzzy regions. Quantification of the images is processed using image 
enhancement operations in MATLAB such as image trace contour, edge detection, and image 
histogram, and special functions to provide Euclidean distance between a set of pixels. Since the 
length stretch ℒ(t) of the interface is proportional to the number of pixels, its measurement is 
determined by summing the number of pixels of the interface. Similarly the interface width δw(t) 
during mixing and height y(t) after final stratification are measured. 

                                                                                                                            
D. Parametric range of experiments 
 

To investigate buoyancy-driven mixing, we used a range of dilute mixtures of de-ionized 

water 2
( )HO  and deuterium oxide 2

( )DO , as well as mixtures of 1,2propylene-glycol (Pp.) and 

ethylene-glycol (Et.) with water which contained a volume fraction  in the range of 2% to 22%, as 
shown in Table I. We consider liquid pairs to simulate both zero and finite jump in viscosity;  the 

nearly zero jump in viscosity was obtained using dilute mixtures of the solute 2
DO and solvent 

2
HO which contained volume fraction on the order of  2% with a methylene blue dye of very low 

concentration.  Whereas, mixtures of ethylene and propylene-glycol with de-ionized water resulted 
in finite viscosity jumps.  For color contrast we used either methylene blue dye or rhodamine 6G 
dye for fluid A, and kept fluid B clear.   

The specific gravity was measured for the fluid pairs using calibrated hydrometers (Chase 
Instruments) with various range in specific gravity; for dilute mixtures of water with deuterium 
oxide we used a hydrometer with specific gravity range from 0.9950 to 1.0110 which has a 
precision error within 000005. , whereas for alcohol mixtures the range runs from 1.000 to 1.070, 
with a precision error of 000025. . The density can be calculated from the specific gravity using 

s w   , where  s s    in which s and   are average values.  The reference values for 

the density of water  w  (
30.997040w gm cm   at 250C) and kinematic viscosity of various 

mixtures76 were taken at ambient laboratory condition.  The dye concentration is kept the same for 
all fluid pairs; the contrast between the blue and clear region facilitated tracking of the interface.  
The diffusion coefficient for methylene blue dye and water has been reported in Refs. 5 to have a 

value of 
6 23.0 10 /D cm s  which is equivalent to the rhodamine 6G dye in  water  reported in 

Ref. 75 and implies equivalent  Schmidt number Sc = 3333 for  both systems, since the viscosities 
are also equal for cases (1-6) in Table I; whereas, the diffusion coefficients of alcohols with water 
have been reported in Refs. 76. 
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Table I shows the range of parameters and thermophysical property values for viscous liquid pairs. 
The limiting condition / 0    for case 0 allows the testing of simulated microgravity condition. We 

use small amounts of 2
D O  in 2

H O  to adjust As  and Bs  for cases 1-6, this allows the attainment of the low 

values of density jump across the liquid interface.  The kinematic viscosity values in cases 7-12 assume 
ideal mixtures that have linear variation in viscosity from the reference value. The jump in density varies 

within the range  
5 2

5 10 / 5.19 10       and viscosity jump range of 0.00 1.77    ; in analogy to the 

Atwood number based on density 1 / 2( / )At    , one based on viscosity may be expressed as 

1/ 2( / )At


   . The low jump in density implies that the liquid pairs are well approximated as  

Boussinesq fluids, the jump in viscosity serves as a damping parameter. Even though cases 7 and 11 are 

identical in density jump, 0.02817   , there is a substantial difference in viscosity jump /  , which 

is reflected in the decrease in Grashof number due to damping caused by the viscous force. Given the 

precision of our hydrometer the reliable limit of /s s  is 0.00005 as shown for case 1, this implies a low 

limit of  46.13 10Gr   for liquids with nearly zero jump in viscosity, however for alcohol mixtures it is 
possible to reach lower limits due to the larger viscosity values. 

