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Abstract—The matricized-tensor times Khatri-Rao product
(MTTKRP) computation is the typical bottleneck in algorithms
for computing a CP decomposition of a tensor. In order to develop
high performance sequential and parallel algorithms, we establish
communication lower bounds that identify how much data move-
ment is required for this computation in the case of dense tensors.
We also present sequential and parallel algorithms that attain
the lower bounds and are therefore communication optimal. In
particular, we show that the structure of the computation allows
for less communication than the straightforward approach of
casting the computation as a matrix multiplication operation.

I. INTRODUCTION

Tensor decompositions are a powerful tool in the analysis

of multidimensional datasets arising from a wide variety of

applications. One of the most popular decompositions, known

as CANDECOMP/PARAFAC or CP, is a generalization of the

matrix singular value decomposition (or principle component

analysis) and forms a low-rank approximation of tensor data.

Such decompositions are used heavily in the scientific com-

puting, signal processing, and machine learning communities

[1]–[3], and the formulations and fundamental algorithms for

computing these decompositions are well established.

However, their growing popularity, along with the continued

increase in the size of datasets across applications, has in-

creased demand for high-performance parallel algorithms and

implementations. To deliver efficient solutions for tensor prob-

lems, high performance computing can leverage the wealth

of knowledge and experience with dense and sparse matrix

computations, which are closely related to the computational

kernels within tensor decomposition algorithms. In particular,

obtaining high performance requires minimizing the cost of

data movement among processors and within the memory

hierarchy, as the costs of communication are an increasing

bottleneck on today’s architectures.

The goal of this work is to focus on the communication costs

of the bottleneck computation within algorithms that compute

the CP decomposition. The CP decomposition, as we discuss

in Sec. II, approximates a tensor as a sum of rank-one tensors,

typically represented as a set of factor matrices, much like a

low-rank approximation of a matrix. Nearly all optimization

schemes for computing a CP decomposition spend most of

their time in a computation known as matricized-tensor times

Khatri-Rao product (MTTKRP), and in this work we focus on

MTTKRP in the case of dense tensors. Our results are based

on a sequential two-level memory model and a distributed-

memory parallel model.

The main contributions of this paper are to

• derive communication lower bounds for MTTKRP in

sequential and parallel models: see Sec. IV;

• propose communication-optimal sequential and parallel

MTTKRP algorithms: see Sec. V;

• demonstrate that the conventional MTTKRP approach

based on matrix multiplication communicates more than

performing MTTKRP as a multiway tensor contraction:

see Sec. VI.

We discuss related work in Sec. III and conclude in Sec. VII.

II. PRELIMINARIES

A. CP Decomposition

The CANDECOMP/PARAFAC or canonical polyadic (CP)

decomposition is the approximation of a tensor by a sum of

rank-one tensors. Given an N -way tensor X of dimensions

I1 × · · · × IN , a rank-R CP decomposition, represented by N
factor matrices {A(k)}k∈[N ], is given by

X (i) ≈
∑
r∈[R]

A(1)(i1, r) · · ·A(N)(iN , r), (1)

where i = (i1, . . . , iN ).
Computing a CP decomposition involves solving a nonlinear

optimization problem to minimize the approximation error,

typically measured in the �2-norm. The most common op-

timization algorithms either use an alternating least squares

(ALS) approach or a gradient-based algorithm. The ALS

algorithm alternates among the factor matrices, improving

one factor matrix at a time. When all but one factor matrix

are fixed, optimizing the variable factor matrix is a linear

optimization problem that can solved in closed form via the

normal equations. In a gradient-based algorithm, the gradients

with respect to all factor matrices are computed and used to

determine the variable updates. In both cases, setting up the

normal equations and computing the gradient are bottlenecked

by a particular computation that involves the tensor and all

but one of the factor matrices. This computation is known as

MTTKRP.
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B. MTTKRP

MTTKRP inputs an N -way tensor X , N ≥ 2, of dimensions

I1 × · · · × IN , a fixed mode n ∈ [N ], and an (N−1)-tuple

of matrices {A(k)}k∈[N ]\{n} each of dimensions Ik × R.

MTTKRP outputs a single matrix B(n), of dimensions In×R.

(For a fixed n, the matrix A(n) and the superscript on B(n)

are irrelevant.) Throughout the discussion, the underlying set

of values is any nonempty set closed under two associative

and commutative binary operations, denoted by addition and

multiplication, say, the real numbers.

Definition 2.1: An MTTKRP algorithm maps(
X , {A(k)}k∈[N ]\{n}

)
�→ B(n),

where for each (in, r) ∈ [In]× [R],

B(n)(in, r) =
∑
i

X (i)
∏

k∈[N ]\{n}
A(k)(ik, r), (2)

where summation is over all i ∈ [I1] × · · · × [IN ] with n-th

entry in, and we require that the N−1 multiplies for each

(i, r) are evaluated atomically as an N -ary multiply.

Atomic evaluation of an N -ary multiply means that all N
inputs are present in memory when the single output value

is computed. This assumption is necessary for the proofs

of our communication lower bounds. However, it is natural

for an algorithm to break the assumption in order to reduce

arithmetic, as partial products are shared across multiple N -

ary multiplies. For example, a popular choice is to precompute

the (explicit) Khatri-Rao product and then apply the matricized

tensor in a single matrix multiplication (see Sec. III-B). As we

discuss in Sec. VI, this approach does reduce arithmetic but

usually increases the communication cost. Our ongoing work

includes extending our communication cost analysis to address

such atomicity-violating optimizations.

If the inputs or the operations satisfy additional properties,

equivalent formulations of the right-hand side of Eq. (2) may

yield more efficient algorithms, which are excluded from

Def. 2.1. As a practical example, if some value ‘0’ is an

identity element for addition and an absorbing element for

multiplication, then we can avoid arithmetic by, e.g., skipping

the summation indices i such that X (i) = 0. Our lower bounds

readily extend to address such ‘sparse’ algorithms by simply

replacing the number of tensor entries I with the number that

are nonzero; however, our algorithms may not attain these new,

smaller bounds.

Lastly, note that the extreme case N = 2 is just matrix

multiplication, e.g., B(1) = X ·A(2).

