

Market and Behavior driven Predictive Energy Management for Residential Buildings

3 Abstract

With the advancement of smart home and grid, a more connected and efficient operation of the grid is achievable. Involving buildings as the largest consumer of electricity in such a smart operation is a critical step in achieving an interactive grid system. In this paper, a building energy management system is introduced considering electricity price and people behavior, controlling major consumers of electricity in a single family residential building. An air conditioner, water heater, electric vehicle, and battery storages are controlled in a photovoltaic (PV) equipped building. A model predictive control is designed to minimize the operation cost considering system model, electricity price and people behavior patterns in each device control. Centralized and stand-alone configuration of MPC for building energy management is formulated and were put in contrast for time of use pricing (TOU), hourly pricing and five minutes pricing. Simulation results show that in real time five minutes pricing these methods can achieve 20% to 30% cost savings in different appliances, and 42% savings in overall electricity cost adding battery optimal control compared to traditional rule based control. Cost savings and peak shaving results demonstrate the capabilities of introduced price and behavior based control.

18

19

20 Keywords:

21 Model Predictive Control (MPC), Building to Grid Integration, Building energy management
22 system, real time pricing, occupant behavior.

23

24 Nomenclature

General Form

p_i	Electricity price at step i
P_i	Device electricity usage at step i
u_i	System input
m	Prediction horizon
dt	Time step
ω	Slack variable objective weight
ε_i	Free variable to relax temperature constraint
$x_{tolerance}$	States tolerable relaxation
f_P	Power consumption of the device function of its control action

Air Conditioner

P_{AC}	AC average electricity consumption (watt)
x_{AC}^i	AC on and off status
T_{in}^i	Building indoor air temperature
T_{out}^i	Outside air temperature
LB_{AC}	Lowest temperature allowed on occupied periods.
UB_{AC}	Highest temperature allowed on occupied periods.
OC_i	Occupancy statuses of the zone
k_{oc_AC}	Temperature relaxation on unoccupied periods
$\alpha_1, \alpha_2,$ $\alpha_3, \text{ and } \alpha_4$	Identified gains for indoor temperature changes
Q_{solar}	Solar thermal input

Water Heater

T_{wh}^i	Average hot water temperature in the water heater tank
\dot{m}	Hot water usage mass flow
$P_{element}$	Water heater heating element power
K_{wh}	Thermal conductivity of the water heart tank to ambient
T_{amb}	Water heater surrounding air temperature
Q_m^i	Average electricity usage of the water heater from historical data
T_{LB}^i	Water heater average temperature lower boundary
T_v	Allowed average temperature changes
T_{set}	Hot water temperature set-point
T_{low}^i	Lowest allowed hot water temperature at step i
C_w	Water thermal capacity
C_{wh}	Water heater tank thermal capacity

Electric Vehicle	
t_i^c	Historical average connection time estimated from smart meter data
π_j^{use}	Probability of the electric vehicle charger use electricity according to smart meter historical data
π_{max}^{use}	The largest probability value (π^{use}) to remove dimensions
t_a	Connection time
t_D	Estimated disconnection time
S_{EV}^{init}	Initial EV state of charge at connection time
S_{EV}^i	Electric vehicle battery state of charge
$S_{LB_EV}^{i+1}$	Electric vehicle designed SOC lower boundary
$S_{UB_EV}^{i+1}$	Electric vehicle designed SOC upper boundary
Q_{EV}	Electric vehicle battery capacity
η_c η_d	Charger efficiency
P_C P_d	Charger power
PV and Battery	
P_G	Power flow from the grid
P_L	Power flow to the building load
P_{PV}	Power flow from the photovoltaic panel
P_{BI}	Power flow to the battery
P_R	Power flow to the rectifier
P_I	Power flow from the inverter
P_{BO}	Power flow from the battery
η_c	Battery charging efficiency
η_D	Battery discharging efficiency
η_{con}	Converter efficiency
η_I	Inverter efficiency
η_R	Rectifier efficiency
S_{Bat}^i	Battery state of charge at step i
S_{max_B}	Maximum and minimum allowed stated of charge
S_{min_B}	
P_{Gmax}, P_{Gmin}	Grid maximum and minimum power flow
P_{Bmax}	Battery maximum power flow
P_{Rmax}	Rectifier maximum power flow
P_{Imax}	Inverter maximum power flow
d_I, d_B	Power flow direction for battery and inverter
Q_{BAT}	Battery capacity
A_{AC}, B_{AC}	Air conditioner MPC constraint and bound matrices
A_{EV}, B_{EV}	Electric vehicle MPC constraint and bound matrices
A_{WH}, B_{WH}	Water heater MPC constraint and bound matrices
A_{Bat}, B_{Bat}	Battery MPC constraint and bound matrices
X_{AC}, X_{EV} , X_{WH}, X_{Bat}	Air conditioner, electric vehicle, water heater, and battery decision variables
a_1, a_2, a_3	Building load relation with other appliances decision variables