 

TABLE I. Parametric range of experiments. 

aThe complete range of aspect ratios were addressed for these cases; the Peclet number is given by  Pe = GrSc . 
bExperiments also conducted in a  microgravity (10-6 go) environment Ref. 45 for aspect ratio Ar = 0.2; 1,2propylene 
glycol (Pp.), ethylene glycol (Et.). 

 
Case 

 
Fluids A/B 

 

As  

 

Bs   

 

A  

cm2/s 

 

B   

cm2/s 

2At






 





 
 

Gr  
 

Sc  

     
0 H2O+Dye+D 2O 

 / H2O+D2O 
1.0023 1.0023 0.01 0.01       0    0      0  ---   

1 H2O+Dye+D2O 
/ H2O+D2O 

0.9993 0.99925 0.01 0.01 0.00005 0.00 6.13104 3333 

2 H2O+Dye+D2O 
/H2O+D2O 

0.99965 0.9994 0.01 0.01 0.00025 0.00 3.06105 3333 

 3a H2O+Dye+D2O 
/H2O+D2O 

1.0000 0.9997 0.01 0.01 0.0003 0.00 3.7105 3333 

 4a,b H2O+Dye+D2O 
/H2O+D2O 

1.0023 0.9997 0.01 0.01 0.00259 0.00 3.18106 3333 

 5a,b H2O+Dye+D2O 
/H2O+D2O 

1.022 0.9998 0.01 0.01 0.02196 0.00 2.69107 3333 

6 H2O+Dye+D2O 
/H2O+D2O 

1.0525 0.99925 0.01 0.01 0.05191 0.00 6.36107 3333 

7b Et.+H2O+ Dye 
/H2O 

1.026 0.9975 0.01158 0.01 0.02817 0.14643 2.96107 1079 

8 Et.+H2O+Dye 
/H2O 

1.0505 0.9975 0.01316 0.01 0.05176 0.27288 4.73107 1158 

9 Pp.+H2O+ Dye 
/H2O 

1.013 0.9975 0.08598 0.01 0.01542 1.58325 8.20105 4799 

10 Et.+H2O+Dye 
/Pp.+ H2O 

1.026 1.013 0.01158 0.08598 0.01275 1.52522 6.56105 4878 

11 Pp.+H2O+Dye  
/H2O 

1.026 0.9975 0.16196 0.01 0.02817 1.76739 4.67105 8598 

12 Et.+H2O+Dye 
/Pp.+ H2O 

1.026 1.0135 0.01158 0.08598 0.01226 1.52522 6.31105 4878 
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APPENDIX B: CHARACTERISTIC OF IMPULSIVE PERTURBATION OF DIVIDER MOTION  

 
The relationship between the initial potential energy which drives the flow field and folds 

the interface, and the injected kinetic energy perturbation which determines the transition from 
asymmetric to nearly symmetric RTM structure is considered. We show that the injected kinetic 
energy due to divider motion depends on the approximation of the local velocity profile near the 
divider; in particular we consider the uniform and linear Couette flow velocity approximations. 
The impulsive velocity perturbation of divider motion is approximated as a start-up or time 
development Couette flow in which the transient leads asymptotically to the steady state linear 
velocity profile. We contrast the effect of divider motion for simulated microgravity  (10-6go) 
condition using 0   and ground-based (1go) applications using 0  , and deduce various 
approximations for the characteristic velocity of the flow field from an energy balance model.  
 
1. Uniform velocity approximation 

 
The approach of the interface toward a symmetric structure, requires that kinetic energy be 

injected into the system given as,  
 

                                                  
L

0 0 0

1
( , , , )

2

W H

KE V V x y z t dxdydz   
r r

                                      (B1)                        

which yields for plane average localized parallel flow where V
r

(x,y,z,t) = v(x,t), 
 

                                                      2

0

1
v ( , )

2

L

KE WH x t dx                                                 (B2) 

 
The approximation v = Uo is first considered which corresponds to uniform flow due to divider 
motion, since it yields the maximum kinetic energy that can be injected into the flow field, thus 
provides an upper bound. The injected kinetic energy for the uniform velocity approximation  
yields,  

