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Market and Behavior driven Predictive Energy Management for Residential

Buildings

Abstract

With the advancement of smart home and grid, a more connected and efficient operation of
the grid is achievable. Involving buildings as the largest consumer of electricity in such a smart
operation is a critical step in achieving an interactive grid system. In this paper, a building energy
management system is introduced considering electricity price and people behavior, controlling
major consumers of electricity in a single family residential building. An air conditioner, water
heater, electric vehicle, and battery storages are controlled in a photovoltaic (PV) equipped
building. A model predictive control is designed to minimize the operation cost considering system
model, electricity price and people behavior patterns in each device control. Centralized and stand-
alone configuration of MPC for building energy management is formulated and were put in
contrast for time of use pricing (TOU), hourly pricing and five minutes pricing. Simulation results
show that in real time five minutes pricing these methods can achieve 20% to 30% cost savings in
different appliances, and 42% savings in overall electricity cost adding battery optimal control
compared to traditional rule based control. Cost savings and peak shaving results demonstrate the

capabilities of introduced price and behavior based control.
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system, real time pricing, occupant behavior.

Nomenclature
General Form
D; Electricity price at step i
P; Device electricity usage at step i
U; System input
m Prediction horizon
dt Time step
W Slack variable objective weight
& Free variable to relax temperature constraint
Xtolerance States tolerable relaxation
fr Power consumption of the device function of its control action
Air Conditioner
Py AC average electricity consumption (watt)
xie AC on and off status
T}, Building indoor air temperature
L Outside air temperature
LBy¢ Lowest temperature allowed on occupied periods.
UByc Highest temperature allowed on occupied periods.
0c¢; Occupancy statues of the zone
koc ac Temperature relaxation on unoccupied periods
aq, ay, Identified gains for indoor temperature changes
asz,and a,
Qsolar Solar thermal input
Water Heater
L Average hot water temperature in the water heater tank
m Hot water usage mass flow
Porement Water heater heating element power
Kyn Thermal conductivity of the water heart tank to ambient
Tamp Water heater surrounding air temperature
QL Average electricity usage of the water heater from historical data
Ts Water heater average temperature lower boundary
T, Allowed average temperature changes
Tset Hot water temperature set-point
T Lowest allowed hot water temperature at step 1
Cy Water thermal capacity

th

Water heater tank thermal capacity



Mp

Ncon

M

&

SBat

Smax_B
Smin_B
PGmax ’ PGmin
PBmax
PRmax
PImax

d], dB

QBAt

AAC s BAC
AEV ’ BEV
AWH s BWH
ABat ’ BBat
XAC s XEV

5 XWH » XBat
a;,a;,0as

Electric Vehicle

Historical average connection time estimated from smart meter data
Probability of the electric vehicle charger use electricity according to smart meter
historical data

The largest probability value (7*°¢) to remove dimensions
Connection time

Estimated disconnection time

Initial EV state of charge at connection time

Electric vehicle battery state of charge

Electric vehicle designed SOC lower boundary

Electric vehicle designed SOC upper boundary

Electric vehicle battery capacity
Charger efficiency
Charger power

PV and Battery

Power flow from the grid

Power flow to the building load

Power flow from the photovoltaic panel
Power flow to the battery

Power flow to the rectifier

Power flow from the inverter

Power flow from the battery

Battery charging efficiency

Battery discharging efficiency
Converter efficiency

Inverter efficiency

Rectifier efficiency

Battery state of charge at step 1
Maximum and minimum allowed stated of charge

Grid maximum and minimum power flow

Battery maximum power flow

Rectifier maximum power flow

Inverter maximum power flow

Power flow direction for battery and inverter
Battery capacity

Air conditioner MPC constraint and bound matrices
Electric vehicle MPC constraint and bound matrices
Water heater MPC constraint and bound matrices
Battery MPC constraint and bound matrices

Air conditioner, electric vehicle, water heater, and battery decision variables

Building load relation with other appliances decision variables
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1 Introduction

Buildings, as the major electricity consumers globally, play an important role in shaping cities
electricity generation, distribution and consumption and reducing greenhouse emission [1]. To
make energy consumption of a city more efficient and sustainable, building energy management
systems should be designed which can respond to the electricity grid conditions. However,
involving buildings in the grid operation is a challenge, due to current inelastic buildings’
electricity consumption and stochastic people behavior. This involvement requires buildings to
have a flexible demand, where their electricity usage can change in response to economic signals
[2]. For this purpose, many utility operators have designed demand response programs. These
demand response (DR) signals, include incentive based programs and price based programs [3-5].
However, all these signals can be transformed into a dynamic electricity rate for buildings. Some
popular pricing methods for DR are: time of use (TOU), critical peak pricing (CPP), extreme day
pricing (EDP), and real-time pricing (RTP). The main difference of these pricing schemes is the
level and frequency of price changes, which depends on the ability of the user to shift its
consumption. Since most buildings are not capable of automatically respond to these price
changes, DR pricing events happen less frequent than the actual price changes in the electricity
market, which causes a gap between the producer and the consumer. In an ideal situation, buildings
are charged a real-time cost of producing and distributing electricity and respond to its changes.
Or, they can participate in the electricity market and negotiate for its price by placing bid and offer.

