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Abstract

The matricized-tensor times Khatri-Rao product (MTTKRP)

is the computational bottleneck for algorithms computing CP

decompositions of tensors. In this work, we develop shared-

memory parallel algorithms for MTTKRP involving dense

tensors. The algorithms cast nearly all of the computation

as matrix operations in order to use optimized BLAS subrou-

tines, and they avoid reordering tensor entries in memory.

We use our parallel implementation to compute a CP decom-

position of a neuroimaging data set and achieve a speedup

of up to 7.4× over existing parallel software.
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1 Introduction

The CP decomposition is a generalization of the matrix sin-

gular value decomposition, providing a low-rank approxima-

tion of multidimensional data. We use the CP decomposition

in a neuroimaging data analysis problem involving func-

tional MRI (fMRI) data. We wish to extract functional brain

networks to study how they behave over time relative to a

cognitive task and how they relate to and differentiate among

subjects [6]. The existing approach uses the Matlab Tensor

Toolbox [2], but the computational time is a bottleneck in
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Figure 1. Data layout of the matricizations of an N -way

tensor X. A conformal partitioning of the nth-mode Khatri-

Rao product K is depicted on the right.

the analysis process. In order to decrease the time and allow

for analysis of larger data sets, our goal is to develop shared-

memory parallelizations of the MTTKRP computation.

The bulk of MTTKRP corresponds to a single matrix-

matrix multiplication. Unfortunately, using the BLAS inter-

face requires that matrices be stored in regular layouts in

memory, and it is impossible to choose a dense tensor data

layout in memory that is conducive to direct BLAS calls in all

cases (see Figure 1). The main task in optimizing MTTKRP

is to employ BLAS in a way that avoids tensor reordering.

The primary contributions of this work are as follows:

we develop a parallel row-wise algorithm for computing a

Khatri-Rao product of multiple matrices; we implement a

new 1-step and an existing 2-step MTTKRP algorithm and

parallelize the algorithms using a combination of OpenMP

and multithreaded BLAS; we demonstrate performance im-

provement over a baseline approach and achieve parallel

speedups of up to 12× and 8× over 12 threads; and we ob-

tain up to a 7.4× speedup over existing parallel software for

computing the CP decomposition of fMRI tensors. For more

details, see the associated technical report [3].

2 Algorithms

Khatri-Rao Product Our algorithm for computing a Khatri-

Rao product (KRP) works row-wise. The advantages of this
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Figure 2. Time breakdown of 1-step and 2-step MTTKRP (and baseline DGEMM) across modes for varying numbers of modes.

approach are easy vectorization within rows and paralleliza-

tion across rows. Ourmain optimization is to store and re-use

partially computed Hadamard products across related rows

to avoid redundant computation. With this optimization, the

performance of our KRP algorithm is comparable to the peak

memory bandwidth achieved by the STREAM benchmark.

1-Step MTTKRP The main idea of our 1-Step MTTKRP

is to perform the matrix multiplication without reordering

tensor entries, using multiple BLAS calls. Our algorithm is

based on the observation that given the natural linearization

of tensor entries, the nth mode matricization can be seen as

a contiguous set of submatrices, each of which is stored row-

major in memory [1, 4]. Figure 1 shows how X(n) is ordered

in memory, and it also shows how the KRP matrix K can be

conformally partitioned to perform the matrix multiplication

as a block inner product. For external modes (0 and N−1),
only one BLAS call is required. We parallelize over the inner

dimension of the multiply for external modes and parallelize

over BLAS calls for internal modes.

2-step MTTKRP The 2-step algorithm, developed by Phan

et al. [5, Section III.B], first performs a partial MTTKRP and

then finishes the computation with multiple tensor-times-

vector operations (multi-TTV ). The principal observation is

that we can first compute the matrix product of the matri-

cization X(0:n) , which assigns modes 0 through n to the rows

of the matrix, and a Khatri-Rao product of a subset of the

input matrices with a single BLAS (GEMM) call.

The output of a partial MTTKRP is an intermediate quan-

tity which must be combined with the remaining input ma-

trices to obtain the final output. Each column of the output

matrix can be computed by a tensor-times-vector (TTV) op-

eration involving the corresponding columns of the input

matrices and one sub-tensor of the intermediate quantity,

which can be cast as a single BLAS (DGEMV) call.

3 Experimental Results

Time Breakdown We compare the performance of 1-step

and 2-step algorithms using 12 threads in Fig. 2, noting that

the two algorithms are equivalent for external modes. For

a baseline, we also compare against the performance of a

single BLAS DGEMM call with the same dimensions. We

consider N = {3, 4, 5, 6}, and for each tensor, each dimension

is the same and chosen so that the total number of tensor

entries is approximately 750 million; we use rank C = 25.

Overall, we see that both 1-step and 2-step algorithms

outperform the baseline, which we attribute to more efficient

parallelization. We also note that the 2-step algorithm is

usually faster than the 1-step algorithm, as it spends less

time in KRP computations.

CP-ALS on Neuroscience Data We use our MTTKRP im-

plementations for computing CP decompositions on 3D and

4D fMRI data tensors with various ranks, using both se-

quential and parallel, MATLAB Tensor Toolbox [2] and C

implementations. We observe up to a 2× speedup of our se-

quential implementation over 1-core MATLAB and up to a

7.4× speedup in parallel over 12-core MATLAB.
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