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Analytical formulas are obtained for frequency-dependent effective elastic modulus and effective
mass density for a periodic layered structure. The proposed homogenization procedure is valid
at sufficiently high frequencies well above the lowest band gap in the acoustic spectrum of the
structure. It is shown that frequency-dependent effective parameters may take negative values either
in different regions of frequencies or in the same quite narrow region. This property demonstrates
that 1D elastic structure may behave in the limit of small Bloch wave vectors as a double-negative
acoustic metamaterial.

I. INTRODUCTION

Elastic periodic structures or phononic crystals originally were considered as passive environment where sound
waves of certain region of frequencies cannot propagate because of presence of prohibited zones (band gaps) in their
spectra of vibrations1–3. Now a variety of periodic elastic structures serve as principal elements of different acoustic
devices operating in the regions of frequencies where sound waves can propagate and where they exhibits ’exotic’
properties, like anomalous dispersion, negative refraction, strong anisotropy, etc. If these properties can be explained
within the effective medium theory, it is worthwhile to calculate the effective parameters of this homogeneous medium.
For longitudinal waves it is sufficient to know the effective mass density ρeff (ω) and the effective elastic modulus
λeff (ω), which are the functions of frequency ω. For a long time a self-consistent approach to homogenization of elastic
composites proposed by Barryman for spherical4 and ellipsoidal scatterers5 was widely used. This long-wavelength
limit is valid for the composites with low concentration of scatterers in space, when the details of the microstructure
of the composite are ignored. This approach also does not lead to frequency dispersion, giving the result for ρeff (0)
and λeff (0), i.e. the quasistatic limit for the effective parameters. Phononic band structure engineering and rapid
development of new acoustic and elastic metamaterials gave rise to more advanced effective medium theories.
Homogenization theories based on plane or cylindrical wave expansions were developed in Refs. [6–11] for calcula-

tions of the effective parameters of two- and three-dimensional elastic periodic structures in the quasistatic limit. The
effective parameters are obtained by taking the limit ω → 0, k → 0 in the exact wave equation written for periodic
structure, therefore they take into account all the details of distribution of elastic material within the corresponding
unit cell.
The effective parameters obtained in the quasi-static limit are dispersionless and they are not valid for calculation of

the bandgaps. The latter requires application of the dynamical methods. Frequency-dependent effective parameters
for 2D elastic systems were calculated in Ref. [12]. A two-scale approach proposed in this paper is valid for quite
high frequencies ω and wave vector k lying near the edges of the Brillouin zone. More general plane-wave expansion
approach valid in 3D case and for arbitrary ω and k was developed by Norris et. al13. An alternative approach for
calculation of the effective parameters of phononic metasolids with local resonances was proposed in Ref. [14]. It
was demonstrated that these structures are described by means of frequency-dependent and anisotropic effective mass
density, stifness tensor, and a third rank coupling tensor that is a signature of a nonlocal Willis medium.
So far, the approaches developed in Refs. [12–14] give the most complete description of a periodic structure by

its effective parameters. The other side of wide generality of the reported results is that they require quite extensive
numerical procedure. This is the reason why only one-dimensional structures were considered in Refs. [12,13] as
examples of application of the proposed methods. Less general but more feasible methods of homogenization of 2D
and 3D phononic crystals are proposed in Refs. [15,16] and Ref. [17], respectively. Unlike the exact results13 these
methods are based on different approximations. Nevertheless, they reproduce with high accuracy the band structures
of 2D and 3D phononic crystals in the long-wavelength limit.
Layered (one-dimensional) periodic structures are of special interest as they are significantly easier and less expensive

to fabricate than 2D or 3D structures. Theoretical study of acoustic properties of layered structures is also simplified
due to the well-known dispersion relation ω = ω(k). For a binary composite it has the following form18:
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Here d = a + b is the period of the structure containing two layers of width a and b, ca(cb) is the speed of sound
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Material a, water:

        a=2⨯109Pa,

        a=1000 kg/m3,

        a=10mm

Material b, steel:

        b=2⨯1011Pa,

        b=7900 kg/m3,

        b=1mm

d

a/2 b a/2

FIG. 1: Symmetric unit cell of a binary composite.

in the layer a(b), and Za = ρaca (Zb = ρbcb) is the acoustic impedance of the layer a (b). In an infinite periodic
structure Eq. (1) defines the dispersion of a Bloch wave of pressure propagating perpendicular to the layers, p(x, t) =
uk(x) exp[i(kx− ωt].
In the quasi-static limit the effective density and elastic modulus of layered structure are easily calculated from Eq.