C. Computation Models

a) Sequential Model: Our sequential model includes a

single processor, connected to two storage devices called fast
and slow memory. Fast memory can hold up to M values

at once, while slow memory has unbounded capacity. The

processor performs (binary) adds and N -ary multiplies on

values in fast memory and communicates values between the

two memories. Communication consists of loads and stores,

instructions that read individual values from slow memory

and write them to fast memory, or vice versa. This model

is known as the two-level sequential memory model [4] or the

I/O complexity model [5].

b) Parallel Model: Our parallel model includes P pro-

cessors, each connected to its own local memory and to all

other processors via a network. Local memory holds up to M
values, so overall the machine holds at most PM values. As

in the sequential case, each processor can operate on values

in its local memory, while communication now consists of

sends and receives, instructions that read individual values

from local memory and write them to the network, or vice

versa. We assume each processor can send or receive only

one value at a time, but two disjoint pairs of processors can

communicate simultaneously. This model is known as the MPI

model [6], or α-β-γ model [4]. In this work, we focus on the

amount of data communicated (bandwidth cost) and ignore

the number of messages communicated (latency cost). As our

proofs do not exploit the model’s restriction of half duplex

communication, our parallel lower bounds also apply to the

BSP model of computation [7]. Additionally all our parallel

algorithms are valid BSP algorithms. As we ignore latency

cost, and all communication is performed in collectives which

have the same cost in the BSP model, our parallel upper

bounds also apply to BSP computations.

III. RELATED WORK

A. Communication Lower Bounds

The pioneering work of Hong and Kung [5] introduced

a framework for communication analysis in the sequential

model. Using the red-blue pebble game, Hong and Kung

derived lower bounds on the number of words that must

be communicated when performing a class of algorithms

including conventional matrix multiplication. Irony et al. [8]

extended Hong and Kung’s results for matrix multiplication

to the parallel case using a segmentation argument that we

will follow. Ballard et al. [4] extended communication lower

bounds from matrix multiplication algorithms to algorithms for

any linear algebra computations that can be written as three

nested loop (3NL) computations. Smith and van de Geijn [9]

tightened the constants in the lower bounds given by Irony et
al. and Ballard et al. by changing the operations to scalar fused

multiply-adds, optimizing the segment length, and exploiting

a bound on the sum (rather than the max) of the data accessed

from each array. Additionally, memory-independent bounds

were given by Ballard et al. [10] to determine the ranges

where perfect strong scaling can be achieved. Demmel et
al. [11] considered how memory-independent bounds must

change to remain tight for rectangular matrix multiplication

with one, two, or three large dimensions. Finally, Christ et al.
[12] extended the generality of 3NL computations to prove

lower bounds for more arbitrary loop nests: their approach

applies to our definition of MTTKRP.
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B. Algorithms for MTTKRP

The most straightforward sequential algorithm for MT-

TKRP, when the tensor is dense, involves permuting the tensor

to achieve a column- or row-major matricization, forming the

Khatri-Rao product explicitly, and then multiplying these two

matrices [13]. Note that this approach violates the assumption

in Def. 2.1 that the N -ary multiplies are performed atomically.

An alternative approach avoids the explicit permutation of

the tensor and performs the MTTKRP in two steps, the

first involving a matrix-matrix multiplication and the second

involving a sequence of matrix-vector multiplications [14],

[15]. This approach also violates the atomicity assumption.

The two-step approach is particularly advantageous when the

MTTKRP is to be performed in each mode, like in the CP-ALS

or other gradient-based algorithms, as intermediate quantities

can be re-used across modes.

In the case of distributed-memory parallel algorithms for

MTTKRP, there have been many efforts to improve perfor-

mance for sparse tensors [13], [16]–[18] in the context of

the CP-ALS algorithm. In particular, Smith and Karypis [18]

describe a “medium-grained” parallelization scheme that is

designed for sparse tensors but can be applied to dense tensors.

Indeed, Liavas et al. [19] apply the preceding approach to

dense 3-way tensors in computing CP decompositions with

non-negativity constraints, using 1D, 2D, and 3D processor

grids depending on the tensor dimensions. Aggour and Yenner

[20] also parallelize MTTKRP for dense tensors, using a

scheme that parallelizes over only the largest dimension (using

only 1D processor grids) of a 3-way tensor.

IV. LOWER BOUNDS

In Sec. IV we derive lower bounds on the amount of

data communicated by sequential and parallel MTTKRP al-

gorithms. The key, formalized in Lem. 4.1 (Sec. IV-A), is that

in any MTTKRP algorithm the size of any subset of operations

is bounded in terms of the numbers of associated operands.

These upper bounds on data reuse yield lower bounds on

communication, in both sequential and parallel models, via a

counting argument: see Thm. 4.1 and Cor. 4.1 (Sec. IV-B).

These lower bounds are called memory-dependent, since

they explicitly depend on the fast/local memory size M . A

different counting argument and stronger hypotheses yield

memory-independent lower bounds — see Thms. 4.2 and 4.3

(Sec. IV-C).

Our arguments build on previous communication lower

bounds for matrix computations [4], [8], which used the

Loomis-Whitney inequality. These lower bounds do not di-

rectly apply to MTTKRP computations, as formalized in

Def. 2.1. However, a generalization to a larger class of nested-

loop programs [12], [21], leveraging the more general class

of Hölder-Brascamp-Lieb inequalities [22], do apply to MT-

TKRP. These previous results assumed the number of nested

loops is a fixed constant, whereas in MTTKRP this number

varies with the order N of the tensor. A key contribution of

the present work is that we extend the previous analyses to

allow the number of nested loops to vary.

A. Preliminary Lemmas

In this section we state four lemmas that will be useful in

our main results. Lem. 4.1, a generalization of the Loomis-

Whitney inequality [23], will be used to derive an upper

bound on possible data reuse within an MTTKRP computation.

Lem. 4.2 provides the solution to a particular linear program

that appears in our lower bound proofs. Lems. 4.3 and 4.4

give solutions to nonlinear optimization problems that appear

in later proofs.

The following result appears in a more general form in [22,

Proposition 7.1]; a simpler proof for our special case is given

in [12, Theorem 6.6].

Lemma 4.1: Consider any positive integers d and m and

any m projections φj : Z
d → Z

dj (dj ≤ d), each of which

extracts dj coordinates Sj ⊆ [d] and forgets the d−dj others.

Define P =
{
s ∈ [0, 1]m : Δ · s ≥ 1

}
, where the d × m

matrix Δ has entries Δ(i, j) = 1 if i ∈ Sj and Δ(i, j) = 0
otherwise. If s ∈ P , then for all E ⊆ Z

d,

|E| ≤
∏

j∈[m]

|φj(E)|sj .

Lemma 4.2: The solution of the linear program

min1T s subject to Δ · s ≥ 1 and s ≥ 0, (3)

where

Δ =

(
IN×N 1N×1

11×N 0

)
,

is s∗ = (1/N, . . . , 1/N, 1−1/N)T with 1T s∗ = 2−1/N .

Proof: The dual linear program is

max1T t subject to ΔT · t ≤ 1 and t ≥ 0.

Note that t∗ = s∗ is feasible, and 1T t∗ = 1T s∗, so s∗ is a

solution of the primal by linear duality.

The following two lemmas can be proved using the method

of Lagrange multipliers [24].