26 **1 Introduction**

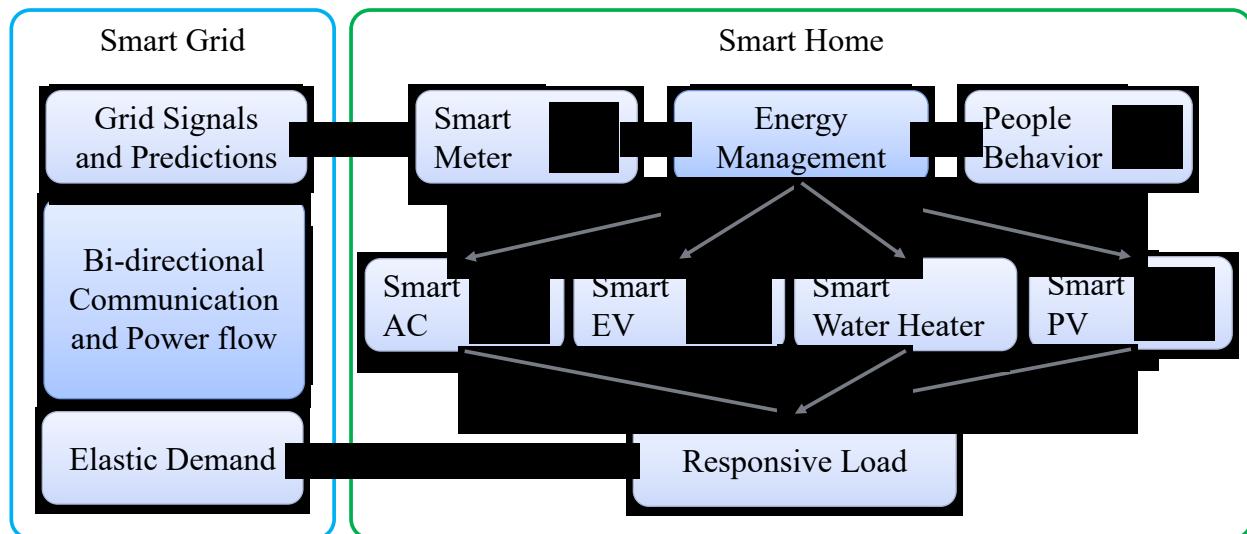
27 Buildings, as the major electricity consumers globally, play an important role in shaping cities
28 electricity generation, distribution and consumption and reducing greenhouse emission [1]. To
29 make energy consumption of a city more efficient and sustainable, building energy management
30 systems should be designed which can respond to the electricity grid conditions. However,
31 involving buildings in the grid operation is a challenge, due to current inelastic buildings'
32 electricity consumption and stochastic people behavior. This involvement requires buildings to
33 have a flexible demand, where their electricity usage can change in response to economic signals
34 [2]. For this purpose, many utility operators have designed demand response programs. These
35 demand response (DR) signals, include incentive based programs and price based programs [3-5].
36 However, all these signals can be transformed into a dynamic electricity rate for buildings. Some
37 popular pricing methods for DR are: time of use (TOU), critical peak pricing (CPP), extreme day
38 pricing (EDP), and real-time pricing (RTP). The main difference of these pricing schemes is the
39 level and frequency of price changes, which depends on the ability of the user to shift its
40 consumption. Since most buildings are not capable of automatically respond to these price
41 changes, DR pricing events happen less frequent than the actual price changes in the electricity
42 market, which causes a gap between the producer and the consumer. In an ideal situation, buildings
43 are charged a real-time cost of producing and distributing electricity and respond to its changes.
44 Or, they can participate in the electricity market and negotiate for its price by placing bid and offer.
45 However, such a load control should not interfere with people satisfaction in using their appliances.

46 Building consumption load is directly related to occupancy and number of people in a
47 building. On the other hand, the objective of providing comfort and services makes people
48 behavior modeling an important factor [6-8]. This consideration can result in more savings in some
49 appliances consumption. There are many studies showing that considering occupancy presence in
50 HVAC control system can save up to 23% [9, 10] in cost. This saving in HVAC operation mostly
51 is achieved by relaxing temperature set point during unoccupied periods. Beside this, ASHRAE
52 standard relates ventilation rate of each conditioned zone to the number of people in it, and the
53 lack of an occupancy based thermostat control has led to maximum capacity ventilation designs,
54 causing a large energy waste. Beside HVAC, lighting, appliances, water heater, PV battery and
55 electric vehicle can be controlled considering occupants' behavior in their operation. There are
56 many studies on optimally schedule appliances operation using input from the occupants, and
57 showed benefit of such an input [11]. However, there are not many studies trying to use behavior
58 patterns and occupancy models to avoid the extra input from the occupants. To automate such a
59 scheduling method, a reliable occupancy behavior consideration is required.

60 This study is trying to close the gap between occupancy behavior and appliances scheduling
61 method in different DR signals, by addressing these research questions:

- 62 • How does occupant's behavior affect appliances optimal control?
- 63 • Which pricing scheme is more effective in an optimal residential building energy
64 management system?
- 65 • How to include residential battery energy management system for appliance control?
- 66 • What is the difference between centralized and stand-alone home appliances predictive
67 control?

68 This paper introduces a price and behavior driven building energy management system
 69 (BEMS) using model predictive control(MPC). In this paper major residential appliances are
 70 controlled using both stand-alone and centralized MPC configuration. These appliances are
 71 residential air conditioner, water heater, electric vehicle, and battery. Three different pricing,
 72 namely TOU [12], day ahead hourly (DAP) [13] and whole sale five minutes [14] price, are used
 73 for performance evaluation. The main contribution of this paper is introducing occupant's
 74 behavior, extracted from smart meter data, into all levels of appliances control and introducing two
 75 methods of combining individual MPC controllers to achieve a better overall building
 76 performance. This method can be used in smart home energy management system where
 77 appliances are wireless enabled and can share information. The following figure (Figure 1) depicts
 78 the overall configuration of the proposed smart building control, where smart meter data is used
 79 to extract people behavior and used in different appliances to achieve a responsive load.



80

81 Figure 1: Overview of smart building to smart grid integration

82 This paper is organized as follow: Firstly, a comprehensive literature review is conducted and
 83 discussed. Secondly, the control methodology used for air conditioner, water heater, and electric

84 vehicle, stand-alone battery MPC and centralized MPC are described. Finally, the simulation
85 results are presented and discussed.

86 **2 Literature Review**

87 Building energy management system (BEMS) in literature refers to systems which are
88 designed for monitoring, scheduling and controlling of appliances. A survey on building energy
89 management systems has categorized them based on their control methodology, which are
90 optimization based BEMS, and schedule based BEMS [15]. Both methods are trying to shift in-
91 building consumers' operation to a later time when it is more efficient. In this paper, we use model
92 predictive control (MPC) to find the optimal control action for in-building devices, which fits in
93 optimization based BEMS category. The use of MPC in controlling individual devices such as EV,
94 and HVAC started to get attention of researchers in the past ten years. Most researches in this area
95 are focused on HVAC control, as heating, cooling, and air conditioning are high energy demanding
96 activities.

