

1 A Critical Comparison of Pyrolysis of Cellulose, Lignin, and Pine Sawdust Using
2 an Induction Heating Reactor

3
4 Pranjali D. Muley^{1*}, Charles Henkel², Kamran K. Abdollahi³, Cosmin Marculescu⁴, and Dorin

5 Boldor^{2*}

6 ¹Cain Department of Chemical Engineering,
7 Louisiana State University,
8 Baton Rouge, LA 70803
9

10 ²Department of Biological and Agricultural Engineering,
11 Louisiana State University Agricultural Center,
12 Baton Rouge, LA 70803
13

14 ³Department of Urban Forestry, Southern University Agricultural Center and Southern
15 University A&M College
16

17 ⁴Faculty of Power Engineering, Politehnica University of Bucharest, Romania
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32 *Co-corresponding Authors
33 149 EB Doran Building
34 Department of Biological and Agricultural Engineering
35 LSU AgCenter, Baton Rouge, LA 70803
36 Phone: (225)-578-7762
37 Fax: (225)-578-3492
38 e-mail: DBoldor@agcenter.lsu.edu
39

40 **Abstract**

41 Fast pyrolysis of pinewood sawdust and two of its major components, namely lignin and
42 cellulose was carried out using a laboratory scale induction-heating reactor. The effect of five
43 different temperatures (500°, 550°, 600°, 650° and 700 °C) was tested on the product yield and
44 quality. The products were characterized to evaluate the water content, elemental composition,
45 chemical composition and energy content. The char yield decreased with temperature for all of
46 the biomasses. The maximum liquid yield of 55.28% was achieved at 600 °C for pine sawdust,
47 and the highest liquid yields for cellulose and lignin were obtained at 500 °C. Water content in
48 the liquid fraction decreased as reaction temperature increased. The GC-MS revealed that the
49 bio-oil from cellulose was rich in anhydrosugars while majority of the liquid from lignin had
50 high phenolic contents. Analysis of the gas fraction shows that as the temperature increases the
51 gas yield increases, which, when paired with the declining char masses, showed an increase in
52 the biomass breakdown at higher temperatures. Liquid fraction from pine sawdust has the highest
53 HHV with a peak at 550 °C.

54 **Keywords:** Pyrolysis, lignin, cellulose, induction heating, biofuel, bio-oil

55

56 **1. Introduction**

57 Thermochemical conversion of biomass has an advantage of being capable of
58 readily producing liquid fuel from any organic matter, most importantly lignocellulosic
59 biomass.^{15, 41} Pyrolysis is an effective thermochemical process for biomass conversion, which
60 uses an oxygen free environment, and operated at reactor temperatures between 300 °C and 700
61 °C to produce bio-oil.¹⁵

62 There are several different reactor designs that have been tested for the production of bio-
63 oil through pyrolysis including: fluidized bed reactors, ablative pyrolysis reactors, and vacuum
64 pyrolysis reactors, fixed bed reactor.^{31, 33} Some of the recent designs for effective pyrolysis
65 include fixed bed drop-type reactor³¹, solar pyrolyzer.⁵⁵ These systems are all designed to
66 optimize liquid yields from the pyrolysis of lignocellulosic biomass. Despite the distinct
67 differences in design and execution of these different methods, they each share several key
68 features that allow for the maximum liquid yields. These features are important in the design of
69 any pyrolysis reactor where high liquid yields are the primary goal and include rapid heating
70 rates, high heat transfer rates to the biomass, precise control of the reactor temperature, the rapid
71 removal of the pyrolysis vapors from the reactor, and rapid cooling of these vapors.

72 Many of these traits can be achieved using an induction heating mechanism, which uses
73 an AC power supply to create an oscillating magnetic field which then heats any ferromagnetic
74 material within the confinement of induction coils. Induction heating offers a contactless heating
75 method that meets the required pyrolysis reactor features needed for high liquid yields, which
76 are: rapid heating rates, precise temperature control, and high energy efficiency.^{22, 29, 34} Some of
77 the associated drawbacks of this system are high initial cost and energy, low design flexibility
78 and probable scale-up issues. Although there is limited research available in the literature on

79 application of induction heating reactor for pyrolysis, a few detailed studies investigating the
80 effect of a batch scale induction heating reactor shows that induction heating mechanism can be
81 effectively used for pyrolysis of biomass as well as further bio-oil upgrading.^{22, 28, 34, 49, 50}

82 Pyrolysis has multiple drawbacks associated with the quality of bio-oil achieved.³⁴ The
83 bio-oil is rich in oxygenated compounds and has low energy content. Many studies have
84 investigated different methods for upgrading pyrolytic bio-oil.^{8, 17-19, 34} However, the composition
85 of biomass also affects the product yield and quality.²⁶ This study was concerned with
86 understanding the pyrolysis of pine sawdust, a common waste material from many forestry and
87 industrial sectors, which demonstrates potential to be used as a biofuel feed stock²⁴. Pine
88 sawdust, like all woody biomass consists mostly of three compounds that account for the
89 majority of its mass: cellulose, hemicellulose, and lignin, with approximately 40 % cellulose, 10
90 % hemicellulose, and 30 % lignin with the remainder of the biomass accounting for as
91 extractives such as resins, oil and ash.³

92 The chemistry of pyrolysis has been vastly studied by pyrolyzing wood components
93 separately in order to understand the reaction kinetics and pathways.^{5, 39, 42, 43, 48, 53, 54} Yang et al.,
94 performed a thermogravimetric (TGA) analysis of cellulose, hemicellulose and lignin pyrolysis
95 and investigated the temperature range at which each component breaks down. They concluded
96 that there is no interaction among the three components on the wood.⁵⁴ Similar results were
97 reported by Zhang et al., while studying the pyrolysis of cellulose lignin and hemicellulose and
98 its various mixtures.⁵⁶ Beis et al., studied the pyrolysis of different types of lignin⁵ and showed
99 that the liquid yield from lignin ranges from 16-20% whereas the kinetic parameters and
100 chemical composition varies considerably for each lignin sample.⁵ While Wang et al., studied the
101 effect of catalytic pyrolysis on individual biomass components and showed that cellulose

102 contributed to maximum aromatic yield.⁵² Hilbers et al., studied the lignin-cellulose interaction
103 and found that lignin enhances yields of levoglucosan but deceases the yield of dehydration
104 products.²³ Studies have shown that the cellulose fraction is the primary contributor to the
105 production of bio-oils, and that lignin is the primary fraction of biomass to contribute to the char
106 yields.^{10, 42, 48} Qu et al., studied the pyrolysis of three major components of wood namely,
107 cellulose, hemicellulose and lignin and showed that the additivity law can reasonably predict the
108 bio-oil yield and quality as long as the biomass composition is known.⁴² The study on effect and
109 relationship between the three components on product yield and composition at laboratory scale
110 is limited.⁴² Although pyrolysis of wood components has been investigated previously, most of
111 the studied were limited to micro scale pyrolysis studying the kinetics and reaction mechanism.
112 More recently, Stefanidis et al., studied the pyrolysis of biomass components on batch scale (1.5
113 g sample) as well as TGA analysis along with catalytic upgrading at 500 °C in a traditional
114 reactor and showed that there is a heat transfer lag during pyrolysis for component mixtures.⁴⁸

115 In this paper we report, for the first time to our knowledge, the effect of pyrolysis of
116 pinewood sawdust and its major components namely; cellulose and lignin using a bench scale
117 induction heating reactor with high biomass loading (30 g). The effect of different temperatures
118 on product yields and quality was investigated for each component (i.e. lignin and cellulose),
119 which were never been reported before. Optimum parameters were reported. The contribution of
120 individual component on the yield and bio-oil composition was studied and the results were
121 compared to the ones reported in the literature. This study can have a significant and profound
122 impact on forestry and pulp and paper industries that generate large quantities of lignin as
123 byproducts, as well as on the nascent cellulosic bioethanol industry that produces large amounts
124 of lignin as well.