Lemma 4.3: Given s > 0, the optimization problem

max
x≥0

∏
i∈[m]

xsi
i subject to

∑
i∈[m]

xi ≤ c

yields the maximum value c
∑

i si
∏

j∈[m]

(
sj∑
i si

)sj
.

Lemma 4.4: For any s ≥ 0, the optimization problem

min
x≥0

∑
i∈[m]

xi subject to
∏

i∈[m]

xsi
i ≥ c

yields the minimum value
(

c∏
i s

si
i

)1/
∑

i si ∑
i∈[m] si.

B. Memory-Dependent Lower Bounds

We first prove Thm. 4.1, a lower bound for the sequential

model that depends on the fast memory size M . The proof

uses the structure of previous matrix computation lower bound

proofs [4], [8]. However, to address MTTKRP, it uses a

Hölder-Brascamp-Lieb-type inquality (Lem. 4.1) as has been

done for more general computations [12]. It also borrows

another technique involving Lem. 4.3 that has been used
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to tighten the constant of the matrix multiplication bound

[9], though the technique improves our bound by more than

a constant. Thm. 4.1 implies Cor. 4.1, a similar memory-

independent bound for the parallel model, where M corre-

sponds to the size of the local memory. We also state an

immediate lower bound result for the sequential case (Fact 4.1)

based on the size of the input and output data.

Theorem 4.1: Any sequential MTTKRP algorithm involves

at least
1

32−1/N

NIR

M1−1/N
−M (4)

loads and stores.

Proof: We break the stream of instructions that implement

a MTTKRP algorithm into complete segments each of which

contains exactly M loads and stores, except the last segment

which may contain less than M loads and stores (incomplete).

We will determine an upper bound on the number of elements

of all arrays X , B(n), or A(k) that can be accessed during

a segment, then use Lem. 4.1 to bound the number of loop

iterations that can be evaluated during a segment. We use this

upper bound to generate a lower bound for the number of

complete segments, from which we generate the lower bound

on the communication for any MTTKRP algorithm.

We begin by considering elements of B(n), the factor matrix

that is being computed. We consider an element of B(n) live
during the segment if it accumulates the result of one or more

N -ary multiplies during that segment. Any element of B(n)

that is live during the segment must either remain in fast

memory at the end of the segment or have been stored into

slow memory by the end of the segment. At the end of the

segment there can be at most M live elements of B(n) that

remain in fast memory. Let S be the number of live elements of

B(n) that were stored during the segment. Now, consider input

elements of X and A(k) that are used as arguments for one

or more N -ary multiplies during the segment. These elements

must have been in fast memory at the start of the segment or

loaded into fast memory during the segment. The total number

of input elements that are in fast memory at the start of the

segment is at most M , and the total number of input elements

that can be loaded during the segment is M − S. Thus the

total number elements from all arrays that an algorithm can

access during the segment is at most 3M .

If F is the subset of the iteration space I = [I1]×· · ·×[IN ]×
[R] evaluated during the segment, then φj(F ) corresponds to

the set of entries of the j-th array that are accessed during

the segment. Thus,
∑

j∈[m] |φj(F )| ≤ 3M . See Fig. 1 for an

example set F and its projections.

To use Lem. 4.1 we first define the linear constraint matrix

Δ. For MTTKRP algorithms, the number of projections/arrays

is m = N+1, corresponding to N−1 input factor matrices,

one output factor matrix, and the input tensor. The depth of

the nested loops is d = N+1, corresponding to one loop for

each mode of the tensor and one loop over the rank of the

factor matrices. The first N projections (rows) correspond to

the input and output factor matrices, and the last projection

corresponds to the input tensor. The first N indices (columns)

a

bi1
↓

i2 →

r = 1

c

r = 2

d

r = 3

e f

i3
↗

r = 4

(a) Example subset F of 4-way iteration space. The subset F consists of
the six coordinates a (5,1,1,1), b (3,3,15,1), c (7,10,2,2), d (4,14,11,3), e
(11,2,2,4), and f (14,14,14,4), which are color coded by their last index.

a
b

c
d

e

f

i1
↓

r →
φ1(F )

a
b

c

d

e

f

i2
↓

r →
φ2(F )

a

b

c

d

e

f

i3
↓

r →
φ3(F )

a

b

c

d

e
f

i1
↓

i2 → i3
↗

φ4(F )

(b) Projections of F onto data arrays (2-way factor matrices and 3-way
tensor). For example, the set φ2(F ) consists of the six coordinates a (1,1),
b (3,1), c (10,2), d (14,3), e (2,4), and f (14,4).

Fig. 1. Example subset of computation and the data required to perform it, for
N = 3, I1 = I2 = I3 = 15, and R = 4. Fig. 1a shows the iteration space
and specifies six coordinates in the subset, where the coordinates correspond
to N -ary multiplies. Fig. 1b show the elements of the arrays that are involved
in the computation, which are determined by projections of the coordinates.

are i1, . . . , iN , and the last index is r. So we have

Δ =

(
IN×N 1N×1

11×N 0

)
.

By Lem. 4.1, for any s ∈ P , |F | ≤ ∏
j∈[m] |φj(F )|sj .

Substituting |φj(F )| for xj and 3M as the constant c in the

constraint of Lem. 4.3, we see that for any s ∈ P ,∏
j∈[m]

|φj(F )|sj ≤ (3M)
∑

j sj
∏

j∈[m]

(
sj∑
i si

)sj

.

In order to obtain the tightest lower bound possible, we wish
to choose the s ∈ P that minimizes the left hand side of the
preceding inequality. Short of that, we can choose to minimize
only the first factor (3M)

∑
j sj , which corresponds to solving

the linear program Eq. (3). By Lem. 4.2, the exponent is
minimized by 2−1/N with s∗ = (1/N, . . . , 1/N, 1−1/N)T .
Note that

∏
j∈[m]

(
s∗j∑
i s

∗
i

)s∗j
=

(
1− 1/N

2− 1/N

)1−1/N ∏
j∈[N ]

(
1/N

2− 1/N

)1/N

=

(
1

2− 1/N

)2−1/N

(1− 1/N)1−1/N
∏

j∈[N ]

(1/N)1/N ≤ 1/N.

Thus |F | ≤ (3M)2−1/N/N gives an upper bound on the

number of N -ary multiplies that can be performed in a

segment with exactly M loads and stores.

Because |I| = IR there are at least
⌊
IR/((3M)2−1/N/N)

⌋
complete segments. Each segment loads/stores M words, thus
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there are at least M · ⌊NIR/(3M)2−1/N
⌋

loads and stores.

Corollary 4.1: Any parallel MTTKRP algorithm involves

at least
1

32−1/N

NIR

PM1−1/N
−M

sends and receives.

Proof: Since some processor must be associated with at

least |I|/P = IR/P loop iterations, we can apply Thm. 4.1

to the computation performed by that processor.

