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Abstract 3 

With the advancement of smart home and grid, a more connected and efficient operation of 4 

the grid is achievable. Involving buildings as the largest consumer of electricity in such a smart 5 

operation is a critical step in achieving an interactive grid system. In this paper, a building energy 6 

management system is introduced considering electricity price and people behavior, controlling 7 

major consumers of electricity in a single family residential building. An air conditioner, water 8 

heater, electric vehicle, and battery storages are controlled in a photovoltaic (PV) equipped 9 

building. A model predictive control is designed to minimize the operation cost considering system 10 

model, electricity price and people behavior patterns in each device control. Centralized and stand-11 

alone configuration of MPC for building energy management is formulated and were put in 12 

contrast for time of use pricing (TOU), hourly pricing and five minutes pricing. Simulation results 13 

show that in real time five minutes pricing these methods can achieve 20% to 30% cost savings in 14 

different appliances, and 42% savings in overall electricity cost adding battery optimal control 15 

compared to traditional rule based control. Cost savings and peak shaving results demonstrate the 16 

capabilities of introduced price and behavior based control. 17 
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Nomenclature 24 

 General Form 

𝑝𝑖  Electricity price at step i 

𝑃𝑖 Device electricity usage at step i 

𝑢𝑖  System input  

𝑚  Prediction horizon 

𝑑𝑡  Time step 

𝜔  Slack variable objective weight 

𝜀𝑖  Free variable to relax temperature constraint 

𝑥𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒  States tolerable relaxation 

𝑓𝑃 Power consumption of the device function of its control action 

  

 Air Conditioner 

𝑃𝐴𝐶   AC average electricity consumption (watt) 

𝑥𝐴𝐶
𝑖   AC on and off status 

𝑇𝑖𝑛
𝑖   Building indoor air temperature 

𝑇𝑜𝑢𝑡
𝑖   Outside air temperature 

𝐿𝐵𝐴𝐶  Lowest temperature allowed on occupied periods.  

𝑈𝐵𝐴𝐶  Highest temperature allowed on occupied periods. 

𝑂𝐶𝑖  Occupancy statues of the zone 

𝑘𝑜𝑐_𝐴𝐶  Temperature relaxation on unoccupied periods 

𝛼1, 𝛼2, 
𝛼3, 𝑎𝑛𝑑 𝛼4  

Identified gains for indoor temperature changes  

𝑄solar  Solar thermal input 

  

 Water Heater 

𝑇𝑤ℎ
𝑖   Average hot water temperature in the water heater tank 

𝑚̇  Hot water usage mass flow 

𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡  Water heater heating element power 

𝐾𝑤ℎ  Thermal conductivity of the water heart tank to ambient 

𝑇𝑎𝑚𝑏  Water heater surrounding air temperature 

𝑄𝑚
𝑖   Average electricity usage of the water heater from historical data 

𝑇𝐿𝐵
𝑖   Water heater average temperature lower boundary 

𝑇𝑣  Allowed average temperature changes 

𝑇𝑠𝑒𝑡  Hot water temperature set-point 

𝑇𝑙𝑜𝑤
𝑖   Lowest allowed hot water temperature at step i 

𝐶𝑤 Water thermal capacity 

𝐶𝑤ℎ Water heater tank thermal capacity 



  

 Electric Vehicle 

𝑡𝑖
𝑐  Historical average connection time estimated from smart meter data   

𝜋𝑗
𝑢𝑠𝑒   Probability of the electric vehicle charger use electricity according to smart meter 

historical data 

𝜋𝑚𝑎𝑥
𝑢𝑠𝑒    The largest probability value (𝜋𝑢𝑠𝑒) to remove dimensions 

𝑡𝑎  Connection time 

𝑡𝐷  Estimated disconnection time 

𝑆𝐸𝑉
𝑖𝑛𝑖𝑡  Initial EV state of charge at connection time 

𝑆𝐸𝑉
𝑖  Electric vehicle battery state of charge 

𝑆𝐿𝐵_𝐸𝑉
𝑖+1   Electric vehicle designed SOC lower boundary 

𝑆𝑈𝐵_𝐸𝑉
𝑖+1   Electric vehicle designed SOC upper boundary 

𝑄𝐸𝑉  Electric vehicle battery capacity 

𝜂𝑐   𝜂𝑑   Charger efficiency 

𝑃𝐶 𝑃𝑑  Charger power 

  

 PV and Battery 

𝑃𝐺   Power flow from the grid 

𝑃𝐿  Power flow to the building load 

𝑃𝑃𝑉   Power flow from the photovoltaic panel 

𝑃𝐵𝐼  Power flow to the battery 

𝑃𝑅  Power flow to the rectifier 

𝑃𝐼  Power flow from the inverter 

𝑃𝐵𝑂  Power flow from the battery 

𝜂𝑐  Battery charging efficiency 

𝜂𝐷  Battery discharging efficiency 

𝜂𝑐𝑜𝑛  Converter efficiency 

𝜂𝐼  Inverter efficiency 

𝜂𝑅  Rectifier efficiency 

𝑆𝐵𝑎𝑡
𝑖   Battery state of charge at step i 

𝑆max _𝐵  

𝑆min _𝐵  

Maximum and minimum allowed stated of charge 

𝑃𝐺𝑚𝑎𝑥  , 𝑃𝐺𝑚𝑖𝑛   Grid maximum and minimum power flow 

𝑃𝐵𝑚𝑎𝑥    Battery maximum power flow 

𝑃𝑅𝑚a𝑥   Rectifier maximum power flow 

𝑃𝐼𝑚𝑎𝑥   Inverter maximum power flow 

𝑑𝐼 ,  𝑑𝐵   Power flow direction for battery and inverter  

𝑄𝐵𝐴𝑡 Battery capacity 

𝐴𝐴𝐶  , 𝐵𝐴𝐶   Air conditioner MPC constraint and bound matrices  

𝐴𝐸𝑉 , 𝐵𝐸𝑉   Electric vehicle MPC constraint and bound matrices 

𝐴𝑊𝐻 , 𝐵𝑊𝐻  Water heater MPC constraint and bound matrices 

𝐴𝐵𝑎𝑡 , 𝐵𝐵𝑎𝑡  Battery MPC constraint and bound matrices 

𝑋𝐴𝐶 , 𝑋𝐸𝑉  

, 𝑋𝑊𝐻 , 𝑋𝐵𝑎𝑡   
Air conditioner, electric vehicle, water heater, and battery decision variables 

𝑎1 , 𝑎2 , 𝑎3   Building load relation with other appliances decision variables 



 25 

1 Introduction 26 

Buildings, as the major electricity consumers globally, play an important role in shaping cities 27 

electricity generation, distribution and consumption and reducing greenhouse emission [1]. To 28 

make energy consumption of a city more efficient and sustainable, building energy management 29 

systems should be designed which can respond to the electricity grid conditions. However, 30 

involving buildings in the grid operation is a challenge, due to current inelastic buildings’ 31 

electricity consumption and stochastic people behavior. This involvement requires buildings to 32 

have a flexible demand, where their electricity usage can change in response to economic signals 33 

[2]. For this purpose, many utility operators have designed demand response programs. These 34 

demand response (DR) signals, include incentive based programs and price based programs [3-5]. 35 

However, all these signals can be transformed into a dynamic electricity rate for buildings. Some 36 

popular pricing methods for DR are: time of use (TOU), critical peak pricing (CPP), extreme day 37 

pricing (EDP), and real-time pricing (RTP). The main difference of these pricing schemes is the 38 

level and frequency of price changes, which depends on the ability of the user to shift its 39 

consumption. Since most buildings are not capable of automatically respond to these price 40 

changes, DR pricing events happen less frequent than the actual price changes in the electricity 41 

market, which causes a gap between the producer and the consumer. In an ideal situation, buildings 42 

are charged a real-time cost of producing and distributing electricity and respond to its changes. 43 

