2018 IEEE International Parallel and Distributed Processing Symposium

Communication Lower Bounds for Matricized
Tensor Times Khatri-Rao Product

Grey Ballard and Kathryn Rouse
Department of Computer Science
Wake Forest University
Winston Salem NC, USA
Email: {ballard,rousekm} @wfu.edu

Abstract—The matricized-tensor times Khatri-Rao product
(MTTKRP) computation is the typical bottleneck in algorithms
for computing a CP decomposition of a tensor. In order to develop
high performance sequential and parallel algorithms, we establish
communication lower bounds that identify how much data move-
ment is required for this computation in the case of dense tensors.
We also present sequential and parallel algorithms that attain
the lower bounds and are therefore communication optimal. In
particular, we show that the structure of the computation allows
for less communication than the straightforward approach of
casting the computation as a matrix multiplication operation.

I. INTRODUCTION

Tensor decompositions are a powerful tool in the analysis
of multidimensional datasets arising from a wide variety of
applications. One of the most popular decompositions, known
as CANDECOMP/PARAFAC or CP, is a generalization of the
matrix singular value decomposition (or principle component
analysis) and forms a low-rank approximation of tensor data.
Such decompositions are used heavily in the scientific com-
puting, signal processing, and machine learning communities
[1]-[3], and the formulations and fundamental algorithms for
computing these decompositions are well established.

However, their growing popularity, along with the continued
increase in the size of datasets across applications, has in-
creased demand for high-performance parallel algorithms and
implementations. To deliver efficient solutions for tensor prob-
lems, high performance computing can leverage the wealth
of knowledge and experience with dense and sparse matrix
computations, which are closely related to the computational
kernels within tensor decomposition algorithms. In particular,
obtaining high performance requires minimizing the cost of
data movement among processors and within the memory
hierarchy, as the costs of communication are an increasing
bottleneck on today’s architectures.

The goal of this work is to focus on the communication costs
of the bottleneck computation within algorithms that compute
the CP decomposition. The CP decomposition, as we discuss
in Sec. II, approximates a tensor as a sum of rank-one tensors,
typically represented as a set of factor matrices, much like a
low-rank approximation of a matrix. Nearly all optimization
schemes for computing a CP decomposition spend most of
their time in a computation known as matricized-tensor times
Khatri-Rao product (MTTKRP), and in this work we focus on

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/1PDPS.2018.00065

557

Nicholas Knight
Department of Mathematics
New York University
New York NY, USA
Email: nknight@nyu.edu

MTTKREP in the case of dense tensors. Our results are based
on a sequential two-level memory model and a distributed-
memory parallel model.

The main contributions of this paper are to

o derive communication lower bounds for MTTKRP in
sequential and parallel models: see Sec. IV;

e propose communication-optimal sequential and parallel
MTTKRP algorithms: see Sec. V;

o demonstrate that the conventional MTTKRP approach
based on matrix multiplication communicates more than
performing MTTKRP as a multiway tensor contraction:
see Sec. VL.

We discuss related work in Sec. III and conclude in Sec. VII.

II. PRELIMINARIES

A. CP Decomposition

The CANDECOMP/PARAFAC or canonical polyadic (CP)
decomposition is the approximation of a tensor by a sum of
rank-one tensors. Given an N-way tensor X of dimensions
I; x ---x Iy, arank-R CP decomposition, represented by NV
factor matrices {A(k)}ke[N], is given by

X))~ Y AV AN iy,), %)
re[R]
where i = (i1,...,iN).

Computing a CP decomposition involves solving a nonlinear
optimization problem to minimize the approximation error,
typically measured in the ¢s-norm. The most common op-
timization algorithms either use an alternating least squares
(ALS) approach or a gradient-based algorithm. The ALS
algorithm alternates among the factor matrices, improving
one factor matrix at a time. When all but one factor matrix
are fixed, optimizing the variable factor matrix is a linear
optimization problem that can solved in closed form via the
normal equations. In a gradient-based algorithm, the gradients
with respect to all factor matrices are computed and used to
determine the variable updates. In both cases, setting up the
normal equations and computing the gradient are bottlenecked
by a particular computation that involves the tensor and all
but one of the factor matrices. This computation is known as
MTTKRP.

IEEE
computer
® psoaety

B. MTTKRP

MTTKRP inputs an N-way tensor X', N > 2, of dimensions
Iy x --- x Iy, a fixed mode n € [N], and an (N —1)-tuple
of matrices {A(k)}kE[N]\{n} each of dimensions I x R.
MTTKRP outputs a single matrix B("), of dimensions I,, X R.
(For a fixed n, the matrix A" and the superscript on B(™)
are irrelevant.) Throughout the discussion, the underlying set
of values is any nonempty set closed under two associative
and commutative binary operations, denoted by addition and
multiplication, say, the real numbers.

Definition 2.1: An MTTKRP algorithm maps

(X, {A(k)}k’e[N]\{n}) — B,

where for each (i,,r) € [I,,] X [R],

B™ (i, r) = Z xi@)]

ke[N\{n}

AP (g, r),)

where summation is over all i € [[1] X --- x [Ix] with n-th
entry i,, and we require that the N—1 multiplies for each
(i,7) are evaluated atomically as an N-ary multiply.

Atomic evaluation of an N-ary multiply means that all N
inputs are present in memory when the single output value
is computed. This assumption is necessary for the proofs
of our communication lower bounds. However, it is natural
for an algorithm to break the assumption in order to reduce
arithmetic, as partial products are shared across multiple N-
ary multiplies. For example, a popular choice is to precompute
the (explicit) Khatri-Rao product and then apply the matricized
tensor in a single matrix multiplication (see Sec. III-B). As we
discuss in Sec. VI, this approach does reduce arithmetic but
usually increases the communication cost. Our ongoing work
includes extending our communication cost analysis to address
such atomicity-violating optimizations.

If the inputs or the operations satisfy additional properties,
equivalent formulations of the right-hand side of Eq. (2) may
yield more efficient algorithms, which are excluded from
Def. 2.1. As a practical example, if some value ‘0’ is an
identity element for addition and an absorbing element for
multiplication, then we can avoid arithmetic by, e.g., skipping
the summation indices i such that X' (i) = 0. Our lower bounds
readily extend to address such ‘sparse’ algorithms by simply
replacing the number of tensor entries I with the number that
are nonzero; however, our algorithms may not attain these new,
smaller bounds.

Lastly, note that the extreme case N = 2 is just matrix
multiplication, e.g., BY =x.A®,

C. Computation Models

a) Sequential Model: Our sequential model includes a
single processor, connected to two storage devices called fast
and slow memory. Fast memory can hold up to M values
at once, while slow memory has unbounded capacity. The
processor performs (binary) adds and N-ary multiplies on
values in fast memory and communicates values between the
two memories. Communication consists of loads and stores,

558

instructions that read individual values from slow memory
and write them to fast memory, or vice versa. This model
is known as the two-level sequential memory model [4] or the
I/O complexity model [5].

b) Parallel Model: Our parallel model includes P pro-
cessors, each connected to its own local memory and to all
other processors via a network. Local memory holds up to M
values, so overall the machine holds at most PM values. As
in the sequential case, each processor can operate on values
in its local memory, while communication now consists of
sends and receives, instructions that read individual values
from local memory and write them to the network, or vice
versa. We assume each processor can send or receive only
one value at a time, but two disjoint pairs of processors can
communicate simultaneously. This model is known as the MPI
model [6], or a-3-y model [4]. In this work, we focus on the
amount of data communicated (bandwidth cost) and ignore
the number of messages communicated (latency cost). As our
proofs do not exploit the model’s restriction of half duplex
communication, our parallel lower bounds also apply to the
BSP model of computation [7]. Additionally all our parallel
algorithms are valid BSP algorithms. As we ignore latency
cost, and all communication is performed in collectives which
have the same cost in the BSP model, our parallel upper
bounds also apply to BSP computations.