125 **2. Materials and Methods**

126 **2.1. Materials**

127 The detailed procedure for preparing the pine chips is given elsewhere²¹. Briefly, the
128 pine chips were ground to a particles size in the range of 0.5-1.0 mm in diameter length and then
129 dried overnight at 105 °C. The moisture content of the biomass was determined to be 1.93 % by
130 weight using an LJ16 Moisture Analyzer (Mettler Toledo, Switzerland). The dried biomass was
131 then stored in sealed plastic bags in the freezer to minimize moisture absorption during storage
132 until the experiments were carried out.

133 The cellulose and lignin were obtained from Pure Lignin Environmental Technology Ltd.
134 (Kelowna, BC, Canada). The cellulose was rinsed thoroughly with hot water over a fine mesh to
135 remove any remaining lignin particulates and water soluble hemicellulose. It was then placed
136 overnight in a 100 °C oven to dry. The moisture content was determined to be 7.027 % by
137 weight using the LJ16 Moisture Analyzer (Mettler Toledo, Switzerland). The material was then
138 sealed in plastic bags and stored in a – 20 °C freezer to prevent water absorption. The lignin
139 supplied was in a suspended solution that needed to be separated to acquire the pure lignin for
140 pyrolysis. This was accomplished by evaporating off the solution leaving behind only the solid
141 lignin fraction as per the procedure provided by Pure Lignin Environmental Technology Ltd.
142 (Kelowna, BC, Canada). The moisture content of the lignin was 6.97 % by weight.

143 **2.2 Equipment**

144 An induction heating system (Low Frequency, RDO Induction L.L.C., Washington, NJ)
145 was used to test a range of experimental temperatures from 500 to 700 °C in 50°C increments.
146 The details of the equipment are discussed elsewhere.²² An infrared Omega IR2C PID controller

147 (Omega Engineering, Inc., Stamford, CT) was used to control the temperature of the reactor. The
148 feedback controller used a 4 – 20 mA signal to control the power output of the induction heater.

149 The liquid collection system consisted of a round bottomed flask suspended in an ice bath
150 at 0 °C and an electrostatic precipitator to prevent the bio-oil from volatilizing and also lowered
151 their temperature to reduce the occurrence of secondary reactions. The detailed description of the
152 collection system is given elsewhere.²²

153 2.3. Experimental procedure

154 The biomasses (pine sawdust, cellulose, and lignin) were pyrolyzed in a batch induction
155 pyrolysis system at five different operating temperatures: 500, 550, 600, 650, and 700 °C. These
156 experiments were performed in triplicates in order to ensure reproducibility. Preliminary studies
157 at 400 and 450 °C for cellulose and lignin indicated small yields of bio-oil, hence only
158 temperatures above 500 °C were used in this study (ISE document). The biomass was weighed
159 out in 25 g sample sizes, which were then packed into the center of the pyrolysis reaction tube.
160 The empty collection flask was also weighed before the experiments in order close the mass
161 balance and get accurate pyrolysis yield values. The reaction tube was placed between the
162 induction heating coils and connected to the gas inlet and outlet. Nitrogen gas flowing at 1.0
163 Lmin⁻¹ was used to purge the system of oxygen for 20 minutes. The induction heater was then
164 operated based on the reaction temperature. The reaction time for each temperature was
165 previously determined.³⁴ The pyrolysis reaction produced bio-oil vapors along with non-
166 condensable gases; these were carried out of the reaction chamber using the carrier gas. The
167 vapors then flowed into the collection system that was immersed in an ice bath, where the ESP
168 prevented the vast majority of condensable bio-oil droplets from escaping the collection system
169 ⁴. After the predetermined operation time, the induction heater was powered off and the reaction

170 chamber was allowed to cool. The collection flask was then weighed and the oil samples were
171 stored in a scintillation vial at – 20 °C to minimize secondary reactions. The char residue was
172 weighed to obtain the yields. The unaccounted weight after quantifying the char and liquid yields
173 was assumed to be non-condensable gas yield.

174 2.4. Characterization and analysis

175 The proximate analysis of the biomass samples were carried out using ASTM standards
176 (moisture analysis: ASTM E871-82, ash content: ASTM E1755-4582, volatile matter using
177 ASTM E872-82, while the fixed carbon was calculated from the difference. The ultimate
178 analysis was carried out using an elemental analyzer 2400 Series 2 CHNS/O (Perkin Elmer, Inc.,
179 Waltham, MA).

180 The products were qualitatively analyzed to better understand the chemical make-up of the
181 different product fractions (char, bio-oil, and non-condensable gases) of the pyrolysis reaction.
182 Char and bio-oil samples were analyzed in a 2400 Series 2 CHNS/O (Perkin Elmer, Inc.,
183 Waltham, MA) to determine the carbon, hydrogen, and nitrogen (CHN) content of the samples.
184 The details of the procedure are given elsewhere.²² The water content of the liquid samples was
185 determined using a Karl-Fischer moisture titration device (Metrohm Model 831 KF Coulometer,
186 Riverview, FL). A GC-MS and GC-FID (Varian Saturn 2200 by Agilent Technologies, Santa
187 Clara, CA) was used to analyze the bio-oil components and to quantify the peak areas.