Or, they can participate in the electricity market and negotiate for its price by placing bid and offer. 44 

However, such a load control should not interfere with people satisfaction in using their appliances. 45 



Building consumption load is directly related to occupancy and number of people in a 46 

building. On the other hand, the objective of providing comfort and services makes people 47 

behavior modeling an important factor [6-8]. This consideration can result in more savings in some 48 

appliances consumption. There are many studies showing that considering occupancy presence in 49 

HVAC control system can save up to 23% [9, 10] in cost. This saving in HVAC operation mostly 50 

is achieved by relaxing temperature set point during unoccupied periods. Beside this, ASHRAE 51 

standard relates ventilation rate of each conditioned zone to the number of people in it, and the 52 

lack of an occupancy based thermostat control has led to maximum capacity ventilation designs, 53 

causing a large energy waste. Beside HVAC, lighting, appliances, water heater, PV battery and 54 

electric vehicle can be controlled considering occupants’ behavior in their operation. There are 55 

many studies on optimally schedule appliances operation using input from the occupants, and 56 

showed benefit of such an input [11]. However, there are not many studies trying to use behavior 57 

patterns and occupancy models to avoid the extra input from the occupants. To automate such a 58 

scheduling method, a reliable occupancy behavior consideration is required.  59 

This study is trying to close the gap between occupancy behavior and appliances scheduling 60 

method in different DR signals, by addressing these research questions: 61 

 How does occupant’s behavior affect appliances optimal control? 62 

 Which pricing scheme is more effective in an optimal residential building energy 63 

management system? 64 

 How to include residential battery energy management system for appliance control?  65 

 What is the difference between centralized and stand-alone home appliances predictive 66 

control? 67 



This paper introduces a price and behavior driven building energy management system 68 

(BEMS) using model predictive control(MPC). In this paper major residential appliances are 69 

controlled using both stand-alone and centralized MPC configuration. These appliances are 70 

residential air conditioner, water heater, electric vehicle, and battery. Three different pricing, 71 

namely TOU [12], day ahead hourly (DAP) [13] and whole sale five minutes [14] price, are used 72 

for performance evaluation. The main contribution of this paper is introducing occupant’s 73 

behavior, extracted from smart meter data, into all levels of appliances control and introducing two 74 

methods of combining individual MPC controllers to achieve a better overall building 75 

performance. This method can be used in smart home energy management system where 76 

appliances are wireless enabled and can share information. The following figure (Figure 1) depicts 77 

the overall configuration of the proposed smart building control, where smart meter data is used 78 

to extract people behavior and used in different appliances to achieve a responsive load. 79 

 80 

Figure 1: Overview of smart building to smart grid integration 81 

This paper is organized as follow: Firstly, a comprehensive literature review is conducted and 82 
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vehicle, stand-alone battery MPC and centralized MPC are described. Finally, the simulation 84 

results are presented and discussed. 85 

2 Literature Review  86 

Building energy management system (BEMS) in literature refers to systems which are 87 

designed for monitoring, scheduling and controlling of appliances. A survey on building energy 88 

management systems has categorized them based on their control methodology, which are 89 

optimization based BEMS, and schedule based BEMS [15]. Both methods are trying to shift in-90 

building consumers’ operation to a later time when it is more efficient. In this paper, we use model 91 

predictive control (MPC) to find the optimal control action for in-building devices, which fits in 92 

optimization based BEMS category. The use of MPC in controlling individual devices such as EV, 93 

and HVAC started to get attention of researchers in the past ten years. Most researches in this area 94 

are focused on HVAC control, as heating, cooling, and air conditioning are high energy demanding 95 

activities.  96 

2.1 Individual appliances model predictive control 97 

HVAC as the largest consumer of electricity in buildings has been the subject of many 98 

research studies for many years[16-20]. Air conditioner control is tied up with building thermal 99 

model, which brings non-linearity, and different disturbances into the model based control. To deal 100 

with this complexity, metaheuristic optimization methods with a detailed EnergyPlus model is 101 

used in [21]. Such a model demands large computational resources, which can be reduced to a 102 

practical run time using a minimum reliable run period [21]. On the other hand, mathematical 103 



programming methods with a reliable linear model can achieve optimality with less computational 104 

effort [22]. Occupancy presence has been used for HVAC control in many research studies due to 105 

its impact on energy savings [18, 23-25]. Markov chain has been used widely for occupancy 106 

prediction in MPC implementations [26-28]. On the other hand, Predicted Mean Vote (PMV) 107 

method has been used extensively to introduce people comfort into HVAC control problem [18]. 108 

In [29] MPC using occupancy prediction and estimation is put in contrast in an experimental test. 109 

The results of this research show capabilities of MPC in utilizing either an estimated occupancy 110 

behavior using common available sensors (PIR, temperature and CO2) or dedicated sensors such 111 

as 3D stereo vision camera with slightly better performance. In [30] occupancy presence pattern 112 

extracted from building monitoring data is used for an occupancy based MPC control in a multi-113 

family residential building. In [31] advanced machine learning algorithms (Hidden Markov 114 

Model) are used to predict occupancy presence for a MPC controlled HVAC system, resulting in 115 

30% energy savings in heating season in a one month experimental test. In [32] effectiveness of a 116 

HVAC control for grid integration is studied using MPC to maintain occupants’ comfort while 117 

minimizing operation costs in different electricity tariffs. In [33] three model predictive control 118 

configurations are put in n contrast in an experimental setup to control HVAC and battery in a PV 119 

equipped building with the objective of maximizing comfort while minimizing cost in a dynamic 120 

price environment. These MPC configurations are, simplified thermal model with dynamic 121 

programming, simplified model with genetic algorithm and EnergyPlus model with genetic 122 

algorithm. Savings results show small difference implementing these three configurations. In [34] 123 

MPC is used to control room temperature set-points considering people comfort level to minimize 124 

HVAC operating cost. In their study nonlinear MPC is solved using genetic algorithm in 125 



MATLAB coupled with EnergyPlus for building thermal simulations, and people comfort criteria 126 

is introduced to the system with occupant’s input. 127 

Vehicle to grid (V2G) concept discusses how to utilize electric vehicle battery as a distributed 128 

energy storage for a more efficient grid operation [35]. V2G integration studies can be categorized 129 

into bidirectional and unidirectional groups, where EV has a bidirectional [36] or unidirectional 130 

[37] power flow with the grid. Many configurations have been proposed for V2G MPC control, 131 

with control objectives of minimizing grid operation cost, loss, and emission or maximizing 132 

vehicle owner revenue, grid performance and reliability [38]. In [39] a model predictive approach 133 

is used for peak shaving and grid cost reduction, considering charging behavior predictions using 134 

linear regression and mean estimation. There are not many studies considering peoples’ behavior 135 

in EV charging scheduling. However, this input is of great importance, as it effects EV 136 

consumption shifting capability and user satisfaction [40].  137 

On the other hand, battery management research is tied up with renewable integration and 138 

distributed generation [41]. In [42] MPC based battery management system is designed for a 139 

photovoltaic panels (PV) equipped residential building. In their study, a second-life battery 140 

nonlinear model has been used with artificial neural network building load forecasting to minimize 141 

electricity cost and carbon emission. In a similar study MPC based battery management is used 142 

alongside appliances MPC control for a better load management using neural network (NN) for 143 

building load predictions [43]. Building load prediction is a necessary input to MPC problem for 144 

battery management, which is a challenge in residential buildings. In this study, we introduce two 145 

methods of MPC controller integration to overcome this challenge. 146 



Despite the fact that water heaters are responsible for about 18% electricity use [44] and they 147 

are capable of shifting their consumption effectively, they have not been the subject of many 148 

research studies compared to EV, HVAC, and battery. In [45] water heater with storage tank is 149 

controlled using MPC to improve owner’s benefit from self-consumption tariff in a PV equipped 150 

building. In [46] water heater optimal scheduling problem is studied controlling its set-point and 151 

its ON/OFF schedule in a day ahead dynamic pricing environment. In their study Dijkstra’s 152 

algorithm is used to find control actions which resulted in 23% - 29% savings. In another study, 153 

multiple water heaters in residential sector are controlled using the MPC method to provide reserve 154 

services for renewable generation [47]. However, more research is needed to be done on this 155 

subject.  156 

2.2 MPC based building energy management system 157 

Distributed nature of building control motivates the BEMS design to be a distributed control. 158 

