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ABSTRACT
Non-negative matrix factorization (NMF), the problem of finding

two non-negative low-rank factors whose product approximates an

input matrix, is a useful tool for many data mining and scientific

applications such as topic modeling in text mining and unmixing in

microscopy. In this paper, we focus on scaling algorithms for NMF

to very large sparse datasets and massively parallel machines by

employing effective algorithms, communication patterns, and par-

titioning schemes that leverage the sparsity of the input matrix. We

consider two previous works developed for related problems, one

that uses a fine-grained partitioning strategy using a point-to-point

communication pattern and one that uses a Cartesian, or checker-

board, partitioning strategy using a collective-based communication

pattern. We show that a combination of the previous approaches

balances the demands of the various computations within NMF

algorithms and achieves high efficiency and scalability. From the

experiments, we see that our proposed strategy runs up to 10x faster

than the state of the art on real-world datasets.
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1 INTRODUCTION
Non-negative Matrix Factorization (NMF) is the problem of finding

two low rank factors W ∈ Rm×k+ and H ∈ Rk×n+ for a given input

matrix A ∈Rm×n+ , such that A≈WH. Here, Rm×n+ denotes the set

ofm×nmatrices with non-negative real values. Formally, the NMF

problem can be defined as

min

W⩾0,H⩾0

∥A−WH∥F , (1)

where ∥X∥F = (
∑
i jx

2

i j )
1/2

is the Frobenius norm.

NMF is widely used in data mining and machine learning as a

dimension reduction and factor analysis method. It is a natural fit for

many real world problems as the non-negativity is inherent in many

representations of real-world data, and the resulting low rank factors

are expected to have a natural interpretation. The applications of

NMF range from textmining [26], computer vision [11], and bioinfor-

matics [16] to blind source separation [5], unsupervised clustering

[19, 20], andmanyother areas. Inmost real-world applicationsm and

n are on the order of millions ormorewhilek is much smaller, on the

order of tens to thousands. Furthermore, data sets from these applica-

tions are often quite sparse with highly irregular nonzero patterns.

The most commonmethod for solving Eq. (1) is to use an alternat-

ing optimization approach, iteratively updatingWwithH fixed and

then updatingHwithW fixed. Specifically, updating a factor matrix

involves three main operations; computingWTA orAHT
, comput-

ing the Gram matrix WTW or HHT
, and solving a non-negative

linear least squares (NLS) problem using these two resulting matri-

ces to update the factor matrix. When the rank k is small, the typical

bottleneck is the computation that involves the input matrix,WTA
andAHT

, which are sparse-dense matrix multiplications (SpMMs)

when the input data is sparse. However, for large k , the Gram and

NLS computations can become the bottleneck, as their costs grow

more quickly with k than the SpMMs’. Efficient parallel algorithms

for NMF must load balance the computation and avoid communi-

cation overheads. The distribution of the inputA across processors

affects the load balance and communication of the SpMMs, and the

distribution of the factor matricesW andH affects the load balance

of the Gram and NLS computations.

To solve this problem, the current work builds on and combines

approaches from two existing libraries. TheMpi-Faun [13] software

framework enables computing NMF for dense and sparse data, yet

the algorithm is optimized for dense input matrices and employs the

same communication scheme to carry out sparseNMF computations.

It uses a regular, Cartesian partitioning of the input matrixA across

processors that is oblivious to the nonzero pattern. The advantages

of this approach are that the resulting factor matrix communication

(to compute the SpMMs) is also regular and cast as low-latency MPI

https://doi.org/10.1145/3225058.3225127
http://energy.gov/downloads/doe-public-access-plan
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collective operations and that the rest of the computation (including

NLS updates) is perfectly load balanced. The disadvantage is that

because the partition ignores the sparsity of A, the approach will

communicate more data than necessary, as some processors will

receive data that they do not need for local computation.

TheHyperTensor [15] library is designed for sparse tensor factor-

ization, which involves computation resembling NMF kernels with

sparse irregular computational patterns, and uses hypergraph parti-

tioning todistribute thedata and computation across processors. The

main advantage of this approach is that it minimizes the communica-

tion cost of the SpMM step and that it employs a point-to-point com-

munication scheme that communicates elements ofW andH only to

processors inneed.Thedisadvantagesof this approachareanupfront

hypergraph partitioning cost, possible load imbalance (particularly

in the NLS computations) and communication imbalance. Hence,

the partitioning strategy considering only SpMMwill result in an

imbalance in the overall workflow, especially on NLS computations.

Our goal is in this paper is to fill in this gap between two ap-

proaches by comparing and evaluating them in the context of NMF

and proposing a synthesis of the communication and partitioning

strategies that enables scalability to thousands of processors. In

particular, our proposed approach

• uses point-to-point communication within SpMM, moving

data to only those processors that need it,

• uses randomized Cartesian (or checkerboard) partitioning of

the input matrix, load balancing the local SpMM computa-

tions and avoiding upfront partitioning cost,

• load balances the row distribution of output matrices, main-

taining efficient NLS updates, and

• achieves up to a 10x decrease in run time compared to the

Mpi-Faun library on a tagged image (Delicious) dataset with

1536 processors.