97 2.1 Individual appliances model predictive control

98 HVAC as the largest consumer of electricity in buildings has been the subject of many
99 research studies for many years[16-20]. Air conditioner control is tied up with building thermal
100 model, which brings non-linearity, and different disturbances into the model based control. To deal
101 with this complexity, metaheuristic optimization methods with a detailed EnergyPlus model is
102 used in [21]. Such a model demands large computational resources, which can be reduced to a
103 practical run time using a minimum reliable run period [21]. On the other hand, mathematical

104 programming methods with a reliable linear model can achieve optimality with less computational
105 effort [22]. Occupancy presence has been used for HVAC control in many research studies due to
106 its impact on energy savings [18, 23-25]. Markov chain has been used widely for occupancy
107 prediction in MPC implementations [26-28]. On the other hand, Predicted Mean Vote (PMV)
108 method has been used extensively to introduce people comfort into HVAC control problem [18].
109 In [29] MPC using occupancy prediction and estimation is put in contrast in an experimental test.
110 The results of this research show capabilities of MPC in utilizing either an estimated occupancy
111 behavior using common available sensors (PIR, temperature and CO₂) or dedicated sensors such
112 as 3D stereo vision camera with slightly better performance. In [30] occupancy presence pattern
113 extracted from building monitoring data is used for an occupancy based MPC control in a multi-
114 family residential building. In [31] advanced machine learning algorithms (Hidden Markov
115 Model) are used to predict occupancy presence for a MPC controlled HVAC system, resulting in
116 30% energy savings in heating season in a one month experimental test. In [32] effectiveness of a
117 HVAC control for grid integration is studied using MPC to maintain occupants' comfort while
118 minimizing operation costs in different electricity tariffs. In [33] three model predictive control
119 configurations are put in contrast in an experimental setup to control HVAC and battery in a PV
120 equipped building with the objective of maximizing comfort while minimizing cost in a dynamic
121 price environment. These MPC configurations are, simplified thermal model with dynamic
122 programming, simplified model with genetic algorithm and EnergyPlus model with genetic
123 algorithm. Savings results show small difference implementing these three configurations. In [34]
124 MPC is used to control room temperature set-points considering people comfort level to minimize
125 HVAC operating cost. In their study nonlinear MPC is solved using genetic algorithm in

126 MATLAB coupled with EnergyPlus for building thermal simulations, and people comfort criteria
127 is introduced to the system with occupant's input.

128 Vehicle to grid (V2G) concept discusses how to utilize electric vehicle battery as a distributed
129 energy storage for a more efficient grid operation [35]. V2G integration studies can be categorized
130 into bidirectional and unidirectional groups, where EV has a bidirectional [36] or unidirectional
131 [37] power flow with the grid. Many configurations have been proposed for V2G MPC control,
132 with control objectives of minimizing grid operation cost, loss, and emission or maximizing
133 vehicle owner revenue, grid performance and reliability [38]. In [39] a model predictive approach
134 is used for peak shaving and grid cost reduction, considering charging behavior predictions using
135 linear regression and mean estimation. There are not many studies considering peoples' behavior
136 in EV charging scheduling. However, this input is of great importance, as it effects EV
137 consumption shifting capability and user satisfaction [40].

138 On the other hand, battery management research is tied up with renewable integration and
139 distributed generation [41]. In [42] MPC based battery management system is designed for a
140 photovoltaic panels (PV) equipped residential building. In their study, a second-life battery
141 nonlinear model has been used with artificial neural network building load forecasting to minimize
142 electricity cost and carbon emission. In a similar study MPC based battery management is used
143 alongside appliances MPC control for a better load management using neural network (NN) for
144 building load predictions [43]. Building load prediction is a necessary input to MPC problem for
145 battery management, which is a challenge in residential buildings. In this study, we introduce two
146 methods of MPC controller integration to overcome this challenge.

147 Despite the fact that water heaters are responsible for about 18% electricity use [44] and they
148 are capable of shifting their consumption effectively, they have not been the subject of many
149 research studies compared to EV, HVAC, and battery. In [45] water heater with storage tank is
150 controlled using MPC to improve owner's benefit from self-consumption tariff in a PV equipped
151 building. In [46] water heater optimal scheduling problem is studied controlling its set-point and
152 its ON/OFF schedule in a day ahead dynamic pricing environment. In their study Dijkstra's
153 algorithm is used to find control actions which resulted in 23% - 29% savings. In another study,
154 multiple water heaters in residential sector are controlled using the MPC method to provide reserve
155 services for renewable generation [47]. However, more research is needed to be done on this
156 subject.

157 2.2 MPC based building energy management system

158 Distributed nature of building control motivates the BEMS design to be a distributed control.
159 Hence, this is the subject of many research studies [48-51]. In a multi agent building energy
160 management, each in-building device has its own control algorithm and it uses information from
161 other devices or a central management system to achieve an overall optimal operation. The total
162 operation stability and efficiency can be measured and simulated using game theory. In [52] a
163 multi agent operation control of a HVAC system in a commercial building is proposed for a near
164 optimal operation. Beside in-building distributed control, a cluster of smart buildings can be
165 studied as a multi agent system. In [53] simulations for a cluster of smart buildings with PV and
166 automated demand response show that the joint operation of smart buildings can achieve about
167 4.6% cost saving in a smart grid. In [54] optimal scheduling problem for shiftable appliances is
168 solved using MILP for four different buildings with different usage patterns for comparison with

169 the objective of reducing peak load resulted in 11% - 48% peak load shaving. All these multi agent
170 designs are aiming to solve a problem which is too big to solve in a centralized configuration.

