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Abstract

The matricized-tensor times Khatri-Rao product (MTTKRP)
is the computational bottleneck for algorithms computing CP
decompositions of tensors. In this work, we develop shared-
memory parallel algorithms for MTTKRP involving dense
tensors. The algorithms cast nearly all of the computation
as matrix operations in order to use optimized BLAS subrou-
tines, and they avoid reordering tensor entries in memory.
We use our parallel implementation to compute a CP decom-
position of a neuroimaging data set and achieve a speedup
of up to 7.4X over existing parallel software.
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1 Introduction

The CP decomposition is a generalization of the matrix sin-
gular value decomposition, providing a low-rank approxima-
tion of multidimensional data. We use the CP decomposition
in a neuroimaging data analysis problem involving func-
tional MRI (fMRI) data. We wish to extract functional brain
networks to study how they behave over time relative to a
cognitive task and how they relate to and differentiate among
subjects [6]. The existing approach uses the Matlab Tensor
Toolbox [2], but the computational time is a bottleneck in
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Figure 1. Data layout of the matricizations of an N-way
tensor X. A conformal partitioning of the nth-mode Khatri-
Rao product K is depicted on the right.

the analysis process. In order to decrease the time and allow
for analysis of larger data sets, our goal is to develop shared-
memory parallelizations of the MTTKRP computation.

The bulk of MTTKRP corresponds to a single matrix-
matrix multiplication. Unfortunately, using the BLAS inter-
face requires that matrices be stored in regular layouts in
memory, and it is impossible to choose a dense tensor data
layout in memory that is conducive to direct BLAS calls in all
cases (see Figure 1). The main task in optimizing MTTKRP
is to employ BLAS in a way that avoids tensor reordering.

The primary contributions of this work are as follows:
we develop a parallel row-wise algorithm for computing a
Khatri-Rao product of multiple matrices; we implement a
new 1-step and an existing 2-step MTTKRP algorithm and
parallelize the algorithms using a combination of OpenMP
and multithreaded BLAS; we demonstrate performance im-
provement over a baseline approach and achieve parallel
speedups of up to 12X and 8% over 12 threads; and we ob-
tain up to a 7.4X speedup over existing parallel software for
computing the CP decomposition of fMRI tensors. For more
details, see the associated technical report [3].

2 Algorithms

Khatri-Rao Product Our algorithm for computing a Khatri-
Rao product (KRP) works row-wise. The advantages of this
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Figure 2. Time breakdown of 1-step and 2-step MTTKRP (and baseline DGEMM) across modes for varying numbers of modes.

approach are easy vectorization within rows and paralleliza-
tion across rows. Our main optimization is to store and re-use
partially computed Hadamard products across related rows
to avoid redundant computation. With this optimization, the
performance of our KRP algorithm is comparable to the peak
memory bandwidth achieved by the STREAM benchmark.

1-Step MTTKRP The main idea of our 1-Step MTTKRP
is to perform the matrix multiplication without reordering
tensor entries, using multiple BLAS calls. Our algorithm is
based on the observation that given the natural linearization
of tensor entries, the nth mode matricization can be seen as
a contiguous set of submatrices, each of which is stored row-
major in memory [1, 4]. Figure 1 shows how X, is ordered
in memory, and it also shows how the KRP matrix K can be
conformally partitioned to perform the matrix multiplication
as a block inner product. For external modes (0 and N-1),
only one BLAS call is required. We parallelize over the inner
dimension of the multiply for external modes and parallelize
over BLAS calls for internal modes.

2-step MTTKRP The 2-step algorithm, developed by Phan
et al. [5, Section IILB], first performs a partial MTTKRP and
then finishes the computation with multiple tensor-times-
vector operations (multi-TTV). The principal observation is
that we can first compute the matrix product of the matri-
cization Xo.), which assigns modes 0 through n to the rows
of the matrix, and a Khatri-Rao product of a subset of the
input matrices with a single BLAS (GEMM) call.

The output of a partial MTTKRP is an intermediate quan-
tity which must be combined with the remaining input ma-
trices to obtain the final output. Each column of the output
matrix can be computed by a tensor-times-vector (TTV) op-
eration involving the corresponding columns of the input
matrices and one sub-tensor of the intermediate quantity,
which can be cast as a single BLAS (DGEMV) call.

3 Experimental Results

Time Breakdown We compare the performance of 1-step
and 2-step algorithms using 12 threads in Fig. 2, noting that
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the two algorithms are equivalent for external modes. For
a baseline, we also compare against the performance of a
single BLAS DGEMM call with the same dimensions. We
consider N = {3, 4, 5, 6}, and for each tensor, each dimension
is the same and chosen so that the total number of tensor
entries is approximately 750 million; we use rank C = 25.

Overall, we see that both 1-step and 2-step algorithms
outperform the baseline, which we attribute to more efficient
parallelization. We also note that the 2-step algorithm is
usually faster than the 1-step algorithm, as it spends less
time in KRP computations.

CP-ALS on Neuroscience Data We use our MTTKRP im-
plementations for computing CP decompositions on 3D and
4D fMRI data tensors with various ranks, using both se-
quential and parallel, MATLAB Tensor Toolbox [2] and C
implementations. We observe up to a 2X speedup of our se-
quential implementation over 1-core MATLAB and up to a
7.4 speedup in parallel over 12-core MATLAB.
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