However, such a load control should not interfere with people satisfaction in using their appliances.
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Building consumption load is directly related to occupancy and number of people in a
building. On the other hand, the objective of providing comfort and services makes people
behavior modeling an important factor [6-8]. This consideration can result in more savings in some
appliances consumption. There are many studies showing that considering occupancy presence in
HVAC control system can save up to 23% [9, 10] in cost. This saving in HVAC operation mostly
is achieved by relaxing temperature set point during unoccupied periods. Beside this, ASHRAE
standard relates ventilation rate of each conditioned zone to the number of people in it, and the
lack of an occupancy based thermostat control has led to maximum capacity ventilation designs,
causing a large energy waste. Beside HVAC, lighting, appliances, water heater, PV battery and
electric vehicle can be controlled considering occupants’ behavior in their operation. There are
many studies on optimally schedule appliances operation using input from the occupants, and
showed benefit of such an input [11]. However, there are not many studies trying to use behavior
patterns and occupancy models to avoid the extra input from the occupants. To automate such a

scheduling method, a reliable occupancy behavior consideration is required.

This study is trying to close the gap between occupancy behavior and appliances scheduling

method in different DR signals, by addressing these research questions:

e How does occupant’s behavior affect appliances optimal control?

e Which pricing scheme is more effective in an optimal residential building energy
management system?

e How to include residential battery energy management system for appliance control?

e Whatis the difference between centralized and stand-alone home appliances predictive

control?



68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

This paper introduces a price and behavior driven building energy management system
(BEMS) using model predictive control(MPC). In this paper major residential appliances are
controlled using both stand-alone and centralized MPC configuration. These appliances are
residential air conditioner, water heater, electric vehicle, and battery. Three different pricing,
namely TOU [12], day ahead hourly (DAP) [13] and whole sale five minutes [ 14] price, are used
for performance evaluation. The main contribution of this paper is introducing occupant’s
behavior, extracted from smart meter data, into all levels of appliances control and introducing two
methods of combining individual MPC controllers to achieve a better overall building
performance. This method can be used in smart home energy management system where
appliances are wireless enabled and can share information. The following figure (Figure 1) depicts
the overall configuration of the proposed smart building control, where smart meter data is used

to extract people behavior and used in different appliances to achieve a responsive load.

N
Smart Grid Smart Home

Smart . Energy .
Meter "1 Management *J° Behavior

mar
W_I Water Heater

Responsive Load

v

Grid Signals
and Predictions

Bi-directional
Communication
and Power flow

Elastic Demand

[ S

\.

Figure 1: Overview of smart building to smart grid integration

This paper is organized as follow: Firstly, a comprehensive literature review is conducted and

discussed. Secondly, the control methodology used for air conditioner, water heater, and electric
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vehicle, stand-alone battery MPC and centralized MPC are described. Finally, the simulation

results are presented and discussed.

2 Literature Review

Building energy management system (BEMS) in literature refers to systems which are
designed for monitoring, scheduling and controlling of appliances. A survey on building energy
management systems has categorized them based on their control methodology, which are
optimization based BEMS, and schedule based BEMS [15]. Both methods are trying to shift in-
building consumers’ operation to a later time when it is more efficient. In this paper, we use model
predictive control (MPC) to find the optimal control action for in-building devices, which fits in
optimization based BEMS category. The use of MPC in controlling individual devices such as EV,
and HVAC started to get attention of researchers in the past ten years. Most researches in this area
are focused on HVAC control, as heating, cooling, and air conditioning are high energy demanding

activities.

2.1 Individual appliances model predictive control

HVAC as the largest consumer of electricity in buildings has been the subject of many
research studies for many years[16-20]. Air conditioner control is tied up with building thermal
model, which brings non-linearity, and different disturbances into the model based control. To deal
with this complexity, metaheuristic optimization methods with a detailed EnergyPlus model is
used in [21]. Such a model demands large computational resources, which can be reduced to a

practical run time using a minimum reliable run period [21]. On the other hand, mathematical



104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

programming methods with a reliable linear model can achieve optimality with less computational
effort [22]. Occupancy presence has been used for HVAC control in many research studies due to
its impact on energy savings [18, 23-25]. Markov chain has been used widely for occupancy
prediction in MPC implementations [26-28]. On the other hand, Predicted Mean Vote (PMV)
method has been used extensively to introduce people comfort into HVAC control problem [18].
In [29] MPC using occupancy prediction and estimation is put in contrast in an experimental test.
The results of this research show capabilities of MPC in utilizing either an estimated occupancy
behavior using common available sensors (PIR, temperature and CO>) or dedicated sensors such
as 3D stereo vision camera with slightly better performance. In [30] occupancy presence pattern
extracted from building monitoring data is used for an occupancy based MPC control in a multi-
family residential building. In [31] advanced machine learning algorithms (Hidden Markov
Model) are used to predict occupancy presence for a MPC controlled HVAC system, resulting in
30% energy savings in heating season in a one month experimental test. In [32] effectiveness of a
HVAC control for grid integration is studied using MPC to maintain occupants’ comfort while
minimizing operation costs in different electricity tariffs. In [33] three model predictive control
configurations are put in n contrast in an experimental setup to control HVAC and battery in a PV
equipped building with the objective of maximizing comfort while minimizing cost in a dynamic
price environment. These MPC configurations are, simplified thermal model with dynamic
programming, simplified model with genetic algorithm and EnergyPlus model with genetic
algorithm. Savings results show small difference implementing these three configurations. In [34]
MPC is used to control room temperature set-points considering people comfort level to minimize

HVAC operating cost. In their study nonlinear MPC is solved using genetic algorithm in
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MATLAB coupled with EnergyPlus for building thermal simulations, and people comfort criteria

is introduced to the system with occupant’s input.