2 SPARSENMF
2.1 Notation
Table 1 summarizes the notation we use throughout this paper. We

use bold uppercase letters for matrices and lowercase letters for vec-

tors. For matrix rows and columns, we employMATLAB notation,

i.e.,A(i,:) andA(:,j) refer to the ith row and the jth column ofA. We

use subscripts to refer to sub-blocks of matrices. For example,Ai j
refers to the sub-block (i,j) ofA in a 2DCartesian partition.Weusem
andn to denote the numbers of rows and columns ofA, respectively,
and assume without loss of generalitym⩾n throughout.

2.2 Alternating-Updating NMF
The Alternating-Updating NMF (AU-NMF) algorithms are those

that alternate between updating one ofW and H using the given

input matrix A and other ‘fixed’ factor - H for updating W or W
for updating H. This update is performed using the Gram matrix

associated with the fixed factor matrix, and the product of the input

matrixAwith the fixed factor matrix. Kannan, Park and Ballard [13]

have discussed this framework as in Algorithm 1 and different NMF

algorithms that can be expressed under this framework.

After computing the Gram matrix and the multiplication of A
with the fixed factor matrix, the specifics of the update at Lines 3

A Input matrix

W Left low rank factor

H Right low rank factor

m Number of rows of input matrix

n Number of columns of input matrix

k Low rank

P Number of parallel processes

Pr Number of rows in processor grid

Pc Number of columns in processor grid

Ip ,Jp Set of rows/columns of ofW/H owned by process p
Fp ,Gp Set of unique row and column indices ofAp
Ap Submatrix ofA owned by process p

W(Ip ,:) Owned rows of initialW by process p

H(:,Jp ) Owned columns of initialH by process p

Table 1: Notation

Algorithm 1 [W,H]=AU-NMF(A,k)

Input: A is anm×nmatrix, k is rank of approximation

1: InitializeHwith a non-negative matrix in Rn×k+ .

2: while stopping criteria not satisfied do
3: UpdateW usingHHT

andAHT

4: UpdateH usingWTW andWTA

and 4 depend on the NMF algorithm, and we refer to the computa-

tion associated with these lines as the Local Update Computations

(LUC) and in our algorithm referred asUpdateW andUpdateH. For

consistency, we borrow these acronyms from previous work [12, 13].

We note that AU-NMF is an instance of a two-block, block coor-

dinate descent (BCD) framework as explained by Bertsekas [2]. The

BCD framework expresses solving optimization variables in com-

plex non-linear optimization problem as one block at a time, while

keeping the others fixed. In NMF, the two blocks are the unknown

factorsW and H, and we solve the following subproblems, which

have a unique solution for a full rankH andW:

W←argmin

W̃⩾0



A−W̃H



F +ϕ(W̃)+ψ (H),

H←argmin

H̃⩾0



A−WH̃



F +ϕ(W)+ψ (H̃).

(2)

Since each subproblem involves non-negative least squares, this

two-block BCDmethod is also called the Alternating Non-negative

Least Squares (ANLS) method [17]. From the computational per-

spective as in Algorithm 1, each of these subproblems will require

a Gram computation, an SpMM, and an LUC. The Multiplicative

Update (MU) algorithm proposed by Lee and Seung [29] is the most

common NMF algorithm as it is easier to implement and available

through many standard packages. But there are more recent algo-

rithms that performbetter thanMU such asHierarchicalAlternating

Least Squares (HALS) [5] and Block Principal Pivoting (ABPP) to
solves these NLS subproblems.

These updates differ in the choice of blocks to update, considering

either the entire factor matrix, a single column vector, or a single ele-

ment as a block. The convergence properties of these different NMF

algorithms are discussed in detail by Kim, He and Park [17]. While
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we focus only on the most common MU algorithm in this paper,

we highlight that our algorithm is not restricted to this choice. The

parallel framework is seamlessly extensible to otherNMF algorithms

as well, includingHALS,ABPP, Alternating DirectionMethod of

Multipliers (ADMM) [33], and Nesterov-based methods [10].

2.3 Multiplicative Update (MU)
We support ℓ1 and ℓ2 regularization on both W and H. ℓ2 tames

the growth of values and ℓ1 makes it insensitive to smaller values.

Typically,W is a dense basis matrix andH is the sparse projection of

samples on this basis. In real world, there will be fewer components

that participate on a sample [14] and henceH is sparse with ℓ1 reg-

ularization. Consider, if the value of jth component of an ith sample

hi j=0.001, we can safely assume, the contribution of the jth compo-

nent to ith sample is negligible. In this paper, we are considering ℓ2
regularization on theWmatrix and ℓ1 regularization on theHmatrix

to address the sparsity of the input matrix. It is beyond the scope

of the paper to compare and contrast sparse NMF with and without

regularization. Kim and Park discuss details on the interpretability

of solutions and qualitative advantages of using ℓ1 regularization

for clustering sparse text data [18].

With these choices of regularization, the NMF problem becomes

min

W⩾0,H⩾0

∥A−WH∥F +α ∥W∥2F +β
n∑
i=1
∥hi ∥21 . (3)

The valuesα and β were fixed for the experiments, but in practice

they need to be tuned for each application. In the case of MU [29],

individual entries ofW andH are updatedwith all other entries fixed.

In this case, the update rules are

wi j←wi j
(AHT )i j

(W(HHT +2β1k ))i j
, and

hi j←hi j
(WTA)i j

((WTW+2α Ik )H)i j
.