171 In [55] an agent based BEMS is designed controlling heat pump, washing machine, dryer, and
172 dishwasher considering PV generation, building load model, and hourly dynamic pricing. Then
173 this BEMS is simulated in an aggregated 200 households to simulate capabilities of such a system
174 in peak shaving [56]. In [57] a building energy management solution is introduced controlling air
175 conditioner, water heater, and electric vehicle using MPC. This BEMS framework is programmed
176 in VOLTTRON platform in a later study with the same group [58]. BEMS in [3] is designed to
177 control thermal and electrical load using HVAC, EV, and appliances considering demand response
178 signal (TOU), PV production and Vehicle to grid (V2G) concept resulting in 28% to 40% savings.
179 This paper represents detailed mathematical formulation for such a problem with multi objective
180 optimization scheme considering, cost, energy, emission and comfort as objectives. In [59] an
181 experimental study is conducted on a small residential home equipped with PV, battery, and solar
182 collector testing price based MPC. In [60] the MPC based BEMS is studied for appliances with
183 different deferable time scales in hour-scale and day-scale time steps. In their study an electric
184 vehicle, PV, battery and local diesel generator is controlled considering stochastic behavior of PV
185 generation in a mixed integer nonlinear programing. In [61] fifteen in building schedulable
186 appliances including washing machine, air cleaner, lights, blinds, and, dryer are controlled in an
187 integer linear programming problem in a real time pricing scheme resulting in 13% - 22% cost
188 savings. In [62] schedulable appliances load, Electric vehicle, local generation and battery are
189 simulated in a building, and the linearized model is used to control these devices in a TOU tariff.
190 In [63] MPC performance under forecast uncertainties has been studied comparing stochastic MPC
191 and deterministic MPC in a home equipped with heat pump, PV panel, battery, and fuel cell.

192 Results of this paper shows that deterministic MPC can achieve acceptable results and uncertainty
 193 from weather forecasting is neglected. In [64] a behavior based MPC is designed for delay flexible
 194 appliances and HVAC system resulting in a considerable cost savings in hourly day ahead pricing
 195 (DAP).

196

197 Table 1: Recent studies on MPC based building energy management systems for residential
 198 buildings

Ref	Study year	Behavior based	MPC	Controlled devices					Grid signal			
				HVAC	WH	PV	Battery	EV	Appliances	TOU	RTP	Hourly
[55, 56]	2013	Centralized		x		x			x			x
[5]	2014	Centralized		x					x			x
[3]	2015	Centralized		x		x		x	x		x	
[65]	2015	Centralized		x	x		x		x			x
[64]	2016	x	Standalone	x					x	x		x
[66]	2016		Standalone	x		x	x					x
[28]	2016	x	x	x								x
[67]	2017		x	x						x	x	x
[59]	2017		Centralized	x		x	x			x		
This Study	2017	x	Centralized and Standalone	x	x	x	x	x		x	x	x

199
 200 In summary, numerous prior research studies focus on centralized or standalone control design of
 201 one or a few individual home appliances, considering one or more demand response or electricity
 202 pricing schemas, as summarized in Table 1. Specifically, a recent review paper on home energy
 203 management system shows that 25 research papers using dynamic pricing reported an average cost
 204 reduction of 23.1% and 19 research papers reported an average peak reduction of 29.6% [68].
 205 However, most of these studies do not consider how occupant behavior, often the leading energy
 206 consumption factor in residential buildings, can be integrated into the home energy management
 207 system. However, a simple occupant presence based thermostat control has demonstrated up to

208 22% energy savings [69]. The challenges to include occupant behavior into residential energy
209 management system design are:

210 1) Sensing and data acquisition: adding addition sensors in a residential building is extremely
211 difficult and often not possible due to privacy issues. Thus, the actual usage of an energy
212 consumer device is often unknown, which is a challenge to the residential appliance control
213 design.

214 2) Feature extraction from usage patterns: with the development of smart meters, rich data
215 sets are available to derive occupant energy usage patterns. What are the important features
216 from those patterns and how to integrate those features into the control design is still a
217 question.

218 In this study, a novel behavior and price based model predictive control (MPC) is first
219 introduced for individual appliances including air-conditioning, water heater, electrical vehicle
220 (EV) and battery energy storage system (BESS) for smart homes. The control design considers
221 both centralized and individual MPC approaches. Specifically, we develop a control algorithm to
222 operate the water heater at the minimum energy usage based on historic usage patterns without
223 knowing the future water heater usage schedules. In addition, we estimate the occupant arrival and
224 departure time of EV based on the historic probability distribution of EV usage. Furthermore, we
225 design a centralized MPC considering all different energy consumer devices in a smart home with
226 PV generation and battery energy storage system. Hence, the novelty of this paper is on the design
227 and modelling of occupant behavior based MPC for residential buildings in a holistic and
228 systematic perspective, and the comparison of energy cost savings based on various utility pricing
229 schemas to the current of state.