Vehicle to grid (V2G) concept discusses how to utilize electric vehicle battery as a distributed
energy storage for a more efficient grid operation [35]. V2G integration studies can be categorized
into bidirectional and unidirectional groups, where EV has a bidirectional [36] or unidirectional
[37] power flow with the grid. Many configurations have been proposed for V2G MPC control,
with control objectives of minimizing grid operation cost, loss, and emission or maximizing
vehicle owner revenue, grid performance and reliability [38]. In [39] a model predictive approach
is used for peak shaving and grid cost reduction, considering charging behavior predictions using
linear regression and mean estimation. There are not many studies considering peoples’ behavior
in EV charging scheduling. However, this input is of great importance, as it effects EV

consumption shifting capability and user satisfaction [40].

On the other hand, battery management research is tied up with renewable integration and
distributed generation [41]. In [42] MPC based battery management system is designed for a
photovoltaic panels (PV) equipped residential building. In their study, a second-life battery
nonlinear model has been used with artificial neural network building load forecasting to minimize
electricity cost and carbon emission. In a similar study MPC based battery management is used
alongside appliances MPC control for a better load management using neural network (NN) for
building load predictions [43]. Building load prediction is a necessary input to MPC problem for
battery management, which is a challenge in residential buildings. In this study, we introduce two

methods of MPC controller integration to overcome this challenge.



147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Despite the fact that water heaters are responsible for about 18% electricity use [44] and they
are capable of shifting their consumption effectively, they have not been the subject of many
research studies compared to EV, HVAC, and battery. In [45] water heater with storage tank is
controlled using MPC to improve owner’s benefit from self-consumption tariff in a PV equipped
building. In [46] water heater optimal scheduling problem is studied controlling its set-point and
its ON/OFF schedule in a day ahead dynamic pricing environment. In their study Dijkstra’s
algorithm is used to find control actions which resulted in 23% - 29% savings. In another study,
multiple water heaters in residential sector are controlled using the MPC method to provide reserve
services for renewable generation [47]. However, more research is needed to be done on this

subject.

2.2 MPC based building energy management system

Distributed nature of building control motivates the BEMS design to be a distributed control.
Hence, this is the subject of many research studies [48-51]. In a multi agent building energy
management, each in-building device has its own control algorithm and it uses information from
other devices or a central management system to achieve an overall optimal operation. The total
operation stability and efficiency can be measured and simulated using game theory. In [52] a
multi agent operation control of a HVAC system in a commercial building is proposed for a near
optimal operation. Beside in-building distributed control, a cluster of smart buildings can be
studied as a multi agent system. In [53] simulations for a cluster of smart buildings with PV and
automated demand response show that the joint operation of smart buildings can achieve about
4.6% cost saving in a smart grid. In [54] optimal scheduling problem for shiftable appliances is

solved using MILP for four different buildings with different usage patterns for comparison with
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the objective of reducing peak load resulted in 11% - 48% peak load shaving. All these multi agent

designs are aiming to solve a problem which is too big to solve in a centralized configuration.

In [55] an agent based BEMS is designed controlling heat pump, washing machine, dryer, and
dishwasher considering PV generation, building load model, and hourly dynamic pricing. Then
this BEMS is simulated in an aggregated 200 households to simulate capabilities of such a system
in peak shaving [56]. In [57] a building energy management solution is introduced controlling air
conditioner, water heater, and electric vehicle using MPC. This BEMS framework is programmed
in VOLTTRON platform in a later study with the same group [58]. BEMS in [3] is designed to
control thermal and electrical load using HVAC, EV, and appliances considering demand response
signal (TOU), PV production and Vehicle to grid (V2G) concept resulting in 28% to 40% savings.
This paper represents detailed mathematical formulation for such a problem with multi objective
optimization scheme considering, cost, energy, emission and comfort as objectives. In [59] an
experimental study is conducted on a small residential home equipped with PV, battery, and solar
collector testing price based MPC. In [60] the MPC based BEMS is studied for appliances with
different deferable time scales in hour-scale and day-scale time steps. In their study an electric
vehicle, PV, battery and local diesel generator is controlled considering stochastic behavior of PV
generation in a mixed integer nonlinear programing. In [61] fifteen in building schedulable
appliances including washing machine, air cleaner, lights, blinds, and, dryer are controlled in an
integer linear programming problem in a real time pricing scheme resulting in 13% - 22% cost
savings. In [62] schedulable appliances load, Electric vehicle, local generation and battery are
simulated in a building, and the linearized model is used to control these devices in a TOU tariff.
In [63] MPC performance under forecast uncertainties has been studied comparing stochastic MPC

and deterministic MPC in a home equipped with heat pump, PV panel, battery, and fuel cell.
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Results of this paper shows that deterministic MPC can achieve acceptable results and uncertainty
from weather forecasting is neglected. In [64] a behavior based MPC is designed for delay flexible
appliances and HVAC system resulting in a considerable cost savings in hourly day ahead pricing

(DAP).

Table 1: Recent studies on MPC based building energy management systems for residential

buildings

Study Controlled devices Grid signal
Ref year Behavior MPC HVAC WH PV Battery EV Appliances TOU RTP Hourly

based
[55,56] 2013 Centralized X X X X
[5] 2014 Centralized X X X
[3] 2015 Centralized X X X X X
[65] 2015 Centralized X X X X X
[64] 2016 X Standalone X X X X
[66] 2016 Standalone X X X X
[28] 2016 X X X X
[67] 2017 X X X X
[59] 2017 Centralized X
This 2017 X Centralized X X X X X X X
Study and

Standalone

In summary, numerous prior research studies focus on centralized or standalone control design of
one or a few individual home appliances, considering one or more demand response or electricity
pricing schemas, as summarized in Table 1. Specifically, a recent review paper on home energy
management system shows that 25 research papers using dynamic pricing reported an average cost
reduction of 23.1% and 19 research papers reported an average peak reduction of 29.6% [68].
However, most of these studies do not consider how occupant behavior, often the leading energy
consumption factor in residential buildings, can be integrated into the home energy management

system. However, a simple occupant presence based thermostat control has demonstrated up to
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22% energy savings [69]. The challenges to include occupant behavior into residential energy

management system design are:

1) Sensing and data acquisition: adding addition sensors in a residential building is extremely
difficult and often not possible due to privacy issues. Thus, the actual usage of an energy
consumer device is often unknown, which is a challenge to the residential appliance control
design.