Hence, this is the subject of many research studies [48-51]. In a multi agent building energy 159 

management, each in-building device has its own control algorithm and it uses information from 160 

other devices or a central management system to achieve an overall optimal operation. The total 161 

operation stability and efficiency can be measured and simulated using game theory. In [52] a 162 

multi agent operation control of a HVAC system in a commercial building is proposed for a near 163 

optimal operation. Beside in-building distributed control, a cluster of smart buildings can be 164 

studied as a multi agent system. In [53] simulations for a cluster of smart buildings with PV and 165 

automated demand response show that the joint operation of smart buildings can achieve about 166 

4.6% cost saving in a smart grid. In [54] optimal scheduling problem for shiftable appliances is 167 

solved using MILP for four different buildings with different usage patterns for comparison with 168 



the objective of reducing peak load resulted in 11% - 48% peak load shaving. All these multi agent 169 

designs are aiming to solve a problem which is too big to solve in a centralized configuration.  170 

In [55] an agent based BEMS is designed controlling heat pump, washing machine, dryer, and 171 

dishwasher considering PV generation, building load model, and hourly dynamic pricing. Then 172 

this BEMS is simulated in an aggregated 200 households to simulate capabilities of such a system 173 

in peak shaving [56]. In [57] a building energy management solution is introduced controlling air 174 

conditioner, water heater, and electric vehicle using MPC. This BEMS framework is programmed 175 

in VOLTTRON platform in a later study with the same group [58]. BEMS in [3] is designed to 176 

control thermal and electrical load using HVAC, EV, and appliances considering demand response 177 

signal (TOU), PV production and Vehicle to grid (V2G) concept resulting in 28% to 40% savings. 178 

This paper represents detailed mathematical formulation for such a problem with multi objective 179 

optimization scheme considering, cost, energy, emission and comfort as objectives. In [59] an 180 

experimental study is conducted on a small residential home equipped with PV, battery, and solar 181 

collector testing price based MPC. In [60] the MPC based BEMS is studied for appliances with 182 

different deferable time scales in hour-scale and day-scale time steps. In their study an electric 183 

vehicle, PV, battery and local diesel generator is controlled considering stochastic behavior of PV 184 

generation in a mixed integer nonlinear programing. In [61] fifteen in building schedulable 185 

appliances including washing machine, air cleaner, lights, blinds, and, dryer are controlled in an 186 

integer linear programming problem in a real time pricing scheme resulting in 13% - 22% cost 187 

savings. In [62] schedulable appliances load, Electric vehicle, local generation and battery are 188 

simulated in a building, and the linearized model is used to control these devices in a TOU tariff. 189 

In [63] MPC performance under forecast uncertainties has been studied comparing stochastic MPC 190 

and deterministic MPC in a home equipped with heat pump, PV panel, battery, and fuel cell. 191 



Results of this paper shows that deterministic MPC can achieve acceptable results and uncertainty 192 

from weather forecasting is neglected. In [64] a behavior based MPC is designed for delay flexible 193 

appliances and HVAC system resulting in a considerable cost savings in hourly day ahead pricing 194 

(DAP). 195 

 196 

Table 1: Recent studies on MPC based building energy management systems for residential 197 

buildings 198 

Study   Controlled devices  Grid signal 

Ref year Behavior 

based 

MPC HVAC WH PV Battery EV Appliances  TOU RTP Hourly 

[55, 56] 2013  Centralized x  x   x    x 

[5] 2014  Centralized x     x    x 

[3] 2015  Centralized x  x  x x  x   

[65] 2015  Centralized x x  x  x    x 

[64] 2016 x Standalone x     x  x  x 

[66] 2016  Standalone x  x x      x 

[28] 2016 x x x         x 

[67] 2017  x x       x x x 

[59] 2017  Centralized x  x x    x   

This 

Study 

2017 x Centralized 

and 

Standalone 

x x x x x   x x x 

 199 

In summary, numerous prior research studies focus on centralized or standalone control design of 200 

one or a few individual home appliances, considering one or more demand response or electricity 201 

pricing schemas, as summarized in Table 1. Specifically, a recent review paper on home energy 202 

management system shows that 25 research papers using dynamic pricing reported an average cost 203 

reduction of 23.1% and 19 research papers reported an average peak reduction of 29.6% [68]. 204 

However, most of these studies do not consider how occupant behavior, often the leading energy 205 

consumption factor in residential buildings, can be integrated into the home energy management 206 

system. However, a simple occupant presence based thermostat control has demonstrated up to 207 



22% energy savings [69]. The challenges to include occupant behavior into residential energy 208 

management system design are:  209 

1) Sensing and data acquisition: adding addition sensors in a residential building is extremely 210 

difficult and often not possible due to privacy issues. Thus, the actual usage of an energy 211 

consumer device is often unknown, which is a challenge to the residential appliance control 212 

design.  213 

2) Feature extraction from usage patterns: with the development of smart meters, rich data 214 

sets are available to derive occupant energy usage patterns. What are the important features 215 

from those patterns and how to integrate those features into the control design is still a 216 

question.  217 

In this study, a novel behavior and price based model predictive control (MPC) is first 218 

introduced for individual appliances including air-conditioning, water heater, electrical vehicle 219 

(EV) and battery energy storage system (BESS) for smart homes. The control design considers 220 

both centralized and individual MPC approaches. Specifically, we develop a control algorithm to 221 

operate the water heater at the minimum energy usage based on historic usage patterns without 222 

knowing the future water heater usage schedules. In addition, we estimate the occupant arrival and 223 

departure time of EV based on the historic probability distribution of EV usage. Furthermore, we 224 

design a centralized MPC considering all different energy consumer devices in a smart home with 225 

PV generation and battery energy storage system. Hence, the novelty of this paper is on the design 226 

and modelling of occupant behavior based MPC for residential buildings in a holistic and 227 

systematic perspective, and the comparison of energy cost savings based on various utility pricing 228 

schemas to the current of state. 229 



3 Research Approach  230 

3.1 Description of case study  231 

A residential building from Pecan Street Inc. database  is selected as the case study [70]. This 232 

building is equipped with 2.2 kW solar photovoltaic panels. The electric vehicle has a battery size 233 

of 34 kWh with 3.3 kW charging power. The water heater has a tank size of 100 liters and has 234 

maximum 2500W heating power. During the simulation, we added a battery size of a 5kWh with 235 

charging and discharging efficiencies of 0.95 and rectifier and inverter efficiencies of 0.95. The 236 

EV battery charging has an efficiency of 0.9. Smart meter data is from Pecan Street data sets with 237 

5 minutes interval. The initial EV SOC at arrival, people hot water usage, and PV generation are 238 

extracted from smart meter data. We assume a maximum charging and discharging power of 1 kW 239 

for the PV battery and maximum allowable grid injected power of 8 kW. 240 

3.2 Behavior patterns and feature extraction  241 

3.2.1 Water Heater  242 

Behavior patterns  243 

Figure 2 shows the two years of hourly water heater usage pattern from Monday to Sunday for the 244 

selected residential buildings of Pecan Street Inc. Specifically, Figure 2 a) shows the probability 245 

of the water heater electricity usage in each hour of the day and Figure 2 b) shows the hourly 246 

average energy consumed by the water heater. Figure 2 clearly shows that the water heater usage 247 

has three peaks: early morning, evening and late night.  Besides these three peaks, water heaters 248 

try to maintain the temperature set-point most of the time. Hence, it is important and necessary to 249 

consider such occupant behavior in control design to maximize the consumption shifting capability 250 

while providing enough hot water. 251 



 252 

Figure 2: Water heater usage pattern for 122 homes: a) probability of water heater electricity 253 

usage in each hour of the day, b) average hourly energy consumed by the water heater 254 