Both sequential and parallel lower bounds indicate a tradeoff

between the memory size M and communication. We demon-

strate in Sec. V-A a sequential algorithm that attains the lower

bound of Thm. 4.1 within a constant factor, navigating the

tradeoff by appropriately choosing a block-size parameter. It

remains open whether there exists a parallel algorithm that

navigates the tradeoff in Cor. 4.1 in a similar manner.

The following additional lower bound for the sequential case

is based on the observation that to perform the MTTKRP,

the algorithm must access all of the input and output data.

Note that the fast memory could be full of useful data at the

beginning and end of the computation.

Fact 4.1: Any sequential MTTKRP algorithm must perform

at least I +
∑

k∈[N ] IkR− 2M loads and stores.

C. Memory-Independent Lower Bounds

In this section, we prove bounds that do not depend on

the fast or local memory size M . These bounds focus on

the parallel case. The structures of the proofs follow previous

work [10], [11], but again we combine a technique used in

the context of matrix multiplication [9] (involving Lem. 4.3) to

tighten the bounds. Thms. 4.2 and 4.3 establish separate lower

bounds under the same assumptions on the parallelization

and data distribution. We prove both because either can be

the tightest lower bound, depending on relative sizes of the

parameters. To show how the bounds simplify and compare

for a particular case, we consider tensors with all dimensions

the same (Ik = I1/N for all k) and state Cor. 4.2.

Theorem 4.2: In any parallel MTTKRP algorithm where

each processor initially and finally owns at most δ
∑

k IkR/P
factor matrix entries and at most γI/P tensor entries, γ, δ ≥ 1,

some processor performs at least

2

(
NIR

P

) N
2N−1

− γ
I

P
− δ

∑
k∈[N ]

IkR

P
(5)

sends and receives.
Proof: We follow the argument given by Ballard et al.

[10, Lemma 2.3]. Some processor p must evaluate at least
|I|/P = IR/P loop iterations. Let F be the set of loop
iterations associated with the N -ary multiplies performed by
that processor. Then using |φj(F )| as before we have that
the number of sends and receives performed by that processor
must be at least

∑
j∈[N+1] |φj(F )|−γI/P−δ

∑
k∈[N ] IkR/P ,

where the first sum is the size of the data the processor must
access to evaluate its loop iterations and the negative terms
correspond to the useful data that may be in its local memory
at the start and end of the computation. From Lem. 4.1,
we can bound the size of F in terms of the sizes of the

projections: |F | ≤ ∏
j∈[N+1] |φj(F )|sj for any s in P . Using

s∗ = (1/N, . . . , 1/N, 1−1/N) as before, and substituting
|φj(F )| for xj and IR/P as the constant c, Lem. 4.4 gives

∑
j∈[N+1]

|φj(F )| ≥ (2−1/N)

(
IR/P∏

s
sj
j

) N
2N−1

≥ 2

(
NIR

P

) N
2N−1

.

Theorem 4.3: In any parallel MTTKRP algorithm where

each processor initially and finally owns at most δ
∑

k IkR/P
factor matrix entries and at most γI/P tensor entries, γ, δ ≥ 1,

some processor performs at least

min

⎛
⎝√

2

3γ
NR

(
I

P

)1/N

− δ
∑
j∈[N ]

IjR

P
,

γI

2P

⎞
⎠ (6)

sends and receives.

Proof: We follow the argument given by Demmel et al.
[11, Section II.B.2]. As before, F is the set of loop iterations

evaluated by a processor that computes at least IR/P N -ary

multiplies. By Lem. 4.1 with s∗ = (1/N, . . . , 1/N, 1−1/N)T ,

we have

IR

P
≤ |φN+1(F )|N−1

N

∏
j∈[N ]

|φj(F )|1/N . (7)

We consider two cases based on |φN+1(F )|, the number

of tensor entries accessed by the processor. Suppose that

|φN+1(F )| ≥ 3γI
2P . By our assumption of load balanced data

distribution, the processor must read at least γI
2P elements

of X to perform its computations. Now consider the case

when |φN+1(F )| < 3γI
2P . Replacing |φN+1(F )| with 3γI

2P
in the right hand side of Eq. (7) and rearranging, we have∏

j∈[N ] |φj(F )| ≥ (2/(3γ))
N−1 IRN

P . By Lem. 4.4, we know

that
∑

j∈[N ] |φj(F )| is minimized subject to this constraint

on the product when |φj(F )| = (2/(3γ))
N−1
N (I/P )1/NR.

Given that the factor matrices are load balanced up to a

factor of δ, we see that some processor performs at least∑
j∈[N ] |φj(F )| − δ

∑
j∈[N ]

IjR
P ≥ N

(
2
3γ

)N−1
N (

I
P

)1/N
R −

δ
∑

j∈[N ]
IjR
P sends and receives.

Because the number of tensor entries the processor must

access may be bigger or smaller than 3γI
2P , the lower bound is

the minimum of the two cases.

Corollary 4.2: Any parallel MTTKRP algorithm involving

a tensor with Ik = I1/N for all k and that starts with one

copy of the inputs evenly distributed across processors and

ends with one copy of the output evenly distributed across

processors involves at least

Ω

((
NIR

P

) N
2N−1

+NR

(
I

P

)1/N
)

sends and receives.

Proof: The proof involves simplifying and combining the

results of Thms. 4.2 and 4.3 under the additional assumptions,

see [24] for details.
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Algorithm 1 Sequential Blocked Algorithm

1: function B(n) = SEQ-BLOCKED-MTTKRP(X , {A(k)}, n, b)
2: for j1 ← 1 to I1 step b do

3:
. . .

4: for jN ← 1 to IN step b do
5: Jk ← min(Ik, jk + b− 1) (k ∈ [N ])
6: load block X (j1:J1, . . . , jN :JN )
7: for r ← 1 to R do
8: load vectors A(k)(jk:Jk, r) (k ∈ [N ] \ {n})
9: load vector B(n)(jn:Jn, r)

10: for i1 ← j1 to J1 do

11:
. . .

12: for iN ← jN to JN do
13: B(n)(in, r) ← B(n)(in, r)+

X (i1, . . . , iN ) ·
∏

k∈[N ]\{n}
A(k)(ik, r)

14: end for
15: . .

.

16: end for
17: store vector B(n)(jn:Jn, r)
18: end for
19: end for
20: . .

.