(4)

where 1k is a k×k matrix of all ones and Ik is a k×k identity ma-

trix. These update equations are obtained by setting the first order

partial derivatives of the objective function in Eq. (3) with respect to

eachmatrix entry to zero. For more detailed analysis of these update

equations, see [8, 17, 29].

After computing the Gram matrices HHT
and WTW, adding

the appropriate regularizers, and computing the productsAHT
and

WTA, the extra cost of computingW(HHT +2β1k ) and (WTW+
2α Ik ) is 2(m + n)k2 flops to perform updates for all entries of W
andH, as the other element-wise operations affect only lower-order

terms. The details about using AU-NMF in Algorithm 1 forHALS
andABPP are explained in [12, 13].

3 SURVEY
Matrix factorization is the problemof determining two smallermatri-

ces called factors whose product approximates a given input matrix.

In the case of NMF the factors are non-negative (all the entries are

nonnegative). Recently, there has been a growing interest in Col-

laborative Filtering (CF) based recommender systems. One of the

popular techniques for collaborative filtering is matrix factorization,

and many open source implementations are available on off-the-

shelf distributed machine learning libraries such as GraphLab [23],

MLLib [25], and many others [28, 36]. As discussed by Kannan, Park

and Ballard [13], CF usingmatrix factorization is a different problem

than NMF: CF considers nonzeros in the matrix to be observed en-

tries and zeros to be missing entries, while in the case of NMF, there

are no missing entries (zeros signify observed entries).

There are several recent distributed NMF algorithms in the liter-

ature [6, 21, 35] for different objective losses such as KL divergence,

squared loss, and “exponential” loss functions [22]. The building

blocks of theMU algorithm are matrix multiplication, element-wise

multiplication, and element-wise division. Liao et al. implement an

open-source Hadoop-basedMU algorithm and study its scalability

on large-scale biological data sets [21] by performing distributed

matrix operations. Similarly, Yin, Gao, and Zhang present a scalable

NMF that can perform frequent updates, which aim to use the most

recently updated data [35]. All of these works use Hadoop frame-

work to implement their algorithms, hence are not very efficient.

Spark is an in-memory MapReduce framework that also has a CF

implementation in its open source project MLlib [25] using matrix

factorization and that can impose non-negativity constraints as well.

We do not compare our approach against this work because CF is

different from NMF.

In parallel with the Hadoop and Spark implementations, there

have been growing interest in the HPC community towards effi-

ciently computing these algorithms with tuned high performance

implementations. Kannan, Ballard and Park [12, 13], have proposed

Mpi-Faun framework to implement variousNMF algorithms such as

multiplicative update (MU), Hierarchical Alternating Least Squares
(HALS) and Alternating Non-negative Least Squares using Block
Principal Pivoting (ABPP). We choose this work as a baseline, as

it is the only available high performance implementation of NMF,

and it performs significantly faster than Hadoop and Spark-based

approaches. To elaborate on this, Gittens et al. [7] recently bench-

marked the implementations of different matrix factorization algo-

rithms, such as NMF and Principal Component Analysis (PCA), in

Spark and inCandMPI. They claim that nativeMPI implementations

on HPC platforms outperform Spark implementation by a factor of

up to 44×. Similar observations have been made by Sukumar, Kan-

nan, Matheson and Lim [31, 32] on supercomputers at Oak Ridge

Leadership Computing Facility. Finally, there are implementations

of theMU algorithm in a distributed memory setting using X10 [9]

and on a GPU [24].

4 DISTRIBUTED SPARSENMF
Here, we first introduce our parallel NMF algorithm that operates

on a partition of the matricesA,W, andH. For a given partition, we
describe how parallel computations and communications take place

within the algorithm, and illustrate computational and communi-

cation costs associated with a partition. We then discuss efficient

partitioning strategies to better establish computational load balance

and reduce communication inNMF. In doing so, we also explain how

existing methods compare to this scheme with their advantages and

disadvantages in terms of partitioning.
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4.1 Distributed Sparse NMFAlgorithm

Algorithm 2Dist-SpNMF: Distributed sparse NMF algorithm

Input: Ap : Anm×n sparse matrix

Ip ,Jp : Set of rows/columns ofW/H owned by process p
Fp ,Gp : Footprints of process p onW andH
W(Ip ,:),H(:,Jp ): Owned rows/columns ofW/H
k : The NMF rank

Output: Process p gets final values ofW(Ip ,:) andH(:,Jp )
1: repeat
2: Comm-Expand(H(:,Gp ))
3: W̃(Fp ,:)←ApH(:,Gp )
4: Comm-Fold(W̃(Fp ,:))
5: GH←All-Reduce(H(:,Jp )H(:,Jp )T )
6: W(Ip ,:)←UpdateW(GH ,W̃(Ip ,:))
7: Comm-Expand(W(Fp ,:))
8: H̃(:,Gp )←W(Fp ,:)TAp
9: Comm-Fold(H̃(:,Gp ))
10: GW ←All-Reduce(W(Ip ,:)TW(Ip ,:))
11: H(Jp ,:)←UpdateH(GW ,H̃(Jp ,:))
12: until convergence or maximum number of iterations