188 2.5 Carbon and energy balances

189 The carbon balance (a primary contributor to the heating value) was performed to
190 determine the carbon distribution in the pyrolysis products, which allows estimations of
191 temperature effects on individual components yields. The energy content of the liquid products
192 was determined by the equation presented by Scholze and Meier (2001) which compute the

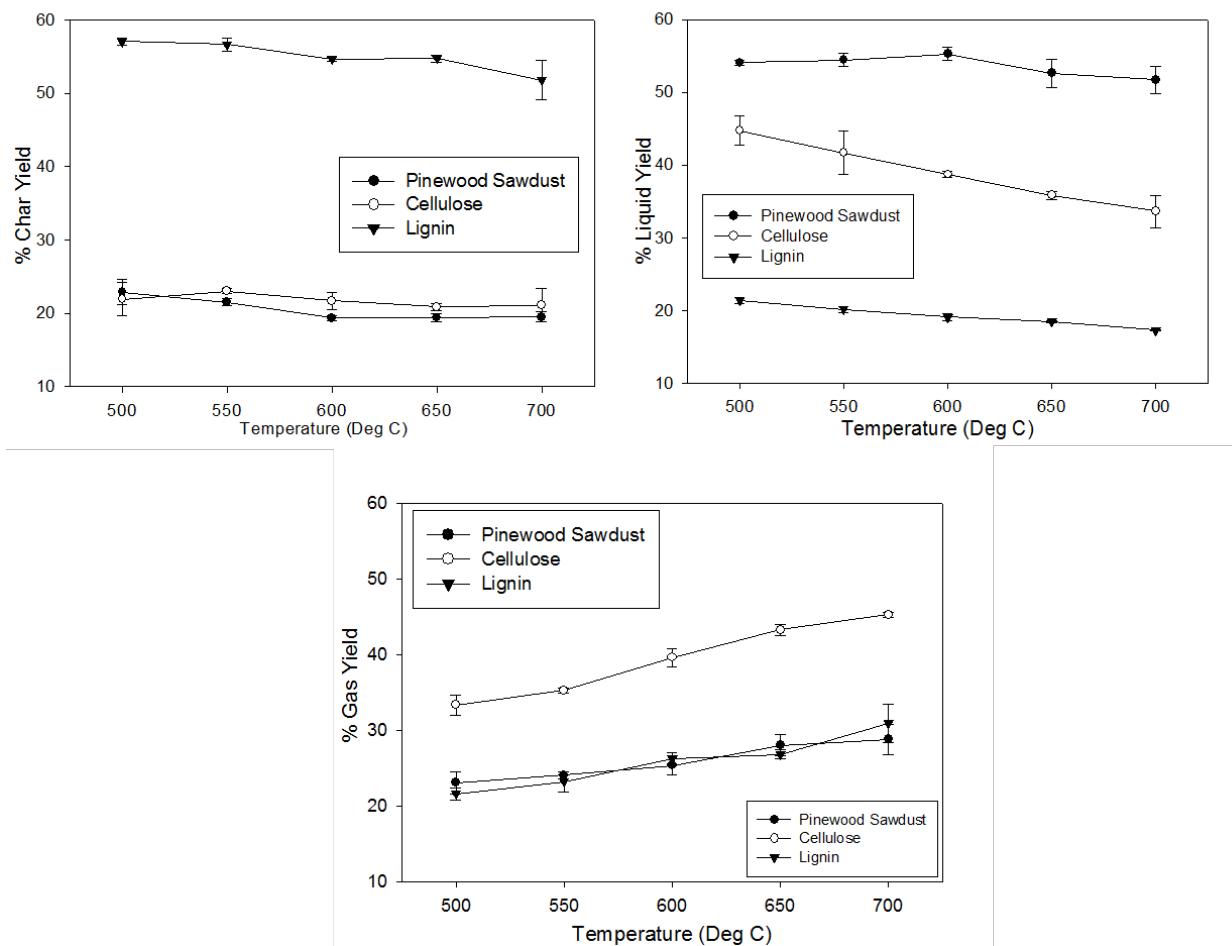
193 higher heating value (HHV) of the liquid product using the CHN analysis and Dulong's
194 formula:⁴⁵

$$195 \quad \text{HHV}(\text{MJ/kg}) = \left[338.2 * C \% + 1442.8 * \left(H \% - \frac{O \%}{8} \right) \right] * 0.001$$

196 The energy content of the biomass and char was obtained using the equation provided by
197 Demirbas (2004):¹²

$$198 \quad \text{HHV (MJ/kg)} = 0.3856 (C \% + H \%) - 1.6938.$$

199
200 The energy content of the gases was calculated by assuming the yields of CO and CH₄
201 were the only energy yielding gases produced.


202 **3. Results and Discussion**

203 3.1. Product yields

204 The proximate analysis of the raw biomass is shown in Table 1. Lignin samples displayed
205 higher percentage of ash content compared to sawdust and cellulose as well as higher fixed
206 carbon content. Cellulose biomass had the highest amount of volatile matter (Table 1). The
207 product yields from pine sawdust, cellulose, and lignin pyrolysis (Figure 1) were studied to better
208 understand the effects of reaction temperature on yields. All biomasses show a decrease in char
209 yield as the temperature increased from 500 °C to 700 °C. However, the decrease in the cellulose
210 char yields with respect to temperature was significantly low compared to the other two
211 biomasses, with the absolute percentage decrease in char yield from 500 °C to 700 °C being
212 3.78%, 14.65 %, and 9.17% for cellulose, pinewood and lignin respectively. This indicates that
213 cellulose is more thoroughly broken down at lower reaction temperatures than lignin and
214 sawdust.

215 Table 1. Proximate and Ultimate Analysis of Biomass (in %)

Biomass	Pinewood Sawdust	Cellulose	Lignin
Proximate analysis	% volatile matter	81.59	87.45
	% fixed carbon	15.96	4.67
	% ash content	0.52	0.85
Ultimate Analysis	% Moisture	1.93	7.03
	% C	46.632	41.53
	% H	6.434	6.68
	% N	0.197	0.75
	% O	46.737	51.04
			54.28

216

217 Figure 1. The yields of char, liquids, and gases indicating the effects of changing temperature on
218 the yields from the induction pyrolysis of pine sawdust, cellulose and lignin.

219

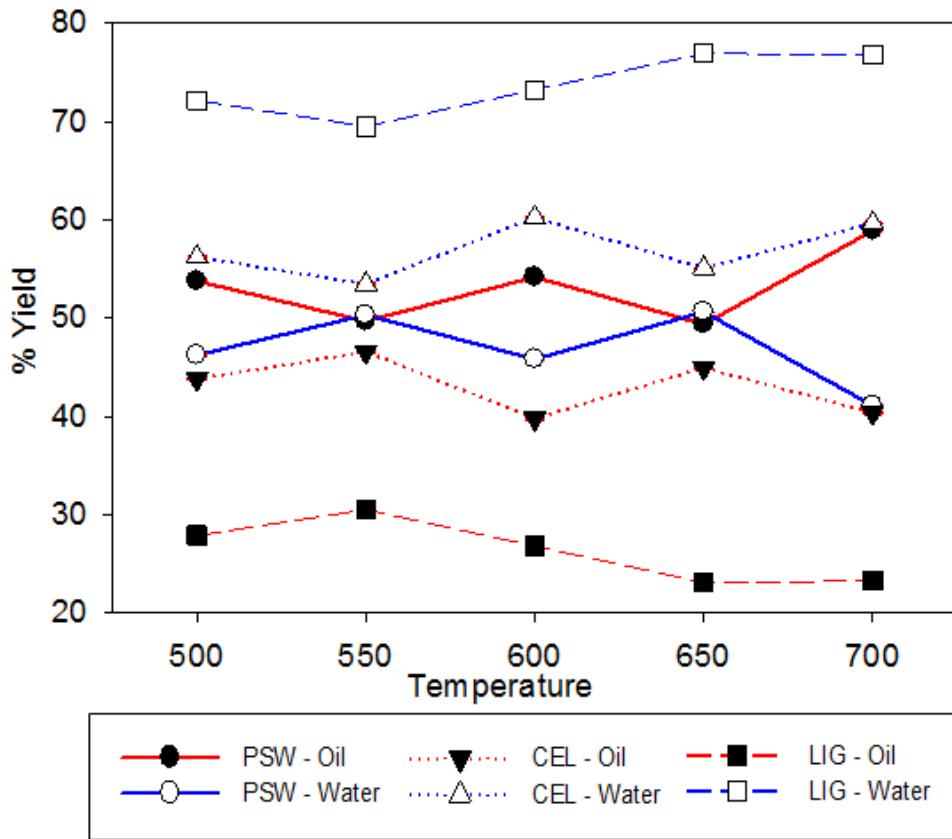
220 These results are consistent with those reported in literature,^{48, 52, 53} and can be ascribed to the