III. RELATED WORK

A. Communication Lower Bounds

The pioneering work of Hong and Kung [5] introduced
a framework for communication analysis in the sequential
model. Using the red-blue pebble game, Hong and Kung
derived lower bounds on the number of words that must
be communicated when performing a class of algorithms
including conventional matrix multiplication. Irony ef al. [8]
extended Hong and Kung’s results for matrix multiplication
to the parallel case using a segmentation argument that we
will follow. Ballard et al. [4] extended communication lower
bounds from matrix multiplication algorithms to algorithms for
any linear algebra computations that can be written as three
nested loop (3NL) computations. Smith and van de Geijn [9]
tightened the constants in the lower bounds given by Irony et
al. and Ballard et al. by changing the operations to scalar fused
multiply-adds, optimizing the segment length, and exploiting
a bound on the sum (rather than the max) of the data accessed
from each array. Additionally, memory-independent bounds
were given by Ballard et al. [10] to determine the ranges
where perfect strong scaling can be achieved. Demmel et
al. [11] considered how memory-independent bounds must
change to remain tight for rectangular matrix multiplication
with one, two, or three large dimensions. Finally, Christ et al.
[12] extended the generality of 3NL computations to prove
lower bounds for more arbitrary loop nests: their approach
applies to our definition of MTTKRP.

B. Algorithms for MTTKRP

The most straightforward sequential algorithm for MT-
TKRP, when the tensor is dense, involves permuting the tensor
to achieve a column- or row-major matricization, forming the
Khatri-Rao product explicitly, and then multiplying these two
matrices [13]. Note that this approach violates the assumption
in Def. 2.1 that the N-ary multiplies are performed atomically.
An alternative approach avoids the explicit permutation of
the tensor and performs the MTTKRP in two steps, the
first involving a matrix-matrix multiplication and the second
involving a sequence of matrix-vector multiplications [14],
[15]. This approach also violates the atomicity assumption.
The two-step approach is particularly advantageous when the
MTTKREP is to be performed in each mode, like in the CP-ALS
or other gradient-based algorithms, as intermediate quantities
can be re-used across modes.

In the case of distributed-memory parallel algorithms for
MTTKREP, there have been many efforts to improve perfor-
mance for sparse tensors [13], [16]-[18] in the context of
the CP-ALS algorithm. In particular, Smith and Karypis [18]
describe a “medium-grained” parallelization scheme that is
designed for sparse tensors but can be applied to dense tensors.
Indeed, Liavas et al. [19] apply the preceding approach to
dense 3-way tensors in computing CP decompositions with
non-negativity constraints, using 1D, 2D, and 3D processor
grids depending on the tensor dimensions. Aggour and Yenner
[20] also parallelize MTTKRP for dense tensors, using a
scheme that parallelizes over only the largest dimension (using
only 1D processor grids) of a 3-way tensor.

IV. LOWER BOUNDS

In Sec. IV we derive lower bounds on the amount of
data communicated by sequential and parallel MTTKRP al-
gorithms. The key, formalized in Lem. 4.1 (Sec. IV-A), is that
in any MTTKRP algorithm the size of any subset of operations
is bounded in terms of the numbers of associated operands.
These upper bounds on data reuse yield lower bounds on
communication, in both sequential and parallel models, via a
counting argument: see Thm. 4.1 and Cor. 4.1 (Sec. IV-B).
These lower bounds are called memory-dependent, since
they explicitly depend on the fast/local memory size M. A
different counting argument and stronger hypotheses yield
memory-independent lower bounds — see Thms. 4.2 and 4.3
(Sec. IV-C).

Our arguments build on previous communication lower
bounds for matrix computations [4], [8], which used the
Loomis-Whitney inequality. These lower bounds do not di-
rectly apply to MTTKRP computations, as formalized in
Def. 2.1. However, a generalization to a larger class of nested-
loop programs [12], [21], leveraging the more general class
of Holder-Brascamp-Lieb inequalities [22], do apply to MT-
TKRP. These previous results assumed the number of nested
loops is a fixed constant, whereas in MTTKRP this number
varies with the order N of the tensor. A key contribution of
the present work is that we extend the previous analyses to
allow the number of nested loops to vary.

559

A. Preliminary Lemmas

In this section we state four lemmas that will be useful in
our main results. Lem. 4.1, a generalization of the Loomis-
Whitney inequality [23], will be used to derive an upper
bound on possible data reuse within an MTTKRP computation.
Lem. 4.2 provides the solution to a particular linear program
that appears in our lower bound proofs. Lems. 4.3 and 4.4
give solutions to nonlinear optimization problems that appear
in later proofs.

The following result appears in a more general form in [22,
Proposition 7.1]; a simpler proof for our special case is given
in [12, Theorem 6.6].

Lemma 4.1: Consider any positive integers d and m and
any m projections ¢;: Z¢ — Z% (d; < d), each of which
extracts d; coordinates S; C [d] and forgets the d — d; others.
Define P = {s € [0,1]™ : A-s > 1}, where the d x m
matrix A has entries A(i,j) = 1if i € S; and A(i,j) =0
otherwise. If s € P, then for all E C Z¢,

Bl <] les(B)>.
J€E[m]

Lemma 4.2: The solution of the linear program

min1”s subject to A -s>1ands >0,

Inxny 1nx1
A= s
<1l><N 0)

3

where

is s* = (1/N,...,1/N,1-1/N)T with 17s* = 2—1/N.
Proof: The dual linear program is

max 17t subject to AT . ¢ <1landt>0.

Note that t* = s* is feasible, and 17t* = 17s*, so s* is a
solution of the primal by linear duality. |
The following two lemmas can be proved using the method
of Lagrange multipliers [24].
Lemma 4.3: Given s > 0, the optimization problem

inﬁc

i€[m]

e (575)

Lemma 4.4: For any s > 0, the optimization problem

max xi' subject to
x>0 |
i1€[m]

yields the maximum value ¢ %]|

min ; subj o>
min Z x; subject to H ;' >c
T i€lm] i€[m]
4 - L\ M s
yields the minimum value (ﬁ) icm) Si-

B. Memory-Dependent Lower Bounds

We first prove Thm. 4.1, a lower bound for the sequential
model that depends on the fast memory size M. The proof
uses the structure of previous matrix computation lower bound
proofs [4], [8]. However, to address MTTKRP, it uses a
Holder-Brascamp-Lieb-type inquality (Lem. 4.1) as has been
done for more general computations [12]. It also borrows
another technique involving Lem. 4.3 that has been used

to tighten the constant of the matrix multiplication bound
[9], though the technique improves our bound by more than
a constant. Thm. 4.1 implies Cor. 4.1, a similar memory-
independent bound for the parallel model, where M corre-
sponds to the size of the local memory. We also state an
immediate lower bound result for the sequential case (Fact 4.1)
based on the size of the input and output data.