 255 

Behavior feature extraction for controls 256 

Since major energy consumption of the water heater is related to hot water usage and not the 257 

energy losses, reheating energy consumption mostly happens after a major hot water usage such 258 

as shower. After this major hot water usage, the mean water temperature in the tank drops 259 

significantly. However, the output hot water has the set-point temperature as the water in the tank 260 

mixes slowly. The water heater controller should add just enough heating energy into the water 261 

heater tank so that it is never cold. This is where the historical water heater usage patterns are used 262 

in this intelligent control.  We develop a new design for the lower bound of tank water temperature 263 

to save energy. This lower bound increase with a rate that the total heating energy added to the 264 

tank is larger or equal to the historical average energy drawn from the tank in each hour of a day. 265 

Figure 3 shows the detailed algorithm. Lower bound temperature is designed to increase from 266 

current water temperature to lower set-point dead band (𝑇𝑠𝑒𝑡- 𝑇𝑣/2) with a rate equal to average 267 



water heater energy use if it is in use. However, the tank maintains a safety temperature threshold 268 

of 40C. This threshold is due to the fact that average historic energy consumption of water heater 269 

is defining the amount of energy added to the water. If we assume the input cold water to the tank 270 

is about 20C and the output hot water is about 60C, then MPC is utilizing only half of the tank 271 

(60 − 40) (60 − 20)⁄  energy storage. However, this does not mean that MPC will utilize only 272 

half of the energy consumption shifting capabilities, because the extracted energy due to hot water 273 

use is not always more than this threshold.     274 

 275 

Figure 3: Water heater temperature lower bound design logic 276 

3.2.2 EV Behavior  277 

Behavior patterns  278 
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 279 

Figure 4: EV charger behavior patterns from Monday to Sunday: a) probability of the charger 280 

electricity usage in each hour of the day, b) average charging duration of each plug-in hour 281 

 282 

Figure 4 a) shows the probability of the charger electricity usage in each hour of the day based 283 

2 years data. For this particular house, the EV has a high probability of charging between 5pm and 284 

7pm for weekdays and between 1pm to 6pm for weekends. Figure 4 b) shows the average charging 285 

duration of each plug-in hour. Depending on what time the EV is plugged in, the charging duration 286 

is between 0.5 to 5 hours. Most of the time, the charging duration is around 3 hours if the EV is 287 

plugged in between 11am to 8pm.  288 

Behavior feature extraction for controls  289 

Smart meter data of EV electricity consumption in the selected building is used to capture EV 290 

arrival time. In order to schedule EV charging, departure time should be known or accurately 291 

estimated. This estimation of departure time is important to make sure that the EV is fully charged 292 

before it departs while minimizing the charging cost. One potential approach is to estimate this 293 



departure time using historical data for departure time and build up a cumulative probability for 294 

every arrival time and pick a departure time through a random sampling. However, in this study, 295 

we developed an algorithm based on EV usage patterns presented in Figure 4. It is designed with 296 

the assumption that the departure happens sometime between arrival and twice of the historical 297 

average charging duration as shown in Figure 5.  298 

 299 

Figure 5: Electric vehicle departure time estimation 300 

 301 

After estimating a departure time, A lower bound is designed for the EV SOC to limit the lowest 302 

allowed SOC in a way that EV is charged before the estimated departure time. The EV starts 303 

charging if the SOC is below 40%. Figure 6 describes the logic on how the lower bound is 304 

designed. Then this lower bound is fed to the MPC problem. 305 

 306 

 307 

Figure 6: Electric vehicle SOC lower bound design 308 
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3.3 Standalone Model Predictive Control Design  309 

Model predictive control (MPC) is a controller design which use system model to predict 310 

future states of the system and pick a set of control actions that optimize an objective function 311 

[71]. The general form of the MPC problem used in this study is presented in the following 312 

formulation. The objective function includes two parts: cost of operation, and cost of constraint 313 

relaxation. Linear models are used for the MPC formulation to take advantage of fast mathematical 314 

programming algorithms to solve the problem [10]. It should be mentioned that MPC is fairly 315 

robust to disturbances and modeling errors [72]. Usually system duties are defined in the MPC 316 

constraint to insure they are satisfied. These constraints are state of charge boundaries in battery 317 

and EV control, and temperature limits in water heater and AC control.   318 

 319 

min∑𝑝𝑖𝑃𝑖𝑑𝑡  𝜔𝜀𝑖

𝑚

𝑖=1

 

 

Subject to: 

𝐿𝐵 − 𝜀𝑖  𝑋𝑖𝑛
𝑖+1  𝑈𝐵  𝜀𝑖 

x𝑛+1  Ax𝑛  𝐵𝑢 

𝑃𝑖  𝑓𝑃(𝑢) 

𝑢𝑖 ∈ 𝑈     𝜀𝑖 ∈ ℝ≥0         

(1) 

 

 

 

 

 

  320 

Beside the operation cost in the objective function, there is a weighted free variable which is 321 

designed to relax constraints to avoid infeasibility. All designed free and decision variable weights 322 



have the same unit.  This is how the relaxing variable works. When system states are outside the 323 

designed boundaries and the system physically is not able to move the states back to the designed 324 

boundaries in one control step (for example, when indoor temperature is not in the comfort zone 325 

and the AC is not able to move it back to the comfort zone in just one control horizon step), then 326 

the free variable ( ) which is designed to relax the constraint will increase, which results in a grow 327 

in penalty cost on the objective function. This penalty cost has a large value when the boundary 328 

violation is considerable. If the boundary violation is very small (smaller than the designed 329 

tolerable violation in free variable gain design 𝜔), then the system will relax the constraint slightly 330 

to avoid an unnecessary control action. Hence, as long as the cost of relaxing the constraints is 331 

greater than the cost of operating the device (considerable boundary violation), the optimization 332 

result is to turn on the device.   333 

3.3.1 Air conditioning  334 

 335 

In order to separate simulation model from the model used for model predictive control and 336 

nonlinearities, an online estimation method is used to estimate building thermal behavior in every 337 

step of control using historical data available from previous simulation steps. Gains of a linear 338 

model relating indoor temperature changes to previous switching control actions, outdoor and 339 

indoor temperature difference, and solar radiation, are estimated solving a least squared error 340 

problem.  341 

𝑇̇in  (𝑥𝐴𝐶)  𝛼1  (𝑇out − 𝑇in)  𝛼2  (𝑄solar)  𝛼3  𝛼4 (2) 

For this estimation 20 steps of historical data, which is 100 minutes, have been used. 342 

Estimation error has been measured in degree Celsius by calculating the difference between 343 

estimated temperature in previous step of the simulation and the actual resulted temperature for 344 



the current step of simulation. Simulation results show that increasing estimation steps more than 345 

20 steps won’t increase the accuracy of gain estimations significantly. This model simply fit a 346 

linear model to the latest thermal behavior of the building, and its projection is used for the 347 

predictive control.  Simulated building thermal model is a resistance capacitance (RC) network 348 

model verified with AC load in a residential building [73]. This error has a mean value of zero and 349 

variance of 0.01C for one step (five minutes ahead) modeling in a one-year simulation test. 350 

In this study, a residential unitary air to air heat pump is used as the air conditioner using 351 

coefficient of performance to calculate AC thermal load and an energy input ratio curve to relate 352 