230 **3 Research Approach**

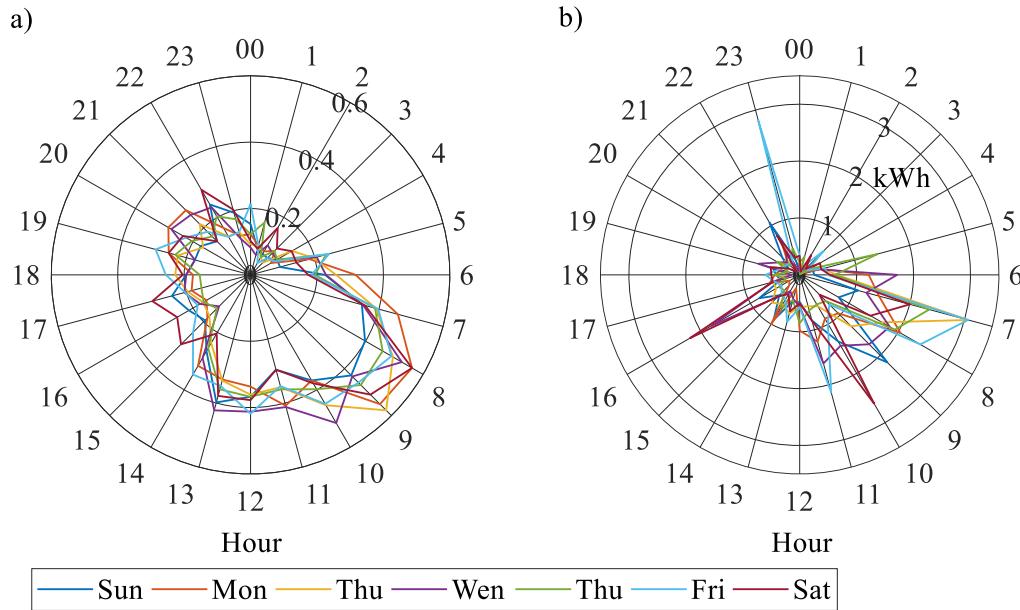
231 3.1 Description of case study

232 A residential building from Pecan Street Inc. database is selected as the case study [70]. This
233 building is equipped with 2.2 kW solar photovoltaic panels. The electric vehicle has a battery size
234 of 34 kWh with 3.3 kW charging power. The water heater has a tank size of 100 liters and has
235 maximum 2500W heating power. During the simulation, we added a battery size of a 5kWh with
236 charging and discharging efficiencies of 0.95 and rectifier and inverter efficiencies of 0.95. The
237 EV battery charging has an efficiency of 0.9. Smart meter data is from Pecan Street data sets with
238 5 minutes interval. The initial EV SOC at arrival, people hot water usage, and PV generation are
239 extracted from smart meter data. We assume a maximum charging and discharging power of 1 kW
240 for the PV battery and maximum allowable grid injected power of 8 kW.

241 3.2 Behavior patterns and feature extraction

242 3.2.1 *Water Heater*
243 *Behavior patterns*

244 Figure 2 shows the two years of hourly water heater usage pattern from Monday to Sunday for the
245 selected residential buildings of Pecan Street Inc. Specifically, Figure 2 a) shows the probability
246 of the water heater electricity usage in each hour of the day and Figure 2 b) shows the hourly
247 average energy consumed by the water heater. Figure 2 clearly shows that the water heater usage
248 has three peaks: early morning, evening and late night. Besides these three peaks, water heaters
249 try to maintain the temperature set-point most of the time. Hence, it is important and necessary to
250 consider such occupant behavior in control design to maximize the consumption shifting capability
251 while providing enough hot water.



252

253 Figure 2: Water heater usage pattern for 122 homes: a) probability of water heater electricity
254 usage in each hour of the day, b) average hourly energy consumed by the water heater

255

256 *Behavior feature extraction for controls*

257 Since major energy consumption of the water heater is related to hot water usage and not the
258 energy losses, reheating energy consumption mostly happens after a major hot water usage such
259 as shower. After this major hot water usage, the mean water temperature in the tank drops
260 significantly. However, the output hot water has the set-point temperature as the water in the tank
261 mixes slowly. The water heater controller should add just enough heating energy into the water
262 heater tank so that it is never cold. This is where the historical water heater usage patterns are used
263 in this intelligent control. We develop a new design for the lower bound of tank water temperature
264 to save energy. This lower bound increase with a rate that the total heating energy added to the
265 tank is larger or equal to the historical average energy drawn from the tank in each hour of a day.
266 Figure 3 shows the detailed algorithm. Lower bound temperature is designed to increase from
267 current water temperature to lower set-point dead band ($T_{set} - T_v/2$) with a rate equal to average

268 water heater energy use if it is in use. However, the tank maintains a safety temperature threshold
 269 of 40°C. This threshold is due to the fact that average historic energy consumption of water heater
 270 is defining the amount of energy added to the water. If we assume the input cold water to the tank
 271 is about 20°C and the output hot water is about 60°C, then MPC is utilizing only half of the tank
 272 $(60 - 40)/(60 - 20)$ energy storage. However, this does not mean that MPC will utilize only
 273 half of the energy consumption shifting capabilities, because the extracted energy due to hot water
 274 use is not always more than this threshold.

```

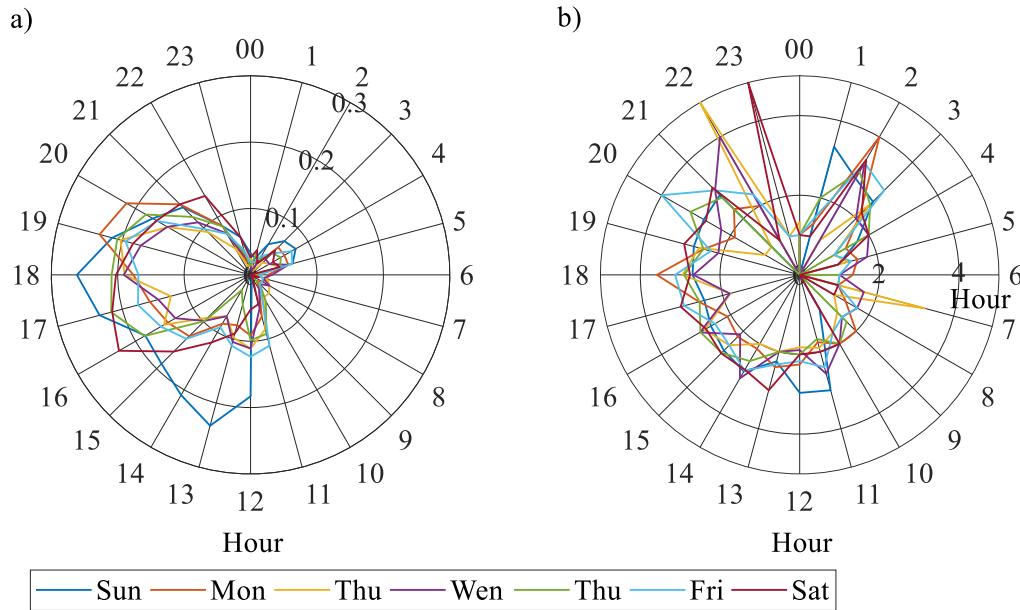
if  $T_{wh} > T_{set} - T_v/2$ 
   $T_{LB}^i = T_{set} - T_v/2$ 
else if  $T_{wh} < T_{set} - T_v/2$ 
  if  $T_{wh} < T_{LB}^{i-1}$ 
    if  $T_{wh} > 40^\circ\text{C}$ 
       $T_{LB}^i = T_{wh}$ 
    else if  $T_{wh} < 40^\circ\text{C}$ 
       $T_{LB}^i = 40^\circ\text{C}$ 
    end
  else if  $T_{wh} > T_{LB}^{i-1}$ 
    if  $T_{LB}^i < (T_{set} - T_v)/2$ 
       $T_{LB}^i = T_{LB}^{i-1} + (Q_m^i)/C_{wh}$ 
    else if  $T_{LB}^i > (T_{set} - T_v)/2$ 
       $T_{LB}^i = (T_{set} - T_v)/2$ 
  end end end