Theorem 4.1: Any sequential MTTKRP algorithm involves

t least
at leas 1 NIR

32-1/N pf1-1/N — M

“

loads and stores.

Proof: We break the stream of instructions that implement
a MTTKRP algorithm into complete segments each of which
contains exactly M loads and stores, except the last segment
which may contain less than M loads and stores (incomplete).
We will determine an upper bound on the number of elements
of all arrays X, B(”), or A® that can be accessed during
a segment, then use Lem. 4.1 to bound the number of loop
iterations that can be evaluated during a segment. We use this
upper bound to generate a lower bound for the number of
complete segments, from which we generate the lower bound
on the communication for any MTTKRP algorithm.

We begin by considering elements of B(™, the factor matrix
that is being computed. We consider an element of B™ live
during the segment if it accumulates the result of one or more
N-ary multiplies during that segment. Any element of B™
that is live during the segment must either remain in fast
memory at the end of the segment or have been stored into
slow memory by the end of the segment. At the end of the
segment there can be at most M live elements of B™ that
remain in fast memory. Let S be the number of live elements of
B™ that were stored during the segment. Now, consider input
elements of X and A®) that are used as arguments for one
or more N-ary multiplies during the segment. These elements
must have been in fast memory at the start of the segment or
loaded into fast memory during the segment. The total number
of input elements that are in fast memory at the start of the
segment is at most M, and the total number of input elements
that can be loaded during the segment is M — S. Thus the
total number elements from all arrays that an algorithm can
access during the segment is at most 3M.

If F' is the subset of the iteration space Z = [I1]x- - - X [Iny]x
[R] evaluated during the segment, then ¢;(F") corresponds to
the set of entries of the j-th array that are accessed during
the segment. Thus, >, [¢;(F)| < 3M. See Fig. 1 for an
example set F' and its projections.

To use Lem. 4.1 we first define the linear constraint matrix
A. For MTTKRP algorithms, the number of projections/arrays
is m = N+1, corresponding to N—1 input factor matrices,
one output factor matrix, and the input tensor. The depth of
the nested loops is d = IN+1, corresponding to one loop for
each mode of the tensor and one loop over the rank of the
factor matrices. The first N projections (rows) correspond to
the input and output factor matrices, and the last projection
corresponds to the input tensor. The first N indices (columns)

560

r=1 r=2 r=3 r=4
i d
Ha
c
e f
19 —> 13/‘

(a) Example subset F' of 4-way iteration space. The subset F' consists of
the six coordinates a (5,1,1,1), b (3,3,15,1), ¢ (7,10,2,2), d (4,14,11,3), e
(11,2,2,4), and f (14,14,14,4), which are color coded by their last index.

7 7 i . b
j b ; f R f e e 11 d
C: a
e y d ‘ f
f i ‘
T — T — T — i ; %
$1(F) ¢2(F) ¢s(F) $a(F) 7

(b) Projections of F' onto data arrays (2-way factor matrices and 3-way
tensor). For example, the set ¢2(F) consists of the six coordinates a (1,1),
b (3,1), ¢ (10,2), d (14,3), e (2,4), and f (14,4).

Fig. 1. Example subset of computation and the data required to perform it, for
N =3,1; = I = I3 = 15, and R = 4. Fig. 1a shows the iteration space
and specifies six coordinates in the subset, where the coordinates correspond
to N-ary multiplies. Fig. 1b show the elements of the arrays that are involved
in the computation, which are determined by projections of the coordinates.

are i1,...,1n, and the last index is . So we have
I 1
A = (NXxN Nx1

1ixn 0)

By Lem. 4.1, for any s € P, [F| < ;¢ [0 (F)]%.
Substituting |¢;(F")| for z; and 3M as the constant ¢ in the
constraint of Lem. 4.3, we see that for any s € P,
Sj

11 (Zisz’)sj'

JEImM
In order to obtain the tightest lower bound possible, we wish
to choose the s € P that minimizes the left hand side of the
preceding inequality. Short of that, we can choose to minimize

only the first factor (3M)2=5 %, which corresponds to solving
the linear program Eq. (3). By Lem. 4.2, the exponent is
minimized by 2—1/N with s* = (1/N,...,1/N,1-1/N)7.
Note that

1-1/N

(%) (i) I G%s)

j€lm]
(L 1-1/N)"N T /YN <N
T \2-1/N) = ’
JE[N]
Thus |F| < (3M)?>'/N/N gives an upper bound on the
number of N-ary multiplies that can be performed in a
segment with exactly M loads and stores.

Because |Z| = IR there are at least | IR/((3M)>~Y/N/N)|
complete segments. Each segment loads/stores M words, thus

|65 (F) < 3M)>=]
]

JE€[m]

there are at least M- | NIR/(3M)*~1/N | loads and stores. W
Corollary 4.1: Any parallel MTTKRP algorithm involves

at least 1 NIR
32-1/N ppfi-1/N
sends and receives.

Proof: Since some processor must be associated with at
least |Z|/P = IR/P loop iterations, we can apply Thm. 4.1
to the computation performed by that processor. |
Both sequential and parallel lower bounds indicate a tradeoff
between the memory size M and communication. We demon-
strate in Sec. V-A a sequential algorithm that attains the lower
bound of Thm. 4.1 within a constant factor, navigating the
tradeoff by appropriately choosing a block-size parameter. It
remains open whether there exists a parallel algorithm that
navigates the tradeoff in Cor. 4.1 in a similar manner.

The following additional lower bound for the sequential case
is based on the observation that to perform the MTTKRP,
the algorithm must access all of the input and output data.
Note that the fast memory could be full of useful data at the
beginning and end of the computation.

Fact 4.1: Any sequential MTTKRP algorithm must perform
at least I + ;o) IR — 2M loads and stores.

- M

C. Memory-Independent Lower Bounds

In this section, we prove bounds that do not depend on
the fast or local memory size M. These bounds focus on
the parallel case. The structures of the proofs follow previous
work [10], [11], but again we combine a technique used in
the context of matrix multiplication [9] (involving Lem. 4.3) to
tighten the bounds. Thms. 4.2 and 4.3 establish separate lower
bounds under the same assumptions on the parallelization
and data distribution. We prove both because either can be
the tightest lower bound, depending on relative sizes of the
parameters. To show how the bounds simplify and compare
for a particular case, we consider tensors with all dimensions
the same (I = I*/Y for all k) and state Cor. 4.2.

Theorem 4.2: In any parallel MTTKRP algorithm where
each processor initially and finally owns at most 6), I, R/P
factor matrix entries and at most I / P tensor entries, v, 6 > 1,
some processor performs at least

NIR\?*N-T IxR
()i

ke[N]

sends and receives.

