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ABSTRACT

Non-negative matrix factorization (NMF), the problem of finding
two non-negative low-rank factors whose product approximates an
input matrix, is a useful tool for many data mining and scientific
applications such as topic modeling in text mining and unmixing in
microscopy. In this paper, we focus on scaling algorithms for NMF
to very large sparse datasets and massively parallel machines by
employing effective algorithms, communication patterns, and par-
titioning schemes that leverage the sparsity of the input matrix. We
consider two previous works developed for related problems, one
that uses a fine-grained partitioning strategy using a point-to-point
communication pattern and one that uses a Cartesian, or checker-
board, partitioning strategy using a collective-based communication
pattern. We show that a combination of the previous approaches
balances the demands of the various computations within NMF
algorithms and achieves high efficiency and scalability. From the
experiments, we see that our proposed strategy runs up to 10x faster
than the state of the art on real-world datasets.
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1 INTRODUCTION

Non-negative Matrix Factorization (NMF) is the problem of finding
two low rank factors W € Rk and H € RK*" for a given input
matrix A € R7*" such that A ~ WH. Here, R"*" denotes the set
of mxn matrices with non-negative real values. Formally, the NMF
problem can be defined as

min A-WH||f,
W>0’H>0|| Il (1)

where || X||F= (Zijx?j)l/z is the Frobenius norm.

NMF is widely used in data mining and machine learning as a
dimension reduction and factor analysis method. It is a natural fit for
many real world problems as the non-negativity is inherent in many
representations of real-world data, and the resulting low rank factors
are expected to have a natural interpretation. The applications of
NMF range from text mining [26], computer vision [11], and bioinfor-
matics [16] to blind source separation [5], unsupervised clustering
[19,20], and many other areas. In most real-world applications m and
n are on the order of millions or more while k is much smaller, on the
order of tens to thousands. Furthermore, data sets from these applica-
tions are often quite sparse with highly irregular nonzero patterns.

The most common method for solving Eq. (1) is to use an alternat-
ing optimization approach, iteratively updating W with H fixed and
then updating H with W fixed. Specifically, updating a factor matrix
involves three main operations; computing WTA or AHT, comput-
ing the Gram matrix WY W or HH”, and solving a non-negative
linear least squares (NLS) problem using these two resulting matri-
ces to update the factor matrix. When the rank k is small, the typical
bottleneck is the computation that involves the input matrix, WT A
and AH”, which are sparse-dense matrix multiplications (SpMMs)
when the input data is sparse. However, for large k, the Gram and
NLS computations can become the bottleneck, as their costs grow
more quickly with k than the SpMMs’. Efficient parallel algorithms
for NMF must load balance the computation and avoid communi-
cation overheads. The distribution of the input A across processors
affects the load balance and communication of the SpMMs, and the
distribution of the factor matrices W and H affects the load balance
of the Gram and NLS computations.

To solve this problem, the current work builds on and combines
approaches from two existing libraries. The Mp1-FAUN [13] software
framework enables computing NMF for dense and sparse data, yet
the algorithm is optimized for dense input matrices and employs the
same communication scheme to carry out sparse NMF computations.
It uses a regular, Cartesian partitioning of the input matrix A across
processors that is oblivious to the nonzero pattern. The advantages
of this approach are that the resulting factor matrix communication
(to compute the SpMMs) is also regular and cast as low-latency MPI
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collective operations and that the rest of the computation (including
NLS updates) is perfectly load balanced. The disadvantage is that
because the partition ignores the sparsity of A, the approach will
communicate more data than necessary, as some processors will
receive data that they do not need for local computation.

The HYPERTENSOR [15] library is designed for sparse tensor factor-
ization, which involves computation resembling NMF kernels with
sparse irregular computational patterns, and uses hypergraph parti-
tioning to distribute the data and computation across processors. The
main advantage of this approach is that it minimizes the communica-
tion cost of the SpMM step and that it employs a point-to-point com-
munication scheme that communicates elements of W and H only to
processorsinneed. The disadvantages of this approach are an upfront
hypergraph partitioning cost, possible load imbalance (particularly
in the NLS computations) and communication imbalance. Hence,
the partitioning strategy considering only SpMM will result in an
imbalance in the overall workflow, especially on NLS computations.

Our goal is in this paper is to fill in this gap between two ap-
proaches by comparing and evaluating them in the context of NMF
and proposing a synthesis of the communication and partitioning
strategies that enables scalability to thousands of processors. In
particular, our proposed approach

e uses point-to-point communication within SpMM, moving
data to only those processors that need it,

o uses randomized Cartesian (or checkerboard) partitioning of
the input matrix, load balancing the local SpMM computa-
tions and avoiding upfront partitioning cost,

o load balances the row distribution of output matrices, main-
taining efficient NLS updates, and

e achieves up to a 10x decrease in run time compared to the
Mp1-FAUN library on a tagged image (Delicious) dataset with
1536 processors.