```

275

276 Figure 3: Water heater temperature lower bound design logic

277 3.2.2 EV Behavior
 278 *Behavior patterns*



279

280 Figure 4: EV charger behavior patterns from Monday to Sunday: a) probability of the charger
 281 electricity usage in each hour of the day, b) average charging duration of each plug-in hour

282

283 Figure 4 a) shows the probability of the charger electricity usage in each hour of the day based
 284 2 years data. For this particular house, the EV has a high probability of charging between 5pm and
 285 7pm for weekdays and between 1pm to 6pm for weekends. Figure 4 b) shows the average charging
 286 duration of each plug-in hour. Depending on what time the EV is plugged in, the charging duration
 287 is between 0.5 to 5 hours. Most of the time, the charging duration is around 3 hours if the EV is
 288 plugged in between 11am to 8pm.

289

Behavior feature extraction for controls

290

291 Smart meter data of EV electricity consumption in the selected building is used to capture EV
 292 arrival time. In order to schedule EV charging, departure time should be known or accurately
 293 estimated. This estimation of departure time is important to make sure that the EV is fully charged
 before it departs while minimizing the charging cost. One potential approach is to estimate this

294 departure time using historical data for departure time and build up a cumulative probability for
 295 every arrival time and pick a departure time through a random sampling. However, in this study,
 296 we developed an algorithm based on EV usage patterns presented in Figure 4. It is designed with
 297 the assumption that the departure happens sometime between arrival and twice of the historical
 298 average charging duration as shown in Figure 5.

For $n = 1$ to $n_m = (t_i^c)/dt$
 $\pi(EV \ stay \ Connected \ until \ n + i) = 1 - \frac{1}{n_m} \sum_1^n \left(1 - \frac{\pi_{n+i}^{use}}{\pi_{max}^{use}}\right)$
IF $rand(n) < \pi(n + i)$:
 $t_D = Time(i + n)$
End
IF *no t_D was found*:
 $t_D = t_i^c$

299

300

Figure 5: Electric vehicle departure time estimation

301

302 After estimating a departure time, A lower bound is designed for the EV SOC to limit the lowest
 303 allowed SOC in a way that EV is charged before the estimated departure time. The EV starts
 304 charging if the SOC is below 40%. Figure 6 describes the logic on how the lower bound is
 305 designed. Then this lower bound is fed to the MPC problem.

306

if $S_{EV}^i < 40\%$
 $S_{LB_EV}^i = 40\%$
else if $90\% > S_{EV}^i > 40\%$
 $S_{LB_EV}^i(j) = S_{LB_EV}^{i-1} + \frac{(90 - S_{EV}^{init})}{(t_D - t_a)} \times dt$
else if $S_{EV}^i \geq 90\%$
 $S_{LB}^i = 90\%$

307

308

Figure 6: Electric vehicle SOC lower bound design

309 3.3 Standalone Model Predictive Control Design

310 Model predictive control (MPC) is a controller design which use system model to predict
 311 future states of the system and pick a set of control actions that optimize an objective function
 312 [71]. The general form of the MPC problem used in this study is presented in the following
 313 formulation. The objective function includes two parts: cost of operation, and cost of constraint
 314 relaxation. Linear models are used for the MPC formulation to take advantage of fast mathematical
 315 programming algorithms to solve the problem [10]. It should be mentioned that MPC is fairly
 316 robust to disturbances and modeling errors [72]. Usually system duties are defined in the MPC
 317 constraint to insure they are satisfied. These constraints are state of charge boundaries in battery
 318 and EV control, and temperature limits in water heater and AC control.

319

$$\min \sum_{i=1}^m p_i P_i dt + \omega \varepsilon_i \quad (1)$$

Subject to:

$$LB - \varepsilon_i < X_{in}^{i+1} < UB + \varepsilon_i$$

$$\mathbf{x}^{n+1} = \mathbf{A}\mathbf{x}^n + \mathbf{B}\mathbf{u}$$

$$P_i = f_P(u)$$

$$u_i \in U \quad \varepsilon_i \in \mathbb{R}_{\geq 0}$$

320

321 Beside the operation cost in the objective function, there is a weighted free variable which is
 322 designed to relax constraints to avoid infeasibility. All designed free and decision variable weights

323 have the same unit. This is how the relaxing variable works. When system states are outside the
324 designed boundaries and the system physically is not able to move the states back to the designed
325 boundaries in one control step (for example, when indoor temperature is not in the comfort zone
326 and the AC is not able to move it back to the comfort zone in just one control horizon step), then
327 the free variable (s) which is designed to relax the constraint will increase, which results in a grow
328 in penalty cost on the objective function. This penalty cost has a large value when the boundary
329 violation is considerable. If the boundary violation is very small (smaller than the designed
330 tolerable violation in free variable gain design ω), then the system will relax the constraint slightly
331 to avoid an unnecessary control action. Hence, as long as the cost of relaxing the constraints is
332 greater than the cost of operating the device (considerable boundary violation), the optimization
333 result is to turn on the device.