                                                           1

2UKE V 2
oU                                                   (B3) 

in which the volume is V WHL and the subscript U denotes uniform; the corresponding  initial 
potential energy of the system is given as, 

                                                         1

2o oPE ng V H                                                  (B4) 

where ( )
A B

     .  The injected kinetic energy serves as a source of initial disturbance or 
perturbation to the system and can affect symmetry, whereas the initial potential energy PEo 
generates the flow field that drives interface motion and cause folding. Because of the coupling 
between KE and PEo, the problem may be also looked from the viewpoint of  how  the total initial 
energy of the system 
 

                                                         To o
E KE PE                                                            (B5) 
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drives interface motion to generate folding and approach symmetry.   For the ideal initial condition  

of zero perturbation or disturbance corresponding to 0
o

U    considered in the computational 

model6 , interface motion is  driven by potential energy only which yields symmetric RTM 

structures. However, experimentally a finite o
U  is required which necessitates the injection of 

kinetic energy in the system. This indicates that there is a delicate balance between the initial 
potential energy PEo available for interface motion that yields interface folding and the injected 
kinetic energy KE that controls the approach to symmetry.  If the injected kinetic energy becomes 
too large then the initial disturbance is superimposed on the entire time history of the transient 
mixing process.  
 

The ideal condition of having the two non-homogeneous fluids in intimate contact at an 
interface, with the configuration shown in Fig. 2, is possible under microgravity condition                    

(
610o ong g ) since mechanical equilibrium is achieved in this limit. This ideal condition has been 

achieved by removing the divider in a microgravity environment at a low impulsive pulling 

velocity o
U  on the order of  0.2 cm/s45. Since the body force is miniscule, this implies that the total 

initial energy 

                                                      21
[ ]

2To o oE V U ng H                                                  (B6) 

can become very small, since the buoyancy term is negligible and the inertia term  can be made as 
small as possible. The advantage of a microgravity environment is that the impulsive pulling 
velocity can be infinitesimally small so as not to disturb the interface, whereas in ground-based 
laboratory condition the low velocity limit is not practical for our problem. In addition the 
microgravity condition serves as a model environment to test the classical Couette flow model in 
which the effect of buoyancy does not affect the boundary layer at the interface induced by divider 
motion.  The ideal initial condition, in which the interface is stationary has been used to study the 
effect of vibrational disturbance on the stability of the interface between two miscible liquids under 
microgravity condition45.  However, this precludes the study of mixing due to steady body force 
since the interface  is  stabilized in microgravity condition without the vibrational input. 
 
2. Couette-Poiseuille flows induced by divider motion: microgravity application 

 
The impulsive velocity of the divider motion introduces a boundary layer localized near 

the interface at short times on the order of . The effect of the removal of the divider on the injected 
kinetic energy is approximated by assuming a linear velocity input v(x,t) in Eq. (B2) which 
represents steady shear Couette flow for sustained motion of the divider, when buoyancy force is 

negligible as in a microgravity environment  0
o

ng   or the case of homogeneous fluids 0  ; 

this approximation renders  convective acceleration  negligible due to negligible buoyancy force. 
Even though motion of the divider is not sustained experimentally, the steady Couette flow  
approximation yields insight into the asymptotic solution. In this regard, for the experimental 
configuration shown in Fig. 2, the steady state velocity profile may be obtained from a balance 

between the vertical pressure gradient and viscous force as shown by Eq. (5) 
2 2( d v/dx dp/dy)   

for the domain  0 / 2x L   which satisfies the boundary condition that v = 0 at x = 0 and v = Uo 
at x = L/2  and yields the solution, 
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                                              v ( ) 2 (1 2 )
2o o

x x x
x U P U

L L L
                                               (B7)   

  

in which P* is a dimensionless pressure gradient given as 
2( / 2 ) /( / )

o m
P L U dp dy    and 

m o
p p ng y   is the total hydrostatic pressure which includes the gravity term. Equation (B7) 

shows that the general velocity profile of Couette-Poiseuille flows consists of a superposition 
between the linear first term Couette shear flow due to divider motion and a parabolic second term 
or Poiseuille flow due to the pressure gradient. The deviation of the velocity profile from its 
linearity (P* = 0) depends on the sign and magnitude of the dimensionless pressure gradient P*; 
for P* > 0/P* < 0, pressure decreases/increases in the direction of flow. The velocity profile in Eq. 
(B7) is positive over the width of the cavity for P* > 0; whereas for P* < 0, the velocity profile can 
become negative over a portion of the cavity in which backflow may occur near the wall at rest.  