Proof: We follow the argument given by Ballard et al.
[10, Lemma 2.3]. Some processor p must evaluate at least
|Z|/P = IR/P loop iterations. Let F' be the set of loop
iterations associated with the /N-ary multiplies performed by
that processor. Then using |¢;(F)| as before we have that
the number of sends and receives performed by that processor
must be atleast 3 o n) (05 (F) =L/ P—=0 5 c vy L2/ P,
where the first sum is the size of the data the processor must
access to evaluate its loop iterations and the negative terms
correspond to the useful data that may be in its local memory
at the start and end of the computation. From Lem. 4.1,
we can bound the size of F' in terms of the sizes of the

(&)

561

projections: |F| < [;c(n1)1¢;(F)[* for any s in P. Using
s* = (1/N,...,1/N,1-1/N) as before, and substituting
|¢;(F)| for z; and IR/P as the constant ¢, Lem. 4.4 gives

(1)

Theorem 4.3: In any parallel MTTKRP algorithm where
each processor initially and finally owns at most 0) _, I R/P
factor matrix entries and at most v/ / P tensor entries, v, 0 > 1,
some processor performs at least

2 YN I I
min ENR <P> -0 Z R7 ’Y 6)

sends and receives.

Y 16;(F) = (2-1/N)

JEIN+1]

Proof: We follow the argument given by Demmel et al.
[11, Section II.B.2]. As before, F' is the set of loop iterations
evaluated by a processor that computes at least [R/P N-ary

multiplies. By Lem. 4.1 with s* = (1/N,...,1/N,1-1/N)T,
we have

IR N

& <lovua @) T 16;(P)] ™

JE[N]

We consider two cases based on |¢pxn41(F')|, the number
of tensor entries accessed by the processor. Suppose that
lon11(F)| > 37[. By our assumption of load balanced data
distribution, the processor must read at least ;—P elements
of X to perform its computations. Now consider the case
when |pni1(F)| < ?;LPI. Replacing |pn41(F)| with 32“1’31
in the right hand side of Eq. (7) and rearranging, we have
e 165 (F)] > (2/(37))V " L. By Lem. 4.4, we know
that 3 () ¢;(F)| is minimized subject to this constraint
on the product when |¢;(F)| = (2/(3W))¥(I/P)1/NR.
Given that the factor matrices are load balanced up to a
factor of §, we see that some processor performs at least

I;R % 1/N
e 16N =8 sem 2 N (2) T (8 R-
02 jen]

Because the number of tensor entries the processor must
access may be bigger or smaller than 2L the lower bound is
the minimum of the two cases. |

Corollary 4.2: Any parallel MTTKRP algorithm involving
a tensor with I, = I'/N for all k and that starts with one
copy of the inputs evenly distributed across processors and
ends with one copy of the output evenly distributed across

processors involves at least
7\ YN
NR| —=

NIR\ ==
o (===
((F)
sends and receives.

Proof: The proof involves simplifying and combining the
results of Thms. 4.2 and 4.3 under the additional assumptions,
see [24] for details. |

R .
=5~ sends and receives.

2P’

Algorithm 1 Sequential Blocked Algorithm

function B(™) = SEQ-BLOCKED-MTTKRP(X, {A(}, n, b)
for j; < 1 to I; step b do

1:

2

3 -

4 for jn < 1 to I step b do

5: Jk%min(fk,jkij*l) (k € [N])
6: load block X(j1:J1, ...,jN:JN)

7 for r < 1 to R do

8 load vectors A (ji:Jy,, 7) (k € [N]\ {n})

9: load vector B(")(jn:Jn7 r)
10: for iy < j; to J; do
11: .
12: for iy < jn to Jy do
13: B™ (i,) B™ (i, r)+
X, . in) - [[A® (i, 7)
EE[N]\{n}
14: end for
15:
16: end for
17: store vector B(™ (Gn:dn, 1)
18: end for
19: end for
20: o
21: end for

22: end function

V. ALGORITHMS
A. Sequential Blocked Algorithm

Alg. 1 and Fig. 2 illustrate a sequential blocked MTTKRP
algorithm. We control the blocking with the block size b. The
code is correct for any positive integer b satisfying

WY + Nb < M, ®)
whence the communication cost is bounded above by
I 1
I+ [ﬂ {TNW -R(N + 1)b. 9)

In Sec. VI-A, within the proof of Thm. 6.1, we will weaken
and simplify Eq. (9) for easier comparison with the lower
bounds of Thm. 4.1 and Fact 4.1. We will assume additionally
that the fast memory size M is sufficiently large with respect to
the tensor order N, but not too large with respect to the tensor
dimensions [y,...,Iy. Under these assumptions, picking the
block size b ~ M/N gives an upper bound of the form
NIR)

AN (10)

@] (I +
To see how Eq. (10) might be obtained from Eq. (9), substitute
b= (M/2)"/N, supposing b is a positive integer that satisfies
Eq. (8) and divides Iy,...,Iy.

B. Parallel Stationary Tensor Algorithm

We present two parallel algorithms, Algs. 2 and 3, the first
of which is a special case of the second. Here in Sec. V-B
we present the special case of Alg. 2 separately because its
notation is simpler and we expect it to apply more frequently
in typical applications, where N R is small relative to I /P. See

Fig. 2. Sequential Blocked Algorithm for N = 3 and n = 2: subten-
sor X (j1:J1,j2:J2,73:J3) is highlighted, and subcolumns A(U(jlle7 r),
B® (ja:Jo, r), AB) (js:J3,) are shown with dotted lines.

also Fig. 3 for an illustration of Alg. 2. The general algorithm,
Alg. 3, is presented in Sec. V-C. We note that Alg. 2 is
essentially the same as the medium-grained algorithm applied
to dense tensors [18], [19], though the communication pattern
simplifies in the dense case.

1) Data Distribution: For an N-way tensor, we organize
processors into an N-way logical processor grid. We factor
P = P P,--- Py and identify each processor by an N-
tuple p = (p1,...,pNn) € [P1] X -+ X [Pn]. We partition
each tensor dimension k& € [N] into Py parts: [I;] =
{SI(,],:) }prelp,]- Bach processor p initially stores the subtensor
Xp = X(S,(,p, c S,(,J,X)), and, for each k € [N]\ {n}, a part
Ag“) in a partition of AZ(,IE) = A(k)(SZS’,:)7 1), across processors
p’ with pj, = pj. During execution, processor p also stores
the submatrices Ag)?, k € [N\{n} and a matrix C, the
same size as (and used in the summation of) B;’Z). After
execution, the processor stores a part Bg”) in a partition of
B](,T:) = B(”)(S,(,:), 1), across processors p’ with p/, = p,,. In
words, each mode’s factor matrix is distributed block-rowwise
across the processor hyperslices of that mode, and each row
block is then partitioned arbitrarily across the processors in its
hyperslice. During execution, these block rows are replicated
within hyperslices.