2 SPARSE NMF
2.1 Notation

Table 1 summarizes the notation we use throughout this paper. We
use bold uppercase letters for matrices and lowercase letters for vec-
tors. For matrix rows and columns, we employ MATLAB notation,
ie., A(i,:) and A(:,j) refer to the ith row and the jth column of A. We
use subscripts to refer to sub-blocks of matrices. For example, A;;
refers to the sub-block (i,5) of A in a 2D Cartesian partition. We use m
and n to denote the numbers of rows and columns of A, respectively,
and assume without loss of generality m > n throughout.

2.2 Alternating-Updating NMF

The Alternating-Updating NMF (AU-NMF) algorithms are those
that alternate between updating one of W and H using the given
input matrix A and other ‘fixed’ factor - H for updating W or W
for updating H. This update is performed using the Gram matrix
associated with the fixed factor matrix, and the product of the input
matrix A with the fixed factor matrix. Kannan, Park and Ballard [13]
have discussed this framework as in Algorithm 1 and different NMF
algorithms that can be expressed under this framework.

After computing the Gram matrix and the multiplication of A
with the fixed factor matrix, the specifics of the update at Lines 3
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A Input matrix

W Left low rank factor

H Right low rank factor

m Number of rows of input matrix

n Number of columns of input matrix

k Low rank

P Number of parallel processes

P, Number of rows in processor grid

P Number of columns in processor grid
Ip.9p Set of rows/columns of of W/H owned by process p
Fp.Gp | Setof unique row and column indices of A,
Ap Submatrix of A owned by process p
W(Zp,:) | Owned rows of initial W by process p
H(:,Jp) | Owned columns of initial H by process p

Table 1: Notation

Algorithm 1[W,H] = AU-NMF(A k)

Input: A isan mXn matrix, k is rank of approximation

1: Initialize H with a non-negative matrix in R:’_Xk.
2: while stopping criteria not satisfied do

3. Update W using HHT and AHT

4 Update Husing WTW and WTA

and 4 depend on the NMF algorithm, and we refer to the computa-
tion associated with these lines as the Local Update Computations
(LUC) and in our algorithm referred as UPDATEW and UppATEH. For
consistency, we borrow these acronyms from previous work [12, 13].

We note that AU-NMF is an instance of a two-block, block coor-
dinate descent (BCD) framework as explained by Bertsekas [2]. The
BCD framework expresses solving optimization variables in com-
plex non-linear optimization problem as one block at a time, while
keeping the others fixed. In NMF, the two blocks are the unknown
factors W and H, and we solve the following subproblems, which
have a unique solution for a full rank H and W:

W argmin“A—WH”F +¢(W)+y/(H),
W0

A . N )
He ar~gm1nHA—WHHF +o(W)+y/(H).

H>0

Since each subproblem involves non-negative least squares, this
two-block BCD method is also called the Alternating Non-negative
Least Squares (ANLS) method [17]. From the computational per-
spective as in Algorithm 1, each of these subproblems will require
a Gram computation, an SpMM, and an LUC. The Multiplicative
Update (MU) algorithm proposed by Lee and Seung [29] is the most
common NMF algorithm as it is easier to implement and available
through many standard packages. But there are more recent algo-
rithms that perform better than MU such as Hierarchical Alternating
Least Squares (HALS) [5] and Block Principal Pivoting (ABPP) to
solves these NLS subproblems.

These updates differ in the choice of blocks to update, considering
either the entire factor matrix, a single column vector, or a single ele-
ment as a block. The convergence properties of these different NMF
algorithms are discussed in detail by Kim, He and Park [17]. While
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we focus only on the most common MU algorithm in this paper,
we highlight that our algorithm is not restricted to this choice. The
parallel framework is seamlessly extensible to other NMF algorithms
as well, including HALS, ABPP, Alternating Direction Method of
Multipliers (ADMM) [33], and Nesterov-based methods [10].

2.3 Multiplicative Update (MU)

We support {1 and ¢, regularization on both W and H. £, tames
the growth of values and ¢ makes it insensitive to smaller values.
Typically, W is a dense basis matrix and H is the sparse projection of
samples on this basis. In real world, there will be fewer components
that participate on a sample [14] and hence H is sparse with {; reg-
ularization. Consider, if the value of j' component of an i*" sample
h;j=0.001, we can safely assume, the contribution of the jt h compo-
nent to it" sample is negligible. In this paper, we are considering ¢,
regularization on the W matrix and ¢; regularization on the H matrix
to address the sparsity of the input matrix. It is beyond the scope
of the paper to compare and contrast sparse NMF with and without
regularization. Kim and Park discuss details on the interpretability
of solutions and qualitative advantages of using ¢; regularization
for clustering sparse text data [18].

With these choices of regularization, the NMF problem becomes

n
min ||A—WH]||p+a||[W|2+ h;||%. 3
wimin Il +al W ﬂ;II il 3)

The values @ and ff were fixed for the experiments, but in practice
they need to be tuned for each application. In the case of MU [29],
individual entries of W and H are updated with all other entries fixed.
In this case, the update rules are

e AHDy
Y (WHHT +2814));;”
(WTA);;

(WTW+2al)H);;

wij and

©

hij = hij

where 1}, is a k X k matrix of all ones and I is a k X k identity ma-
trix. These update equations are obtained by setting the first order
partial derivatives of the objective function in Eq. (3) with respect to
each matrix entry to zero. For more detailed analysis of these update
equations, see [8, 17, 29].