221 physical structure of each biomass. Lignin, a complex organic polymer, is a major component of

222 plant cell wall.⁷ It is a cross linked macro molecule consisting of phenylpropane units and three

223 aromatic alcohols (monolignols).⁷ These monolignols produce an amorphous lignin polymer.⁷
224 The complex molecular structure of lignin provides good thermal stability during pyrolysis,
225 leading to high char yields.⁴⁶ Moreover, lignin displays a higher fixed carbon content of about
226 30% which also adds to the high char yield.⁴² Cellulose, on the other hand, is a crystalline long
227 chain polysaccharide compound consisting of β -linked D-glucose units.³⁶ Cellulose has low
228 fixed carbon content and lower thermal stability compared to lignin; owing to its simpler
229 molecular structure, it can be more easily broken down during pyrolysis at lower temperatures,
230 yielding lower char yields. From the compositional analysis, sawdust comprises of 40% cellulose
231 and 30% lignin with the rest being hemicellulose and resins. These results demonstrate the
232 impact cellulose and lignin have on the pyrolysis yields of lignocellulosic biomass. However,
233 simple mass balance (additivity) could not be applied in our case to estimate the exact
234 contribution of cellulose and lignin on the product yield from pyrolysis of sawdust based on the
235 compositional analysis of biomass. We did not find any evidence on the interaction between the
236 components, which could be due to high initial biomass loading (30 g), higher the loading,
237 higher is the intra-component interaction in both solid and gas phase. These results are consistent
238 with the literature data that exclusively study the evidence of interaction between biomass
239 components¹¹. These results are consistent with literature which state that lignin is the primary
240 contributor to the char yield of pyrolysis of woody biomass.⁴⁸ The remaining char yields for the
241 pine sawdust can be attributed to partial degradation of hemicellulose and resins, which are
242 otherwise removed during the cellulose/lignin purification process used in this study.

243 The liquid yield decreased as the temperature increased^{20, 47} reaching a minimum of 33.63
244 % and 18% achieved at 700 °C for cellulose and lignin respectively. The highest liquid yield of
245 55.28 % was obtained from pine sawdust at 600 °C (Figure 1). The maximum liquid yield for


246 cellulose and lignin was 44.68 % and 22% respectively, obtained at 500 °C. This indicates that a
247 large portion of the bio-oil is derived from cellulose. These result are consistent with those
248 reported in the literature.^{48 51} However, for a conventional batch scale reactor, the liquid yield
249 from cellulose at 500 °C was reported to be 68% ⁴⁸ which is substantially higher than our results.
250 This could be because of higher initial biomass loading (25 g vs 1.5 g for conventional reactor).
251 Product yields tend to decrease with process scale up. The remaining liquid yield of pine sawdust
252 can be attributed to the hemicelluloses and resins, which were not investigated here separately.
253 The reason for higher contribution to bio-oil from cellulose could be due to the fact that while
254 lignin primarily consists of polyaromatic hydrocarbons and complex organic compounds,
255 cellulose is mainly made of carbohydrates such as levoglucosans. The thermal stability of
256 carbohydrates is much lower compared to that of phenols, furfurals and ketones present in lignin
257 and thus decomposes more easily, resulting in higher liquid yields.⁴² Pyrolysis temperature has a
258 profound effect on the yield of bio-oil as it defines how the volatile matter is broken down. At
259 lower temperatures 300-450 °C, carbonization reaction is dominant and yields are lower as the
260 volatile matter evaporates. When the temperature rises to 500-600 °C, the volatile matter is
261 released at higher rate, increasing the liquid yield however as the temperature increases beyond
262 this point, the volatile matter is further broken down to form incondensable gases. The
263 intermediate instable compounds are also cracked to smaller molecules which may escape at
264 room temperature, decreasing the bio-oil yield.^{34, 42}

265 As expected, all biomasses exhibited an increase in the gas yields as the pyrolysis
266 temperature increased from 500 °C to 700 °C. Lignin displayed the largest percentage increase in
267 gas yields of 43.01% followed by cellulose (35.6%) and pine sawdust (24.6%). The trend of
268 increased gas yields as reaction temperature increased has been shown in previous studies;³⁴ it is

269 due to the more complete breakdown of the biomasses at the higher reaction temperatures.^{1, 9, 32,}
270 ³⁴ The optimum operating conditions for highest overall energy efficiency are explored in the
271 energy balance discussion section. No significant effect of induction heating was observed on the
272 product yields.

273 3.2. Water content of the liquid fraction

274 Figure 2 shows the results of Karl Fischer titrations performed on the liquid fractions to
275 determine the water yield of the bio-oil. The initial moisture content of the biomass is reported
276 elsewhere. The water yield was found to be significantly high at all temperatures for all biomass
277 types; this has previously been reported to be a side effect of induction pyrolysis.^{28, 50} The
278 maximum liquid yield of pine sawdust was shown to occur at 600 °C; the water yield at this
279 temperature was 45.82 % of the liquid fraction. The water yield from cellulose pyrolysis was a
280 maximum of 60.21 % of the liquid yield at 600 °C. The water yield followed a slight negative
281 trend as the reaction temperature increased; this paralleled the negative trend seen in the total
282 liquid yield in the pyrolysis of cellulose. The water yields from lignin pyrolysis was significantly
283 higher than that of the pine sawdust and cellulose, ranging from 69.48 – 76.90 %. This
284 observation is consistent with the reaction mechanisms proposed in the literature,⁶ with water
285 formation due to prevalent dehydration of lignin when pyrolyzed.⁶ High water content is also a
286 result of the presence of hydrogen bonding between hydroxyl groups and other oxygen bonds in
287 the lignin.^{27, 38} Splitting of OH functional group on the aliphatic side chains result in water
288 formation.³⁸ Additionally, water formation can be considered an indication of deoxygenation
289 reaction from bio-oil as oxygen is removed in the form of water and CO₂. Pinewood sawdust had
290 the highest liquid yield and lowest water content compared to cellulose and lignin pyrolysis.

291
292 Figure 2. The KF titrations of the three biomasses pine sawdust, cellulose, and lignin. Showing
293 the change in water content of the bio-oil and the bio-oil as a fraction of the total mass compared
294 to reaction temperature.