334 *3.3.1 Air conditioning*
335

336 In order to separate simulation model from the model used for model predictive control and
337 nonlinearities, an online estimation method is used to estimate building thermal behavior in every
338 step of control using historical data available from previous simulation steps. Gains of a linear
339 model relating indoor temperature changes to previous switching control actions, outdoor and
340 indoor temperature difference, and solar radiation, are estimated solving a least squared error
341 problem.

$$\dot{T}_{\text{in}} = (x_{AC}) \times \alpha_1 + (T_{\text{out}} - T_{\text{in}}) \times \alpha_2 + (Q_{\text{solar}}) \times \alpha_3 + \alpha_4 \quad (2)$$

342 For this estimation 20 steps of historical data, which is 100 minutes, have been used.
343 Estimation error has been measured in degree Celsius by calculating the difference between
344 estimated temperature in previous step of the simulation and the actual resulted temperature for

345 the current step of simulation. Simulation results show that increasing estimation steps more than
 346 20 steps won't increase the accuracy of gain estimations significantly. This model simply fit a
 347 linear model to the latest thermal behavior of the building, and its projection is used for the
 348 predictive control. Simulated building thermal model is a resistance capacitance (RC) network
 349 model verified with AC load in a residential building [73]. This error has a mean value of zero and
 350 variance of 0.01°C for one step (five minutes ahead) modeling in a one-year simulation test.

351 In this study, a residential unitary air to air heat pump is used as the air conditioner using
 352 coefficient of performance to calculate AC thermal load and an energy input ratio curve to relate
 353 AC performance to indoor and outdoor temperatures [73]. MPC problem for the AC control is
 354 designed to minimize operation cost of AC while maintaining indoor temperature. The constraint
 355 on the temperature is for $\pm 1.5^\circ\text{C}$ when the building is not occupied. The decision variable for the
 356 optimization problem is a binary (ON/OFF) decision. The problem is solved with a prediction
 357 horizon of one hour, at five minutes step. One hour is chosen because simulation results for a
 358 longer prediction horizon does not show significant cost savings changes. The temperature
 359 constraint relaxation tolerance for the AC is considered to be 0.1°C resulting in $\omega =$
 360 $\text{abs}(p_i)P_{AC}dt/0.1$. The overall MPC problem is formulated as below:

$$\min \sum_{i=1}^m p_i P_{AC} x_{AC}^i dt + \omega_{AC} \varepsilon_{AC}^i \quad (3)$$

Subject to:

$$\begin{aligned} LB_{AC} - k_{oc_AC} \times (1 - OC_i) - \varepsilon_{AC}^i &< T_{in}^{i+1} < UB_{AC} + k_{oc_AC} \times (1 - OC_i) + \varepsilon_{AC}^i \\ T_{in}^{i+1} &= T_{in}^i + (x_{AC}^i) \times \alpha_1 + (T_{out}^i - T_{in}^i) \times \alpha_2 + (Q_{solar}) \times \alpha_3 + \alpha_4 \end{aligned}$$

$$x_i \in \{0,1\} \quad \varepsilon_i \in \mathbb{R}_{\geq 0}$$

361 3.3.2 *Water heater*

362

363 Water heaters are responsible for almost 18% energy consumption in buildings [44]. Prior
 364 studies try to utilize water heater storage tank to respond to demand response programs [74, 75].
 365 However, to the best of author's knowledge, none of them consider occupant behavior in their
 366 controls, and a few of them are studied in an integrated control with other appliances [65]. The
 367 MPC problem for the water heater follows the same general format in Eq. (1). This problem is to
 368 minimize the operation cost while maintaining average water tank temperature. The MPC problem
 369 has been solved for a prediction horizon of four hours for every five minutes. The model used in
 370 the MPC problem is a one-node linear water heater model derived from energy balance principals.
 371 The temperature constraint relaxation tolerance for the water heater is considered to be 0.5°C
 372 resulting to $\omega = \text{abs}(p_i)P_{\text{element}}dt/0.5$.

$$\min \sum_{i=1}^m p_i P_{\text{element}} x_i dt + \omega_{wh} \varepsilon_{wh}^i$$

Subject to:

(4)

$$T_{LB}^i - \varepsilon_i < T_{wh}^{i+1} < T_{UB}^i + \varepsilon_i$$

$$T_{wh}^{i+1} = T_{wh}^i + \frac{P_{\text{element}}}{C_{wh}} x_i dt - \frac{\dot{m}C_w}{C_{wh}} (T_{wh}^i - T_{amb}) dt - \frac{K_{wh}}{C_{wh}} (T_{wh}^i - T_{amb}) dt$$

$$x_i \in \{0,1\} \quad \varepsilon_i \in \mathbb{R}_{\geq 0}$$

373 3.3.3 *Electric vehicle*

374

375 Previous research studies focus on utilizing electric vehicle battery for demand response programs
 376 under vehicle to grid (V2G) concept [76]. In most of these studies, model predictive control is used
 377 for price based EV battery management in individual EV charging problem or fleet of EVs in
 378 linear and nonlinear configurations. A linear model is used so that a fast mixed integer linear
 379 programming (MILP) optimization solver can be used. The SOC constraint relaxation tolerance
 380 for the EV is considered to be 1% resulting in $\omega = \text{abs}(p_i)P_C dt/1$. EV is modeled with a battery
 381 size of 34 kWh and residential charger of 3.3 kW. Five hours prediction horizon is chosen with
 382 respect to average connection time of four hours. The choice of prediction horizon highly depends
 383 on the capability of the device to shift its consumption and existence of lower prices in further
 384 periods. The following equation formulates the MPC control design for the EV:

$$\min \sum_{i=1}^m p_i P_C x_i dt + \omega_{EV} \varepsilon_{EV}^i \quad (5)$$

Subject to:

$$S_{LB_EV}^{i+1} - \varepsilon_i < S_{EV}^{i+1} < S_{UB_EV}^{i+1} + \varepsilon_i$$

$$S_{EV}^{i+1} = S_{EV}^i + \frac{dt}{Q_{EV}} (\eta_c P_C x_i - \eta_d P_d)$$

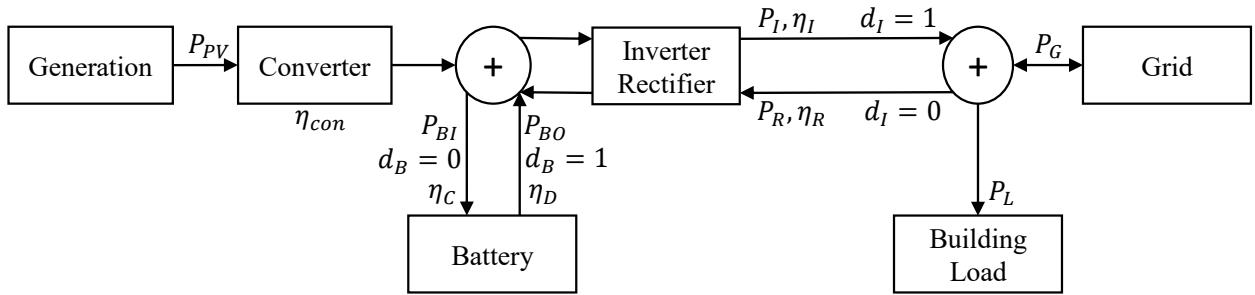
$$x_i \in \{0,1\} \quad \varepsilon_i \in \mathbb{R}_{\geq 0}$$