2) Algorithm: The pseudocode is given in Alg. 2, and
Fig. 3 provides an illustration of the major steps. We use the
term stationary (tensor) to describe this algorithm because the
input tensor is never communicated. Instead, each processor
gathers all the input factor matrix data that participates in
N-ary multiplies involving the local tensor. Then, the local
computation is itself an MTTKRP. To compute the output
of the global MTTKRP, processors again must communicate
to reduce values that correspond to the same output matrix
entries. The data distributions are organized using an N-
way processor grid so that the communication is performed

Algorithm 2 Parallel Stationary Tensor MTTKRP Algorithm

Algorithm 3 Parallel General MTTKRP Algorithm

I: functlon B{" = PAR-STAT-MTTKRP(X,, {A%)}, n)
2: (pl, ...,pN) is my processor id

3 for each k € [N]\ {n} do

4 ALY = All-Gather(AY, (;, ...)
5: end for
6.
7
8:

sy Dkyty e e

C,, = Local- MTTKRP(X,, {AYY}, n)
BE,") = Reduce-Scatter(Cp,, , (z,. . ., 3, Pny &y -
end function

1)

across processor hyperslices using collective communication
operations All-Gather and Reduce-Scatter.

3) Analysis: We defer detailed analysis of Alg. 2 to that
of the more general Alg. 3 in Sec. V-C3. Setting Py = 1 in
Alg. 3 yields Alg. 2. Analysis of Alg. 2 has already appeared
for cubical tensors [18] and 3-way tensors [19].

Assuming we can choose a processor grid such that Py ~
I./(I/P)Y/N and divides I, evenly, we choose the data
distribution such that |S,(,I,f>\ = I,/ Py, for k € [N], which sim-
plifies these upper bounds. The communication cost bound is
O (NR(I/P)'/N), the arithmetic cost bound is O(NIR/P)
(which can be reduced by a factor of O(N)), and the (per-
processor) storage cost bound is O (I/P + NR(I/P)Y/N).

The temporary storage (the second term in the bound) could
be reduced by a factor of at most R by using another layer of
blocking over the columns of the matrices. While this would
not affect the amount of communication, it would increase the
number of communication collectives by the same factor.

C. Parallel General Algorithm

This section studies Alg. 3, a generalization of the stationary
tensor algorithm, Alg. 2, described in Sec. V-B. Alg. 3
parallelizes over all N+1 dimensions of the iteration space:
the N tensor dimensions, bounded by Ii,...,Iy, and the
matrix column dimension, bounded by R. In contrast, recall
that Alg. 2 parallelizes over just the N tensor dimensions.
Roughly speaking, Alg. 3 is more efficient than Alg. 2 when
NR is large relative to I/P.

1) Data Distribution: For an N-way tensor, we organize
processors into an (IN+41)-way logical processor grid. We
factor P = Py P P - - - Py and identify each processor by an
(N+D-tuple p = (po, p1, ..., pN) € [Po] x [P1] x -+ x [Py].
As before, we partition each tensor dimension &k € [N] into Py
parts, [I] = {S;’Z)}pke[py]- Additionally we now partition the
matrix column dimension into Py parts, [R] = {1}, }poe[py]-
Each processor p initially (before execution) stores a part A,
in a partition of X, ., = X(S;(,l), ce SZ(,JJ)), across pro-
cessors p’ with pj, = py, (k € [N]), and for each k € [N]\{n},
a part Ag“) in a partition of Aé’?) A(k)(S,()k) T},), across
processors p’ with pj = po and p) = pj. During execution
it also stores the subtensor A, the submatrices Az(J]Z)po’

€ [N]\{n}, and Bé’;’)ypo, and a matrix C,,, ,,, the same size
as (and used in the summation of) Bé")po

the processor stores a part Bgl) in a partition of Bé’:}ym

B(”)(S;()Z),To), across processors p’ with pj, = po and

PN

After execution,

563

functlon BY" = PAR-GEN-MTTKRP(X,, {AL)} n)

(po,pl7 ...,pN) is my processor id
pn = All-Gather(Xp,(:, p1, ..., pN))

.....

for each k € [N]\ {n} do

1:
2:
3
4:
5: Aé’;{m = All—Gather(Al(Dk),(pg, ey Dk tyeeest))
6 end for

7 Cyp,..po = Local- MTTKRP(X,,, .. vy {APk 90
8 Bg,") = Reduce-Scatter(Cp,, pos(P0, iy -+ s 5y Pry iy - -
9:

end function

,n)

)

', = Pp. Let us clarify a notational detail: while X, .
Ag}?, BI()Z) are tensors/matrices,
entries Xy, Ag“), ng) need not be (sub)tensors/matrices.

2) Algorithm: As mentioned in Sec. V-B, the more general
Alg. 3 parallelizes over all N+1 dimensions of the iteration
space: unlike the stationary algorithm Alg. 2, entries of the
tensor X are now communicated among processors. One can
think of Alg. 3 as logically dividing the output factor matrix
B™ into Py block-columns, each assigned to a separate subset
of P/Py processors, and running Alg. 2 on each subset of
processors, where each subset owns a copy of the tensor.

3) Analysis: We analyze the communication cost first.
Communication occurs only in the All-Gather and Reduce-
Scatter collectives in Lines 3, 5 and 8. Each processor p
is involved in one All-Gather involving the tensor (Line 3),
N—1 All-Gathers involving factor matrices (Line 5, k €
[N]\ {n}) and one Reduce-Scatter (Line 8). Over all proces-
sors, Line 3 specifies P/P, simultaneous All-Gathers, Line 5
(k € [N]\ {n}) specifies P, simultaneous All-Gathers, and
Line 8 specifies P,, simultaneous Reduce-Scatters.

In this analysis, we assume bucket algorithms are used
for the collectives. A bucket All-Gather or Reduce-Scatter
algorithm with g processors proceeds in g—1 steps, at each of
which each processor passes left an array of size at most w.
That is, w is the largest local array size before (All-Gather)
or after (Reduce-Scatter) the collective. The communication
cost is at most (¢ — 1)w, which is (bandwidth-) optimal for
perfectly balanced data distributions [25]. For Reduce-Scatter,
there is also an arithmetic cost of at most (¢ — 1)w operations.

In these cases, we have ¢y = Fp for Line 3 and ¢, =
P/(PyPy) for Line 5 (k € [N]\{n}) and Line 8 (k = n). The
largest local sizes depend on the data distributions specified
in Sec. V-C1: wy = maxp nnz(Xp) and

o — 4 WAXp nnz(Ag“)) € [N]\ {n}
b maxp nnz(Bgl)) k= n.

PN
the (sub)sets of tensor/matrix

The overall communication cost is then bounded above by

(Ph—1)- max nnz(Xp)

maxnnz(AX)) k#£n
5) ()
reV] 0 P mgxnnz(b) =n.

The arithmetic cost is bounded above in terms of the

A AW AD
¥ A
B® B®
(a) Start with one subtensor (b) All- Gdther rows from in-

and subset of rows of each put matrix Al
input matrix.

(Lme 4).

B®
(c) All- Gdther rows from in-
put matrix A

B® B®
(e) Reduce-Scatter to com-
pute/distribute rows of out-

put matrix B(® (Line 7).

(d) Compute local contribu-
tion to rows of output matrix
B®) (Line 6).

(Lme 4).