 
 The kinetic energy for the asymptotic solution may be approximated from the linear 

velocity distribution from the center plane x = L/2 of the divider  to the left x = 0 and right x = L 
walls, with corresponding boundary conditions v(0) = 0, v(L) = 0 and interior condition v(L/2) = 
Uo; assuming that the pressure gradient is negligible. The linear velocity profile, 
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                                          (B8)                              

as implied from Eq. (B7) is used to integrate the kinetic energy equation of Eq. (B2) between the 
limit 0 ≤  x ≤ L or use of symmetry conditions for either of  the half space 0 ≤  x ≤ L/2 or L/2 ≤  x 
≤ L yields, 

                                                             21

6L oKE VU                                                           (B9) 

in which the subscript L denotes a linear velocity profile. The  kinetic energy injection into the 
flow  for the  asymptotic solution given by Eq. (B9) corresponds to the case of a homogeneous 
fluid 0  , since the effect of buoyancy is absent and the flow field is initially quiescent. This 
limiting case which corresponds to Gr = 0, simulated microgravity condition, and  to no change in 
potential energy ∆PE of the system provides a means to isolate the effect of divider motion. In this 
case there is no background flow, generated by a change in potential energy, superimposed on the 
flow field due to divider motion.  
 
       To model the impulsive velocity profile of divider motion, the initial disturbance may be 
approximated as a suddenly accelerated divider which moves parallel to the stationary flat wall at  
a distance L/2. This analogy corresponds to the problem of flow formation or start-up transient in 
Couette motion77, for an infinite plate in the vertical direction:  that is the problem of how the 
velocity profile varies with time tending asymptotically to a linear distribution as the divider in 
Fig. 2 is removed. The short time velocity profile due to divider motion which serves as a model 
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of the impulsive velocity perturbation may be obtained from the approximate one-dimensional  
Navier-Stokes equation of Eq. (5),  

                                                             






v v

t x


2

2
                                                             (B10) 

 
with the initial condition: t ≤ 0 , v(x,0) = 0 for all x, and boundary conditions for t > 0, v(L/2,t) = 
Uo and v(L,t) = 0 for the right wall. Even though the condition at the centerline implies a step 
change in velocity for all time, the effect of an impulse for a short time scale can be derived from 
a step solution using superposition. The pressure can only be a function of time for this flow; hence 
it is absorbed into the velocity by a change in variable: that is, v v + (1/ )( / ) .dp dy dt   For the 

domain, L/2 ≤ x ≤ L, a similarity solution77 can be obtained in the form of a series of 
complementary error function given as  
 

                  
1 1

0 0o

1 1 1 1

v
(2 ) (2( 1) )

U

(2 ) (2 ) (4 ) (4 ) ... ...
n n

erfc n erfc n

erfc erfc erfc erfc erfc

   
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 

 

    

          

 
     (B11) 

 

where ( / 2)/2x L t    and  1 /4L t  . The boundary layer thickness δ, measured relative 
to divider motion at x = L/2, may be approximated to lie between the values for which v/Uo = 
0.01, η = 2.0 and v/Uo = 0.48,  η = 0.5; the boundary layer thickness is defined as the distance from 
the centerline at x = L/2  for which v/Uo = 0.1. The approximate value of the boundary layer 
thickness for both sides of  the interface δb = 2δ becomes, 
 

                                                                      4.6b oH U                                                                   (B12) 

 
The long time solution for the velocity distribution for L/2 ≤ x ≤ L  which gives insight into the 
functional form of the velocity perturbation can be obtained alternatively in terms of  a Fourier 
series76 as 
 