(1) by taking the limit ω, k → 0 and assuming that ω/k = ceff = const,
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d
ρa +

b

d
ρb,

1
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+
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λb
. (2)

These formulas are valid only for the lowest (acoustic) band, where dispersion of sound is linear, ω = ceffk, ceff =
√

λeff/ρeff .
For higher (optical) bands, the effective parameters exhibit dispersion, i.e. ρeff = ρeff (ω), λeff = λeff (ω).

Frequency-dependent effective parameters of 1D phononic crystals have been studied in many publications12,13,16,19,20

where the results for ρeff (ω) and λeff (ω) are presented in a graphical form. Analytical results for the effective
parameters beyond the quasi-static limit (2) are still lacking, while for 1D case the dispersion equation (1) is known
explicitly.
Here we propose a method of homogenization which for periodic layered medium leads to simple analytical formulas

for the effective parameters. We introduce the effective medium through two principal equations of elastodynamics:
equation of motion and Hooke’s law. Propagating Bloch wave of pressure p(x, t) induces oscillations of every element of
the unit cell. Spatial period, phase and amplitude of these oscillations vary over the unit cell according to distribution
of elastic material. Then, the acceleration au.c and deformation ∆V/V of any local infinitesimally small layer within
the unit cell are also functions of x. Replacing a periodic medium by a homogeneous one we request that in the
long-wavelength limit kd ≪ 1 both media exhibit the same dynamics. This requirement means that i) the average
acceleration ā equals to average acceleration of the effective medium subject to propagating plane (not Bloch) wave
with the same wave vector k and ii) the average deformation ¯∆V/V equals to that of the effective medium. These
two requirements provide that the unit cell as a whole moves as the corresponding part of the homogeneous effective
medium. Two effective parameters, ρeff (ω) and λeff (ω), are obtained as a result of the above-mentioned requirements.
Similar homogenization scheme was proposed in Ref. [21] for periodic arrangement of solid cylindrical scatterers.
For a wide region of frequencies the proposed effective parameters lead to a nonlinear dispersion relation

ω = kceff (ω), ceff (ω) =
√

λeff (ω)/ρeff (ω), (3)

which reproduces well the exact dispersion relation ω = ω(k) obtained from Eq. (1), if kd ≪ 1. This correspondence
is valid not only within the passing bands but also within the band gaps where the wave vector k is pure imaginary
since one of the effective parameters becomes negative. For a given combination of elastic materials in the unit cell
the proposed formulas predict the region of frequencies where both effective parameters are negative, i.e. the layered
structure behaves as metamaterial with negative index of refraction. So far the explicit frequency dependencies of
the effective parameters were reported for acoustic devices exhibiting negative refraction near the frequencies of the
internal resonances22–24. Reported here results is one more example of a periodic structure where the dispersion of
the effective parameters can be calculated analytically.
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II. HIGH-FREQUENCY HOMOGENIZATION SCHEME

We consider a binary periodic composite of two elastic materials, a and b shown in Fig. 1. The distribution
of materials within the unit cell always can be selected symmetrical since the crystal as a whole possesses inverse
symmetry. Propagating Bloch wave produces inhomogeneous distribution of pressure within the unit cell. Labeling
the layers in the unit cell by index n (n = 1, 2, 3), the pressure can be written as follows:

pn(x, t) = pn(x)e
−iωt, pn(x) = Ane

iknx +Bne
−iknx, (4)

where the wave vector kn = ω/cn and cn =
√

λn/ρn is speed of sound in the n-th layer. A set of linear equations for
six constants An and Bn is obtained from the continuity of velocity and pressure at the layer interfaces, x = ±b/2
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, pn(x = ±b/2) = pn′(x = ±b/2), (5)

and the quasiperiodicity condition (Bloch theorem), pn(x+ d) = eikdpn(x), at x = −(a+ b)/2. Since the equations in
this set are homogeneous a nontrivial solution exists if the determinant vanishes, that leads to the dispersion equation
(1). Once An and Bn are calculated the pressure pn(x) in each layer can be expressed through, e,g., pressure at the
left edge of the unit cell, p1(−

a+b
2 ) = A1e

ika(a+b)/2 +B1e
−ika(a+b)/2.

In the long-wavelength limit, kd ≪ 1 the Bloch wave in a periodic structure is weakly modulated and can be
approximated by a plane wave that propagates in the equivalent effective medium. We propose to obtain the density
of the effective medium by equating the average acceleration of the unit cell to that of the effective homogeneous layer
of width d, assuming that the amplitude of the plane wave coming from the left is −p1(

a+b
2 ). The local acceleration

of elastic medium at point x is − 1
ρ(x)

dp(x)
dx . Then, the average acceleration of the unit cell is obtained by integration
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Average acceleration of a homogeneous layer with density ρeff in the field of the plane wave p(x) =

p1
(
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2

)

exp[ik(x+ a+b
2 )] is calculated in a similar way
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The pressure p1
(

−
a+b
2

)

can be selected as a constant through which all the unknowns An and Bn can be expressed.