2) Feature extraction from usage patterns: with the development of smart meters, rich data
sets are available to derive occupant energy usage patterns. What are the important features
from those patterns and how to integrate those features into the control design is still a

question.

In this study, a novel behavior and price based model predictive control (MPC) is first
introduced for individual appliances including air-conditioning, water heater, electrical vehicle
(EV) and battery energy storage system (BESS) for smart homes. The control design considers
both centralized and individual MPC approaches. Specifically, we develop a control algorithm to
operate the water heater at the minimum energy usage based on historic usage patterns without
knowing the future water heater usage schedules. In addition, we estimate the occupant arrival and
departure time of EV based on the historic probability distribution of EV usage. Furthermore, we
design a centralized MPC considering all different energy consumer devices in a smart home with
PV generation and battery energy storage system. Hence, the novelty of this paper is on the design
and modelling of occupant behavior based MPC for residential buildings in a holistic and
systematic perspective, and the comparison of energy cost savings based on various utility pricing

schemas to the current of state.
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3 Research Approach

3.1 Description of case study

A residential building from Pecan Street Inc. database is selected as the case study [70]. This
building is equipped with 2.2 kW solar photovoltaic panels. The electric vehicle has a battery size
of 34 kWh with 3.3 kW charging power. The water heater has a tank size of 100 liters and has
maximum 2500W heating power. During the simulation, we added a battery size of a SkWh with
charging and discharging efficiencies of 0.95 and rectifier and inverter efficiencies of 0.95. The
EV battery charging has an efficiency of 0.9. Smart meter data is from Pecan Street data sets with
5 minutes interval. The initial EV SOC at arrival, people hot water usage, and PV generation are
extracted from smart meter data. We assume a maximum charging and discharging power of 1 kW

for the PV battery and maximum allowable grid injected power of 8 kW.

3.2 Behavior patterns and feature extraction

3.2.1 Water Heater
Behavior patterns

Figure 2 shows the two years of hourly water heater usage pattern from Monday to Sunday for the
selected residential buildings of Pecan Street Inc. Specifically, Figure 2 a) shows the probability
of the water heater electricity usage in each hour of the day and Figure 2 b) shows the hourly
average energy consumed by the water heater. Figure 2 clearly shows that the water heater usage
has three peaks: early morning, evening and late night. Besides these three peaks, water heaters
try to maintain the temperature set-point most of the time. Hence, it is important and necessary to
consider such occupant behavior in control design to maximize the consumption shifting capability

while providing enough hot water.
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Figure 2: Water heater usage pattern for 122 homes: a) probability of water heater electricity
usage in each hour of the day, b) average hourly energy consumed by the water heater

Behavior feature extraction for controls

Since major energy consumption of the water heater is related to hot water usage and not the
energy losses, reheating energy consumption mostly happens after a major hot water usage such
as shower. After this major hot water usage, the mean water temperature in the tank drops
significantly. However, the output hot water has the set-point temperature as the water in the tank
mixes slowly. The water heater controller should add just enough heating energy into the water
heater tank so that it is never cold. This is where the historical water heater usage patterns are used
in this intelligent control. We develop a new design for the lower bound of tank water temperature
to save energy. This lower bound increase with a rate that the total heating energy added to the
tank is larger or equal to the historical average energy drawn from the tank in each hour of a day.
Figure 3 shows the detailed algorithm. Lower bound temperature is designed to increase from

current water temperature to lower set-point dead band (Ts.¢- T,,/2) with a rate equal to average
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water heater energy use if it is in use. However, the tank maintains a safety temperature threshold
of' 40°C. This threshold is due to the fact that average historic energy consumption of water heater
is defining the amount of energy added to the water. If we assume the input cold water to the tank
is about 20°C and the output hot water is about 60°C, then MPC is utilizing only half of the tank
(60 — 40)/(60 — 20) energy storage. However, this does not mean that MPC will utilize only
half of the energy consumption shifting capabilities, because the extracted energy due to hot water

use is not always more than this threshold.

if Ty > Tser-T,/2

TLlB = Tser- Ty /2
elseif T, < Tget-T,/2
if T, < Ti5t
if T,,, > 40°C

Tll;B = Twh
else if T, < 40°C
T/ = 40°C

end
else if T, > T/5!
if TIfB < (Tset_ Tv)/z .
Tip = Tip' + (Qin)/Cun
else if T/p > (Tser—-T,)/2
TIfB = (Tset_ Tv)/z

end end end

Figure 3: Water heater temperature lower bound design logic

3.2.2 EV Behavior
Behavior patterns
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Figure 4: EV charger behavior patterns from Monday to Sunday: a) probability of the charger
electricity usage in each hour of the day, b) average charging duration of each plug-in hour

Figure 4 a) shows the probability of the charger electricity usage in each hour of the day based
2 years data. For this particular house, the EV has a high probability of charging between 5pm and
7pm for weekdays and between 1pm to 6pm for weekends. Figure 4 b) shows the average charging
duration of each plug-in hour. Depending on what time the EV is plugged in, the charging duration
is between 0.5 to 5 hours. Most of the time, the charging duration is around 3 hours if the EV is

plugged in between 11am to 8pm.