AC performance to indoor and outdoor temperatures [73]. MPC problem for the AC control is 353 

designed to minimize operation cost of AC while maintaining indoor temperature. The constraint 354 

on the temperature is for ±1.5C when the building is not occupied. The decision variable for the 355 

optimization problem is a binary (ON/OFF) decision. The problem is solved with a prediction 356 

horizon of one hour, at five minutes step. One hour is chosen because simulation results for a 357 

longer prediction horizon does not show significant cost savings changes. The temperature 358 

constraint relaxation tolerance for the AC is considered to be 0.1C resulting in 𝜔  359 

𝑎𝑏 (𝑝𝑖)𝑃𝐴𝐶𝑑𝑡 0. ⁄ . The overall MPC problem is formulated as below:  360 

min∑𝑝𝑖𝑃𝐴𝐶𝑥𝐴𝐶
𝑖 𝑑𝑡  𝜔𝐴𝐶𝜀𝐴𝐶

𝑖

𝑚

𝑖=1

 

 

Subject to: 

𝐿𝐵𝐴𝐶 − 𝑘𝑜𝑐_𝐴𝐶  ( − 𝑂𝐶𝑖) − 𝜀𝐴𝐶
𝑖  𝑇𝑖𝑛

𝑖+1  𝑈𝐵𝐴𝐶  𝑘𝑜𝑐_𝐴𝐶  ( − 𝑂𝐶𝑖)  𝜀𝐴𝐶
𝑖  

𝑇𝑖𝑛
𝑖+1  𝑇𝑖𝑛

𝑖  (𝑥𝐴𝐶
𝑖 )  𝛼1  (𝑇𝑜𝑢𝑡

𝑖 − 𝑇𝑖𝑛
𝑖 )  𝛼2  (𝑄solar)  𝛼3  𝛼4 

(3) 



𝑥𝑖 ∈ {0, }     𝜀𝑖 ∈ ℝ≥0         

3.3.2 Water heater 361 

 362 

Water heaters are responsible for almost 18% energy consumption in buildings [44]. Prior 363 

studies try to utilize water heater storage tank to respond to demand response programs [74, 75]. 364 

However, to the best of author’s knowledge, none of them consider occupant behavior in their 365 

controls, and a few of them are studied in an integrated control with other appliances [65]. The 366 

MPC problem for the water heater follows the same general format in Eq. (1). This problem is to 367 

minimize the operation cost while maintaining average water tank temperature. The MPC problem 368 

has been solved for a prediction horizon of four hours for every five minutes. The model used in 369 

the MPC problem is a one-node linear water heater model derived from energy balance principals. 370 

The temperature constraint relaxation tolerance for the water heater is considered to be 0.5C 371 

resulting to 𝜔  𝑎𝑏 (𝑝𝑖)𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑑𝑡 0.5⁄ .  372 

min∑𝑝𝑖𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑥𝑖𝑑𝑡  𝜔𝑤ℎ𝜀𝑤ℎ
𝑖

𝑚

𝑖=1

 

 

Subject to: 

𝑇𝐿𝐵
𝑖 − 𝜀𝑖  𝑇𝑤ℎ

𝑖+1  𝑇𝑈𝐵
𝑖  𝜀𝑖 

𝑇𝑤ℎ
𝑖+1  𝑇𝑤ℎ

𝑖  
𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝐶𝑤ℎ

𝑥𝑖𝑑𝑡 −
𝑚̇𝐶𝑤
𝐶𝑤ℎ

(𝑇𝑤ℎ
𝑖 − 𝑇𝑎𝑚𝑏)𝑑𝑡 −

𝐾𝑤ℎ
𝐶𝑤ℎ

(𝑇𝑤ℎ
𝑖 − 𝑇𝑎𝑚𝑏)𝑑𝑡 

𝑥𝑖 ∈ {0, }     𝜀𝑖 ∈ ℝ≥0         

(4) 

3.3.3 Electric vehicle  373 

 374 



Previous research studies focus on utilizing electric vehicle battery for demand response programs 375 

under vehicle to grid (V2G) concept [76]. In most of these studies, model predictive control is used 376 

for price based EV battery management in individual EV charging problem or fleet of EVs in 377 

linear and nonlinear configurations.  A linear model is used so that a fast mixed integer linear 378 

programming (MILP) optimization solver can be used. The SOC constraint relaxation tolerance 379 

for the EV is considered to be 1% resulting in 𝜔  𝑎𝑏 (𝑝𝑖)𝑃𝐶𝑑𝑡  ⁄ . EV is modeled with a battery 380 

size of 34 kWh and residential charger of 3.3 kW. Five hours prediction horizon is chosen with 381 

respect to average connection time of four hours. The choice of prediction horizon highly depends 382 

on the capability of the device to shift its consumption and existence of lower prices in further 383 

periods. The following equation formulates the MPC control design for the EV: 384 

min∑𝑝𝑖𝑃𝐶𝑥𝑖𝑑𝑡  𝜔𝐸𝑉𝜀𝐸𝑉
𝑖

𝑚

𝑖=1

 

 

Subject to: 

𝑆𝐿𝐵_𝐸𝑉
𝑖+1 − 𝜀𝑖  𝑆𝐸𝑉

𝑖+1  𝑆𝑈𝐵_𝐸𝑉
𝑖+1  𝜀𝑖 

𝑆𝐸𝑉
𝑖+1  𝑆𝐸𝑉

𝑖  
dt

𝑄𝐸𝑉
(𝜂𝑐𝑃𝐶𝑥𝑖 − 𝜂𝑑𝑃𝑑) 

𝑥𝑖 ∈ {0, }     𝜀𝑖 ∈ ℝ≥0         

(5) 

 385 

3.3.4 Stand-alone MPC Design with BESS 386 

 387 

In many practices building load can only be powered up by either the grid or inverter output 388 

and the grid does not accept negative load. However, this is not the most efficient configuration. 389 

In order to benefit from feed-in-tariff and utilize the battery to respond to grid signals, power flow 390 



is designed bidirectional in this study between building and the grid as shown in Figure 7. The PV 391 

generation data is from measured data of the selected building. The converter, inverter, and 392 

rectifier are modeled with a constant efficiency, and power flow directions are chosen as a free 393 

variable to avoid nonlinearity caused by the flow direction. This brings two extra decision variables 394 

to the problem.   395 

 396 

Figure 7: Overview of building-to-grid power flow with PV and Battery 397 

The MPC problem for a battery energy storage system is designed to minimize the building 398 

operation cost. Two power balance equations are used as constraints for the following two points 399 

in the system. One is where the battery is connected with the converter and inverter and the other 400 

is where the inverter, building and grid are connected. Other constraints include: the maximum 401 

and minimum power flows and battery state of charge limits. A free variable is used to relax SOC 402 

constraint to avoid infeasibility with constraint relaxation tolerance of 0.1 resulting to 𝜔  403 

𝑎𝑏 (𝑝𝑖)𝑃𝐵𝑚𝑎𝑥𝑑𝑡 0. ⁄ . Finally, constraints on  𝑃𝐼, 𝑃𝑂, 𝑃𝐵𝑂 and 𝑃𝐵𝐼 limit power flows to be on one 404 

direction depending on 𝑑𝐼 and 𝑑𝐵 free variables.  405 

min∑𝑝𝑖𝑃𝐺
𝑖𝑑𝑡  𝜔𝐵𝑎𝑡𝜀𝐵𝑎𝑡

𝑖

𝑚

𝑖=1

 

 

Subject to: 

𝑃𝐺  𝑃𝐿  𝑃𝑅 − 𝑃𝐼 

𝑃𝑃𝑉𝜂𝑐𝑜𝑛  𝑃𝐵𝐼 − 𝑃𝐵𝑂  
𝑃𝐼
𝜂𝐼⁄ − 𝜂𝑅𝑃𝑅 

(6) 
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Building 

Load
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Converter +

Battery

Generation

𝑃𝐼 , 𝜂𝐼       𝑑𝐼   

𝑃𝑅 , 𝜂𝑅      𝑑𝐼  0

𝜂𝐷 𝜂𝐶

𝑃𝐵𝑂𝑃𝐵𝐼

𝑃𝑃𝑉

𝑃𝐿

𝑃𝐺

𝑑𝐵   𝑑𝐵  0

𝜂𝑐𝑜𝑛



𝑆𝐵𝑎𝑡
𝑖+1  𝑆𝐵𝑎𝑡

𝑖  
dt

𝑄𝐵𝑎𝑡
(𝜂𝐶𝑃𝐵𝐼 −

 
𝜂𝐷⁄ 𝑃𝐵𝑂) 