Then the distribution of pressure within the unit cell is proportional to p1
(

−
a+b
2

)

and this common factor is canceled
when equating the accelerations given by Eqs. (6) and (7). Thus, the condition āu.c. = āeff defines the effective
density ρeff (ω).
One more mechanical characteristics of elastic medium is the field of deformation. For a layered inhomogeneous

system the relative change of volume of the unit cell is obtained from the Hooke’s law:
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The same quantity for a homogeneous medium is given by
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)

eff
defines the effective bulk modulus λeff (ω). Thus, the proposed homogenization

scheme is based on Eqs. (6)-(9) which establish equivalency in the dynamics of the unit cell and effective medium in
the field of propagating sound wave. Apparently, that this method of homogenization is valid in the long-wavelength
limit kd ≪ 1 and within a wide range of frequencies (not necessarily low). The latter means that the elastic field
inside each material layer can be strongly inhomogeneous, i.e. the parameters kaa = ωa/ca and kbb = ωb/cb are not
necessarily small. It is clear that the proposed method in valid not only for layered structures; it is equally applicable
for 2D21 and 3D phononic crystals. In 1D case all the calculations can be done analytically and explicit expressions
for the effective parameters are obtained.
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III. THE EFFECTIVE PARAMETERS

Solution of a homogeneous 6× 6 set of linear equations for the coefficients An and Bn is a trivial but combersome
problem. Omitting simple algebra, we give the final results for the dynamic effective parameters for the most interesting
situation of high acoustic contrast between the constituents, ca ≪ cb,

ρeff (ω) =
ρaa+ ρbb

ωa
2ca

cot( ωa
2ca

)

a+ b (ωa/2ca)
sin(ωa/2ca)

(

1− 2ρb

ρa

sin2( ωa
4ca

)
) , (10)

λ−1
eff (ω) =

bλ−1
b + aλ−1

a

(

2ca
ωa

)

sin
(

ωa
2ca

)

(a+ b) cos
(

ωa
2ca

) . (11)

These formulas are valid in the long-wavelength limit kd ≪ 1 for the structure with high acoustic contrast. The latter
condition, ωb/cb ≪ 1, means that that the layer with more stiff material (layer b) homogenizes, i.e. the acoustic field
inside it is practically homogeneous. However, the field inside the softer layer can exhibit oscillatory pattern. This
gives rise to frequency dispersion of the effective parameters. Of course, in the limit, ω, k → 0 Eqs. (10), (11) are
reduced to the result of the quasi-static limit Eq. (2).

IV. FREQUENCY DISPERSION OF THE EFFECTIVE PARAMETERS

To study the dispersion of the effective parameters we select a structure containing layers of water (material a,
thickness a = 10 mm) and steel (material b, thickness b = 1mm). The acoustic contrast between these two materials
is rather high: cb/ca ≈ 3.5. The geometrical and physical parameters of the unit cell are shown in Fig. 1. Due
to high contrast and different thicknesses there is a wide range of frequencies where the obtained formulas for the
effective parameters are valid. The homogenization condition for the water layer ωa/ca < 1 is true for frequencies
ωmin/2π < 2.5 ·104 Hz. At such low frequencies the results (2) obtained in the quasi-static limit are valid. Indeed, the
effective parameters in Fig. 2 do not exhibit essential dispersion up to 2 ·104 Hz. Here the dispersion of sound is linear,
see the right panel in Fig. 2. At higher frequencies both effective parameters exhibit strong frequency dispersion,
which originates from inhomogeneity of acoustic field in water layers. Unlike this, the field within the steel layers is
homogeneous, i.e. ωb/cb ≪ 1. This condition is violated at frequencies higher than ωmax/2π = cb/2πb ≈ 0.8 MHz.
Thus, within the range from 20 kHz to 0.8 MHz the effective parameters are frequency-dependent and they can be
calculated using Eqs. (10) and (11).
Of course, these results are valid only in the long-wavelength limit, i.e. in the vicinity of the Γ-point. Therefore,

the parts of the graphs lying in the region of frequencies corresponding to the edges of the Brillouin zone (where
kd close to π) should be ignored. Within the band gap (shaded region close to the Γ-point in the right panel) the
effective elastic modulus is negative but the effective density is positive. This leads to pure imaginary phase velocity,
Vph =

√

λeff/ρeff , therefore the system is opaque – sound wave does not propagate. The effective elastic modulus
remains negative even below the lower edge of the gap (≈ 96 kHz). The effective density vanishes exactly at this
frequency, going to negative values below it. Thus, there is a narrow region of frequencies where both effective
parameters are negative and the structure is transparent to sound. This narrow region (below 100 kHz) is light
shaded in the left and central panels. One more very narrow region with double-negative parameters lies near 370
kHz. Note that within these regions the dispersion of sound is anomalous, i.e. the phase and group velocities have
opposite directions. Negative values of ρeff and λeff give rise to negative refraction first predicted by Veselago for
dielctrics with negative permittivity and permeability25. Negative refraction of sound was experimentally observed
in 2D phononic crystals26–28. We are not aware of experimental observation on negative refraction in layered elastic
structures. Double negative effective parameters for a layered structure were theoretically predicted in Ref. [20].