Behavior feature extraction for controls

Smart meter data of EV electricity consumption in the selected building is used to capture EV
arrival time. In order to schedule EV charging, departure time should be known or accurately
estimated. This estimation of departure time is important to make sure that the EV is fully charged

before it departs while minimizing the charging cost. One potential approach is to estimate this
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departure time using historical data for departure time and build up a cumulative probability for
every arrival time and pick a departure time through a random sampling. However, in this study,
we developed an algorithm based on EV usage patterns presented in Figure 4. It is designed with
the assumption that the departure happens sometime between arrival and twice of the historical

average charging duration as shown in Figure 5.

For n=1 to n, = (t/)/dt
n(EV stay Connected untiln+i) =1 — %Z? (1 - %)
IF rand(n) < mw(n +1i):
tp = Time(i +n)
End

IF no tp was found:
tp =t/

Figure 5: Electric vehicle departure time estimation

After estimating a departure time, A lower bound is designed for the EV SOC to limit the lowest
allowed SOC in a way that EV is charged before the estimated departure time. The EV starts
charging if the SOC is below 40%. Figure 6 describes the logic on how the lower bound is

designed. Then this lower bound is fed to the MPC problem.

if Sk, < 40%
Sipev = 40%
else if 90% > Sg, > 40%

Stpev() = Siply + (0= S) , 4,
= —X
LL'?_EV LB_EV (tD _ ta)
else if Spy = 90%
Ste =90%

Figure 6: Electric vehicle SOC lower bound design



309 3.3 Standalone Model Predictive Control Design

310 Model predictive control (MPC) is a controller design which use system model to predict
311  future states of the system and pick a set of control actions that optimize an objective function
312 [71]. The general form of the MPC problem used in this study is presented in the following
313 formulation. The objective function includes two parts: cost of operation, and cost of constraint
314  relaxation. Linear models are used for the MPC formulation to take advantage of fast mathematical
315  programming algorithms to solve the problem [10]. It should be mentioned that MPC is fairly
316  robust to disturbances and modeling errors [72]. Usually system duties are defined in the MPC
317  constraint to insure they are satisfied. These constraints are state of charge boundaries in battery

318  and EV control, and temperature limits in water heater and AC control.

319

m
minz p;Pdt + we;
i=1 (1)

Subject to:

LB—¢g <X;'<UB+¢g
x"*1 = Ax™ + Bu

P; = fp(w)

u, €U g € Ry

320

321 Beside the operation cost in the objective function, there is a weighted free variable which is

322 designed to relax constraints to avoid infeasibility. All designed free and decision variable weights
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have the same unit. This is how the relaxing variable works. When system states are outside the
designed boundaries and the system physically is not able to move the states back to the designed
boundaries in one control step (for example, when indoor temperature is not in the comfort zone
and the AC is not able to move it back to the comfort zone in just one control horizon step), then
the free variable (s) which is designed to relax the constraint will increase, which results in a grow
in penalty cost on the objective function. This penalty cost has a large value when the boundary
violation is considerable. If the boundary violation is very small (smaller than the designed
tolerable violation in free variable gain design w), then the system will relax the constraint slightly
to avoid an unnecessary control action. Hence, as long as the cost of relaxing the constraints is
greater than the cost of operating the device (considerable boundary violation), the optimization

result is to turn on the device.
3.3.1 Air conditioning

In order to separate simulation model from the model used for model predictive control and
nonlinearities, an online estimation method is used to estimate building thermal behavior in every
step of control using historical data available from previous simulation steps. Gains of a linear
model relating indoor temperature changes to previous switching control actions, outdoor and
indoor temperature difference, and solar radiation, are estimated solving a least squared error

problem.

Tin = (xAC) X aq + (Tout - Tin) X ay + (Qsolar) X a3 + Ay (2)
For this estimation 20 steps of historical data, which is 100 minutes, have been used.
Estimation error has been measured in degree Celsius by calculating the difference between

estimated temperature in previous step of the simulation and the actual resulted temperature for
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the current step of simulation. Simulation results show that increasing estimation steps more than
20 steps won’t increase the accuracy of gain estimations significantly. This model simply fit a
linear model to the latest thermal behavior of the building, and its projection is used for the
predictive control. Simulated building thermal model is a resistance capacitance (RC) network
model verified with AC load in a residential building [73]. This error has a mean value of zero and

variance of 0.01°C for one step (five minutes ahead) modeling in a one-year simulation test.

In this study, a residential unitary air to air heat pump is used as the air conditioner using
coefficient of performance to calculate AC thermal load and an energy input ratio curve to relate
AC performance to indoor and outdoor temperatures [73]. MPC problem for the AC control is
designed to minimize operation cost of AC while maintaining indoor temperature. The constraint
on the temperature is for £1.5°C when the building is not occupied. The decision variable for the
optimization problem is a binary (ON/OFF) decision. The problem is solved with a prediction
horizon of one hour, at five minutes step. One hour is chosen because simulation results for a
longer prediction horizon does not show significant cost savings changes. The temperature
constraint relaxation tolerance for the AC is considered to be 0.1°C resulting in w =

abs(p;)P4cdt/0.1. The overall MPC problem is formulated as below:

m
min Paoxt dt + wyoel
PifacXac Ac€ac

i=1

A3)
Subject to:

LBy —koc ac X (1 —0C) — € < TH' < UByc + Koc ac X (1 —0C;) + €}¢
Ti%r-:-l = Tiln + (x;l(:) X aq + (Tcsut - Tiln) X a; + (Qsolar) X as + Ay
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3.3.2 Water heater

Water heaters are responsible for almost 18% energy consumption in buildings [44]. Prior
studies try to utilize water heater storage tank to respond to demand response programs [74, 75].
However, to the best of author’s knowledge, none of them consider occupant behavior in their
controls, and a few of them are studied in an integrated control with other appliances [65]. The
MPC problem for the water heater follows the same general format in Eq. (1). This problem is to
minimize the operation cost while maintaining average water tank temperature. The MPC problem
has been solved for a prediction horizon of four hours for every five minutes. The model used in
the MPC problem is a one-node linear water heater model derived from energy balance principals.