Parallelizing sparse NMF involves partitioning the sparse matrix

A aswell as the factormatricesW andH, where the former partition-

ing distributes the computational load of sparsematrix-densematrix

multiplicationsAH andWTA, whereas the latter divides the work-
load of LUC computations to processes. We provide the execution

of our parallel algorithm for computing a rank-k NMF of a sparse

matrixA∈Rm×n in Algorithm 2, which is executed by each process

p for 1≤p ≤P . The algorithm starts with an arbitrary partition of the

inputmatrix and the factormatrices; processp owns the submatrices

W(Ip ,:) andH(:,Jp ) as well as the nonzero elements of the sparse

matrixAp whereA=
⋃P
i=1Ai , i.e.,A1,...,AP partitions the nonzeros

ofA. The sets Fp and Gp denote the “footprints” of the process p on
the rows and the columns of matricesW andH, respectively; hence,
these rows need to be stored by this process. Specifically, we have

i ∈Fp or j ∈Gp if only if i ∈Ip or j ∈ Jp (row/column is owned), or

there is a nonzero element ai, j ∈ Ap (row/column is used in local

computations). At each iteration, the process p is responsible for

gathering the new value of submatricesW(Ip ,:) and H(:,Jp ), and
sending them to processes in need.

In an iteration of Algorithm 2, each process p possesses three

types of computational tasks as well as associated pre- and post-

communication steps. The first task involves performing sparse

matrix-dense matrix multiplications ApH(:,Gp ) andW(Fp ,:)TAp ,

whose results are stored in distributed matrices W̃ and H̃, which
follow the same row-/column-wise data distribution asW and H.
Note that carrying out these multiplications must be preceded by an

expand communication step where each processp gets the submatri-

cesH(:,Gp \Jp ) andW(Fp \Ip ,:) that are accessed by entries ofAp ,

and these steps are performed at Lines 2 and 7. Thesemultiplications

performed by each process p generate partial results for the set Fp
and Gp of rows of W̃ and columns of H̃, respectively, which are

highlighted at Lines 3 and 8. Indeed, partial results for the submatri-

ces W̃(Fp \Ip ,:) and H̃(:,Gp \Jp ) correspond to rows and columns

owned by other processes; hence, they need to be communicated.

The results for W̃(Ip ,:) and H̃(:,Jp ), however, should be kept locally,
and all partial results for these matrix rows and columns generated

by other processes should similarly be received and accumulated

in order to obtain the final value for these owned portions. This is

realized in a fold communication step at Lines 4 and 9.

The second task is to compute the GrammatricesGH =HHT
and

GW =WTW of size k×k , and making these matrices available to all

processes, which is performed at Lines 5 and 10. This is done in a

row-parallel dense matrix multiplication step, in which the process

p computesH(:,Jp )HT (:,Jp ) andWT (Ip ,:)W(Ip ,:), followed by an
All-Reduce communication of these partial multiplications.

The third task pertains to updating the factor matricesW andH
usingmatrices W̃ andGH , or H̃ andGW , which takes place at Lines 6

and 11. This corresponds to Lines 3 and 4 of Algorithm 1, and can

be computed locally at each process p by executingUpdateW and

UpdateH algorithm on dense matrices W̃(Ip ,:) andGH , or H̃(:,Jp )
andGW , to obtain newW(Ip ,:) orH(Ip ,:).

In the case of MU, the update rules are given by Eq. (5). There-

fore, for row and column index sets Ip and Jp , then UpdateW and

UpdateH computations are as follows:

W(Ip ,:)←W(Ip ,:)⊛(W̃(Ip ,:))⊘(W(Ip ,:)(GH +2β1k )),

H(Jp ,:)←H(Jp ,:)⊛(H̃(Jp ,:)⊘(GW +2α Ik )H(Jp ,:))
(5)

where⊛ and ⊘ correspond to element-wise multiplication and divi-

sion of matrices or vectors. This scheme provides row-wise paral-

lelism in Local Update Computation.HALS andABPP can similarly

be expressed in this row-parallel form.

The first type of communication in Algorithm 2 pertains to an

All-Reduce of a densematrix of fixed sizek×k at Lines 5 and 10, and
the cost of this step is typically negligible in compare to the rest. The

other two communication types involve (i) transferring the partial

row results of W̃ and H̃ to their owner processes at Lines 4 and 9 to

accumulate at the owners, (ii) sending the updated rows ofW andH
to processes in need at Lines 2 and 7.We respectively call these steps

fold and expand communications, following the convention used by

the sparse matrix community. The way these two communications

are carried out plays a vital role in obtaining parallel scalability as

they dominate the communication cost of the algorithm.

4.2 Communication Scheme
Collective communication (COLL). Mpi-Faun employs collective

communication strategies for both expand and fold steps of Algo-

rithm2 for dense aswell as sparseA, andpartitionsAusing auniform

checkerboard topology. In this strategy, the rows and the columns

indices 1, ... ,m and 1, ... ,n are divided into Pr and Pc (P = Pr Pc )
sets I1, ... , IPr and J1, ... , JPc of equal size and having contiguous

indices. Here, process p owns the matrix subblock A(r,c), where
r = ⌊P/Pc ⌋ + 1 and c = (P mod Pc ) + 1, as well asm/P rows of

W(Ir , :) and n/P columns of H(:, Jc , ). As A(r,c) only touches the

rows/columns of processes in the same row/column of the processor

grid, the communication of W and H are performed within each

process row and column usingAll-Gather and Reduce-Scatter

routines, in which the processp receives all matrix rowsW(Ir ,:) and
columnsH(:,Jc ) belonging to processes in the same row and column
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Figure 1: A 5x5 checkerboard partition of a sparsematrix.

of the process grid. Despite being favorable due to a small number of

exchangedmessages in collective routines, in this strategy processes

might receive rows that they do not need in their local sparse matrix

dense matrix multiplication (particularly if A is very sparse), and

this redundancy dramatically increases the communication volume,

thus preventing scalability.