21: end for
22: end function

V. ALGORITHMS

A. Sequential Blocked Algorithm

Alg. 1 and Fig. 2 illustrate a sequential blocked MTTKRP

algorithm. We control the blocking with the block size b. The

code is correct for any positive integer b satisfying

bN +Nb ≤ M , (8)

whence the communication cost is bounded above by

I +

⌈
I1
b

⌉
· · ·

⌈
IN
b

⌉
·R(N + 1)b. (9)

In Sec. VI-A, within the proof of Thm. 6.1, we will weaken

and simplify Eq. (9) for easier comparison with the lower

bounds of Thm. 4.1 and Fact 4.1. We will assume additionally

that the fast memory size M is sufficiently large with respect to

the tensor order N , but not too large with respect to the tensor

dimensions I1, . . . , IN . Under these assumptions, picking the

block size b ≈ M1/N gives an upper bound of the form

O

(
I +

NIR

M1−1/N

)
. (10)

To see how Eq. (10) might be obtained from Eq. (9), substitute

b = (M/2)1/N , supposing b is a positive integer that satisfies

Eq. (8) and divides I1, . . . , IN .

B. Parallel Stationary Tensor Algorithm

We present two parallel algorithms, Algs. 2 and 3, the first

of which is a special case of the second. Here in Sec. V-B

we present the special case of Alg. 2 separately because its

notation is simpler and we expect it to apply more frequently

in typical applications, where NR is small relative to I/P . See

b

b
b

·A(1)

B(2)

A
(3)

Fig. 2. Sequential Blocked Algorithm for N = 3 and n = 2: subten-
sor X (j1:J1, j2:J2, j3:J3) is highlighted, and subcolumns A(1)(j1:J1, r),
B(2)(j2:J2, r), A

(3)(j3:J3, r) are shown with dotted lines.

also Fig. 3 for an illustration of Alg. 2. The general algorithm,

Alg. 3, is presented in Sec. V-C. We note that Alg. 2 is

essentially the same as the medium-grained algorithm applied

to dense tensors [18], [19], though the communication pattern

simplifies in the dense case.

1) Data Distribution: For an N -way tensor, we organize

processors into an N -way logical processor grid. We factor

P = P1P2 · · ·PN and identify each processor by an N -

tuple p = (p1, . . . , pN ) ∈ [P1] × · · · × [PN ]. We partition

each tensor dimension k ∈ [N ] into Pk parts: [Ik] =

{S(k)
pk }pk∈[Pk]. Each processor p initially stores the subtensor

Xp = X (S
(1)
p1 , . . . , S

(N)
pN ), and, for each k ∈ [N ] \ {n}, a part

A(k)
p in a partition of A(k)

pk
= A(k)(S

(k)
pk , :), across processors

p′ with p′k = pk. During execution, processor p also stores

the submatrices A(k)
pk

, k ∈ [N ]\{n} and a matrix Cpn
the

same size as (and used in the summation of) B(n)
pn

. After

execution, the processor stores a part B(n)
p in a partition of

B(n)
pn

= B(n)(S
(n)
pn , :), across processors p′ with p′n = pn. In

words, each mode’s factor matrix is distributed block-rowwise

across the processor hyperslices of that mode, and each row

block is then partitioned arbitrarily across the processors in its

hyperslice. During execution, these block rows are replicated

within hyperslices.

2) Algorithm: The pseudocode is given in Alg. 2, and

Fig. 3 provides an illustration of the major steps. We use the

term stationary (tensor) to describe this algorithm because the

input tensor is never communicated. Instead, each processor

gathers all the input factor matrix data that participates in

N -ary multiplies involving the local tensor. Then, the local

computation is itself an MTTKRP. To compute the output

of the global MTTKRP, processors again must communicate

to reduce values that correspond to the same output matrix

entries. The data distributions are organized using an N -

way processor grid so that the communication is performed
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Algorithm 2 Parallel Stationary Tensor MTTKRP Algorithm

1: function B
(n)
p = PAR-STAT-MTTKRP(Xp, {A(k)

p }, n)
2: p = (p1, . . . , pN ) is my processor id
3: for each k ∈ [N ] \ {n} do
4: A

(k)
pk = All-Gather(A

(k)
p , (:, . . . , :, pk, :, . . . , :))

5: end for
6: Cpn = Local-MTTKRP(Xp, {A(k)

pk }, n)

7: B
(n)
p = Reduce-Scatter(Cpn , (:, . . . , :, pn, :, . . . , :))

8: end function

across processor hyperslices using collective communication

operations All-Gather and Reduce-Scatter.

3) Analysis: We defer detailed analysis of Alg. 2 to that

of the more general Alg. 3 in Sec. V-C3. Setting P0 = 1 in

Alg. 3 yields Alg. 2. Analysis of Alg. 2 has already appeared

for cubical tensors [18] and 3-way tensors [19].

Assuming we can choose a processor grid such that Pk ≈
Ik/(I/P )1/N and divides Ik evenly, we choose the data

distribution such that |S(k)
pk | = Ik/Pk for k ∈ [N ], which sim-

plifies these upper bounds. The communication cost bound is

O
(
NR(I/P )1/N

)
, the arithmetic cost bound is O(NIR/P )

(which can be reduced by a factor of O(N)), and the (per-

processor) storage cost bound is O
(
I/P +NR(I/P )1/N

)
.

The temporary storage (the second term in the bound) could

be reduced by a factor of at most R by using another layer of

blocking over the columns of the matrices. While this would

not affect the amount of communication, it would increase the

number of communication collectives by the same factor.

C. Parallel General Algorithm

This section studies Alg. 3, a generalization of the stationary

tensor algorithm, Alg. 2, described in Sec. V-B. Alg. 3

parallelizes over all N+1 dimensions of the iteration space:

the N tensor dimensions, bounded by I1, . . . , IN , and the

matrix column dimension, bounded by R. In contrast, recall

that Alg. 2 parallelizes over just the N tensor dimensions.

Roughly speaking, Alg. 3 is more efficient than Alg. 2 when

NR is large relative to I/P .

1) Data Distribution: For an N -way tensor, we organize

processors into an (N+1)-way logical processor grid. We

factor P = P0P1P2 · · ·PN and identify each processor by an

(N+1)-tuple p = (p0, p1, . . . , pN ) ∈ [P0]× [P1]×· · ·× [PN ].
As before, we partition each tensor dimension k ∈ [N ] into Pk

parts, [Ik] = {S(k)
pk }pk∈[Pk]. Additionally we now partition the

matrix column dimension into P0 parts, [R] = {Tp0
}p0∈[P0].