The temperature constraint relaxation tolerance for the water heater is considered to be 0.5°C

resulting to w = abs(p;) Perementdt/0.5.

m
: i
mlnz piPelementxidt + WywhEwn
i=1

Subject to:
4)

Tl — & < T < Tip + g

) ) P mcC, . K, .
T\yi-ll = vlvh + Mxidt -— (T\,:/h - Tamb)dt L (T\z/h - Tamb)dt
C Cwn Cwh

wh w

3.3.3 Electric vehicle



375  Previous research studies focus on utilizing electric vehicle battery for demand response programs
376  under vehicle to grid (V2G) concept [76]. In most of these studies, model predictive control is used
377  for price based EV battery management in individual EV charging problem or fleet of EVs in
378 linear and nonlinear configurations. A linear model is used so that a fast mixed integer linear
379  programming (MILP) optimization solver can be used. The SOC constraint relaxation tolerance
380  for the EV is considered to be 1% resulting in w = abs(p;)Pcdt/1. EV is modeled with a battery
381  size of 34 kWh and residential charger of 3.3 kW. Five hours prediction horizon is chosen with
382  respect to average connection time of four hours. The choice of prediction horizon highly depends
383  on the capability of the device to shift its consumption and existence of lower prices in further

384  periods. The following equation formulates the MPC control design for the EV:

m
minz piPex;dt + wgyeky
i=1

Subject to:
)
Sitley — & < SEy' < Stbley + &
i+1 i dt
Sgv: = Sgv + 77— (cPexi —NaPa)
Qev
x; €{0,1} & € Ry
385
386  3.3.4 Stand-alone MPC Design with BESS
387
388 In many practices building load can only be powered up by either the grid or inverter output

389  and the grid does not accept negative load. However, this is not the most efficient configuration.

390  In order to benefit from feed-in-tariff and utilize the battery to respond to grid signals, power flow
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is designed bidirectional in this study between building and the grid as shown in Figure 7. The PV
generation data is from measured data of the selected building. The converter, inverter, and
rectifier are modeled with a constant efficiency, and power flow directions are chosen as a free
variable to avoid nonlinearity caused by the flow direction. This brings two extra decision variables

to the problem.

p Py dp=1 p
Generation s Converter + Inve.rt cr j + g Grid
& Rectifier |¢
Ncon PBI PBO PR, Nr dI =0
dB = 0 dB = 1
Nc Mp %)
Building
Battery Load

Figure 7: Overview of building-to-grid power flow with PV and Battery
The MPC problem for a battery energy storage system is designed to minimize the building

operation cost. Two power balance equations are used as constraints for the following two points
in the system. One is where the battery is connected with the converter and inverter and the other
is where the inverter, building and grid are connected. Other constraints include: the maximum
and minimum power flows and battery state of charge limits. A free variable is used to relax SOC
constraint to avoid infeasibility with constraint relaxation tolerance of 0.1 resulting to w =
abs(p;) Pgmaxdt/0.1. Finally, constraints on P;, P,, Pg, and Pg; limit power flows to be on one

direction depending on d; and djp free variables.

m
minz piPidt + WgatEBar
i=1

6
Subject to: ©)

PG:PL+PR_PI
P = Py — Pao + 1/ —naP
Pvllcon Bl — F'po n; — NRrER



. . dt
Skt = Shar + T(nCPBI - 1/771) Pgo)
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90 — g < SHH1 < 20 + ¢
PGminSPGSPGmax

P
<1 <
O_P/leax_dI
<0 <1 —
O_P/PRmax_1 d
< " BO <
0= /PBmax_dB

o</, <1-d,

Bmax

d;,dg €{0,1} Pp;, Pgo, P, & € Ry
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407 This MPC is solved using MILP to find optimal battery operation based on load and PV
408  generation predictions. PV generation prediction is derived from weather data. However,
409  residential building load prediction is a challenge due to its highly stochastic behavior. In order to
410  estimate future load of the building, MPC solutions of other appliances in each step of the control
411  are summed up as shown in Figure 8. MPC output of each device at each step is a sequence of

412  control actions that optimizes its objective function.

Air Conditioner | MPC designed
MPC Control action

wattage

Electric Vehicle MPC designed watta
MPC Control action &° y
+\Current and | Battery
Water Heater MPC designed H Predicted Load| MPC
MPC Control action wattage

Appliances
Load

wattage

VY

413

414 Figure 8: Overview of standalone MPC configuration
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The MPC problem is solved for a prediction horizon of eight hours with five minutes time
interval. The battery MPC problem could have a long prediction horizon in order to respond to
daily price changes happen in high peak and low peak periods. In general, each high, mid, and low
peak prices happen in one third of the day. To make the MPC problem to see future lower prices
in a day, at least eight hours of prediction is needed. In order to, test this hypothesis, different
prediction horizons are tested for one day simulation. It is observed that control actions for battery

control does not change for any prediction horizon longer than eight hours.