Point-to-point communication (P2P). HyperTensoremployspoint-

to-point communication for fold and expand steps by precomputing

the set of processes having a row/column in its footprint for each

row/column ofW/H. This reduces the communication volume at the

cost of increased number of messages with respect to the strategy

of Mpi-Faun.

4.3 Partitioning
Algorithm 2 requires a partitioning of the nonzeros ofA as well as

the rows and the columns ofW and H, and these three partitions
completely determine its computational and communication costs.

Here, we compare different partitioning strategies, employed by

Mpi-Faun,HyperTensor, and SpMV kernels, and argue how they

relate to these two performance metrics.

4.3.1 PartitioningA.

Checkerboard hypergraph partitioning (CH2). A hypergraph con-

sists of vertices with associated weights and hyperedges that con-

nect two or more vertices. In the literature, a hypergraph is typically

formed by adding a vertex for each computational task with the

associated execution cost, adding a hyperedge for each data element,

and connecting the vertex to a hyperedge whenever the associated

task and the data are dependent. Then, the vertices of the hyper-

graph is partitioned using a hypergraph partitioner to distribute

vertex loads to parts equitably while reducing a metric called cutsize,
which amounts to minimizing the total number of different parts

each hyperedge connects. This corresponds in the actual computa-

tion to minimizing the data dependencies between tasks, hence the

communication volume.

Traditional checkerboard hypergraph partitioning aims to par-

tition the matrix A into Pr row slices first, and Pc column slices

next to obtain an Pr × Pc checkerboard partition [1, 3]. The first

partitioning phase is done using a column-net hypergraph model,

in which for each row A(i,:), a vertex vi with weight equaling to

the number of nonzeros inA(i,:) is created. Each column j is repre-
sented with a hyperedge hj and for each nonzero (i,j) ∈A, which
implies a dependency to H(:, j) in computing W̃(i, :) at Line 3, we
connectvi tohj . This hypergraph is partitioned into Pr parts giving
the row partition of the checkerboard topology. The second parti-

tioning phase uses a row-net hypergraph model induced by this row

partition, where each column is represented with a vertex with Pr
weights corresponding to the number of nonzeros in that column

in all Pr row segments. Partitioning this hypergraph into Pc parts
finalizes the Pr × Pc checkerboard partitioning by balancing the

weights (number of nonzeros ofA(r,c)) of each part while minimiz-

ing the communication volume. In the context of NMF, one issue

arises when thematrix has some variance in the number of nonzeros

in its rows/columns, which in turns yields unbalanced row/column

strides. This in turn creates an imbalance in the UpdateW andUp-

dateH computations as rows/cols of W/H are partitioned to the

processes in the same stride. To alleviate this issue, we modify this

scheme slightly as follows. In both row and column partitioning

phases, we add an additional constant weight to vertices. Balancing

this additional constraint in hypergraph partitioning is expected to

prevent such imbalanced strides. This partitioning model (which

we callCH2) successfully grasps the computation (both SpMM and

LUC) and communication requirements using checkerboard topol-

ogy for sparse NMF, yet is costly to compute in practice due to high

number of constraints (Pr +1) in the row-net hypergraph.

1D-like checkerboard hypergraph partitioning (CH1). This variant
partitions rows same as CH2, then partitions columns randomly

to avoid multi-constraint partitioning. Random column partition

provides load and communication balance yet increases the commu-

nication volume for the rows ofW.

Randomized checkerboard partitioning (CRD). This scheme cor-

responds to partitioning both the rows and the columns ofA into Pr
and Pc segments randomly. It is expected to provide good load and

communication balance both in sparse and dense matrix operations,

but it overlooks the communication volume.

Uniform checkerboard partitioning (CUN). This partitioning vari-
ant forms an PR ×PC partition of A by putting a contiguous set of

m/PR and n/PC rows and columns in each slice.W and H are par-

titioned conformally with this topology; each process is assigned a

contiguous set ofm/PRPC andn/PRPC rows and columns ofW and

H. This is the partitioning scheme employed byMpi-Faun [12, 13].

It provides perfect balance in UpdateW and UpdateH step yet may

incur high communication cost. We also use a randomized vari-

ant (CUR) of this scheme in which the rows and columns ofA are

permuted randomly to balance its nonzeros among parts.

Fine-grain hypergraph partitioning (FHP). This is the partitioning
strategy employed by HyperTensor. It forms a fine-grain hyper-

graph involving a vertex for each nonzero (A(i,j) and a hyperedge



ICPP 2018, August 13–16, 2018, Eugene, OR, USA Oguz Kaya, Ramakrishnan Kannan, and Grey Ballard

for each row and column index i = 1, ... ,m and j = 1, ... ,n. The re-
sulting hypergraph is typically very large and is costly to partition,

and unlike checkerboard variants the footprints of processes are not

restricted to a row/column stride.

4.3.2 PartitioningW and H. Once A is partitioned, one has to

partition rows and columns of factormatrices to form the setsIp and

Jp in Algorithm 2. In doing so, we are interested in assigning rows

and columns to processes equitably. For this purpose, we specify

imbalance parameters α that correspond to maximum imbalance we

allow in this partitioning; i.e., |Ip | ≤αm/P and |Jp | ≤αn/P for each

process p, and set α =1.05 in the experiments.