After computing the Gram matrices HH” and WTW, adding
the appropriate regularizers, and computing the products AHT and
WT A, the extra cost of computing W(HHT +241;.) and (WT W +
2al}) is 2(m + n)k? flops to perform updates for all entries of W
and H, as the other element-wise operations affect only lower-order
terms. The details about using AU-NMF in Algorithm 1 for HALS
and ABPP are explained in [12, 13].

3 SURVEY

Matrix factorization is the problem of determining two smaller matri-
ces called factors whose product approximates a given input matrix.
In the case of NMF the factors are non-negative (all the entries are
nonnegative). Recently, there has been a growing interest in Col-
laborative Filtering (CF) based recommender systems. One of the
popular techniques for collaborative filtering is matrix factorization,
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and many open source implementations are available on off-the-
shelf distributed machine learning libraries such as GraphLab [23],
MLLib [25], and many others [28, 36]. As discussed by Kannan, Park
and Ballard [13], CF using matrix factorization is a different problem
than NMF: CF considers nonzeros in the matrix to be observed en-
tries and zeros to be missing entries, while in the case of NMF, there
are no missing entries (zeros signify observed entries).

There are several recent distributed NMF algorithms in the liter-
ature [6, 21, 35] for different objective losses such as KL divergence,
squared loss, and “exponential” loss functions [22]. The building
blocks of the MU algorithm are matrix multiplication, element-wise
multiplication, and element-wise division. Liao et al. implement an
open-source Hadoop-based MU algorithm and study its scalability
on large-scale biological data sets [21] by performing distributed
matrix operations. Similarly, Yin, Gao, and Zhang present a scalable
NMEF that can perform frequent updates, which aim to use the most
recently updated data [35]. All of these works use Hadoop frame-
work to implement their algorithms, hence are not very efficient.
Spark is an in-memory MapReduce framework that also has a CF
implementation in its open source project MLIib [25] using matrix
factorization and that can impose non-negativity constraints as well.
We do not compare our approach against this work because CF is
different from NMF.

In parallel with the Hadoop and Spark implementations, there
have been growing interest in the HPC community towards effi-
ciently computing these algorithms with tuned high performance
implementations. Kannan, Ballard and Park [12, 13], have proposed
Mpr1-FauN framework to implement various NMF algorithms such as
multiplicative update (MU), Hierarchical Alternating Least Squares
(HALS) and Alternating Non-negative Least Squares using Block
Principal Pivoting (ABPP). We choose this work as a baseline, as
it is the only available high performance implementation of NMF,
and it performs significantly faster than Hadoop and Spark-based
approaches. To elaborate on this, Gittens et al. [7] recently bench-
marked the implementations of different matrix factorization algo-
rithms, such as NMF and Principal Component Analysis (PCA), in
Spark and in C and MPI. They claim that native MPIimplementations
on HPC platforms outperform Spark implementation by a factor of
up to 44X. Similar observations have been made by Sukumar, Kan-
nan, Matheson and Lim [31, 32] on supercomputers at Oak Ridge
Leadership Computing Facility. Finally, there are implementations
of the MU algorithm in a distributed memory setting using X10 [9]
and on a GPU [24].

4 DISTRIBUTED SPARSE NMF

Here, we first introduce our parallel NMF algorithm that operates
on a partition of the matrices A, W, and H. For a given partition, we
describe how parallel computations and communications take place
within the algorithm, and illustrate computational and communi-
cation costs associated with a partition. We then discuss efficient
partitioning strategies to better establish computational load balance
and reduce communication in NMF. In doing so, we also explain how
existing methods compare to this scheme with their advantages and
disadvantages in terms of partitioning.
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4.1 Distributed Sparse NMF Algorithm

Algorithm 2 DisT-SPNMF: Distributed sparse NMF algorithm

Input: Ap: An mXn sparse matrix
1y, Jp: Set of rows/columns of W/H owned by process p
Fp.Gp: Footprints of process p on W and H
W(Zp,:),H(:,p): Owned rows/columns of W/H
k: The NMF rank
Output: Process p gets final values of W(Z),:) and H(:,.Jp)
1: repeat
2 Comm-Expanp(H(:,Gp))
W(ﬁ,,:) <—Ap~H(:,gp)
Comm-Forp(W(%p.,:))
Gy« ALL—REDUCE(H(:,L‘_TP)H(:,%)T)
W(Z,,:) — UPDATEW (G, W(Zp.:))
ComM-ExpAND(W(Fp.,:))
H(,Gp) — W(Fp.) T Ap
COMM—FOLD(I:I(:,QP))
10: Gy <—ALL—REDUCE(W(IP,:)TW(Z},,:))
11: - H(Jp,:) UPDATEH(Gw,ﬁ(%,:))
12: until convergence or maximum number of iterations