Each processor p initially (before execution) stores a part Xp

in a partition of Xp1,...,pN
= X (S

(1)
p1 , . . . , S

(N)
pN ), across pro-

cessors p′ with p′k = pk (k ∈ [N ]), and for each k ∈ [N ]\{n},

a part A(k)
p in a partition of A(k)

pk,p0
= A(k)(S

(k)
pk , Tp0

), across

processors p′ with p′0 = p0 and p′k = pk. During execution

it also stores the subtensor Xp1,...,pN
, the submatrices A(k)

pk,p0
,

k ∈ [N ]\{n}, and B(n)
pn,p0

, and a matrix Cpn,p0 the same size

as (and used in the summation of) B(n)
pn,p0

. After execution,

the processor stores a part B(n)
p in a partition of B(n)

pn,p0
=

B(n)(S
(n)
pn , Tp0), across processors p′ with p′0 = p0 and

Algorithm 3 Parallel General MTTKRP Algorithm

1: function B
(n)
p = PAR-GEN-MTTKRP(Xp, {A(k)

p }, n)
2: p = (p0, p1, . . ., pN ) is my processor id
3: Xp1,...,pN = All-Gather(Xp,(:, p1, . . . , pN ))
4: for each k ∈ [N ] \ {n} do
5: A

(k)
pk,p0 = All-Gather(A

(k)
p ,(p0, :, . . . , :, pk, :, . . . , :))

6: end for
7: Cpn,p0 = Local-MTTKRP(Xp1,...,pN , {A(k)

pk,p0}, n)

8: B
(n)
p = Reduce-Scatter(Cpn,p0 ,(p0, :, . . . , :, pn, :, . . . , :))

9: end function

p′n = pn. Let us clarify a notational detail: while Xp1,...,pN
,

A(k)
pk

, B(n)
pn

are tensors/matrices, the (sub)sets of tensor/matrix

entries Xp, A(k)
p , B(n)

p need not be (sub)tensors/matrices.

2) Algorithm: As mentioned in Sec. V-B, the more general

Alg. 3 parallelizes over all N+1 dimensions of the iteration

space: unlike the stationary algorithm Alg. 2, entries of the

tensor X are now communicated among processors. One can

think of Alg. 3 as logically dividing the output factor matrix

B(n) into P0 block-columns, each assigned to a separate subset

of P/P0 processors, and running Alg. 2 on each subset of

processors, where each subset owns a copy of the tensor.

3) Analysis: We analyze the communication cost first.

Communication occurs only in the All-Gather and Reduce-

Scatter collectives in Lines 3, 5 and 8. Each processor p
is involved in one All-Gather involving the tensor (Line 3),

N−1 All-Gathers involving factor matrices (Line 5, k ∈
[N ] \ {n}) and one Reduce-Scatter (Line 8). Over all proces-

sors, Line 3 specifies P/P0 simultaneous All-Gathers, Line 5

(k ∈ [N ] \ {n}) specifies Pk simultaneous All-Gathers, and

Line 8 specifies Pn simultaneous Reduce-Scatters.

In this analysis, we assume bucket algorithms are used

for the collectives. A bucket All-Gather or Reduce-Scatter

algorithm with q processors proceeds in q−1 steps, at each of

which each processor passes left an array of size at most w.

That is, w is the largest local array size before (All-Gather)

or after (Reduce-Scatter) the collective. The communication

cost is at most (q − 1)w, which is (bandwidth-) optimal for

perfectly balanced data distributions [25]. For Reduce-Scatter,

there is also an arithmetic cost of at most (q−1)w operations.

In these cases, we have q0 = P0 for Line 3 and qk =
P/(P0Pk) for Line 5 (k ∈ [N ]\{n}) and Line 8 (k = n). The

largest local sizes depend on the data distributions specified

in Sec. V-C1: w0 = maxp nnz(Xp) and

wk =

{
maxp nnz(A(k)

p ) k ∈ [N ] \ {n}
maxp nnz(B(n)

p ) k = n.

The overall communication cost is then bounded above by

(P0 − 1) ·max
p

nnz(Xp)

+
∑
k∈[N ]

(
P

P0Pk
− 1

)
·
⎧⎨
⎩
max
p

nnz(A(k)
p ) k �= n

max
p

nnz(B(n)
p ) k = n.

(11)

The arithmetic cost is bounded above in terms of the
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A(1)

B(2)
A
(3)

(a) Start with one subtensor
and subset of rows of each
input matrix.

A(1)

B(2)
A
(3)

(b) All-Gather rows from in-
put matrix A(1) (Line 4).

A(1)

B(2)
A
(3)

(c) All-Gather rows from in-
put matrix A(3) (Line 4).

A(1)

B(2)
A
(3)

(d) Compute local contribu-
tion to rows of output matrix
B(2) (Line 6).

A(1)

B(2)
A
(3)

(e) Reduce-Scatter to com-
pute/distribute rows of out-
put matrix B(2) (Line 7).

Fig. 3. Parallel Stationary Tensor Algorithm data distribution, communication, and computation across steps for N = 3 and n = 2. Highlighted areas
correspond to processor (1, 3, 1) and its subcommunicators.

costliest local MTTKRP (Line 7) and the costliest Reduce-
Scatter (Line 8): the number of operations is at most

N max
p

⎛
⎝|Tp0 |

∏
k∈[N ]

|S(k)
pk |

⎞
⎠+

(
P

P0Pn
−1

)
max

p
nnz(B(n)

p ). (12)

The per-processor storage cost is bounded above by

max
p

⎛
⎝ ∏

k∈[N ]

|S(k)
pk

|+
∑
k∈[N ]

|S(k)
pk

| · |Tp0
|
⎞
⎠ . (13)

Let us simplify these upper bounds, assuming that we can

choose a processor grid with dimensions

P0 ≈ (NR)
N

2N−1

(I/P )
N−1
2N−1

and Pk ≈ Ik

(IP0/P )
1
N

(k ∈ [N ]),

and that we can choose the data distribution such that

|S(k)
pk

| = Ik/Pk, |Tp0 | = R/P0, nnz(Xp) = I/P ,

nnz(A(k)
p ) = IkR/P , and nnz(B(n)

p ) = InR/P ,

where everything divides evenly. The communication cost

bound Eq. (11) and the storage cost bound Eq. (13) are

O
(
NR (I/P )

1/N
+ (NIR/P )

N/(2N−1)
)

, and the arithmetic

cost bound Eq. (12) is O(NIR/P ). We weaken these assump-

tions on the processor grid and make them more explicit in

the proof of Thm. 6.2.

We note that to save arithmetic, the algorithm could break

the atomicity of the N -ary multiplies without changing the

communication costs of the algorithm. Each processor can

precompute the explicit local Khatri-Rao product and perform

a local matrix multiplication, reducing the arithmetic cost

bound from O(NIR/P ) to O(IR/P ) (these costs assume

a reasonably load-balanced distribution).

VI. DISCUSSION

A. Sequential Case

We would like to compare the upper bound,

W seq
ub = I + (N + 1)

⎛
⎝ ∏

k∈[N ]

⌈
Ik
b

⌉⎞⎠ bR,

valid for any b ∈ {1, 2, . . .} satisfying M ≥ bN + Nb, with

the lower bounds W seq
lb1 = NIR

3(3M)1−1/N − M (Thm. 4.1) and

W seq
lb2 = I +

∑
k∈[N ] IkR− 2M (Fact 4.1).