Next, for each row and column of W and H we create a list of

processes that has a dependency to that row or column, which cor-

responds to processes owning the matrix blocks of same color in

Section 4.2. Finally, we randomly assign each row and column to

one of the processes satisfying the imbalance constraint in this list.

If all processes in the list are overloaded, we assign it to the pro-

cess that has the minimum number of rows/columns assigned. For

a checkerboard partition, the minimum is always chosen from the

same processor row/column so that 2D communication topology is

not disturbed. Note that such an assignment increases the commu-

nication volume due to that row or column by 1; hence, in general

smaller imbalance parameters yield larger communication volume

due to increasing this type of assignment. On the other hand, we

desire to keep α small as it pertains to the load imbalance in the

UpdateW and UpdateH step.

5 EXPERIMENTS
In this section, we compare our algorithm Dist-SpNMF against

Mpi-Faun, and compare its parallel performance on two big sparse

matrices formed from real world datasets. We analyze and compare

the computation and communication timings of these algorithms

on a smaller cluster, then test the scalability limits of our method on

a large supercomputing environment.

5.1 Experimental Setup
In this paper, we use both synthetic and realworld datasets. The

synthetic datasets are used to evaluate the communication strategies

with the increase in number of non-zeros of the sparse matrices. We

used PaToH [3] for partitioning hypergraphs.

5.1.1 Datasets. Synthetic: For synthetic sparsematrices, we used

the popular Kronecker generator from Graph500 benchmark (http:

//www.graph500.org/).Thegraphgenerator isaKroneckergenerator

similar to theRecursiveMATrix (R-MAT)scale-freegraphgeneration

algorithm [4]. This model recursively sub-divides the adjacency

matrix of the graph into four equal-sized partitions and distributes

edges within these partitions with unequal probabilities. Initially,

the adjacency matrix is empty, and edges are added one at a time.

The parameters to the generator are the number of vertices N and

the Edge Factor (e f ) that defines the ratio of the graph’s edge count
to its vertex count (i.e., half the average degree of a vertex in the

graph). Typically, the number of edgesM of the scale free graph will

be e f ×N . In our case, we consider 2
20
(≈ 1.05 million) vertices and

set of edge factor e f ={4,8,16,32,64}.

RealWorld:Weuse twodatasets fromFlickr.comandDelicious.com

that involve images tagged with different labels by users. The rows

of the matrix correspond to different images, whereas the columns

of the matrix represent different tags. The value of each nonzero

ai, j ∈A indicates the number of unique users that tagged the image

i with the tag j. Flickr and Delicious matrices are of size 28M×1.6M
and 17M×2.5M , and have 112M and 72M nonzero elements, respec-

tively. These matrices are obtained by pruning the third and the

fourth dimensions of 4-dimensional Delicious and Flickr tensors

available from [30]. The current implementation of Mpi-Faun can

only operate when PR and PC can dividem andn, hencewe trimmed

the matrices slightly.

5.1.2 Implementation Platform. We conducted our experiments

on two different parallel computing platforms. The first platform is

the “Rhea” cluster at the Oak Ridge Leadership Computing Facility

(OLCF), which is a commodity-type Linux cluster with a total of 512

nodes and a 4X FDR Infiniband interconnect. Each node contains

dual-socket 8-core Intel Sandy Bridge-EP processors operating at

2GHz clock frequency and 128 GB of memory. Each socket has a

shared 20MB L3 cache, and each core has a private 256K L2 cache.

There, we ran our experiments up to 3072 cores, which is the max-

imum allowed in the cluster. The second platform is an IBM Blue-

Gene/Qsupercomputer consistingof 6 racks eachhaving16384 cores.

Each compute node has 16GB of memory and single socket 16-core

PowerPC A2 processor at 1.6GHz clock frequency with 16KB of L1

cache per core, and 32MB shared L2 cache. We ran both algorithms

using 16 MPI ranks per node, and set Pc =16 in all partitionings.
Our code for localmatrix operations is developed using thematrix

library Armadillo [27]. We use BLAS and LAPACK for dense matrix

operations by linking Armadillo with Intel MKL, OpenBLAS [34],

or any other BLAS and LAPACK implementation. Both codes are

compiled using the defaultGNUC++Compiler (g++ (GCC) 5.3.0) and

MPI library (OpenMPI 1.8.4) on RHEA, and Clang compiler (3.5.0)

with IBMMPI library on BlueGene/Q.

5.2 Effect of communication scheme
Tounderstand theeffectofpartitioningand its impactoncommunica-

tion and computation, we performed experiments on synthetic Kro-

necker graph and the results are presented in Fig. 2. For 2
20

vertices,

we chose the edge factor of the Kronecker graph as {4,8,16,32,64}. As

the edge factor increases, the sparse matrix becomes denser. We ran

the baselineMpi-Faun algorithm and the proposed algorithmwith

different partitioning schemes as explained in Section 4.3 on 4096

processors using a 64×64 processor grid on Rhea for low rank k=48.
In Fig. 2, we provide per-iteration computation and communica-

tion timings for different partitioning and communication schemes

using 4096 processors and a 64 × 64 processor grid. COLL-CUN
is the implementation of Mpi-Faun and is the only instance that

uses collective communication. In comparison, P2P-CUN also uses

uniform partitioning but with point-to-point communication. P2P-
CRD decides the checkerboard topology randomly and uses point-

to-point scheme as well. P2P-CH1 and P2P-CH2 correspond to

1D-like and 2D checkerboard hypergraph partitioning models with

point-to-point communication. Finally, P2P-FHP is the fine-graph

hypergraph partitioning with point-to-point scheme, for which we

http://www.graph500.org/
http://www.graph500.org/
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Figure 2: Per-iteration communication and computation
costs of different partitioning strategies on Kronecker
graphs using 4096 processors Rhea for k = 48, averaged over
30 iterations

only provide partition statistics for comparison and not the actual

run time.