                               
22 2

2
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





                                 (B13) 

 
This form of the solution shows that the asymptotic value of the Fourier series vanishes 
exponentially as t ; the linear Couette flow solution is approached in this limit. For 
impulsively accelerated flow, the impulsive kinetic energy equation, 
 

                                              
/ 2

2

/ 2

1
v ( , )

2

L

i

L

KE WH x t dx









                                                (B14) 

 
may be integrated within the boundary layer, by approximating the velocity profile to be similar 
to the linear case of Eq. (B8) with the inclusion of the boundary layer thickness, 
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0v( ) (2 / )( /2 ),x U L x L    0 / 2,x L  and 0v( ) (2 / )( /2 )x U L L x   for / 2L x L  , and   

shifting the coordinate to L/2. The impulsive kinetic energy injected becomes,   
 

                                                      
3

24

3i oKE V U
L

    
 

                                                 (B15) 

 
in which subscript i denotes impulsive. The impulsive injected kinetic energy KEi is equal to the  
asymptotic KEL of Eq. (B9) for Couette flow  when the boundary layer extends to the wall δ = L/2. 
Whereas, the injected kinetic energy for the linear velocity profile KEL = 1/3KEU is one-third that 
of the uniform velocity profile of Eq. (B3) which indicates that the uniform profile serves as a 
maximum bound. 
 
     The first order approximation of the velocity profile yields a cubic dependence of the boundary 
layer thickness on KEi which predicts the minimum bound of KEi  because the inertia term becomes 
small. However, an impulsive uniform velocity approximation can be used in Eq. (B14) to find the 
maximum bound of injected kinetic energy KE, which yields      
 

                                                     
2

Ui oKE VU
L

    
 

                                                     (B16) 

 
In between the two limits, that bounds the minimum KEi  of Eq. (B15) for which the inertia term 

is small  and maximum 
Ui

KE given by  Eq. (B16) for which the inertia term can become on the 

same order as the buoyancy term, higher order approximations of the velocity profile can lead to 
a range of possible values for KEi.  
 
3. Characteristic velocity scales 
 
  For short characteristic time, an energy balance model for a frictionless conservative 

system can lead to useful estimate of the characteristic velocity CU . From an energy balance, it 

can be shown that the kinetic energy 
2(1/ 2 )
c

VU  over a short time interval is equal to the difference 

in potential energy between the initial and final state max
( ( / 4) (1/2) )

o o
PE V Hng PE     plus 

injected kinetic energy into the system. The  approximate forms of the velocity profile in the 
neighborhood of the divider namely—uniform, linear, and their impulsive approximations—yield 
the following expressions for the characteristic velocity from the energy balance model, 
 

                                                          2
CU o o tU U ng HA                                                      (B17)    
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                                     (B19)    
                                
                                        

 

                                                         
22

UCi o o tU U ng HA
L


                                               (B20)   

  

in which 2.3   and  the Atwood number / 2 ( ) /( );A B A BAt            the expression 
for the boundary layer thickness near the interface is expressed as a function of  to emphasize its 

dependence on pulse duration / oH U  . The characteristic velocity is a function of the inertia 

terms that represent injected kinetic energy due to divider motion and the buoyancy terms that 

represent initial potential energy of the system per unit mass /oPE V . For a short duration pulse 

0   that generates a boundary layer flow the potential energy can be dominant  over the kinetic 
energy input, whereas for a long pulse duration in which / 2L   Eqs. (B19, B20) reduce 
respectively to Eqs. (B18), (B17) which correspond to the approximation of linear velocity Couette 
flow and constant velocity uniform flow.   
  

TABLE II. The initial potential energy 
o

PE  and injected kinetic energy KE  and corresponding characteristic 

velocity 
C

U  of flow field contrasting ground-based Gr = 3.18×106 or Pe = 1.06×1010 and simulated microgravity 
conditions (Gr = 0) for  Ar = 0.2.                  