We now show that under certain assumptions on M , for

example assuming that the tensor is too large to fit in fast

memory, the upper bound and lower bounds differ by no more

than a constant.

Theorem 6.1: Suppose M is sufficiently larger than the

number of dimensions N and that each dimension Ik is

sufficiently larger than M1/N . Then Alg. 1 is communication

optimal to within a constant factor.
Proof: Suppose there exist positive constants α, β, γ, δ, ε

such that

M ≥
(
Nα1/N

1− α

) N
N−1

α < 1 (14)

M ≥
(

1

α1/N − β1/(N−1)

)N

β < α1−1/N (15)

M ≤

⎛
⎜⎝

(
N

N+1
γ
)1/N − 1

α1/N
min
k∈[N ]

Ik

⎞
⎟⎠

N

γ > 1 +
1

N
(16)

M ≤ 1

2

⎛
⎝(1− δ)I +

∑
k∈[N ]

IkR

⎞
⎠ δ < 1 +

∑
k∈[N ]

Ik

I
R (17)

M ≤
((

1

32−1/N
− ε

)
NIR

) N
2N−1

ε <
1

32−1/N
. (18)

For Alg. 1, we choose block size b = �(αM)1/N
. It then

follows from Eqs. (14) to (16) that W seq
ub ≤ γ

β

(
I + NIR

M1−1/N

)
.

It follows from Eqs. (17) and (18) that max(W seq
lb1 ,W

seq
lb2 ) ≥

min(δ,ε)
2

(
I + NIR

M1−1/N

)
, which matches the upper bound to

within a constant factor. For a more detailed argument, see

[24].

To illustrate the hypotheses Eqs. (14) to (18) of Thm. 6.1,

take, for example, the constants β = 1 − α = 1/100,

γ = 100, and δ = ε = 1/10, which satisfy the right-

hand inequalities for all fast memory sizes M and problem

parameters N, I1, . . . , IN , R. Clearly there are infinitely many

choices of M and the problem parameters that satisfy the

left-hand inequalities. For example, supposing N ≤ 10 and

I1 = I2 = · · · = IN , the left-hand inequalities require that

the fast memory size M is bounded below by 104 (due to

Eqs. (14) and (15)), and above by the minimum of I/1000
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(due to Eqs. (16) and (17)) and
√
NIR/10 (due to Eq. (18)).

We also compare the communication cost of Alg. 1,

O(I + NIR/M1−1/N ), with the MTTKRP via matrix mul-

tiplication approach. We assume a communication-optimal

matrix multiplication is used, achieving O(I + IR/M1/2)
communication cost and performing 2IR operations. Here, the

cost of explicitly forming the Khatri-Rao product matrix is a

lower order term, assuming R < Ik for all k ∈ [N ]. Assuming

N = O(M1/2−1/N ), the communication cost of Alg. 1 never

exceeds that of MTTKRP via matrix multiplication.

If the communication cost is dominated by accessing the

tensor (i.e., R = O(M1/2)), then the approaches perform

the same amount of communication and Alg. 1 performs a

factor of N/2 more computation. If the communication cost

is dominated by repeatedly accessing the factor matrices (i.e.,

NR = Ω(M1−1/N )), then Alg. 1 is more efficient, requiring

a factor of O(M1/2−1/N/N) less communication.

In practice, we expect N to be very small relative to M ,

so the assumption N = O(M1/2−1/N ) is mild. However, we

also expect R to be small relative to M , and in that case, the

dominant communication cost of reading tensor elements from

memory is shared by both approaches. In this case, the matrix

multiplication approach benefits from fewer operations, and it

can also use existing software for matrix multiplication.

B. Parallel Case

The communication upper bound for Alg. 3, W par
ub , is valid

for any factorization P = P0P1 · · ·PN and data distribution

specified in Sec. V-C1. We wish to compare this upper bound

with the lower bound from Thm. 4.2, W par
lb1 , and the lower

bound from Thm. 4.3, W par
lb2 .

Theorem 6.2: Suppose the number of processors P is

sufficiently large and factorable, and suppose that the tensor

dimensions and rank are sufficiently large with respect to P .

Then Alg. 3 is communication optimal to within a constant

factor.

Proof: To instantiate W par
ub , we must specify a processor

grid (i.e., a factorization of P into a product P0P1 · · ·PN of

positive integers) as well as the distributions of the tensor and

factor matrices. For any processor grid, recalling the notation

of Sec. V-C1, we can define a data distribution where, for each

processor p,

nnz(Xp) ≤
⌈∏

k

�Ik/Pk�/P0

⌉
,

nnz(A(k)
p ) ≤ ⌈�Ik/Pk��R/P0�/(P/(PkP0))

⌉
,

nnz(B(n)
p ) ≤ ⌈�In/Pn��R/P0�/(P/(PnP0))

⌉
.

(19)

To instantiate W par
lb1 ,W

par
lb2 , we must assume that that no

processor owns more than γI/P tensor entries or δ
∑

k IkR/P
factor matrix entries, for some constants γ, δ ≥ 1. For any

γ, δ > 1, we can manipulate the upper bounds in Eq. (19) to

derive relations on the machine and problem parameters such

that these balance constraints hold. In particular, we suppose

there exist constants α, β > 1 such that γ > α, δ > α1/Nβ,

and, for all k ∈ [N ],

Pk ≤ (α1/N − 1)Ik, P ≤ (γ − α)I ,

P0 ≤ (β − 1)R, P ≤ (δ − α1/Nβ)IkR.
(20)

These hypotheses also yield a simpler upper bound,

W par
ub ≤ γ(P0 − 1)

I

P
+ δ

∑
k∈[N ]

IkR

PkP0
. (21)

We now consider two cases, when NR ≤ (I/P )1−1/N and

when NR > (I/P )1−1/N . In each case, under additional

hypotheses, Eq. (21) attains one of the two lower bounds

Eqs. (5) and (6).

In the first case, NR ≤ (I/P )1−1/N , we suppose there

exists a constant ε > 0 such that P factors as P0P1 · · ·PN

with P0 = 1 and, for all k ∈ [N ], Ik/Pk ≤ (ε/δ)(I/P )1/N .

Additionally, we suppose there exists a constant η, 0 < η <√
2/(3γ) such that

P ≥
(

δ√
2/(3γ)− η

∑
Ik

NI1/N

) N
N−1

.

The first hypothesis simplifies the upper bound Eq. (21)

to W par
ub ≤ ε · NR(I/P )1/N , while the second hypothesis

simplifies the lower bound Eq. (6) to W par
lb2 ≥ η·NR(I/P )1/N .