3.3 Centralized MPC Design for Integrated Systems with BESS

In an ideal situation, there would be a controller which is aware of all devices models, and
disturbances predictions. This ideal scenario is configured as a centralized controller, where one
MPC controller produces control actions for all connected devices. To design such a controller,
the whole building has been modeled as one system to reduce building operation cost. In this
system, control actions include: the AC on/off, water heater on/off, EV on/off , and the battery
charge and discharge decisions. The system model includes: the AC and building thermal model,
EV battery model, water heater model, and battery and PV model. Disturbances to such a system
would be, ambient weather, solar radiation, building load, and PV generation. These devices
operation come to affect each other in the battery operation, where the building total load is
introduced to the problem. Hence, if the battery management and grid constraints are removed
from such a problem, the individual MPC would result in the same operation for the AC, EV, and
water heater as the centralized MPC. The ability of this centralized controller to affect other
devices load with respect to battery operation will give this controller more flexibility in control,

and brings total awareness to the problem. Eq. (7) shows the general form of such a problem,



437  combining four MPC problems of the EV, AC, water heater, and PV-battery into one centralized

438  format.

m
minz p; X Pkdt + we;
i=1

Subject to: (7
Apc 0 0 0 Xac Bac
0 Agy 0 0 Xgy < Bgy
0 0 Ayy 0 Xwul| ~ |Bwn
a; a, as  Apgid Xpar Bgat
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440  In this Problem Ay., Agy, Awy and Ag,e are the constraint matrices explained in each device
441  section, representing the model of each device and constraints in its operation with previously
442  defined boundaries (Byc, Bgy, By and By, ). Objective of such a problem includes the total
443  building operation cost and penalties for all slack variables. The objective function of such a
444  problem can be constructed combining all previously defined objective functions (obj??, obj#<,
445  objEf’, obj}"™). The following shows how the building total energy cost as the objective can
446  perform the same as combination of previously define objectives:

447

{ Po =P +Pr,— P }MPC objective Pide +
AC _ p X WE;
P, = PelementleH + PCxlEV + Pycxi™ + Prest ' G '

(8)

= p; x (Pl + Py — P})dt + wg;



= pi X (PetemeneXi"™ + Pcx{” + PacX{'C + Prose + Pg — P{)dt + wpyépy + wacthe
+ WyhEpn + OparEhar
= (PiPetementX!’ dt + wyneny) + (piPcxf’ dt + wpyegy)
+ (piPacx{“dt + wacehc) + Pi X (Prese + P — Pl )dt + wparepa
P,.s: 1s the rest of the load associated with other appliances consumption, which can

be removed from objective as this load is not controllable in this MPC configuration

and it is not a function of decision variables.

= p; X PLdt + we; = obj?™ + objiC + objE¥ + obj?

448 By removing the uncontrollable portion P; and P,.4;, the centralized formulation of the MPC

449  control becomes:

m

. i i i i i
mlnz pi X Pedt + wpatEpar + WpyEpy + WacEac + OwrEpn
i=1
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450

451 The MPC problem formulated in this configuration, has different prediction horizon for each
452  device which is defined in each individual MPC problem. Optimization step is chosen as five

453  minutes, corresponding to the lowest desired optimization resolution.

454 4 Results and Discussions

455 One year simulation is performed with three different pricing schemas to evaluate energy
456  shifting capabilities and cost savings. The three pricing schemas are: TOU pricing from PG&E in
457  California, day ahead hourly price from ComEd, and five minutes locational marginal price (LMP)
458  from MISO. All prices are scaled to have an average value of 14 cents/’kWh. Table 2 reports energy
459  cost savings achieved in each device from traditional on/off to MPC controller. In Table 2 the EV,
460  water heater, and AC savings are reported comparing with the standalone MPC controller and
461  integrated MPC controller sing traditional rule based (on/off) controller as the baseline. The battery
462  energy savings are related to comparing the centralized and standalone MPC with traditional

463  controls of battery.

464 Table 2: Energy cost savings

Device: Overall Battery Electric Vehicle Water Heater AC
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479

Controller: C- SA- C- SA- C- SA- C- SA- C- SA-

MPC MPC MPC MPC MPC MPC MPC MPC MPC MPC
Compared RB RB RB- RB- RB RB RB RB RB RB
to: MPC*  MPC*
Pricing
RTP 42.5 42.6 26.5%  26.4% 31.0%  31.0% 28.1%  28.0% 22.3%  222%
TOU 26.4 21.8 193%  14.3% 14.8%  14.5% 174% 17.1% 14.7%  16.3%
Hourly 17.2 14.4 12.0% 9.1% 7.5% 7.5% 145%  14.0% 17.0%  18.6%

*RB-MPC: Traditional rule based (RB) battery management with standalone MPC for other devices
RB: On/off rule based controller

C-MPC: Centralized MPC controller

SA-MPC: Stand-alone MPC controller

These results show that this residential building could save more for all appliances when it is
under a real time five minutes pricing, and save the least under an hourly pricing schema. This
shows the effectiveness of TOU pricing in encouraging residential buildings to shift their
consumption. RTP has the largest variance of 3 cent/kWh, TOU in the middle with variance of 0.5
cent/kWh, and DAP with 0.3 cent/kWh. However, frequency of changes and other factors might

affect these savings as well.