 0 − 𝜀𝑖  𝑆𝐵𝑎𝑡
𝑖+1  20  𝜀𝑖 

𝑃𝐺𝑚𝑖𝑛 ≤ 𝑃𝐺 ≤ 𝑃𝐺𝑚𝑎𝑥 

0 ≤
𝑃𝐼
𝑃𝐼𝑚𝑎𝑥
⁄ ≤ 𝑑𝐼 

0 ≤
𝑃𝑂
𝑃𝑅𝑚𝑎𝑥
⁄ ≤  − 𝑑𝐼 

0 ≤
𝑃𝐵𝑂

𝑃𝐵𝑚𝑎𝑥
⁄ ≤ 𝑑𝐵 

0 ≤
𝑃𝐵𝐼

𝑃𝐵𝑚𝑎𝑥
⁄ ≤  − 𝑑𝐵 

 

𝑑𝐼 , 𝑑𝐵 ∈ {0, }     𝑃𝐵𝐼 , 𝑃𝐵𝑂 , 𝑃𝐼 , 𝜀𝑖 ∈ ℝ≥0         
 406 

This MPC is solved using MILP to find optimal battery operation based on load and PV 407 

generation predictions. PV generation prediction is derived from weather data. However, 408 

residential building load prediction is a challenge due to its highly stochastic behavior. In order to 409 

estimate future load of the building, MPC solutions of other appliances in each step of the control 410 

are summed up as shown in Figure 8. MPC output of each device at each step is a sequence of 411 

control actions that optimizes its objective function.  412 

 413 

Figure 8: Overview of standalone MPC configuration 414 
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The MPC problem is solved for a prediction horizon of eight hours with five minutes time 415 

interval. The battery MPC problem could have a long prediction horizon in order to respond to 416 

daily price changes happen in high peak and low peak periods. In general, each high, mid, and low 417 

peak prices happen in one third of the day. To make the MPC problem to see future lower prices 418 

in a day, at least eight hours of prediction is needed. In order to, test this hypothesis, different 419 

prediction horizons are tested for one day simulation. It is observed that control actions for battery 420 

control does not change for any prediction horizon longer than eight hours.  421 

3.3 Centralized MPC Design for Integrated Systems with BESS 422 

In an ideal situation, there would be a controller which is aware of all devices models, and 423 

disturbances predictions. This ideal scenario is configured as a centralized controller, where one 424 

MPC controller produces control actions for all connected devices. To design such a controller, 425 

the whole building has been modeled as one system to reduce building operation cost. In this 426 

system, control actions include: the AC on/off, water heater on/off, EV on/off , and the battery 427 

charge and discharge decisions. The system model includes: the AC and building thermal model, 428 

EV battery model, water heater model, and battery and PV model. Disturbances to such a system 429 

would be, ambient weather, solar radiation, building load, and PV generation. These devices 430 

operation come to affect each other in the battery operation, where the building total load is 431 

introduced to the problem. Hence, if the battery management and grid constraints are removed 432 

from such a problem, the individual MPC would result in the same operation for the AC, EV, and 433 

water heater as the centralized MPC. The ability of this centralized controller to affect other 434 

devices load with respect to battery operation will give this controller more flexibility in control, 435 

and brings total awareness to the problem. Eq. (7) shows the general form of such a problem, 436 



combining four MPC problems of the EV, AC, water heater, and PV-battery into one centralized 437 

format. 438 

min∑𝑝𝑖  𝑃𝐺
𝑖𝑑𝑡  𝜔𝜀𝑖

𝑚

𝑖=1

 

 

Subject to: 

[

𝐴𝐴𝐶 0 0 0
0 𝐴𝐸𝑉 0 0
0 0 𝐴𝑊𝐻 0
𝑎1 𝑎2 𝑎3 𝐴𝐵𝑎𝑡

] [

𝑋𝐴𝐶
𝑋𝐸𝑉
𝑋𝑊𝐻
𝑋𝐵𝑎𝑡

] ≤ [

𝐵𝐴𝐶
𝐵𝐸𝑉
𝐵𝑊𝐻
𝐵𝐵𝑎𝑡

] 

(7) 

 439 

In this Problem 𝐴𝐴𝐶 , 𝐴𝐸𝑉 , 𝐴𝑊𝐻  and 𝐴𝐵𝑎𝑡  are the constraint matrices explained in each device 440 

section, representing the model of each device and constraints in its operation with previously 441 

defined boundaries (𝐵𝐴𝐶 , 𝐵𝐸𝑉 , 𝐵𝑊𝐻  and 𝐵𝐵𝑎𝑡). Objective of such a problem includes the total 442 

building operation cost and penalties for all slack variables. The objective function of such a 443 

problem can be constructed combining all previously defined objective functions ( 𝑏 𝑖
𝑏𝑎𝑡,  𝑏 𝑖

𝐴𝐶 ,444 

 𝑏 𝑖
𝐸𝑉 ,  𝑏 𝑖

𝑊𝐻). The following shows how the building total energy cost as the objective can 445 

perform the same as combination of previously define objectives: 446 

 447 

{
𝑃𝐺  𝑃𝐿  𝑃𝑅 − 𝑃𝐼

𝑃𝐿  𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑥𝑖
𝑊𝐻  𝑃𝐶𝑥𝑖

𝐸𝑉  𝑃𝐴𝐶𝑥𝑖
𝐴𝐶  𝑃𝑟𝑒𝑠𝑡

}
𝑀𝑃𝐶 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
⇒          𝑝𝑖  𝑃𝐺

𝑖𝑑𝑡  𝜔𝜀𝑖 

 

 𝑝𝑖  (𝑃𝐿
𝑖  𝑃𝑅

𝑖 − 𝑃𝐼
𝑖)𝑑𝑡  𝜔𝜀𝑖 

(8) 



 𝑝𝑖  (𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑥𝑖
𝑊𝐻  𝑃𝐶𝑥𝑖

𝐸𝑉  𝑃𝐴𝐶𝑥𝑖
𝐴𝐶  𝑃𝑟𝑒𝑠𝑡  𝑃𝑅

𝑖 − 𝑃𝐼
𝑖)𝑑𝑡  𝜔𝐸𝑉𝜀𝐸𝑉

𝑖  𝜔𝐴𝐶𝜀𝐴𝐶
𝑖

 𝜔𝑤ℎ𝜀𝑤ℎ
𝑖  𝜔𝐵𝑎𝑡𝜀𝐵𝑎𝑡

𝑖  

 (𝑝𝑖𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑥𝑖
𝑊𝐻𝑑𝑡  𝜔𝑤ℎ𝜀𝑤ℎ

𝑖 )  (𝑝𝑖𝑃𝐶𝑥𝑖
𝐸𝑉𝑑𝑡  𝜔𝐸𝑉𝜀𝐸𝑉

𝑖 )

 (𝑝𝑖𝑃𝐴𝐶𝑥𝑖
𝐴𝐶𝑑𝑡  𝜔𝐴𝐶𝜀𝐴𝐶

𝑖 )  𝑝𝑖  (𝑃𝑟𝑒𝑠𝑡  𝑃𝑅
𝑖 − 𝑃𝐼

𝑖)𝑑𝑡  𝜔𝐵𝑎𝑡𝜀𝐵𝑎𝑡
𝑖  

𝑃𝑟𝑒𝑠𝑡 is the rest of the load associated with other appliances consumption, which can 

be removed from objective as this load is not controllable in this MPC configuration 

and it is not a function of decision variables.  