Parallelizing sparse NMF involves partitioning the sparse matrix
A as well as the factor matrices W and H, where the former partition-
ing distributes the computational load of sparse matrix-dense matrix
multiplications AH and WTA, whereas the latter divides the work-
load of LUC computations to processes. We provide the execution
of our parallel algorithm for computing a rank-k NMF of a sparse
matrix A € R™*" in Algorithm 2, which is executed by each process
p for 1 <p <P.The algorithm starts with an arbitrary partition of the
input matrix and the factor matrices; process p owns the submatrices
W(Zp,:) and H(:,Jp) as well as the nonzero elements of the sparse
matrix A, where A= UleA,-, ie, Aj,...,Ap partitions the nonzeros
of A. The sets 7 and G denote the “footprints” of the process p on
the rows and the columns of matrices W and H, respectively; hence,
these rows need to be stored by this process. Specifically, we have
i€FporjeGyifonlyifiel, orje , (row/column is owned), or
there is a nonzero element a;, j € Ap (row/column is used in local
computations). At each iteration, the process p is responsible for
gathering the new value of submatrices W(Z,:) and H(:,Jp ), and
sending them to processes in need.

In an iteration of Algorithm 2, each process p possesses three
types of computational tasks as well as associated pre- and post-
communication steps. The first task involves performing sparse
matrix-dense matrix multiplications ApH(:,Gp) and W(¥, :)TAP,
whose results are stored in distributed matrices W and I:I, which
follow the same row-/column-wise data distribution as W and H.
Note that carrying out these multiplications must be preceded by an
expand communication step where each process p gets the submatri-
ces H(:,Gp \ Jp) and W(Fp \ Ip,:) that are accessed by entries of A,
and these steps are performed at Lines 2 and 7. These multiplications
performed by each process p generate partial results for the set
and Gp of rows of W and columns of H, respectively, which are
highlighted at Lines 3 and 8. Indeed, partial results for the submatri-
ces VNV(?;, \Zp,:) and ﬁ(:,gp \Jp) correspond to rows and columns
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owned by other processes; hence, they need to be communicated.
The results for W(Z, p,) and I:I(:,J},), however, should be kept locally,
and all partial results for these matrix rows and columns generated
by other processes should similarly be received and accumulated
in order to obtain the final value for these owned portions. This is
realized in a fold communication step at Lines 4 and 9.

The second task is to compute the Gram matrices G =HH and
G =WTW of size kxk, and making these matrices available to all
processes, which is performed at Lines 5 and 10. This is done in a
row-parallel dense matrix multiplication step, in which the process
p computes H(:,jp)HT(:,jp) and WT(IP,:)W(Z}),:), followed by an
A1LL-REDUCE communication of these partial multiplications.

The third task pertains to updating the factor matrices W and H
using matrices WandG H,Or Hand Gy, which takes place at Lines 6
and 11. This corresponds to Lines 3 and 4 of Algorithm 1, and can
be computed locally at each process p by executing UpDATEW and
UppATEH algorithm on dense matrices W(Ip,:) and Gy, or fI(:,jP)
and Gy, to obtain new W(JZp,:) or H(Zp,:).

In the case of MU, the update rules are given by Eq. (5). There-
fore, for row and column index sets 7, and ., then UPDATEW and
UprpATEH computations are as follows:

W(Zp,:) — W(Zp,) ®(W(Zp,)) (W (Zp,) (G +2B1x),
H(Jp.:) —H(Jp.)® (H(Jp.))@(Gw +2al; ) H(Tp )

where ® and @ correspond to element-wise multiplication and divi-
sion of matrices or vectors. This scheme provides row-wise paral-
lelism in Local Update Computation. HALS and ABPP can similarly
be expressed in this row-parallel form.

The first type of communication in Algorithm 2 pertains to an
ALL-REDUCE of a dense matrix of fixed size k Xk at Lines 5 and 10, and
the cost of this step is typically negligible in compare to the rest. The
other two communication types involve (i) transferring the partial
row results of W and H to their owner processes at Lines 4 and 9 to
accumulate at the owners, (ii) sending the updated rows of W and H
to processes in need at Lines 2 and 7. We respectively call these steps
fold and expand communications, following the convention used by
the sparse matrix community. The way these two communications
are carried out plays a vital role in obtaining parallel scalability as
they dominate the communication cost of the algorithm.

4.2 Communication Scheme

Collective communication (COLL). Mp1-FAUN employs collective
communication strategies for both expand and fold steps of Algo-
rithm 2 for dense as well as sparse A, and partitions A using a uniform
checkerboard topology. In this strategy, the rows and the columns
indices 1,...,m and 1,...,n are divided into P, and P, (P = P,P.)
sets I1,...,Ip, and Ji,...,Jp, of equal size and having contiguous
indices. Here, process p owns the matrix subblock A, ), where
r=|P/P.]+1and c = (P mod P.)+ 1, as well as m/P rows of
W(Ir,:) and n/P columns of H(;, J¢,). As A ¢) only touches the
rows/columns of processes in the same row/column of the processor
grid, the communication of W and H are performed within each
process row and column using ALL-GATHER and REDUCE-SCATTER
routines, in which the process p receives all matrix rows W(I,:) and
columns H(:,J;) belonging to processes in the same row and column
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Figure 1: A 5x5 checkerboard partition of a sparse matrix.

of the process grid. Despite being favorable due to a small number of
exchanged messages in collective routines, in this strategy processes
might receive rows that they do not need in their local sparse matrix
dense matrix multiplication (particularly if A is very sparse), and
this redundancy dramatically increases the communication volume,
thus preventing scalability.