                                             Gr = 3.18×106 or Pe = 1.06×1010                          

 oU  

cm/s 

Rei  oPE  

erg 
LKE  

erg 

/iL iUKE KE  

erg / erg 
UKE  

erg 
CLU  

cm/s 

/CiL CiUU U  

cm/s /cm/s 

  CUU    

cm/s 
 

0 0 159.3 0       0/0 0 2.52 2.52/2.52 2.52
3 1500 159.3 37.5 0.06/13.3 112.5 3.06 2.52/2.72 3.92
5 2500 159.3 104.2 0.08/28.7 312.5 3.83 2.52/2.94 5.60
7 3500 159.3 204.2 0.09/47.4 612.5 4.76 2.52/3.19 7.44 

10        5000 159.3 415.9 0.11/79.8      1247.6 6.29 2.52/3.57    10.31 

20        10000 159.3   1663.4 0.16/229.5 4990.2 11.82 2.52/4.97 20.16 

40 20000 159.3 6653.6 0.22/638.7 19960.7 23.23 2.52/7.64 40.08
                                                                         Gr = 0       
5  2500 0 104.1    0.08/28.7  312.3   2.90    0.081/1.52 5.0 

 

 

The long duration pulse /
o

H U   is of practical relevance to microgravity experiments in 

which the divider can be pulled infinitely slow to achieve mechanical equilibrium between two 
non-homogeneous fluids. For fast divider pulling or large impulsive velocity in a microgravity 
environment, the inertia term in Eqs. (B17-B20) becomes dominant over the buoyancy term. The 
predicted magnitude of the characteristic velocities from Eqs. (B17-B20) are shown in Table II as 
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well as the corresponding initial  potential energy Eq. (B4) and kinetic energies—Eq. (B3)  
uniform, Eq. (B9) linear, and Eqs. (B15,B16) impulsive—for a range of impulsive Reynolds 

numbers Rei . The Grashof numbers Gr = 0 and Gr = 3.18×106 correspond respectively to cases 

0 and  4 in Table I for aspect ratio Ar = 0.2.  Relative to the initial potential energy PEo  = 159.3 
ergs for Gr = 3.18×106  at Ar = 0.2, the potential energy for Gr = 3.73×105   is  PEo  =  18.3 ergs 
for Ar = 0.2 and   PEo  = 27.5 ergs for Ar = 0.3, whereas  for Gr = 2.69×107  there is a substantial 
increase in initial potential energy to  PEo = 1356.7 ergs with the large jump in density for Ar = 
0.2. The usefulness of the characteristic velocity expressions Eqs. (B17-B20), assessed against 
experimental measurements of the magnitude of the velocity field in Part 2 shows reasonable 
approximation of the characteristic velocities from Eqs. (B17) and (B18) for a limited range of 
Rei, while Eqs. (B19) and (B20) apply for the entire range of Rei considered as shown in Table II. 
 

APPENDIX C: DAMPED HARMONIC OSCILLATOR MODEL OF SLOSHING 

The transient response characteristic of sloshing such as its damped natural frequency df  is 

quantified experimentally from the time signal of the length stretch of the interface, and its 

undamped natural frequency nf  approximated using a second order model of a damped harmonic 

oscillator. This approximation applies since only the first mode of sloshing is observed for Gr = 
318 106.  or Pe = 1.06×10 10 analogous to a solid body of a mechanical system. 

 
For the damped harmonic oscillator model of sloshing, the undamped natural frequency and  

damping ratio is estimated from the experimental data for the underdamped cases using the method 
of logarithmic decrement79  ; the estimation of  the logarithmic decrement δd from the time signal 
is given as 
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in which 
1p

L%and 
1npL


%  correspond to the maximum discrete amplitude of oscillations of the length 

stretch separated by n cycles as shown in Figs. 6(a,b). Sloshing is approximated as the long time 
response of the interface to  initial input disturbance over the time scale Tf  which leads to stable 
stratification. 
 