 ⇒ 𝑝𝑖  𝑃𝐺
𝑖𝑑𝑡  𝜔𝜀𝑖   𝑏 𝑖

𝑏𝑎𝑡   𝑏 𝑖
𝐴𝐶   𝑏 𝑖

𝐸𝑉   𝑏 𝑖
𝑊𝐻 

  

By removing the uncontrollable portion 𝑃𝐿 and 𝑃𝑟𝑒𝑠𝑡, the centralized formulation of the MPC 448 

control becomes: 449 

𝑚 𝑛∑𝑝𝑖  𝑃𝐺
𝑖dt  𝜔𝐵𝑎𝑡𝜀𝐵𝑎𝑡

𝑖  𝜔𝐸𝑉𝜀𝐸𝑉
𝑖  𝜔𝐴𝐶𝜀𝐴𝐶

𝑖  𝜔𝑤ℎ𝜀𝑤ℎ
𝑖

𝑚

𝑖=1

 

 

Subject to: 

𝑃𝐺  𝑃𝐿  𝑃𝑅 − 𝑃𝐼 

𝑃𝑃𝑉𝜂𝑐𝑜𝑛  𝑃𝐵𝐼 − 𝑃𝐵𝑂  
𝑃𝐼
𝜂𝐼⁄ − 𝜂𝑅𝑃𝑅 

𝑆𝐵𝑎𝑡
𝑖+1  𝑆𝐵𝑎𝑡

𝑖  
𝑑𝑡

𝑄𝐵𝑎𝑡
(𝜂𝐶𝑃𝐵𝐼 −

 
𝜂𝐷⁄ 𝑃𝐵𝑂) 

 0 − 𝜀𝐵𝑎𝑡
𝑖  𝑆𝐵𝑎𝑡

𝑖+1  20  𝜀𝐵𝑎𝑡
𝑖  

𝑃𝐺𝑚𝑖𝑛 ≤ 𝑃𝐺 ≤ 𝑃𝐺𝑚𝑎𝑥 

0 ≤
𝑃𝐼
𝑃𝐼𝑚𝑎𝑥
⁄ ≤ 𝑑𝐼 

0 ≤
𝑃𝑂
𝑃𝑅𝑚𝑎𝑥
⁄ ≤  − 𝑑𝐼 

0 ≤
𝑃𝐵𝑂

𝑃𝐵𝑚𝑎𝑥
⁄ ≤ 𝑑𝐵 

0 ≤
𝑃𝐵𝐼

𝑃𝐵𝑚𝑎𝑥
⁄ ≤  − 𝑑𝐵 

𝑆𝐿𝐵_𝐸𝑉
𝑖+1 − 𝜀𝐸𝑉

𝑖  𝑆𝐸𝑉
𝑖+1  𝑆𝑈𝐵_𝐸𝑉

𝑖+1  𝜀𝐸𝑉
𝑖  

𝑆𝐸𝑉
𝑖+1  𝑆𝐸𝑉

𝑖  
𝑑𝑡

𝑄𝐸𝑉
(𝜂𝑐𝑃𝐶𝑥𝐸𝑉

𝑖 − 𝜂𝑑𝑃𝑑) 

𝑇𝐿𝐵
𝑖 − 𝜀𝑤ℎ

𝑖  𝑇𝑤ℎ
𝑖+1  𝑇𝑈𝐵

𝑖  𝜀𝑤ℎ
𝑖  

(9) 



𝑇𝑤ℎ
𝑖+1  𝑇𝑤ℎ

𝑖  
𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝐶𝑤ℎ

𝑥𝑖dt −
𝑚̇𝐶𝑤
𝐶𝑤ℎ

(𝑇𝑤ℎ
𝑖 − 𝑇𝑎𝑚𝑏)dt −

𝐾𝑤ℎ
𝐶𝑤ℎ

(𝑇𝑤ℎ
𝑖 − 𝑇𝑎𝑚𝑏)𝑑𝑡 

𝐿𝐵𝐴𝐶 − 𝑘𝑜𝑐_𝐴𝐶  ( − 𝑂𝐶𝑖) − 𝜀𝐴𝐶
𝑖  𝑇𝑖𝑛

𝑖+1  𝑈𝐵𝐴𝐶  𝑘𝑜𝑐_𝐴𝐶  ( − 𝑂𝐶𝑖)  𝜀𝐴𝐶
𝑖  

𝑇𝑖𝑛
𝑖+1  𝑇𝑖𝑛

𝑖  (𝑥𝐴𝐶
𝑖 )  𝛼1  (𝑇𝑜𝑢𝑡

𝑖 − 𝑇𝑖𝑛
𝑖 )  𝛼2  (𝑄𝑠𝑜𝑙𝑎𝑟)  𝛼3  𝛼4 

𝑃𝐿= 𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑥𝑊𝐻
𝑖  𝑃𝐶𝑥𝐸𝑉

𝑖  𝑃𝐴𝐶𝑥𝐴𝐶
𝑖  

𝑥𝑊𝐻
𝑖 , 𝑥𝐸𝑉

𝑖 , 𝑥𝐴𝐶
𝑖 ∈ {0, } 

𝑑𝐼 , 𝑑𝐵 ∈ {0, }     𝑃𝐵𝐼 ,  𝑃𝐵𝑂 , 𝑃𝐼 , 𝜀𝐵𝑎𝑡
𝑖 , 𝜀𝐸𝑉

𝑖 , 𝜀𝐴𝐶
𝑖 , 𝜀𝑤ℎ

𝑖 ∈ ℝ≥0 
 

 

 450 

The MPC problem formulated in this configuration, has different prediction horizon for each 451 

device which is defined in each individual MPC problem. Optimization step is chosen as five 452 

minutes, corresponding to the lowest desired optimization resolution.  453 

4 Results and Discussions  454 

One year simulation is performed with three different pricing schemas to evaluate energy 455 

shifting capabilities and cost savings. The three pricing schemas are: TOU pricing from PG&E in 456 

California, day ahead hourly price from ComEd, and five minutes locational marginal price (LMP) 457 

from MISO. All prices are scaled to have an average value of 14 cents/kWh. Table 2 reports energy 458 

cost savings achieved in each device from traditional on/off to MPC controller. In Table 2 the EV, 459 

water heater, and AC savings are reported comparing with the standalone MPC controller and 460 

integrated MPC controller sing traditional rule based (on/off) controller as the baseline. The battery 461 

energy savings are related to comparing the centralized and standalone MPC with traditional 462 

controls of battery.   463 

Table 2: Energy cost savings 464 

Device: Overall  Battery  Electric Vehicle  Water Heater  AC 



Controller: C-

MPC 

SA-

MPC 

 C-

MPC 

SA-

MPC 

 C-

MPC 

SA-

MPC 

 C-

MPC 

SA-

MPC 

 C-

MPC 

SA-

MPC 

Compared 

to: 

RB RB  RB- 

MPC* 

RB- 

MPC* 

 RB RB  RB RB  RB RB 

Pricing  

RTP  42.5 42.6  26.5% 26.4%  31.0% 31.0%  28.1% 28.0%  22.3% 22.2% 

TOU  26.4 21.8  19.3% 14.3%  14.8% 14.5%  17.4% 17.1%  14.7% 16.3% 

Hourly  17.2 14.4  12.0% 9.1%  7.5% 7.5%  14.5% 14.0%  17.0% 18.6% 

*RB-MPC: Traditional rule based (RB) battery management with standalone MPC for other devices 