4.1  Average building load on the grid

The following three graphs (Figure 9, Figure 10 and Figure 11), depicts one year average
hourly energy consumption during a day in three pricing schemes (TOU, hourly, RTP). All rule
based control refer to traditional methods of control in all devices, which has the same value in all
graphs. Battery rule based refer to a test scenario where EV, water heater, and AC are controlled
with standalone MPC and the battery is controlled using traditional rule based controller, which is
the scenario of saving comparison reported in the previous table of savings for battery. Stand-alone

MPC is when each device MPC is solved locally at each device and the battery uses control action



480  prediction from other MPC controllers to design its control action. Finally, centralized MPC is the

481  ideal situation where all devices and battery are controlled in one integrated MPC problem.
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485 Figure 10: One year average Power flow from the grid in TOU pricing
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Figure 11: One year average Power flow from the grid in Hourly DAP

In all these figures (Figure 9, Figure 10 and Figure 11) the minimum required power from
the grid happens at 1:00 PM corresponding to maximum PV generation. Maximum required power
from the grid in a traditional operation happens at 8:00 PM corresponding to peak building
consumption due to occupant behavior. However, under battery MPC control in both centralized
and stand-alone schemes move the peak power flow to 5:00 AM in the hourly pricing and 7:00
AM in TOU pricing. Figure 9 shows that under RTP required power flow from the grid is more
smoothed out with less peaks. This demonstrates the advantage of charging buildings under RTP
compared to other pricing schemes from the grid perspective and peak shaving purposes. Figure

10 and Figure 11 show similar patterns for required power from grid.



498 4.2 Average battery load

499 Figure 12, Figure 13 and Figure 14 show the average battery power flow for one year
500 simulation in each hour of the day for different pricing schemes. In all the pricing schemes the
501  Dbattery is being charged during the night and tempt to discharge during the day corresponding to
502 lowest and highest average electricity price. In RTP (Figure 12) the battery discharging time falls
503  innoon time to maximize grid feed-in corresponding to high average RTP in these hours. In TOU
504  (Figure 13) discharging happen in peak price period between 2:00 PM and 9:00 PM, and in DAP
505  (Figure 14) discharging happen between 8:00 AM and 7:00 PM. These discharging periods show
506  how DAP pricing behave between RTP and TOU in grid favor. In other words, if we assume that
507  the ideal building load on the grid behavior is happening in real time locational marginal pricing

508 (RTP), then DAP have a closer behavior to the ideal behavior than TOU.
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4.3  Energy consumption Analysis

Figure 15, Figure 16, and Figure 17 show the average energy consumption of the EV, AC,
and water heater for one year simulation in different pricings. The water heater consumption has
a peak at 9:00 AM and 10:00 AM corresponding to occupant behavior on taking shower in studied
residential building. This peak consumption has been smoothed out utilizing MPC controller for
all pricing schemes. The EV has a peak energy consumption at 3:00 PM (Figure 16) corresponding
to this residential building EV arrival time. In traditional charging control of EV there are barely
any charging during the night. However, MPC shifts some of charging periods to nigh hours, when
price of electricity is lower. It should be considered that, occupant behavior in using these devices,
directly affect the amount of savings in each pricing scheme. For instance, if a device is usually
being used around 9:00 AM is less capable in saving cost compared to a device which is usually
being used around 9:00 PM. This is due to the fact that price of electricity is increasing for hours
after 9:00 AM, so shifting consumption from 9:00 AM to later hours most likely will not save the
cost. On the other hand, price of electricity tends to drop after 9:00 PM which brings opportunity

for savings by few hours shifting.
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Figure 17: AC average electricity consumption in different pricings

4.4 Controlled variables under different pricing scenarios

Figure 18 and Figure 19 shows the battery SOC under different control strategies for RTP,
and centralized MPC under three different pricing schemes. Battery SOC behave largely different
in rule based controllers from MPC controllers as shown in Figure 19. Under TOU pricing, the
battery is charged before the price rises and discharge when the price is high and correspond to PV
generation and load. This charging and discharging periods are slightly different in hourly price as
this pricing has more changes during a day, and much different in RTP. This behavior can result
in slightly longer battery life in TOU pricing compared to other pricing methods, as the battery has

less charging and discharging periods.
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Figure 20, Figure 21, and Figure 22 show how each device behave in the behavior price driven
MPC controllers. In Figure 20 EV SOC is maintained in the defined boundaries. The lower limit
boundary is designed to charge the battery before the departure time. The SOC drops show EV
usage estimated from the smart meter data and charging starts close to arrival time. In Figure 21
indoor temperature is maintained in the thermostat dead band, when the building is occupied and
relaxed when the building is not occupied. In Figure 22 water temperature is maintained in the
defined boundaries. Sharp temperature drops in this figure correspond to extreme hot water usage

such as taking a shower.
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Figure 20: EV SOC MPC control
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5 Conclusion

In this paper a behavior and price driven building energy management system for a residential
building is introduced using MPC method. A centralized MPC configuration, and a stand-alone
MPC configuration are compared with the traditional way of controls. An air conditioner, water
heater, electric vehicle, and battery are controlled as the main consumers of electricity in a
residential building. Occupant behavior is introduced into this control problem considering the
occupancy presence in AC control, average hot water need by the occupants in water heater
control, and driving patterns in EV charging control. Demand response capabilities of these
controllers were tested in three different electricity rates, including: time of use, hourly and real
time 5 minutes pricing. One year simulation results show that residential buildings can achieve
cost savings up to 26% under TOU price, 42% under real time price, and 17% under hourly pricing,
compared to traditional on/off controls. This savings shows the capabilities of TOU and RTP in

affecting residential buildings operation.

The limitations of this study include: 1) occupancy presence data: it is a challenge to collect
occupancy presence data in any residential building due to privacy issues. In this study, the
occupancy presence data is given from another study [69]; and 2) lack of verification of observed
behavior from smart meter data: we extract occupant behavior patterns from historical smart meter

data without actual verification of that behavior due to limited access to the house;

The future study could focus on the impact of collective behavior of residential building load
control on the smart grid. In other words, if all the buildings use the same control shifting strategy,
it is possible that such control behavior could cause a frequency deviation problem for the grid

operation.
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