295 3.3. Characterization of char

296 An elemental analysis of the char products was compared to the unpyrolyzed biomass,
297 (Table 2). The unburned pine sawdust sample has a carbon content of 46.63 % almost half to that
298 of the char when processed at 500 °C (81.19 %). This significant change indicates that the
299 oxygen content of biomass, which accounts for the majority of the remaining mass in the
300 unburned biomass CHN, has been significantly reduced during the pyrolysis process. The CHN
301 analysis of char obtained from cellulose pyrolysis show a decrease in carbon content with carbon
302 content of 79.45 % when processed at 500 °C except at 650 °C. The carbon content of unburned
303 cellulose and lignin was 41.53% and 48.34% respectively and follows the same trend as
304 pinewood sawdust. The increase in carbon content is a result of the overall reduced char mass,

305 and the remaining char becomes an increasingly condense carbon matrix ⁴⁴. The more reactive
 306 oxygen and hydrogen are removed leaving behind a higher concentration of carbon in the char.
 307 However, this phenomenon is less pronounced for lignin char fraction of increasing carbon
 308 content compared to cellulose and sawdust. The carbon content increases from 500 °C to 550 °C
 309 , but then begins to decline at the higher reaction temperatures, eventually leaving less carbon in
 310 the char than was present in the unburned biomass at 700 °C. This could be a result of the
 311 complex and tightly bound structure of lignin, which reduces the heat and mass transfer rate, or
 312 from the presence of molecules that were untested for such as sulfur which disrupt the carbon
 313 matrix and change the chemical reactions that take place on the surface of the biomass during
 314 pyrolysis.⁴⁴ Table 2 indicated that a high amount of oxygen is present in the lignin chars even
 315 after processing at higher temperatures. These results are consistent with the literature data which
 316 also shows that most of the oxygen present in the char is phenolic in nature.⁴⁶ High nitrogen
 317 content in lignin chars could be a result of presence of nitrogen in original lignin samples, some
 318 of which is evolved as volatile nitrogen compounds such as HCN or NH₃ and the remainder is
 319 trapped in the char.²⁵

320 Table 2. The CHN analysis results of the char yields from the induction pyrolysis of pine
 321 sawdust, cellulose, and lignin compared to the CHNO analysis of their respective biomasses.

Biomass	Temperature (°C)	% Carbon	% Hydrogen	% Nitrogen	% Oxygen
Pine sawdust	Unburned	46.632	6.434	0.197	46.737
	500	81.188	3.498	0.338	14.975
	550	85.997	3.088	0.374	10.541
	600	88.499	2.435	0.527	8.538
	650	89.703	2.009	0.753	7.534
	700	88.516	1.891	1.460	8.133
Cellulose	Unburned	41.531	6.679	0.749	51.041
	500	79.187	3.190	0.998	16.626
	550	76.742	3.291	0.668	19.299
	600	76.274	3.439	0.550	19.737

	650	82.622	1.940	0.535	14.903
	700	78.574	2.470	1.073	17.883
Lignin	Unburned	36.707	4.036	4.974	54.283
	500	46.458	1.754	3.817	47.972
	550	38.251	1.027	2.770	57.953
	600	38.251	0.761	2.243	58.747
	650	36.894	0.874	2.501	59.732
	700	30.680	0.761	2.243	66.318

322

323 3.4. Characterization of the liquid fraction

324 The bio-oil liquid fraction (without water) was characterized using two methods CHN
 325 analysis and GC-MS analysis. Table 3 shows the percentage of Carbon, Hydrogen, and Nitrogen
 326 in the liquid samples on a weight basis. The oxygen content of the liquid fraction was calculated
 327 from the difference. Bio-oil liquid fraction obtained from the pyrolysis of pine sawdust yielded
 328 higher carbon content and lower nitrogen content than its subcomponents cellulose and lignin.

329 Higher carbon content could be contributed by bio-oil from hemicellulose, as bio-oil from
 330 hemicellulose has been reported to have high content of acids, aromatics, esters and ketones.⁴²

331 The oxygen content of the liquids obtained from the pyrolysis of cellulose were much higher
 332 than lignin and sawdust, this can be shown by the higher initial oxygen content of the cellulose
 333 based upon its chemical formula $(C_6H_{10}O_5)_n$ as compared to $(C_{31}H_{34}O_{11})_n$ of lignin. The
 334 maximum oxygen content of the bio-oil from cellulose was 47.76 % at 650 °C, as compared with
 335 25.61 % for pine sawdust at 500 °C and 44.56% for lignin at 550 °C. Lower oxygen content for
 336 pinewood bio-oil could be due to high carbon content contributed by hemicellulose. The liquid
 337 fraction obtained from the lignin biomass had high hydrogen and nitrogen contents as nitrogen
 338 content of the bio-oil excessively depends on the biomass feedstock composition.^{14, 35} In this
 339 case, unburned lignin had high nitrogen and hydrogen content.

340

341 Table 3. The CHN analysis of the liquid fraction showing the change in composition of the bio-
 342 oil fraction between the three biomasses due to the change in the pyrolysis reaction temperature

Biomass	Temperature (°C)	% Carbon	% Hydrogen	% Nitrogen	% Oxygen
Pine sawdust	500	59.95	13.74	0.69	25.60
	550	71.12	13.45	0.14	15.27
	600	69.80	10.60	0.13	19.45
	650	65.53	14.06	0.16	20.23
	700	63.87	13.18	0.15	22.77
Cellulose	500	50.45	15.26	0.47	33.80
	550	47.36	12.60	0.41	39.62
	600	57.47	16.55	0.53	25.44
	650	35.28	16.63	0.31	47.76
	700	40.85	19.39	0.39	39.35
Lignin	500	29.59	28.24	13.02	29.15
	550	20.65	23.41	11.35	44.56
	600	22.42	25.93	11.78	39.86
	650	25.72	31.99	17.38	24.89
	700	22.44	31.26	17.31	28.97

343

344 The GC-MS spectra of the liquid products were also analyzed (using the method reported
 345 by Olazar et al.)² to quantify the peak areas of certain compound groups including: ketones,
 346 aldehydes, alcohols, acids, phenols, levoglucosans, and fatty alcohols.³⁷ The quantification of the
 347 GC-MS is shown in Table 4. The bio-oils obtained from pyrolysis of cellulose yielded high
 348 amount of anhydro-sugars, mainly levoglucosan (40-50%) which is consistent with the
 349 previously reported studies.^{40, 42, 47} Since cellulose is mainly a glucose polymer, at high
 350 temperatures, thermal decomposition disrupts the polymer chain at the glucosidic bond forming
 351 anhydrosugars.⁴⁰ The formation of levoglucosan is due to the intramolecular rearrangement of
 352 the monomer units as per a detailed mechanism given by Piskorz et al.^{40, 47} The formation of
 353 other anhydrosugars demand high energy compared to formation of levoglucosan and hence are
 354 obtained in smaller amounts. Although cellulose bio-oil has highest contribution to the bio-oil
 355 from pinewood sawdust, the amount of anhydrosugars in pine wood bio-oil was low, ranging