Fig. 3. Parallel Stationary Tensor Algorithm data distribution, communication, and computation across steps for N = 3 and n = 2. Highlighted areas

correspond to processor (1,3,1) and its subcommunicators.

costliest local MTTKRP (Line 7) and the costliest Reduce-
Scatter (Line 8): the number of operations is at most

Nmax <|Tpn| H |S(k)

ke[N]

P

e

(n)
PP 1) mgo(nnz(Bp). (12)

The per-processor storage cost is bounded above by

IT 1881+ 3 1s1- 17,
ke[N]

ke[N]

(13)

max

Let us simplify these upper bounds, assuming that we can
choose a processor grid with dimensions

(NR)>~=

(1/P)==

and that we can choose the data distribution such that
|S®| = I,/ Py, |Tp,| = R/ P,)=1/P,
mnz(A¥)) = IR/ P, nnz(B{Y) = I, R/ P,

I,

Fo~ TD D\ L
(IPy/P)™

and Py ~ (k € [N]),

nnz(Xp
and

where everything divides evenly. The communication cost
bound Eq. (11) and the storage cost bound Eq. (13) are
0 (NR (1PN + (NIR/P)N/(QN_”), and the arithmetic
cost bound Eq. (12) is O(NIR/P). We weaken these assump-
tions on the processor grid and make them more explicit in
the proof of Thm. 6.2.

We note that to save arithmetic, the algorithm could break
the atomicity of the N-ary multiplies without changing the
communication costs of the algorithm. Each processor can
precompute the explicit local Khatri-Rao product and perform
a local matrix multiplication, reducing the arithmetic cost
bound from O(NIR/P) to O(IR/P) (these costs assume
a reasonably load-balanced distribution).

VI. DISCUSSION

A. Sequential Case

We would like to compare the upper bound,

11 [%ﬂ bR,

k€E[N]

Wel=I+(N+1)

564

valid for any b € {1,2,...} satisfying M > bY + Nb, with
the lower bounds W' = 3(3]%% — M (Thm. 4.1) and
Wi =1+ Zke IR — 2M (Fact 4.1).

We now show that under certain assumptions on M, for
example assuming that the tensor is too large to fit in fast
memory, the upper bound and lower bounds differ by no more
than a constant.

Theorem 6.1: Suppose M is sufficiently larger than the
number of dimensions /N and that each dimension I is
sufficiently larger than M /N Then Alg. 1 is communication

optimal to within a constant factor.
Proof: Suppose there exist positive constants a;, (3,7, 6, €

such that
1N\ M1
M > <NO‘) a<1 (14)
1—«
1 N 1-1/N
MZ(1/N,,31/<N71>> B<a (15)
N 1/N N
M < M min I S14+4+ (16)
= al/N keiny " v N
1
=3

I
s<1+ > TkR (17)
kE[N]

((1 -0+ Yy IkR>

ke[N]

1 sN=T 1
N[S((W—e> NIR> €< mmw

For Alg. 1, we choose block size b = |(aM)'/N|. It then
follows from Eqs. (14) to (16) that W <3 I+ %)
It follows from Egs. (17) and (18) that max(Wlifﬂ W) =
minQ(é’e) (I+ MJY EEN), which matches the upper bound to
within a constant factor. For a more detailed argument, see
[24].]

To illustrate the hypotheses Eqgs. (14) to (18) of Thm. 6.1,
take, for example, the constants 8 = 1 — a = 1/100,
v = 100, and 6 = € = 1/10, which satisfy the right-
hand inequalities for all fast memory sizes M and problem
parameters N, I1, ..., I, R. Clearly there are infinitely many
choices of M and the problem parameters that satisfy the
left-hand inequalities. For example, supposing N < 10 and
I, = I, = --- = Iy, the left-hand inequalities require that
the fast memory size M is bounded below by 10* (due to
Egs. (14) and (15)), and above by the minimum of /1000

(18)

(due to Egs. (16) and (17)) and vV NIR/10 (due to Eq. (18)).

We also compare the communication cost of Alg. 1,
O(I + NIR/M'*~/N), with the MTTKRP via matrix mul-
tiplication approach. We assume a communication-optimal
matrix multiplication is used, achieving O(I + IR/M'/?)
communication cost and performing 21 R operations. Here, the
cost of explicitly forming the Khatri-Rao product matrix is a
lower order term, assuming R < Ij, for all k € [IN]. Assuming
N = O(M'/?~1/N), the communication cost of Alg. 1 never
exceeds that of MTTKRP via matrix multiplication.

If the communication cost is dominated by accessing the
tensor (i.e., R = O(M'/?)), then the approaches perform
the same amount of communication and Alg. 1 performs a
factor of N/2 more computation. If the communication cost
is dominated by repeatedly accessing the factor matrices (i.e.,
NR = Q(M™1/N)), then Alg. 1 is more efficient, requiring
a factor of O(M'/?2=1/N /N less communication.

In practice, we expect N to be very small relative to M,
so the assumption N = O(M1/2*1/N) is mild. However, we
also expect R to be small relative to M, and in that case, the
dominant communication cost of reading tensor elements from
memory is shared by both approaches. In this case, the matrix
multiplication approach benefits from fewer operations, and it
can also use existing software for matrix multiplication.

B. Parallel Case

The communication upper bound for Alg. 3, W', is valid
for any factorization P = Py P; --- Py and data distribution
specified in Sec. V-C1. We wish to compare this upper bound
with the lower bound from Thm. 4.2, WE{, and the lower
bound from Thm. 4.3, Wh.

Theorem 6.2: Suppose the number of processors P is
sufficiently large and factorable, and suppose that the tensor
dimensions and rank are sufficiently large with respect to P.
Then Alg. 3 is communication optimal to within a constant
factor.

Proof: To instantiate Wlﬁ?r, we must specify a processor
grid (i.e., a factorization of P into a product PyP; --- Py of
positive integers) as well as the distributions of the tensor and
factor matrices. For any processor grid, recalling the notation
of Sec. V-C1, we can define a data distribution where, for each
processor p,

nnz(Xp) < ’—H[Ik/Pk.l/R]-‘)
k

nnz(AY) < [[1n/Pi][R/Pol/(P/(Pi)]
nnz(BYY) < [[1,/P.][R/Po]/(P/(PaP))].

To instantiate W}, Why, we must assume that that no
processor owns more than yI /P tensor entries or § >, I, R/P
factor matrix entries, for some constants v, > 1. For any
v,0 > 1, we can manipulate the upper bounds in Eq. (19) to
derive relations on the machine and problem parameters such
that these balance constraints hold. In particular, we suppose

19)

565

there exist constants a, 3 > 1 such that v > «, § > /N,
and, for all k£ € [N],

P <(@N =1l P<(y-a)l, 20)
Py < (B—1)R, P < (6 —aNB)ILR.
These hypotheses also yield a simpler upper bound,
1 IR
W < ~(Py—1)= + 4 . 21
B <P -1)5+ %;V]Pwo @D

We now consider two cases, when NR < (I/P)lfl/N and
when NR > (I/P)'~YN. In each case, under additional
hypotheses, Eq. (21) attains one of the two lower bounds
Egs. (5) and (6).

In the first case, NR < (I/P)lfl/N, we suppose there
exists a constant € > 0 such that P factors as Py P, --- Py
with Py = 1 and, for all k € [N], /Py < (¢/8)(I/P)YN.

Additionally, we suppose there exists a constant 17, 0 < 7 <

v/2/(37v) such that
5 S I, > ¥

P>
B <v2/(37) —n NIV
The first hypothesis simplifies the upper bound Eq. (21)
to W' < e. NR(I/P)Y/N, while the second hypothesis
simplifies the lower bound Eq. (6) to W}y > n-NR(I/P)'/V.