V. DISPERSION RELATION FOR SOUND WAVE IN THE LONG-WAVELENGTH LIMIT

Dispersion of sound propagating in a homogeneous (effective) medium is obtained from the relation:

ω

k
= Vph =

√

λeff (ω)

ρeff (ω)
. (12)
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FIG. 2: Left panel: Effective density ρeff (ω); Center panel: Effective compliance λ−1

eff (ω); Right panel: Dispersion curves

for the water-steel periodic structure (solid lines) and for the effective medium (dashed lines) with parameters calculated
using Eqs.(10) and (11). Bandgap region is dark-shaded on the right panel. Two narrow regions (near 100 and 370 kHz) of
double-negative effective parameters are light-shaded in the left and central panel.

Plugging Eqs. (10) and (11) into Eq. (12) gives an explicit form of k(ω) function. The Bloch wave vector k(ω) is real
only if ρeff and λeff are of the same sign.
Dispersion of sound obtained from Rytov equation (1) and from the effective-medium theory Eq. (12) is plotted

in the right panel of Fig. (2). Comparison of these two series of the curves shows that the effective medium theory
reproduces the exact result within a wide range of wave vectors, 0 < kd < 0.5. This is true not only for the propagating
bands but also for the bandgap, where the wave vector is pure imaginary. This agreement is a strong evidence that
the proposed homogenization scheme leads to the correct values of the effective parameters.
It follows from the graphs in Fig. 2 that the lower edge of the band gap (≈ 96 kHz) coincides with the frequency

where ρeff (ω) = 0 and the higher edge (≈ 140 kHz) coincides with the frequency where 1/λeff (ω) = 0. The same
tendency continues for the gaps lying at higher frequencies and it can be explained as follows. The frequencies of the
bandgap edges at the Γ-point are the solutions of Eq. (1) at k = 0. For high-contrast materials (ωb/cb ≪ 1) the
right-hand side of the dispersion equation (1) is reduced to

sin (ωa/2ca) [ρaa+ ρbb (ωa/2ca) cot (ωa/2ca)] = 0. (13)

The factor in square brackets vanishes exactly at the same frequencies when ρeff (ω) = 0. It follows from the band
structure in Fig. 2 that equation ρeff (ω) = 0 defines a series of optical frequencies for the even bands. The optical
frequencies for the odd bands are given by zeros of the factor sin (ωa/2ca) in Eq. (13). While these frequencies are
not exactly the solutions of the equation λ−1

eff (ω) = 0, but these two series of frequencies lie close to each other since

b/λb ≪ a/λa, at least for several low-lying optical frequencies. For the higher bands the factor 2ca/ωa reduces the
contribution of the term with sin (ωa/2ca) in Eq. (11), therefore the compliance λ−1

eff (ω) does not vanish exactly at
the optical frequencies of the odd bands.

VI. CONCLUSIONS

In summary, it is proposed a new analytical approach for homogenization of acoustic superlattices which is valid
in the long-wavelength limit but not necessarily low frequencies. The effective acoustic parameters of a homogeneous
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medium are introduced by equating the dynamics of the unit cell of the structure to the dynamics of the homogeneous
layer of the same width . The calculated effective parameters – elastic modulus and mass density – exhibit strong
frequency dependence. It is shown that the dispersion relation for longitudinal sound propagating parallel to the
superlattice axis can be obtained from ω = k

√

λeff (ω)/ρeff (ω). For the long-wavelength sound this dispersion
relation asymptotically coincides with the exact dispersion relation obtained from the Rytov equation. The proposed
method can be equally applied to shear horizontal waves. It is shown that a layered structure may serve as a
metamaterial with negative index of refraction. Unlike the known 2D acoustic metamaterials exhibiting negative
refraction due to internal resonances, negative refraction in a layered 1D structure is due to anomalous dispersion.
Demonstration of the effect of negative refraction will require calculation of the effective parameters for sound wave
propagating at arbitrary angle with respect to the superlattice axis. Since a layered structure homogenizes to a
uniaxial crystal, the mass density becomes a second-rank tensor. These calculations will be published elsewhere.
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