We notice in Fig. 2 thatCOLL-CUN always incurs significantly

higher communication cost. As the edge factor increases and matrix

becomes denser, the communication cost of COLL-CUN does not

change as expected since it does not depend on the matrix spar-

sity. The communication cost of P2P-CUN progressively increases

with the edge factor, but even with an edge factor of 64COLL-CUN
is about two times more costly. Therefore, we conclude that even

though there is a converging trend between the cost of collective and

point-to-point communication, it is a rather slow convergence, and

the point-to-point scheme should be the method of choice unless

the matrix gets very dense.

5.3 Effect of partitioning strategies
In Fig. 2b, our first observation is that all partitionings exceptCOLL-
CUN yield comparable results in terms of communication, while

there is some variation in the computation times provided in Fig. 2a.

P2P-CUN gives similar computation time to P2P-CRD since the

matrix is randomly permuted. P2P-CH1 yields slightly higher com-

putation time and no notable improvement in the communication

Table 2: Load balance and communication statistics for
4096-way partitioning with edge factor 64.

Partitioning nz-ib row-ib col-ib com-max com-avg

P2P-CUN 1.30987 1 1.00392 15366 11876

P2P-CH1 1.21477 1.27734 1.05098 20800 11038

P2P-CH2 1.06479 1.30469 1.53725 23484 10853
P2P-CRD 1.38681 1.04688 1.05098 15475 11341

P2P-FHP 1.00115 1.05078 1.0549 47925 13802

time, as it involves multi-constraint partitioning with too many con-

straints, which is a difficult partitioning problem that partitioners

such as PaToHmight not solve very effectively. P2P-CH2 provides
some advantage both in terms of computation and communication

time, and this partitioning is feasible to compute as it involves hy-

pergraph partitioning with only two constraints.

We conclude that even though P2P-CH2 provides a better model

of computation and communication costs of distributed sparse NMF,

it does not yield better results in practice due to having too many

constraints in the partitioning problem, which also renders it im-

practical due to costly precomputation for partitioning. P2P-CH1
yields a smaller hypergraph with reasonable partitioning cost and

provides some benefits in terms of communication reduction. P2P-
CRD seems to produce good results overall as it provides good

computation and communication balance. We provide partition sta-

tistics with respect to these strategies in Table 2 that justify these

observations. We observe that P2P-FHP incurs a significant com-

munication imbalance with respect to other methods preventing

scalability and increasing memory consumption of the bottleneck

processor, and these results confirm those reported in [15].

5.4 Strong scaling
In this section, we provide strong scalability experiments on real-

world datasets in the next section with a detailed comparison of

point-to-point and collective strategies as well as randomized and

hypergraph checkerboard (1D-like) partitioning.

In this experiment, we considered the following algorithms and

partitionings:

• COLL-CUN:Mpi-Faun algorithm [12, 13] with uniform par-

titioning (COLL-CUN) where each process holds an input

matrix of sizem/Pr ×n/Pc .
• COLL-CUR: The partitioning strategy inCOLL-CUN could

result in a significant computational load imbalance in with

a skewed nonzero distribution ofA. We alleviate this by ran-

domly permuting the rows and columns of the matrix before

executingMpi-Faun, and call this schemeCOLL−CUR.
• P2P-CH1:Dist-SpNMF (Algorithm 2) with 1D-like checker-

board hypergraph partitioning explained in Section 4.3.1.

• P2P-CRD:Dist-SpNMF (Algorithm2)withrandomizedchecker-

board partitioning explained in Section 4.3.1.

In Fig. 3a we show the speedup results of all four instances on the

Rhea cluster using up to 3072 MPI ranks/cores on Flickr data. The

speedup values are with respect to slowest runtime among all four

instances using 16 cores (single node). We observe in Fig. 3a that all

algorithms scale up to 1536 cores, yetMpi-Faun instances achieve

this with significantly lower parallel efficiency. This mostly is due to

higher communication costs involved in the communication scheme
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Figure 3: Strong scaling on Flickr dataset

for both instances. We also realize that COLL-CUR significantly

improves the runtime with respect to COLL-CUN, meaning that

COLL-CUN indeed causes load imbalance in partitioning nonze-

ros ofA. At 3072 processes, bothCOLL-CUR andCOLL-CUN lose

scalability and slow down, whereas P2P-CH1 and P2P-CRD scale

to 3072 processors.

Similarly, in Fig. 4a we provide the same results for the Delicious

matrix. We observe a similar trend in the comparisons of different

methods, except thatCOLL-CUR andCOLL-CUN scale evenworse

in this case. Our algorithm also loses scalability after 1536 processes,

and similarly to the previous case P2P-CH1 starts slower than P2P-
CRD due to load imbalance, and catches up fork=48. These two test
cases clearly show that employing a point-to-point communication

with good partitionings is essential for obtaining high performance

in NMF algorithm.