In the second case, (NR)™N > (I/P)N~1, we suppose there
exist constants g, v > 0 such that P factors as PyP; - - - Py,

N-1 N
(VR Loy [(R

()" w=n=! ()

for each k£ € [N]. Additionally, we suppose there exists a
constant 7, 0 < 7 < 2 — =, such that

(=g =n)

(1)
The first hypothesis simplifies the upper bound Eq. (21) to
Wh < (p +v) - (NIR/P)N/CN=1 while the second
hypothesis simplifies the lower bound Eq. (5) to W} >
7-(NIR/P)N/2N=1) Tn each of the two cases, the gap is a
constant factor. |

To illustrate the hypotheses of Thm. 6.2, we set v = § =
1.75, al/N = 1.05, and S = 1.5 and assume 3 < N < 10,
for example, and the assumptions in Eq. (20) for the upper
bound simplification to apply become Pj, < 0.051, P < 0.71,
Py < 0.5R, and P < 0.175I;R. With n = 7 = 0.1 and
assuming I, = I'/N for all k, the assumptions necessary for
the lower bound simplifications to apply become P > 7 and
P > 465NR/I' /N, respectively.

We note that in the first case of the proof, when NR <
(I/P)'~Y/N | the medium-grained algorithm applied to dense
tensors [18], [19] achieves the lower bound. In the second
case, Alg. 3, which generalizes Alg. 2 and previous work, is
necessary to attain the lower bound.

We also compare Alg. 3 with the MTTKRP via matrix mul-

0

v

W g
g I

2N—1
N—1

R

P>

Modeled Strong-Scaling Comparison

r T T T T T 8
| *x‘x-x-x-x—x-x-x-x-x-x-x-x\ |
X
10° Lo ®%g o X, E
3 | "2 x |
b= L ﬁn \x i
.8 - ® \ B
=) % x
= 8 | N B
E 10 = 8‘& x\ E
£ £ ® x]
5] I :Y X N
O [® . 1
) t % X 8
el ® %
S 7 Ba “x
§ 10 =) =
| | - %- Matrix Multiplication e N "E
L |- %- Stationary (Alg. 2) ‘o |
| [-e- General (Alg. 3) o |
106 £ I I I ! ! i
20 25 210 215 220 225 230
Processors
Fig. 4. Model of strong-scaling communication performance comparing

Alg. 2, Alg. 3, and MTTKRP via matrix multiplication for a 3-way cubical
tensor where I = 2%° and R = 2'°. The matrix multiplication costs are
computed using the CARMA algorithm [11], but they do not include the
communication costs of forming the Khatri-Rao product.

tiplication approach. For comparison, we use the theoretical
costs of communication-optimal parallel matrix multiplication
algorithms [11]. We assume the Khatri-Rao product matrix
is constructed explicitly without communication and in the
distribution required to achieve the optimal communication
costs of the matrix multiplication. For simplicity, we consider
the case that I, = I'/N for all k € [N]. The optimal choice
of matrix multiplication algorithm depends on the relative size
of P, yielding many cases for comparison.

We consider only the extreme cases, “small P” and “large
P, though we expect our algorithm to yield benefits in all
cases. For parallel multiplication of matrices of dimensions
IVN % IN=1 and IN71 x R, if P < I'"YN, then the
communication cost is I'/NR, and if P > I/R?, then the
communication cost is (IR/P)?/3, assuming enough memory
is available [11]. For comparison, if P < I/(NR)N/(N-1),
then Alg. 3 (which reduces to Alg. 2 in this case) is
optimal with communication cost NR([/P)l/ N.if p >
I/(NR)N/(N=1)_ then Alg. 3 is optimal with communication
cost (NIR/P)N/(N=1),

Motivated thus, let us associate the small P case with
P < min (I'""VN T/(NR)N/(N=1) and the large P case
with P > max (I/R?, I/(NR)N®=D). In the small P
case, our algorithm performs a factor of O(PY/N/N) less
communication than MTTKRP via matrix multiplication.
In the large P case, our algorithm performs a factor of
O((IR/P)\N=2)/(6N=3) /N N/(2N=1)} Jess communication.

Fig. 4 provides a concrete comparison for a particular
case, where [;=I,=I3=R=2'% and the number of processors

566

ranges from 2° up to 239. We see that our proposed algo-
rithms perform less communication than matrix multiplication
throughout the range of processors, and that Alg. 2 and Alg. 3
diverge only when P > 227, When there are 2!7=131,072
processors, Alg. 2 and Alg. 3 perform approximately 25X less
communication than the matrix multiplication approach. This
illustrates the benefits of exploiting the multi-way structure of
the computation and the observation that Alg. 2 is sufficient for
most practical problems. We note that the change in slope in
the matrix multiplication curve is due to a switch from a 1D
parallel algorithm to a 2D parallel algorithm and that these
communication costs are optimal for matrix multiplication,
up to constant factors [11]. We also note that for P > 230,
which is the number of elements in each factor matrix, the All-
Gather and Reduce-Scatter collectives require more efficient
algorithms than the ones described in Sec. V.

In summary, the main disadvantage of the matrix multipli-
cation approach is that the Khatri-Rao product is treated as a
general matrix despite the fact that its structure means that it
depends on fewer parameters and therefore can be communi-
cated more efficiently (in fewer words) across processors.

VII. CONCLUSION

Because efficient algorithms and high performance imple-
mentations exist for matrix computations, it is reasonable to
recast tensor computations as matrix computations. However,
the lower bounds proved in this work demonstrate an opportu-
nity to avoid communication by exploiting the structure of the
tensor computation itself. In particular, we have shown how to
extend a lower bound approach for generic programs [12] for
a particular tensor computation known as MTTKRP, which is
the bottleneck for algorithms that compute CP decompositions.
By demonstrating (optimal) algorithms that attain these lower
bounds, we have identified a design space for implementations
that we expect to achieve high performance in practice.

In many applications, the rank R is small relative to the
tensor dimensions. When R is also small relative to the fast
memory size M, as discussed in Sec. VI-A, we expect only
limited practical benefits of the sequential algorithm (Alg. 1).
However, we believe the parallel algorithms will be very
competitive in practice. The simpler algorithm (Alg. 2) may
be the most useful, particularly when R and P are small.
Indeed, good performance has been demonstrated for sparse
tensors [18], and good scaling has been reported for dense
tensors [19]. However, the general algorithm (Alg. 3) will
likely perform better for large numbers of processors, even
when R is small. The parallel data distributions are also
natural ones for tensors, generalizing distributions used for
other tensor computations [26].

While this work focuses on a single MTTKRP computation
(corresponding to a single mode), the computation often occurs
in the context of an optimization algorithm that repeatedly
computes an MTTKRP for each mode of the tensor. In this
context, one can optimize across multiple MTTKRP compu-
tations, because they share both data and intermediate compu-
tations [14], and save both communication and computation.

Our communication lower-bound approach extends to al-
gorithms for multiple MTTKRPs. Extensions are possible
for other related computational kernels, such as those within
algorithms for computing Tucker and other decompositions.
Another natural extension is MTTKRPs involving sparse ten-
sors: in this case, the communication requirements depend
on the nonzero structure and can be expressed in terms of
a hypergraph partitioning problem [17], [27].