        The  damped natural frequency df  is estimated from the time signal of the length stretch of 

the interface from Figs. 6(a,b) by averaging over the representative time interval.  The damping 
ratio ξ is  calculated from 
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and the undamped natural frequency of  the interface can be estimated from 
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in which 2d df  .  The experimentally calculated values of the damped natural frequency 

),( ddf  , undamped natural frequency ),( nnf  , and damping ratio ξ  can be used to compare 

with an approximate second-order model of a damped oscillator such as 
 

                                                   
22 ( )n nL L L f t   && &                                                 (C4) 

 
where )(tf  is the input that generates mixing, over the short time scale TSF that includes the 
disturbance due to divider motion and the resulting stretching and folding of the interface, which 

sets-up the condition for self-induced sloshing; n  is the normalized undamped natural frequency 

of the system given by Eq. (27) in terms of system variables obtained from the standard form of 

Eq. (C4), and ( )L t  is the length stretch ratio ( )/ otl l  with the property that at t = 0,  (0) 1.L   We 

consider the initial condition response of  Eq. (C4) to a step function input modeled with the 
condition that ( ) 0L t   for 0t and ( ) 1L t   for 0t  ,  and used  the transient response  as 
performance characteristics to predict the undamped natural frequency and damping ratio. For an 
underdamped system, 0 1  , the transient response  from Eq. (C4) yields 
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The damping ratio ξ in Eq. (C5) can be estimated from the speed of decay of the transient response 
which corresponds to the settling time Ts of the system. The settling time Ts can be measured in 

terms of the time constant 1/ nT   of the envelop curves; for a 2% tolerance band of the 

response, Ts is given as 
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Combining Eqs. (C3) and (C6) shows that the damping ratio m , subscript m  denotes the second-

order model,  can be estimated from  
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The damped frequency d and the settling time Ts  of the system, are obtained from the time signal 

and used to estimate the damping ratio m  and undamped natural frequency m of the second-

order model. Table III shows a comparison  between  calculated values of the undamped natural 
frequency and damping ratio from the experimental time signal to the prediction of the second-
order model Eq. (C4), and the inviscid theory of oscillation of two superposed fluids for a sharp
% and diffused D% interface. The  results from the second-order model show that as the aspect 
ratio of the cavity increases the model compares favorably to the experimental measurements as 
well as the inviscid theory of oscillation of two superposed fluids for 2D approximation.  
 

TABLE III. Comparison of  undamped natural frequency to prediction from harmonic oscillator model,  denoted by 

subscript m, of interface sloshing and the inviscid theory of two superposed fluids for sharp % and diffused D%
interface for a range of aspect ratios and fixed  Gr=3.18×106 or  Pe = 1.06×10 10 . 

 
         The disparity between model and experiment of the undamped natural frequency for Ar ≤ 
0.1 is attributed to the low number of oscillations from the time signal. The model is expected to 
hold for 2D flows which are bounded by the neighborhood of Ar ≈ 0.2; however for Ar ≥ 0.5, 
though the flow field is  expected to transition to 3D, the model predicts relatively well. The closest 
matching condition between model and experiment occurs at Ar = 0.2; the prediction of the model 

( 0.693 / , 0.266)
m m

rad s   shows reasonable agreement to the experimental measurements 

( 0.696 / , 0.280)rad s    and, the approximated undamped natural frequency 0.712 /s
n

rad 

given by Eq. (27) from scaling and,  the inviscid theory of oscillation of two superposed fluids for 
a diffused interface D%  for this approximate 2D cavity. The decrease in damping ratio from 0.8   
for Ar = 0.04 to 0.174   for Ar = 1.0 as the aspect ratio increase indicates a decrease in viscous 
effects owing to the close proximity of the walls for small aspect ratios, hence the system response 
becomes less sluggish. In contrast to the approximate damped oscillator model of Eq. (C4) for 
single mode, a more general model of a damped parametric harmonic oscillator for higher mode 
numbers based on linearized quasipotential equations, that describes the displacement of the 

interface between two fluids in which one has a density much smaller than the other B A  , 
has been described in Ref. 80 for the underdamped limit.  
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