Point-to-point communication (P2P). HYPERTENSOR employs point-
to-point communication for fold and expand steps by precomputing
the set of processes having a row/column in its footprint for each
row/column of W/H. This reduces the communication volume at the
cost of increased number of messages with respect to the strategy
of Mp1-FAUN.

4.3 Partitioning

Algorithm 2 requires a partitioning of the nonzeros of A as well as
the rows and the columns of W and H, and these three partitions
completely determine its computational and communication costs.
Here, we compare different partitioning strategies, employed by
Mp1-FAUN, HYPERTENSOR, and SpMV kernels, and argue how they
relate to these two performance metrics.

4.3.1 Partitioning A.

Checkerboard hypergraph partitioning (CH2). A hypergraph con-
sists of vertices with associated weights and hyperedges that con-
nect two or more vertices. In the literature, a hypergraph is typically
formed by adding a vertex for each computational task with the
associated execution cost, adding a hyperedge for each data element,
and connecting the vertex to a hyperedge whenever the associated
task and the data are dependent. Then, the vertices of the hyper-
graph is partitioned using a hypergraph partitioner to distribute
vertex loads to parts equitably while reducing a metric called cutsize,
which amounts to minimizing the total number of different parts
each hyperedge connects. This corresponds in the actual computa-
tion to minimizing the data dependencies between tasks, hence the
communication volume.
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Traditional checkerboard hypergraph partitioning aims to par-
tition the matrix A into P, row slices first, and P, column slices
next to obtain an P, X P, checkerboard partition [1, 3]. The first
partitioning phase is done using a column-net hypergraph model,
in which for each row A(i,:), a vertex v; with weight equaling to
the number of nonzeros in A(i,:) is created. Each column j is repre-
sented with a hyperedge h; and for each nonzero (i,) € A, which
implies a dependency to H(:,j) in computing W(i,:) at Line 3, we
connect v; to hj. This hypergraph is partitioned into P, parts giving
the row partition of the checkerboard topology. The second parti-
tioning phase uses a row-net hypergraph model induced by this row
partition, where each column is represented with a vertex with P,
weights corresponding to the number of nonzeros in that column
in all P, row segments. Partitioning this hypergraph into P, parts
finalizes the P, X P. checkerboard partitioning by balancing the
weights (number of nonzeros of A, )) of each part while minimiz-
ing the communication volume. In the context of NMF, one issue
arises when the matrix has some variance in the number of nonzeros
in its rows/columns, which in turns yields unbalanced row/column
strides. This in turn creates an imbalance in the UPDATEW and Up-
DATEH computations as rows/cols of W/H are partitioned to the
processes in the same stride. To alleviate this issue, we modify this
scheme slightly as follows. In both row and column partitioning
phases, we add an additional constant weight to vertices. Balancing
this additional constraint in hypergraph partitioning is expected to
prevent such imbalanced strides. This partitioning model (which
we call CH2) successfully grasps the computation (both SpMM and
LUC) and communication requirements using checkerboard topol-
ogy for sparse NMF, yet is costly to compute in practice due to high
number of constraints (P, +1) in the row-net hypergraph.

1D-like checkerboard hypergraph partitioning (CH1). This variant
partitions rows same as CH2, then partitions columns randomly
to avoid multi-constraint partitioning. Random column partition
provides load and communication balance yet increases the commu-
nication volume for the rows of W.

Randomized checkerboard partitioning (CRD). This scheme cor-
responds to partitioning both the rows and the columns of A into P,
and P, segments randomly. It is expected to provide good load and
communication balance both in sparse and dense matrix operations,
but it overlooks the communication volume.

Uniform checkerboard partitioning (CUN). This partitioning vari-
ant forms an Pg X Pc partition of A by putting a contiguous set of
m/Pg and n/P¢ rows and columns in each slice. W and H are par-
titioned conformally with this topology; each process is assigned a
contiguous set of m/PgrPc and n/PRrPc rows and columns of W and
H. This is the partitioning scheme employed by Mp1-Faun [12, 13].
It provides perfect balance in UPDATEW and UPDATEH step yet may
incur high communication cost. We also use a randomized vari-
ant (CUR) of this scheme in which the rows and columns of A are
permuted randomly to balance its nonzeros among parts.

Fine-grain hypergraph partitioning (FHP). This is the partitioning
strategy employed by HYPERTENSOR. It forms a fine-grain hyper-
graph involving a vertex for each nonzero (A(i,j) and a hyperedge
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for each row and column index i = 1,...,m and j = 1,...,n. The re-
sulting hypergraph is typically very large and is costly to partition,
and unlike checkerboard variants the footprints of processes are not
restricted to a row/column stride.

4.3.2  Partitioning W and H. Once A is partitioned, one has to
partition rows and columns of factor matrices to form the sets 7, and
Jp in Algorithm 2. In doing so, we are interested in assigning rows
and columns to processes equitably. For this purpose, we specify
imbalance parameters « that correspond to maximum imbalance we
allow in this partitioning; i.e., |Zp| < am/P and | Jp| < an/P for each
process p, and set @ =1.05 in the experiments.