RB: On/off rule based controller 

C-MPC: Centralized MPC controller 

SA-MPC: Stand-alone MPC controller 

 465 

These results show that this residential building could save more for all appliances when it is 466 

under a real time five minutes pricing, and save the least under an hourly pricing schema. This 467 

shows the effectiveness of TOU pricing in encouraging residential buildings to shift their 468 

consumption. RTP has the largest variance of 3 cent/kWh, TOU in the middle with variance of 0.5 469 

cent/kWh, and DAP with 0.3 cent/kWh. However, frequency of changes and other factors might 470 

affect these savings as well. 471 

4.1 Average building load on the grid 472 

The following three graphs (Figure 9, Figure 10 and Figure 11), depicts one year average 473 

hourly energy consumption during a day in three pricing schemes (TOU, hourly, RTP). All rule 474 

based control refer to traditional methods of control in all devices, which has the same value in all 475 

graphs. Battery rule based refer to a test scenario where EV, water heater, and AC are controlled 476 

with standalone MPC and the battery is controlled using traditional rule based controller, which is 477 

the scenario of saving comparison reported in the previous table of savings for battery. Stand-alone 478 

MPC is when each device MPC is solved locally at each device and the battery uses control action 479 



prediction from other MPC controllers to design its control action. Finally, centralized MPC is the 480 

ideal situation where all devices and battery are controlled in one integrated MPC problem.  481 

 482 

Figure 9: One year average Power flow from the grid in RTP 483 

 484 

Figure 10: One year average Power flow from the grid in TOU pricing 485 



 486 

Figure 11: One year average Power flow from the grid in Hourly DAP 487 

 488 

In all these figures (Figure 9, Figure 10 and Figure 11) the minimum required  power from 489 

the grid happens at 1:00 PM corresponding to maximum PV generation. Maximum required power 490 

from the grid in a traditional operation happens at 8:00 PM corresponding to peak building 491 

consumption due to occupant behavior. However, under battery MPC control in both centralized 492 

and stand-alone schemes move the peak power flow to 5:00 AM in the hourly pricing and 7:00 493 

AM in TOU pricing. Figure 9 shows that under RTP required power flow from the grid is more 494 

smoothed out with less peaks. This demonstrates the advantage of charging buildings under RTP 495 

compared to other pricing schemes from the grid perspective and peak shaving purposes. Figure 496 

10 and Figure 11 show similar patterns for required power from grid.  497 



4.2 Average battery load 498 

Figure 12, Figure 13 and Figure 14 show the average battery power flow for one year 499 

simulation in each hour of the day for different pricing schemes. In all the pricing schemes the 500 

battery is being charged during the night and tempt to discharge during the day corresponding to 501 

lowest and highest average electricity price. In RTP (Figure 12) the battery discharging time falls 502 

in noon time to maximize grid feed-in corresponding to high average RTP in these hours. In TOU 503 

(Figure 13) discharging happen in peak price period between 2:00 PM and 9:00 PM, and in DAP 504 

(Figure 14) discharging happen between 8:00 AM and 7:00 PM. These discharging periods show 505 

how DAP pricing behave between RTP and TOU in grid favor. In other words, if we assume that 506 

the ideal building load on the grid behavior is happening in real time locational marginal pricing 507 

(RTP), then DAP have a closer behavior to the ideal behavior than TOU.  508 

 509 

Figure 12: Average battery power flow in RTP 510 

 511 



 512 

Figure 13: Average battery power flow in TOU 513 

 514 

 515 

Figure 14: Average battery power flow in hourly DAP 516 

 517 



4.3 Energy consumption Analysis 518 

Figure 15, Figure 16, and Figure 17 show the average energy consumption of the EV, AC, 519 

and water heater for one year simulation in different pricings. The water heater consumption has 520 

a peak at 9:00 AM and 10:00 AM corresponding to occupant behavior on taking shower in studied 521 

residential building. This peak consumption has been smoothed out utilizing MPC controller for 522 

all pricing schemes. The EV has a peak energy consumption at 3:00 PM (Figure 16) corresponding 523 

to this residential building EV arrival time. In traditional charging control of EV there are barely 524 

any charging during the night. However, MPC shifts some of charging periods to nigh hours, when 525 

price of electricity is lower. It should be considered that, occupant behavior in using these devices, 526 

directly affect the amount of savings in each pricing scheme. For instance, if a device is usually 527 

being used around 9:00 AM is less capable in saving cost compared to a device which is usually 528 

being used around 9:00 PM. This is due to the fact that price of electricity is increasing for hours 529 

after 9:00 AM, so shifting consumption from 9:00 AM to later hours most likely will not save the 530 

cost. On the other hand, price of electricity tends to drop after 9:00 PM which brings opportunity 531 

for savings by few hours shifting.  532 



 533 

Figure 15: Water heater average electricity consumption in different pricings 534 

 535 

 536 

Figure 16: Electric Vehicle average electricity consumption in different pricings 537 

 538 



 539 

Figure 17: AC average electricity consumption in different pricings 540 

4.4 Controlled variables under different pricing scenarios 541 

Figure 18 and Figure 19 shows the battery SOC under different control strategies for RTP, 542 

and centralized MPC under three different pricing schemes. Battery SOC behave largely different 543 

in rule based controllers from MPC controllers as shown in  Figure 19. Under TOU pricing, the 544 

battery is charged before the price rises and discharge when the price is high and correspond to PV 545 

generation and load. This charging and discharging periods are slightly different in hourly price as 546 

this pricing has more changes during a day, and much different in RTP. This behavior can result 547 

in slightly longer battery life in TOU pricing compared to other pricing methods, as the battery has 548 

less charging and discharging periods. 549 



 550 

Figure 18: Battery SOC in different controllers in RTP 551 

 552 

 553 

Figure 19: Battery SOC with C-MPC in different pricings 554 

 555 



Figure 20, Figure 21, and Figure 22 show how each device behave in the behavior price driven 556 

MPC controllers. In Figure 20 EV SOC is maintained in the defined boundaries. The lower limit 557 

boundary is designed to charge the battery before the departure time. The SOC drops show EV 558 

usage estimated from the smart meter data and charging starts close to arrival time. In Figure 21 559 

indoor temperature is maintained in the thermostat dead band, when the building is occupied and 560 

relaxed when the building is not occupied. In Figure 22 water temperature is maintained in the 561 

defined boundaries. Sharp temperature drops in this figure correspond to extreme hot water usage 562 

such as taking a shower.  563 

 564 

Figure 20: EV SOC MPC control 565 



 566 

Figure 21: Indoor temperature with MPC control 567 

 568 

 569 

Figure 22: Water heater tank average temperature with MPC control 570 

 571 



5 Conclusion 572 

In this paper a behavior and price driven building energy management system for a residential 573 

building is introduced using MPC method. A centralized MPC configuration, and a stand-alone 574 

MPC configuration are compared with the traditional way of controls. An air conditioner, water 575 

heater, electric vehicle, and battery are controlled as the main consumers of electricity in a 576 

residential building. Occupant behavior is introduced into this control problem considering the 577 

occupancy presence in AC control, average hot water need by the occupants in water heater 578 

control, and driving patterns in EV charging control. Demand response capabilities of these 579 

controllers were tested in three different electricity rates, including: time of use, hourly and real 580 

time 5 minutes pricing. One year simulation results show that residential buildings can achieve 581 

cost savings up to 26% under TOU price, 42% under real time price, and 17% under hourly pricing, 582 

compared to traditional on/off controls. This savings shows the capabilities of TOU and RTP in 583 

affecting residential buildings operation.  584 

The limitations of this study include: 1) occupancy presence data: it is a challenge to collect 585 

occupancy presence data in any residential building due to privacy issues. In this study, the 586 

occupancy presence data is given from another study [69]; and 2) lack of verification of observed 587 

behavior from smart meter data: we extract occupant behavior patterns from historical smart meter 588 

data without actual verification of that behavior due to limited access to the house;  589 

The future study could focus on the impact of collective behavior of residential building load 590 

control on the smart grid. In other words, if all the buildings use the same control shifting strategy, 591 

it is possible that such control behavior could cause a frequency deviation problem for the grid 592 

operation.  593 
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