To better test the scalability limit of our algorithms, we ran them

on an IBMBlueGene/Q supercomputer up to 32768 processors using

the same twomatrices. The results of these two experiments are pro-

vided in Figs. 3b and 4b. Our algorithm graciously scales up to 16384

cores in all four instances, and P2P-CH1 manages to slightly im-

prove the runtimeusing 32768 cores onFlickr,while all other slowing

down using 32768 ranks. Again,P2P-CH1 is slower thanP2P-CRD
using lower number of processors as the communication cost is

negligible in these instances, and P2P-CH1 introduces worse load
balance thanP2P-CRD.However, using32768processorsP2P-CH1
manages to outrun P2P-CRD by incurring less communication.
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Figure 4: Strong scaling on Delicious dataset

5.5 Time Breakdown Per Iteration
In this sectionweprovide the time spentoneach individual operation

type and communication within an NMF iteration. We report the

averages over 30 iterations onRhea, and 10 iterations onBlueGene/Q

for eachof four runs.Asprovided inAlgorithm2 there are three types

computationsand two typesof communicationswithinanNMF itera-

tion, andwe present timings for these stepswith the following labels:

• Gram: Computing the local contribution to the Grammatrix,

and performing anAll-Reduce to gather the final result.

• MM: Computing the sparse matrix-dense-matrix multiplica-

tion usingAp and one of the factor matrices.

• LUC : Local Update computation to compute the final value

of the factor matrix using Gram andMM (time taken by Up-

dateW and UpdateH functions).

• Comm: Total expand and fold communication time forP2P−
CRDandP2P−CH1, and the total timespentonAll-Gather

and Reduce-Scatter steps for COLL−CUN and COLL−
CUR.

In our results, we do not distinguish the costs of these tasks forW
andH separately; we instead report their sum.

We report the time breakdown for Flickr and Delicious datasets

in Fig. 5, Fig. 6 for Rhea and Fig. 7 for BlueGene/Q. For each cluster

and data set, we show the timings for the smallest and the largest

number of processors used. Our objective in this experiment is to

better analyze the speedup results by comparing the computational
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Figure 5: Flickr dataset per-iteration time breakdown for
k=48 on Rhea, averaged over 30 iterations

and communication costs of different communication schemes and

partitioning strategies.

Flickr on Rhea: We observe in Fig. 5 that in a one-node config-

uration with p = 16, the COLL-CUN and COLL-CUR performs

similar to P2P-CRD and P2P-CH1 in terms of computation, and

the communication time takes a small portion of the execution in

all instances. As the number of processes increases to 3072, the com-

munication time of P2P-CRD and P2P-CH1 stays reasonably low,
whereas in the case of COLL-CUN and COLL-CUR, we clearly
observe that the communication cost dominates the execution time.

Randomization offers load balance toCOLL-CURwhich gives it a

slight edge overCOLL-CUN, yet both instances suffer from the high

communication cost associated with the collective communication

strategy, which explains the drop in the scalability results.

Delicious on Rhea: In Fig. 6, we see that P2P-CRD and P2P-CH1
perform better thanCOLL-CUN even in single node configuration.

Fig. 6 shows thatCOLL-CUN takes twice more than P2P-CRD and

P2P-CH1 in the sparse matrix multiplication step, highlighting the

skewed distribution of the matrix nonzeros, which is alleviated to a

certain extend by randomly permuting the matrix. Similar to Flickr

data, using 3072 processors, P2P-CRD and P2P-CH1 perform sig-

nificantly better thanCOLL-CUN andCOLL-CUR,whose iteration
times are dominated by the communication.

Flickr and Delicious on BlueGene/Q:. In Fig. 7 we give the tim-

ings for computation and communication steps using our methods

with two different partitionings of matrices on BlueGene/Q. We ob-

serve that using 512 processors, communication cost is negligible,

and P2P-CRD beats P2P-CH1 thanks to better load balance. Using
16384 processors, however, on Flickr matrix P2P-CH1 gets faster
than P2P-CRD due to significant reduction in the communication

volume. On Delicious matrix, P2P-CH1 similarly better reduces the

communication, yet this is outweighed by the load imbalance in

matrix multiplications.
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Figure 6: Delicious dataset time breakdown fork=48 onRhea
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6 CONCLUSION
In this paper, we compared various partitioning and communication

strategies used in the literature in the context of non-negativematrix

factorization.We showed that an important difference in the parallel

NMFalgorithms is balancingmatrix rowsamongprocessors, and this

constraint renders state-of-the-art hypergraphpartitioningmethods

less effective. We employed variations of theMpi-Faun implementa-

tion with point-to-point communication, and concluded that unless

the matrix at hand is quite dense, point-to-point communication sig-

nificantly improves the scalability by reducing the communication

volume.Withoptimized implementations,weachieved scalabilityup

to 32768 cores on a BG/Q supercomputer using partitioning schemes

that are cheap to compute. To the best of our knowledge, our work

is the first high performance implementation of distributed NMF

that takes the sparsity of the input matrix into consideration to re-

duce the communication cost and employs effective partitioning to

further enhance parallel scalability. Our immediate next steps for

extending our work involve adding shared memory parallelism to

obtain further speedup.
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