Next, for each row and column of W and H we create a list of
processes that has a dependency to that row or column, which cor-
responds to processes owning the matrix blocks of same color in
Section 4.2. Finally, we randomly assign each row and column to
one of the processes satisfying the imbalance constraint in this list.
If all processes in the list are overloaded, we assign it to the pro-
cess that has the minimum number of rows/columns assigned. For
a checkerboard partition, the minimum is always chosen from the
same processor row/column so that 2D communication topology is
not disturbed. Note that such an assignment increases the commu-
nication volume due to that row or column by 1; hence, in general
smaller imbalance parameters yield larger communication volume
due to increasing this type of assignment. On the other hand, we
desire to keep « small as it pertains to the load imbalance in the
UprpATEW and UpPDATEH step.

5 EXPERIMENTS

In this section, we compare our algorithm D1sT-SPNMF against
Mri1-FAUN, and compare its parallel performance on two big sparse
matrices formed from real world datasets. We analyze and compare
the computation and communication timings of these algorithms
on a smaller cluster, then test the scalability limits of our method on
alarge supercomputing environment.

5.1 Experimental Setup

In this paper, we use both synthetic and realworld datasets. The
synthetic datasets are used to evaluate the communication strategies
with the increase in number of non-zeros of the sparse matrices. We
used PaToH [3] for partitioning hypergraphs.

5.1.1 Datasets. Synthetic:For synthetic sparse matrices, we used
the popular Kronecker generator from Graph500 benchmark (http:
/Iwww.graph500.org/). The graph generator is a Kronecker generator
similar to the Recursive MATrix (R-MAT) scale-free graph generation
algorithm [4]. This model recursively sub-divides the adjacency
matrix of the graph into four equal-sized partitions and distributes
edges within these partitions with unequal probabilities. Initially,
the adjacency matrix is empty, and edges are added one at a time.
The parameters to the generator are the number of vertices N and
the Edge Factor (e f) that defines the ratio of the graph’s edge count
to its vertex count (i.e., half the average degree of a vertex in the
graph). Typically, the number of edges M of the scale free graph will
be ef xN. In our case, we consider 220(~ 1.05 million) vertices and
set of edge factor e f={4,8,16,32,64}.
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Real World:We use two datasets from Flickr.com and Delicious.com
that involve images tagged with different labels by users. The rows
of the matrix correspond to different images, whereas the columns
of the matrix represent different tags. The value of each nonzero
a;,j € A indicates the number of unique users that tagged the image
i with the tag j. Flickr and Delicious matrices are of size 28 M X 1.6M
and 17Mx2.5M, and have 112M and 72M nonzero elements, respec-
tively. These matrices are obtained by pruning the third and the
fourth dimensions of 4-dimensional Delicious and Flickr tensors
available from [30]. The current implementation of Mp1-FAUN can
only operate when P and P¢ can divide m and n, hence we trimmed
the matrices slightly.

5.1.2  Implementation Platform. We conducted our experiments
on two different parallel computing platforms. The first platform is
the “Rhea” cluster at the Oak Ridge Leadership Computing Facility
(OLCF), which is a commodity-type Linux cluster with a total of 512
nodes and a 4X FDR Infiniband interconnect. Each node contains
dual-socket 8-core Intel Sandy Bridge-EP processors operating at
2GHz clock frequency and 128 GB of memory. Each socket has a
shared 20MB L3 cache, and each core has a private 256K L2 cache.
There, we ran our experiments up to 3072 cores, which is the max-
imum allowed in the cluster. The second platform is an IBM Blue-
Gene/Q supercomputer consisting of 6 racks each having 16384 cores.
Each compute node has 16GB of memory and single socket 16-core
PowerPC A2 processor at 1.6GHz clock frequency with 16KB of L1
cache per core, and 32MB shared L2 cache. We ran both algorithms
using 16 MPI ranks per node, and set P, =16 in all partitionings.

Our code for local matrix operations is developed using the matrix
library Armadillo [27]. We use BLAS and LAPACK for dense matrix
operations by linking Armadillo with Intel MKL, OpenBLAS [34],
or any other BLAS and LAPACK implementation. Both codes are
compiled using the default GNU C++ Compiler (g++ (GCC) 5.3.0) and
MPI library (Open MPI 1.8.4) on RHEA, and Clang compiler (3.5.0)
with IBM MPI library on BlueGene/Q.

5.2 Effect of communication scheme

To understand the effect of partitioning and its impact on communica-
tion and computation, we performed experiments on synthetic Kro-
necker graph and the results are presented in Fig. 2. For 220 vertices,
we chose the edge factor of the Kronecker graph as {4,8,16,32,64}. As
the edge factor increases, the sparse matrix becomes denser. We ran
the baseline Mp1-FAUN algorithm and the proposed algorithm with
different partitioning schemes as explained in Section 4.3 on 4096
processors using a 64 X 64 processor grid on Rhea for low rank k =48.