356 from 6-8%. This is due to secondary reaction involving decomposition of levoglucosan to
 357 produce acetaldehyde and other stable products.^{47, 57} The lignin GC-MS data revealed that all
 358 temperatures yielded high concentration of phenolic compounds; similar results have been
 359 reported in literature.⁴² Other compounds were not detected in our system for lignin bio-oil,
 360 however small amounts of esters and acids have been reported in literature.⁴² The phenol yield is
 361 much higher in the liquids derived from sawdust; this can be accounted for by the contribution of
 362 lignin to the liquid yields ⁵¹. The GC-MS quantification shows that the pyrolysis of the pine
 363 sawdust and its constituents yielded a complex mixture of oxygenated compounds, this supports
 364 what was found in the CHN analysis of the liquids. The high oxygen content of the liquid
 365 product indicates a low heating value of the liquid ³⁷ and requires to be upgraded to higher
 366 quality.³⁴

367 Table 4. The quantification (in %) of the GC-MS of the liquid fraction from pine sawdust,
 368 cellulose, and lignin

Compound Type	Pine sawdust				
	500	550	600	650	700
Furans	9.31	5.80	0.00	7.01	2.80
Ketones	4.23	5.20	10.92	9.27	16.42
Aldehydes	0.00	1.18	15.19	0.00	0.00
Alcohols	1.51	0.50	3.38	0.00	1.63
Acids	0.00	0.39	1.54	10.27	1.60
Phenols	74.46	78.18	51.91	75.42	64.75
Unidentified	1.37	1.87	9.32	0.00	5.11
Anhydro-Sugars	6.23	5.86	7.74	8.30	7.68

Compound Type	Cellulose				
	500	550	600	650	700
Furans	6.71	7.85	6.22	7.29	9.18
Ketones	10.53	9.47	11.92	5.64	6.32
Aldehydes	0.00	1.73	0.00	0.00	0.00
Alcohols	8.21	4.04	7.47	6.38	4.02
Acids	10.01	4.40	0.00	8.25	6.31
Phenols	15.94	19.69	20.74	20.68	17.50

Unidentified	4.92	5.49	2.66	3.11	5.47
Anhydro-Sugars	43.68	47.32	50.98	48.65	51.20

369

Compound Type	Temperature(°C)				
	500	550	600	650	700
Lignin	100	100	100	100	100
Phenols					

370

371 3.5 Carbon and energy balances

372 A carbon balance was performed on the product of the pyrolysis system, in order to
 373 determine the end point of the original carbon found in the biomass as it was pyrolyzed and
 374 collected. Table 5 shows the carbon balance for all experiments. It is observed that the carbon
 375 yield decreased in all three biomasses as the reaction temperature was increased. Gas fractions
 376 from cellulose and lignin saw an increase in carbon as the temperature was increased, with the
 377 change being more pronounced for lignin. The carbon values for gas fraction from pine sawdust
 378 did not follow a specific trend. The liquid fractions of the cellulose and the lignin both showed a
 379 decline in the carbon content as the temperature was increased. However, the liquid yields
 380 showed an increase until 600 °C and then a decrease. This data indicated that the carbon from the
 381 biomass shifted from the solid state at the lowest temperatures, to the liquid state at the more
 382 moderate temperatures, and then to the gas fraction at the highest temperatures. The shifting
 383 carbon indicates that at the higher temperatures the biomass is broken into smaller molecular
 384 structures (such as CO, CH₄ and CO₂) and that at moderate temperatures the majority of the
 385 biomass carbon can be converted into liquids.

386 Table 5. The Carbon balance performed on the three biomasses at the different operating
 387 conditions

Biomass	Temperature (°C)	Output (g)				
		Input (g)	Biomass	Char	Liquid	Gases
	500	13.99	5.57	5.22	3.20	
	550	13.99	5.55	5.77	2.67	

PSW	600	13.99	5.14	6.27	2.58
	650	13.99	5.21	5.10	3.67
	700	13.99	5.18	5.41	3.40
CEL	500	12.46	5.21	2.96	4.28
	550	12.46	5.31	2.75	4.40
	600	12.46	4.96	2.65	4.84
	650	12.46	5.17	1.71	5.58
	700	12.46	4.98	1.66	5.82
LIG	500	11.01	7.95	0.53	2.53
	550	11.01	6.50	0.38	4.13
	600	11.01	6.27	0.34	4.40
	650	11.01	6.06	0.33	4.63
	700	11.01	4.77	0.27	5.97

388

389 An energy balance over the system for all three biomasses was conducted. The energy
 390 balance would help to determine the optimum operating temperatures. Previous studies show that
 391 induction heating has an energy efficiency for about 85%, and for a well-insulated reaction
 392 chamber, the heat losses can be reduced by 70%.³⁴ The energy balance for pine sawdust shows
 393 that the optimum temperature was 550 °C with the total energy ratio for biomass being 5.03.
 394 This reaction temperature also produces high liquid yield and low water yield. However this
 395 included the char which is often used for soil amelioration and not combusted for energy; if the
 396 char value is not counted to the products energy value, the optimum temperature shifts to 600 °C
 397^{13, 16, 30}. This would indicate that at this temperature the maximum liquid yields are obtained and
 398 contribute to the most efficient operating parameters. Cellulose biomass has a higher energy
 399 content compared to lignin, however since lignin bio-oil displayed a high hydrogen content, the
 400 HHV value of lignin bio-oil was higher than cellulose (32-50 MJ/kg vs 27-38 MJ/kg). Sawdust
 401 bio-oil had an average high heating value of 38 MJ/kg as expected, since lignin makes up only
 402 25-30% of the sawdust composition (Table 6). The total energy output for sawdust was higher
 403 than both cellulose and lignin ranging from 78-82 MJ/kg (Table 6); this added energy could be

404 attributed to compounds formed by pyrolysis of hemicellulose and resins. An overall net positive
 405 output was achieved for both biomass and system energy balance. However, induction heating
 406 should be further studied to optimize the reaction time and in turn the global energy efficiency of
 407 the process.