In the second case, (NR)N > (I/P )N−1, we suppose there

exist constants μ, ν > 0 such that P factors as P0P1 · · ·PN ,

δ

ν

(
(NR)N−1

(I/P )N

) 1
2N−1 Ik

Pk
≤ P0 ≤ μ

γ

(
(NR)N

(I/P )N−1

) 1
2N−1

,

for each k ∈ [N ]. Additionally, we suppose there exists a

constant τ , 0 < τ < 2− γ, such that

P ≥
(

δ
2−(γ+τ)

∑
Ik

) 2N−1
N−1

R

(NI)
N

N−1

.

The first hypothesis simplifies the upper bound Eq. (21) to

W par
ub ≤ (μ + ν) · (NIR/P )N/(2N−1), while the second

hypothesis simplifies the lower bound Eq. (5) to W par
lb1 ≥

τ · (NIR/P )N/(2N−1). In each of the two cases, the gap is a

constant factor.

To illustrate the hypotheses of Thm. 6.2, we set γ = δ =
1.75, α1/N = 1.05, and β = 1.5 and assume 3 ≤ N ≤ 10,

for example, and the assumptions in Eq. (20) for the upper

bound simplification to apply become Pk ≤ 0.05Ik, P ≤ 0.7I ,

P0 ≤ 0.5R, and P ≤ 0.175IkR. With η = τ = 0.1 and

assuming Ik = I1/N for all k, the assumptions necessary for

the lower bound simplifications to apply become P ≥ 7 and

P ≥ 465NR/I1−1/N , respectively.

We note that in the first case of the proof, when NR ≤
(I/P )1−1/N , the medium-grained algorithm applied to dense

tensors [18], [19] achieves the lower bound. In the second

case, Alg. 3, which generalizes Alg. 2 and previous work, is

necessary to attain the lower bound.

We also compare Alg. 3 with the MTTKRP via matrix mul-
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Fig. 4. Model of strong-scaling communication performance comparing
Alg. 2, Alg. 3, and MTTKRP via matrix multiplication for a 3-way cubical
tensor where I = 245 and R = 215. The matrix multiplication costs are
computed using the CARMA algorithm [11], but they do not include the
communication costs of forming the Khatri-Rao product.

tiplication approach. For comparison, we use the theoretical

costs of communication-optimal parallel matrix multiplication

algorithms [11]. We assume the Khatri-Rao product matrix

is constructed explicitly without communication and in the

distribution required to achieve the optimal communication

costs of the matrix multiplication. For simplicity, we consider

the case that Ik = I1/N for all k ∈ [N ]. The optimal choice

of matrix multiplication algorithm depends on the relative size

of P , yielding many cases for comparison.

We consider only the extreme cases, “small P ” and “large

P ”, though we expect our algorithm to yield benefits in all

cases. For parallel multiplication of matrices of dimensions

I1/N × IN−1 and IN−1 × R, if P ≤ I1−1/N , then the

communication cost is I1/NR, and if P ≥ I/R2, then the

communication cost is (IR/P )2/3, assuming enough memory

is available [11]. For comparison, if P ≤ I/(NR)N/(N−1),

then Alg. 3 (which reduces to Alg. 2 in this case) is

optimal with communication cost NR(I/P )1/N ; if P ≥
I/(NR)N/(N−1), then Alg. 3 is optimal with communication

cost (NIR/P )N/(2N−1).

Motivated thus, let us associate the small P case with

P ≤ min
(
I1−1/N , I/(NR)N/(N−1)

)
and the large P case

with P ≥ max
(
I/R2, I/(NR)N/(N−1)

)
. In the small P

case, our algorithm performs a factor of O(P 1/N/N) less

communication than MTTKRP via matrix multiplication.

In the large P case, our algorithm performs a factor of

O((IR/P )(N−2)/(6N−3)/NN/(2N−1)) less communication.

Fig. 4 provides a concrete comparison for a particular

case, where I1=I2=I3=R=215 and the number of processors

ranges from 20 up to 230. We see that our proposed algo-

rithms perform less communication than matrix multiplication

throughout the range of processors, and that Alg. 2 and Alg. 3

diverge only when P ≥ 227. When there are 217=131,072
processors, Alg. 2 and Alg. 3 perform approximately 25× less

communication than the matrix multiplication approach. This

illustrates the benefits of exploiting the multi-way structure of

the computation and the observation that Alg. 2 is sufficient for

most practical problems. We note that the change in slope in

the matrix multiplication curve is due to a switch from a 1D

parallel algorithm to a 2D parallel algorithm and that these

communication costs are optimal for matrix multiplication,

up to constant factors [11]. We also note that for P > 230,

which is the number of elements in each factor matrix, the All-

Gather and Reduce-Scatter collectives require more efficient

algorithms than the ones described in Sec. V.

In summary, the main disadvantage of the matrix multipli-

cation approach is that the Khatri-Rao product is treated as a

general matrix despite the fact that its structure means that it

depends on fewer parameters and therefore can be communi-

cated more efficiently (in fewer words) across processors.

VII. CONCLUSION

Because efficient algorithms and high performance imple-

mentations exist for matrix computations, it is reasonable to

recast tensor computations as matrix computations. However,

the lower bounds proved in this work demonstrate an opportu-

nity to avoid communication by exploiting the structure of the

tensor computation itself. In particular, we have shown how to

extend a lower bound approach for generic programs [12] for

a particular tensor computation known as MTTKRP, which is

the bottleneck for algorithms that compute CP decompositions.

By demonstrating (optimal) algorithms that attain these lower

bounds, we have identified a design space for implementations

that we expect to achieve high performance in practice.

In many applications, the rank R is small relative to the

tensor dimensions. When R is also small relative to the fast

memory size M , as discussed in Sec. VI-A, we expect only

limited practical benefits of the sequential algorithm (Alg. 1).

However, we believe the parallel algorithms will be very

competitive in practice. The simpler algorithm (Alg. 2) may

be the most useful, particularly when R and P are small.

Indeed, good performance has been demonstrated for sparse

tensors [18], and good scaling has been reported for dense

tensors [19]. However, the general algorithm (Alg. 3) will

likely perform better for large numbers of processors, even

when R is small. The parallel data distributions are also

natural ones for tensors, generalizing distributions used for

other tensor computations [26].

While this work focuses on a single MTTKRP computation

(corresponding to a single mode), the computation often occurs

in the context of an optimization algorithm that repeatedly

computes an MTTKRP for each mode of the tensor. In this

context, one can optimize across multiple MTTKRP compu-

tations, because they share both data and intermediate compu-

tations [14], and save both communication and computation.
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Our communication lower-bound approach extends to al-

gorithms for multiple MTTKRPs. Extensions are possible

for other related computational kernels, such as those within

algorithms for computing Tucker and other decompositions.

Another natural extension is MTTKRPs involving sparse ten-

sors: in this case, the communication requirements depend

on the nonzero structure and can be expressed in terms of

a hypergraph partitioning problem [17], [27].
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