ACKNOWLEDGMENT

This work has been funded in part by the Laboratory-
Directed Research & Development (LDRD) program at San-
dia National Laboratories. Sandia National Laboratories is a
multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525. This work
was partially funded by the Laboratory-Directed Research
& Development (LDRD) program at Oak Ridge National
Laboratory. This material is also based upon work supported
by the NSF Grant No. ACI-1642385.

REFERENCES
[1]

T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455-500, September 2009. [Online].
Available: http://epubs.siam.org/doi/abs/10.1137/07070111X

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky,
“Tensor decompositions for learning latent variable models,” Journal of
Machine Learning Research, vol. 15, pp. 2773-2832, 2014. [Online].
Available: http://jmlr.org/papers/v15/anandkumar14b.html

N. D. Sidiropoulos, L. D. Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for signal
processing and machine learning,” IEEE Transactions on Signal
Processing, vol. 65, no. 13, pp. 3551-3582, July 2017. [Online].
Available: http://doi.org/10.1109/TSP.2017.2690524

G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and
O. Schwartz, “Communication lower bounds and optimal algorithms
for numerical linear algebra,” Acta Numerica, vol. 23, pp. 1-155,
May 2014. [Online]. Available: http://journals.cambridge.org/article_
50962492914000038

J. W. Hong and H. T. Kung, “I/O complexity: The red-blue pebble
game,” in STOC '81. ACM, 1981, pp. 326-333. [Online]. Available:
http://doi.acm.org/10.1145/800076.802486

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49-66, 2005.
[Online]. Available: http://hpc.sagepub.com/content/19/1/49.abstract

L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, vol. 33, no. 8, pp. 103-111, 1990.
[Online]. Available: https://dl.acm.org/citation.cfm?id=79181

D. Irony, S. Toledo, and A. Tiskin, “Communication lower bounds
for distributed-memory matrix multiplication,” Journal of Parallel and
Distributed Computing, vol. 64, no. 9, pp. 1017-1026, 2004. [Online].
Available: http://dx.doi.org/10.1016/j.jpdc.2004.03.021

T. M. Smith and R. A. van de Geijn, “Pushing the bounds for matrix-
matrix multiplication,” arXiv, Tech. Rep., 2017. [Online]. Available:
http://arxiv.org/abs/1702.02017

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz, “Brief
announcement: strong scaling of matrix multiplication algorithms and
memory-independent communication lower bounds,” in SPAA ’I2.
New York, NY, USA: ACM, June 2012, pp. 77-79. [Online]. Available:
http://doi.acm.org/10.1145/2312005.2312021

J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, “Communication-optimal parallel recursive rectangular
matrix multiplication,” in [PDPS ’13, ser. IPDPS 13, 2013, pp.
261-272. [Online]. Available: http://dx.doi.org/10.1109/IPDPS.2013.80

[2]

[3]

[4]

[5]

[6]

[71

[8

[9]

(10]

[11]

567

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick,
“Communication lower bounds and optimal algorithms for programs
that reference arrays - part 1,” UC Berkeley, Tech. Rep. UCB/EECS-
2013-61, May 2013. [Online]. Available: http://www.eecs.berkeley.edu/
Pubs/TechRpts/2013/EECS-2013-61.html

B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM Journal on Scientific Computing,
vol. 30, no. 1, pp. 205-231, December 2007. [Online]. Available:
http://doi.org/10.1137/060676489

A.-H. Phan, P. Tichavsky, and A. Cichocki, “Fast alternating
LS algorithms for high order CANDECOMP/PARAFAC tensor
factorizations,” IEEE Transactions on Signal Processing, vol. 61,
no. 19, pp. 4834-4846, Oct 2013. [Online]. Available: http:
//doi.acm.org/10.1109/TSP.2013.2269903

K. Hayashi, G. Ballard, J. Jiang, and M. J. Tobia, “Shared memory
parallelization of MTTKRP for dense tensors,” arXiv, Tech. Rep., 2017.
[Online]. Available: http://arxiv.org/abs/1708.08976

J. H Choi and S. V. N. Vishwanathan, “DFacTo: Distributed
factorization of tensors,” in NIPS ’14. Cambridge, MA, USA: MIT
Press, 2014, pp. 1296-1304. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2968826.2968971

O. Kaya and B. Ugar, “Scalable sparse tensor decompositions
in distributed memory systems,” in SC ’I5. New York, NY,
USA: ACM, 2015, pp. 77:1-77:11. [Online]. Available: http:
//doi.acm.org/10.1145/2807591.2807624

S. Smith and G. Karypis, “A medium-grained algorithm for distributed
sparse tensor factorization,” in IPDPS ’16, May 2016, pp. 902-911.
[Online]. Available: http://doi.org/10.1109/IPDPS.2016.113

A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D.
Sidiropoulos, “Nesterov-based alternating optimization for nonnegative
tensor factorization: Algorithm and parallel implementation,” IEEE
Transactions on Signal Processing, Nov 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/8119874/

K. S. Aggour and B. Yener, “A parallel PARAFAC implementation
& scalability testing for large-scale dense tensor decomposition,”
Rensselaer Polytechnic Institute, Tech. Rep. 16-02, 2016. [Online].
Available: http://www.cs.rpi.edu/research/pdf/16-02.pdf

N. Knight, “Communication-optimal loop nests,” 2015, PhD dissertation,
Dept. of Electrical Engineering and Computer Science, UC-Berkeley.
(UCB/EECS-2015-185). [Online]. Available: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2015/EECS-2015-185.pdf

J. Bennett, A. Carbery, M. Christ, and T. Tao, “Finite bounds
for Holder-Brascamp-Lieb multilinear inequalities,” Mathematical
Research Letters, vol. 17, no. 4, pp. 647-666, 2010. [Online].
Available: http://doi.org/10.1007/s00039-007-0619-6

L. H. Loomis and H. Whitney, “An inequality related to the isoperimetric
inequality,” Bulletin of the AMS, vol. 55, pp. 961-962, 1949. [Online].
Available: http://doi.org/10.1090/S0002-9904- 1949-09320-5

G. Ballard, N. Knight, and K. Rouse, “Communication lower bounds
for matricized tensor times Khatri-Rao product,” arXiv, Tech. Rep.,
2017. [Online]. Available: http://arxiv.org/pdf/1708.07401.pdf

E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
communication: theory, practice, and experience,” Concurrency and
Computation: Practice and Experience, vol. 19, no. 13, pp. 1749-1783,
2007. [Online]. Available: http://dx.doi.org/10.1002/cpe.1206

W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compression
for large-scale scientific data,” in IPDPS ’16, May 2016, pp. 912—
922. [Online]. Available: http://www.computer.org/csdl/proceedings/
ipdps/2016/2140/00/2140a912-abs.html

G. Ballard, A. Druinsky, N. Knight, and O. Schwartz, “Hypergraph
partitioning for sparse matrix-matrix multiplication,” ACM Transactions
on Parallel Computing, vol. 3, no. 3, pp. 18:1-18:34, Dec. 2016.
[Online]. Available: http://doi.acm.org/10.1145/3015144