In Fig. 2, we provide per-iteration computation and communica-
tion timings for different partitioning and communication schemes
using 4096 processors and a 64 X 64 processor grid. COLL-CUN
is the implementation of MpI-FAUN and is the only instance that
uses collective communication. In comparison, P2P-CUN also uses
uniform partitioning but with point-to-point communication. P2P-
CRD decides the checkerboard topology randomly and uses point-
to-point scheme as well. P2P-CH1 and P2P-CH2 correspond to
1D-like and 2D checkerboard hypergraph partitioning models with
point-to-point communication. Finally, P2P-FHP is the fine-graph
hypergraph partitioning with point-to-point scheme, for which we
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Figure 2: Per-iteration communication and computation
costs of different partitioning strategies on Kronecker
graphs using 4096 processors Rhea for k = 48, averaged over
30 iterations

only provide partition statistics for comparison and not the actual
run time.

We notice in Fig. 2 that COLL-CUN always incurs significantly
higher communication cost. As the edge factor increases and matrix
becomes denser, the communication cost of COLL-CUN does not
change as expected since it does not depend on the matrix spar-
sity. The communication cost of P2P-CUN progressively increases
with the edge factor, but even with an edge factor of 64 COLL-CUN
is about two times more costly. Therefore, we conclude that even
though there is a converging trend between the cost of collective and
point-to-point communication, it is a rather slow convergence, and
the point-to-point scheme should be the method of choice unless
the matrix gets very dense.

5.3 Effect of partitioning strategies

In Fig. 2b, our first observation is that all partitionings except COLL-
CUN yield comparable results in terms of communication, while
there is some variation in the computation times provided in Fig. 2a.
P2P-CUN gives similar computation time to P2P-CRD since the
matrix is randomly permuted. P2P-CH1 yields slightly higher com-
putation time and no notable improvement in the communication
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Table 2: Load balance and communication statistics for
4096-way partitioning with edge factor 64.

Partitioning nz-ib | row-ib col-ib | com-max | com-avg
P2P-CUN 1.30987 1 | 1.00392 15366 11876
P2P-CH1 1.21477 | 1.27734 1.05098 20800 11038
P2P-CH2 1.06479 | 1.30469 1.53725 23484 10853
P2P-CRD 1.38681 1.04688 1.05098 15475 11341
P2P-FHP 1.00115 | 1.05078 1.0549 47925 13802

time, as it involves multi-constraint partitioning with too many con-
straints, which is a difficult partitioning problem that partitioners
such as PaToH might not solve very effectively. P2P-CH2 provides
some advantage both in terms of computation and communication
time, and this partitioning is feasible to compute as it involves hy-
pergraph partitioning with only two constraints.

We conclude that even though P2P-CH2 provides a better model
of computation and communication costs of distributed sparse NMF,
it does not yield better results in practice due to having too many
constraints in the partitioning problem, which also renders it im-
practical due to costly precomputation for partitioning. P2P-CH1
yields a smaller hypergraph with reasonable partitioning cost and
provides some benefits in terms of communication reduction. P2P-
CRD seems to produce good results overall as it provides good
computation and communication balance. We provide partition sta-
tistics with respect to these strategies in Table 2 that justify these
observations. We observe that P2P-FHP incurs a significant com-
munication imbalance with respect to other methods preventing
scalability and increasing memory consumption of the bottleneck
processor, and these results confirm those reported in [15].

5.4 Strong scaling

In this section, we provide strong scalability experiments on real-
world datasets in the next section with a detailed comparison of
point-to-point and collective strategies as well as randomized and
hypergraph checkerboard (1D-like) partitioning.

In this experiment, we considered the following algorithms and
partitionings:

e COLL-CUN: Mp1-FauN algorithm [12, 13] with uniform par-
titioning (COLL-CUN) where each process holds an input
matrix of size m/P, Xn/P.

e COLL-CUR: The partitioning strategy in COLL-CUN could
result in a significant computational load imbalance in with
a skewed nonzero distribution of A. We alleviate this by ran-
domly permuting the rows and columns of the matrix before
executing MpI-FAUN, and call this scheme COLL—-CUR.

e P2P-CH1: DisT-SPNMF (Algorithm 2) with 1D-like checker-
board hypergraph partitioning explained in Section 4.3.1.

e P2P-CRD:Di1st-SPNMF (Algorithm 2) with randomized checker-

board partitioning explained in Section 4.3.1.

In Fig. 3a we show the speedup results of all four instances on the
Rhea cluster using up to 3072 MPI ranks/cores on Flickr data. The
speedup values are with respect to slowest runtime among all four
instances using 16 cores (single node). We observe in Fig. 3a that all
algorithms scale up to 1536 cores, yet MP1-FAUN instances achieve
this with significantly lower parallel efficiency. This mostly is due to
higher communication costs involved in the communication scheme
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Figure 3: Strong scaling on Flickr dataset

for both instances. We also realize that COLL-CUR significantly
improves the runtime with respect to COLL-CUN, meaning that
COLL-CUN indeed causes load imbalance in partitioning nonze-
ros of A. At 3072 processes, both COLL-CUR and COLL-CUN lose
scalability and slow down, whereas P2P-CH1 and P2P-CRD scale
to 3072 processors.