408 Table 6. The energy balance comparing the three biomasses and the energy of the products as
 409 compared with the energy of their inputs

Biomass	Tempera ture (°C)	Energy Inputs (MJ/kg)			Energy of the outputs (MJ/kg)				Energy Ratios Outputs/Inputs	
		Biomass energy content	Induction heater power	Estimated power after insulation	Bio-oil	Gas	Char	Total	Biomass	System - estimated
PSW	500	16.61	90.8	27.24	35.49	13.13	29.80	78.42	4.72	2.87
	550	16.61	117.2	35.16	40.71	11.21	31.64	83.56	5.03	2.37
	600	16.61	141.2	42.36	35.40	13.17	31.91	80.48	4.84	1.89
	650	16.61	174.8	52.44	38.80	12.02	31.87	82.69	4.97	1.57
	700	16.61	208.56	62.56	36.52	12.04	31.19	79.75	4.80	1.27
CEL	500	14.48	90.8	27.24	32.98	12.45	28.65	74.08	5.11	2.71
	550	14.48	117.2	35.16	27.06	11.75	27.22	66.03	4.56	1.87
	600	14.48	141.2	42.36	38.73	13.93	27.12	79.78	5.50	1.88
	650	14.48	174.8	52.44	27.31	11.80	28.05	67.16	4.63	1.28
	700	14.48	208.56	62.56	34.70	11.84	25.83	72.37	4.99	1.15
LIG	500	8.45	90.8	27.24	45.50	10.39	10.57	66.46	7.86	2.43
	550	8.45	117.2	35.16	32.73	10.53	4.58	47.84	5.66	1.36
	600	8.45	141.2	42.36	37.80	10.58	3.76	52.14	6.17	1.23
	650	8.45	174.8	52.44	50.37	10.89	12.17	73.43	8.68	1.40
	700	8.45	208.56	62.56	47.47	11.13	3.27	55.33	6.54	0.88

410

411 4. Conclusion

412 In this study, the batch inductive-heating pyrolysis of pine sawdust, cellulose, and lignin
 413 were conducted in a fix-bed heating system with high initial biomass loading. The char yields
 414 decreased with temperature for all of the biomasses, and the carbon content in the char yields
 415 increased in the pine sawdust and cellulose pyrolysis. The maximum liquid yield was achieved at
 416 600 °C for pine sawdust, and the highest liquid yields for cellulose and lignin were obtained at

417 500 °C. The fact that the cellulose and lignin liquid yields are significantly lower than that of the
418 pine sawdust indicate that the higher liquid yields seen in the pine sawdust are a result of the
419 pyrolysis of other structures, i.e. hemicelluloses and resins. Water content of the liquid fraction
420 tended to decrease as reaction temperature increased. The high amount of water indicates that
421 water is produced during the pyrolysis reactions as the initial moisture content of biomass was
422 maintained under 8%. CHN analysis of the bio-oil product shows high levels of oxygen in the
423 liquid products, and a significant difference between the carbon contents of the liquids showing
424 that bio-oil obtained from pine sawdust has much higher carbon content and therefore a higher
425 heating value. The GC-MS revealed that the majority of the liquid consisted of phenolic and
426 oxygenated hydrocarbons, with lignin displaying a higher content of phenolic compounds as the
427 GC-MS revealed no other groups in the resulting bio-oil.

428 **Acknowledgements**

429 The authors would like to acknowledge LSU's Department of Biological and Agricultural
430 Engineering and the LSU Agricultural Center for their support of this project. Published with the
431 approval of the Director of the Louisiana Agricultural Experiment Station as manuscript 2015-
432 232-22758. This work was financially supported in part by the US National Science Foundation
433 (NSF award #CBET-1437810), USDA NIFA (award# 2011-38821-30873) and USDA Hatch
434 programs (project # LAB 94196). The author extends their recognition to Charles Milan, Dr.
435 Rafael Cueto, Connie David, Jeff Corkern, Thomas Blanchard, and Gustavo Aguilar for their
436 technical support.

437

438 **5. References**

439 (1) Açıkalın, K.; Karaca, F.; Bolat, E., *Fuel*, **2012**, 95, 169-177.

440 (2) Aguado, R.; Olazar, M.; San José, M. J.; Aguirre, G.; Bilbao, J., *Industrial & Engineering*
441 *Chemistry Research*, **2000**, 39, 1925-1933.

442 (3) Arsène, M.-A.; Bilba, K.; Savastano Junior, H.; Ghavami, K., *Materials Research*, **2013**, 16,
443 903-923.

444 (4) Bedmutha, R. J.; Ferrante, L.; Briens, C.; Berruti, F.; Inculet, I., *Chemical Engineering and*
445 *Processing: Process Intensification*, **2009**, 48, 1112-1120.

446 (5) Beis, S.; Mukkamala, S.; Hill, N.; Joseph, J.; Baker, C.; Jensen, B.; Stemmler, E.; Wheeler,
447 C.; Frederick, B.; Van Heiningen, A., *BioResources*, **2010**, 5, 1408-1424.

448 (6) Brebu, M.; Vasile, C., *Cellulose Chemistry & Technology*, **2010**, 44, 353.

449 (7) Buranov, A. U.; Mazza, G., *Industrial Crops and Products*, **2008**, 28, 237-259.

450 (8) Čelič, T. B.; Grilc, M.; Likozar, B.; Tušar, N. N., *ChemSusChem*, **2015**.

451 (9) Chhiti, Y.; Salvador, S.; Commandré, J.-M.; Broust, F., *Fuel*, **2012**, 102, 274-281.

452 (10) Collard, F.-X.; Blin, J., *Renewable and Sustainable Energy Reviews*, **2014**, 38, 594-608.

453 (11) Couhert, C.; Commandré, J.-M.; Salvador, S., *Fuel*, **2009**, 88, 408-417.

454 (12) Demirbas, A.; Demirbas, H., *Energy, Exploration & Exploitation*, **2004**, 22, 135.

455 (13) Duku, M. H.; Gu, S.; Hagan, E. B., *Renewable and Sustainable Energy Reviews*, **2011**, 15,
456 3539-3551.

457 (14) Elliott, D. C.; Hart, T. R.; Neuenschwander, G. G.; Rotness, L. J.; Zacher, A. H.,
458 *Environmental Progress & Sustainable Energy*, **2009**, 28, 441-449.

459 (15) Fatih Demirbas, M.; Balat, M.; Balat, H., *Energy Convers. Manage.*, **2011**, 52, 1815-1828.

460 (16) Ghosh, S.; Yeo, D.; Wilson, B.; Ow, L. F., *Soil Use and Management*, **2012**, 28, 329-336.

461 (17) Grilc, M.; Likozar, B.; Levec, J., *Applied Catalysis B: Environmental*, **2014**, 150-151, 275-
462 287.

463 (18) Grilc, M.; Likozar, B.; Levec, J., *Biomass Bioenergy*, **2014**, 63, 300-312.

464 (19) Grilc, M.; Likozar, B.; Levec, J., *Catal. Today*, **2015**, 256, Part 2, 302-314.

465 (20) Hajaligol, M. R.; Howard, J. B.; Longwell, J. P.; Peters, W. A., *Industrial & engineering*
466 *chemistry process design and development*, **1982**, 21, 457-465.

467 (21) Henkel, C., M.S. Thesis, Louisiana State University, December 2014.

468 (22) Henkel, C., Muley, P. D., Abdollahi, K. K., Marculescu, C., Boldor, D., *Energy Convers.*
469 *Manage.*, **2015**.

470 (23) Hilbers, T. J.; Wang, Z.; Pecha, B.; Westerhof, R. J. M.; Kersten, S. R. A.; Pelaez-
471 Samaniego, M. R.; Garcia-Perez, M., *J. Anal. Appl. Pyrolysis*, **2015**, 114, 197-207.

472 (24) Hoogwijk, M.; Faaij, A.; van den Broek, R.; Berndes, G.; Gielen, D.; Turkenburg, W.,
473 *Biomass and Bioenergy*, **2003**, 25, 119-133.

474 (25) Im, H.; Rasouli, F.; Hajaligol, M., *Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem*, **2003**, 48,
475 569.

476 (26) Jahirul, M. I.; Rasul, M. G.; Ahmed Chowdhury, A.; Ashwath, N., *Energies (19961073)*,
477 **2012**, 5, 4952-5001.

478 (27) Klein, M.; Virk, P., *ACS Div Fuel Chem Prepr*, **1981**, 26, 77-88.

479 (28) Lee, M.-K.; Tsai, W.-T.; Tsai, Y.-L.; Lin, S.-H., *J. Anal. and Appl. Pyrolysis*, **2010**, 88, 110-
480 116.

481 (29) Lucia, O.; Maussion, P.; Dede, E. J.; Burdio, J. M., *IEEE Trans. Ind. Electron.*, **2014**, 61,
482 2509-2520.

483 (30) Mao, J. D.; Johnson, R. L.; Lehmann, J.; Olk, D. C.; Neves, E. G.; Thompson, M. L.;
484 Schmidt-Rohr, K., *Environmental Science & Technology*, **2012**, 46, 9571-9576.

485 (31) Mazlan, M. A. F.; Uemura, Y.; Osman, N. B.; Yusup, S., *Energy Convers. Manage.*, **2015**,
486 98, 208-214.

487 (32) McKendry, P., *Bioresour. Tech.*, **2002**, 83, 47-54.

488 (33) Meier, D.; Faix, O., *Bioresource Technology*, **1999**, 68, 71-77.

489 (34) Muley, P. D.; Henkel, C.; Abdollahi, K. K.; Boldor, D., *Energy & Fuels*, **2015**.

490 (35) Mullen, C. A.; Boateng, A. A.; Goldberg, N. M.; Lima, I. M.; Laird, D. A.; Hicks, K. B.,
491 *Biomass Bioenergy*, **2010**, 34, 67-74.

492 (36) O'Sullivan, A., *Cellulose*, **1997**, 4, 173-207.

493 (37) Olazar, M.; Aguado, R.; Bilbao, J.; Barona, A., *AIChE Journal*, **2000**, 46, 1025.

494 (38) Pandey, M. P.; Kim, C. S., *Chemical Engineering & Technology*, **2011**, 34, 29-41.

495 (39) Pasquali, C. E. L.; Herrera, H., *Thermochim. Acta*, **1997**, 293, 39-46.

496 (40) Piskorz, J.; Radlein, D.; Scott, D. S., *J. Anal. Appl. Pyrolysis*, **1986**, 9, 121-137.

497 (41) Pradhan, D.; Singh, R. K.; Bendu, H.; Mund, R., *Energy Convers. Manage.*, **2016**, 108, 529-
498 538.

499 (42) Qu, T.; Guo, W.; Shen, L.; Xiao, J.; Zhao, K., *Industrial & Engineering Chemistry*
500 *Research*, **2011**, 50, 10424-10433.

501 (43) Ramiah, M., *J. Appl. Polym. Sci.*, **1970**, 14, 1323-1337.

502 (44) Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W., *GCB Bioenergy*, **2013**, 5, 104-115.

503 (45) Scholze, B.; Meier, D., *Journal of Analytical and Applied Pyrolysis*, **2001**, 60, 41-54.

504 (46) Sharma, R. K.; Wooten, J. B.; Baliga, V. L.; Lin, X.; Geoffrey Chan, W.; Hajaligol, M. R.,
505 *Fuel*, **2004**, 83, 1469-1482.

506 (47) Shen, D. K.; Gu, S., *Bioresour. Tech.*, **2009**, 100, 6496-6504.

507 (48) Stefanidis, S. D.; Kalogiannis, K. G.; Iliopoulou, E. F.; Michailof, C. M.; Pilavachi, P. A.;
508 Lappas, A. A., *J. Anal. Appl. Pyrolysis*, **2014**, 105, 143-150.

509 (49) Tsai, W.-T.; Mi, H.-H.; Chang, J.-H.; Chang, Y.-M., *J. Anal. and Appl. Pyrolysis*, **2009**, 86,
510 364-368.

511 (50) Tsai, W. T.; Lee, M. K.; Chang, Y. M., *J. Anal. Appl. Pyrolysis*, **2006**, 76, 230-237.

512 (51) Wang, G.; Li, W.; Li, B.; Chen, H., *Fuel*, **2008**, 87, 552-558.

513 (52) Wang, K.; Kim, K. H.; Brown, R. C., *Green Chemistry*, **2014**, 16, 727-735.

514 (53) Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C., *Fuel*, **2007**, 86, 1781-1788.

515 (54) Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D. H.; Liang, D. T., *Energy & Fuels*, **2006**,
516 20, 388-393.

517 (55) Zeng, K.; Gauthier, D.; Lu, J.; Flamant, G., *Energy Convers. Manage.*, **2015**, 106, 987-998.

518 (56) Zhang, J.; Choi, Y. S.; Yoo, C. G.; Kim, T. H.; Brown, R. C.; Shanks, B. H., *ACS*
519 *Sustainable Chemistry & Engineering*, **2015**, 3, 293-301.

520 (57) Zhang, X.; Yang, W.; Blasiak, W., *J. Anal. Appl. Pyrolysis*, **2012**, 96, 110-119.

521

Electronic supplementary information

Pyrolysis of lignin and cellulose was studied at 400 °C and 450 °C. The product yield data is given below.

Table S.1. Products yield from pyrolysis of pine sawdust, lignin and cellulose at different temperatures.

Biomass	Temperature	Char	Liquid	Gas
	°C	Yield %	Yield %	Yield %
PSW	500	22.86%	54.03%	23.11%
PSW	550	21.50%	54.42%	24.08%
PSW	600	19.36%	55.28%	25.37%
PSW	650	19.38%	52.59%	28.03%
PSW	700	19.51%	51.68%	28.81%
CEL	400	32.41%	34.73%	32.86%
CEL	450	29.06%	39.22%	31.72%
CEL	500	21.94%	44.68%	33.38%
CEL	550	23.04%	41.64%	35.31%
CEL	600	21.68%	38.69%	39.63%
CEL	650	20.88%	35.84%	43.28%
CEL	700	21.11%	33.63%	45.26%
LIG	400	63.02%	17.33%	19.65%
LIG	450	59.92%	19.28%	20.80%
LIG	500	57.03%	21.34%	21.62%
LIG	550	56.64%	20.13%	23.22%
LIG	600	54.66%	19.06%	26.29%
LIG	650	54.73%	18.43%	26.83%
LIG	700	51.80%	17.28%	30.92%

Highlights

- Pine sawdust, lignin, and cellulose were pyrolyzed using induction heating reactor
- Increasing temperature (500 to 700°C) increased gas yield and decreased liquid yield
- Cellulose had higher bio-oil yields than lignin; lignin had highest char yields
- Cellulose bio-oil was rich in anhydrosugars; bio-oil from lignin was rich in phenols
- Overall net positive energy output was achieved for all biomass types and the induction heating reactor