Similarly, in Fig. 4a we provide the same results for the Delicious
matrix. We observe a similar trend in the comparisons of different
methods, except that COLL-CUR and COLL-CUN scale even worse
in this case. Our algorithm also loses scalability after 1536 processes,
and similarly to the previous case P2P-CH1 starts slower than P2P-
CRD due to load imbalance, and catches up for k =48. These two test
cases clearly show that employing a point-to-point communication
with good partitionings is essential for obtaining high performance
in NMF algorithm.

To better test the scalability limit of our algorithms, we ran them
on an IBM BlueGene/Q supercomputer up to 32768 processors using
the same two matrices. The results of these two experiments are pro-
vided in Figs. 3b and 4b. Our algorithm graciously scales up to 16384
cores in all four instances, and P2P-CH1 manages to slightly im-
prove the runtime using 32768 cores on Flickr, while all other slowing
down using 32768 ranks. Again, P2P-CH1 is slower than P2P-CRD
using lower number of processors as the communication cost is
negligible in these instances, and P2P-CH1 introduces worse load
balance than P2P-CRD. However, using 32768 processors P2P-CH1
manages to outrun P2P-CRD by incurring less communication.
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5.5 Time Breakdown Per Iteration

In this section we provide the time spent on each individual operation
type and communication within an NMF iteration. We report the
averages over 30 iterations on Rhea, and 10 iterations on BlueGene/Q
for each of four runs. As provided in Algorithm 2 there are three types
computations and two types of communications within an NMF itera-
tion, and we present timings for these steps with the following labels:

e Gram: Computing the local contribution to the Gram matrix,
and performing an ALL-REDUCE to gather the final result.

o MM: Computing the sparse matrix-dense-matrix multiplica-
tion using Ap and one of the factor matrices.

e LUC : Local Update computation to compute the final value
of the factor matrix using Gram and MM (time taken by Up-
DATEW and UppATEH functions).

e Comm: Total expand and fold communication time for P2P—
CRD and P2P—-CH1, and the total time spent on ALL-GATHER
and REDUCE-SCATTER steps for COLL — CUN and COLL —
CUR.

In our results, we do not distinguish the costs of these tasks for W
and H separately; we instead report their sum.

We report the time breakdown for Flickr and Delicious datasets
in Fig. 5, Fig. 6 for Rhea and Fig. 7 for BlueGene/Q. For each cluster
and data set, we show the timings for the smallest and the largest
number of processors used. Our objective in this experiment is to
better analyze the speedup results by comparing the computational
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and communication costs of different communication schemes and
partitioning strategies.

Flickr on Rhea: We observe in Fig. 5 that in a one-node config-
uration with p = 16, the COLL-CUN and COLL-CUR performs
similar to P2P-CRD and P2P-CH1 in terms of computation, and
the communication time takes a small portion of the execution in
all instances. As the number of processes increases to 3072, the com-
munication time of P2P-CRD and P2P-CH1 stays reasonably low,
whereas in the case of COLL-CUN and COLL-CUR, we clearly
observe that the communication cost dominates the execution time.
Randomization offers load balance to COLL-CUR which gives it a
slight edge over COLL-CUN, yet both instances suffer from the high
communication cost associated with the collective communication
strategy, which explains the drop in the scalability results.

Delicious on Rhea: In Fig. 6, we see that P2P-CRD and P2P-CH1
perform better than COLL-CUN even in single node configuration.
Fig. 6 shows that COLL-CUN takes twice more than P2P-CRD and
P2P-CH1 in the sparse matrix multiplication step, highlighting the
skewed distribution of the matrix nonzeros, which is alleviated to a
certain extend by randomly permuting the matrix. Similar to Flickr
data, using 3072 processors, P2P-CRD and P2P-CH1 perform sig-
nificantly better than COLL-CUN and COLL-CUR, whose iteration
times are dominated by the communication.

Flickr and Delicious on BlueGene/Q:. In Fig. 7 we give the tim-
ings for computation and communication steps using our methods
with two different partitionings of matrices on BlueGene/Q. We ob-
serve that using 512 processors, communication cost is negligible,
and P2P-CRD beats P2P-CH1 thanks to better load balance. Using
16384 processors, however, on Flickr matrix P2P-CH1 gets faster
than P2P-CRD due to significant reduction in the communication
volume. On Delicious matrix, P2P-CH1 similarly better reduces the
communication, yet this is outweighed by the load imbalance in
matrix multiplications.
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6 CONCLUSION

In this paper, we compared various partitioning and communication
strategies used in the literature in the context of non-negative matrix
factorization. We showed that an important difference in the parallel
NMF algorithms is balancing matrix rows among processors, and this
constraint renders state-of-the-art hypergraph partitioning methods
less effective. We employed variations of the Mp1-FAUN implementa-
tion with point-to-point communication, and concluded that unless
the matrix at hand is quite dense, point-to-point communication sig-
nificantly improves the scalability by reducing the communication
volume. With optimized implementations, we achieved scalability up
to 32768 cores on a BG/Q supercomputer using partitioning schemes
that are cheap to compute. To the best of our knowledge, our work
is the first high performance implementation of distributed NMF
that takes the sparsity of the input matrix into consideration to re-
duce the communication cost and employs effective partitioning to
further enhance parallel scalability. Our immediate next steps for
extending our work involve adding shared memory parallelism to
obtain further speedup.
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