385

386 3.3.4 *Stand-alone MPC Design with BESS*
 387

388 In many practices building load can only be powered up by either the grid or inverter output
 389 and the grid does not accept negative load. However, this is not the most efficient configuration.
 390 In order to benefit from feed-in-tariff and utilize the battery to respond to grid signals, power flow

391 is designed bidirectional in this study between building and the grid as shown in Figure 7. The PV
 392 generation data is from measured data of the selected building. The converter, inverter, and
 393 rectifier are modeled with a constant efficiency, and power flow directions are chosen as a free
 394 variable to avoid nonlinearity caused by the flow direction. This brings two extra decision variables
 395 to the problem.



396

397 Figure 7: Overview of building-to-grid power flow with PV and Battery
 398 The MPC problem for a battery energy storage system is designed to minimize the building
 399 operation cost. Two power balance equations are used as constraints for the following two points
 400 in the system. One is where the battery is connected with the converter and inverter and the other
 401 is where the inverter, building and grid are connected. Other constraints include: the maximum
 402 and minimum power flows and battery state of charge limits. A free variable is used to relax SOC
 403 constraint to avoid infeasibility with constraint relaxation tolerance of 0.1 resulting to $\omega =$
 404 $abs(p_i)P_{Bmax}dt/0.1$. Finally, constraints on P_I , P_O , P_{BO} and P_{BI} limit power flows to be on one
 405 direction depending on d_I and d_B free variables.

$$\min \sum_{i=1}^m p_i P_G^i dt + \omega_{Bat} \varepsilon_{Bat}^i \quad (6)$$

Subject to:

$$\begin{aligned} P_G &= P_L + P_R - P_I \\ P_{PV} \eta_{con} &= P_{BI} - P_{BO} + P_I / \eta_I - \eta_R P_R \end{aligned}$$

$$S_{Bat}^{i+1} = S_{Bat}^i + \frac{dt}{Q_{Bat}} (\eta_C P_{BI} - 1/\eta_D P_{BO})$$

$$90 - \varepsilon_i < S_{Bat}^{i+1} < 20 + \varepsilon_i$$

$$P_{Gmin} \leq P_G \leq P_{Gmax}$$

$$0 \leq P_I / P_{I_{max}} \leq d_I$$

$$0 \leq P_O / P_{O_{max}} \leq 1 - d_I$$

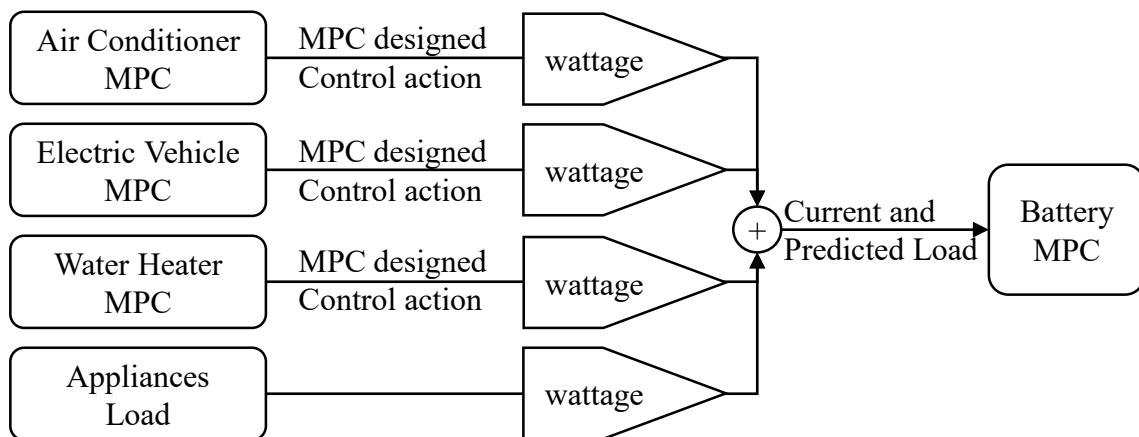
$$0 \leq P_{BO} / P_{B_{max}} \leq d_B$$

$$0 \leq P_{BI} / P_{B_{max}} \leq 1 - d_B$$

$$d_I, d_B \in \{0,1\} \quad P_{BI}, P_{BO}, P_I, \varepsilon_i \in \mathbb{R}_{\geq 0}$$

406

407 This MPC is solved using MILP to find optimal battery operation based on load and PV
 408 generation predictions. PV generation prediction is derived from weather data. However,
 409 residential building load prediction is a challenge due to its highly stochastic behavior. In order to
 410 estimate future load of the building, MPC solutions of other appliances in each step of the control
 411 are summed up as shown in Figure 8. MPC output of each device at each step is a sequence of
 412 control actions that optimizes its objective function.



414

Figure 8: Overview of standalone MPC configuration

415 The MPC problem is solved for a prediction horizon of eight hours with five minutes time
416 interval. The battery MPC problem could have a long prediction horizon in order to respond to
417 daily price changes happen in high peak and low peak periods. In general, each high, mid, and low
418 peak prices happen in one third of the day. To make the MPC problem to see future lower prices
419 in a day, at least eight hours of prediction is needed. In order to, test this hypothesis, different
420 prediction horizons are tested for one day simulation. It is observed that control actions for battery
421 control does not change for any prediction horizon longer than eight hours.

422 3.3 Centralized MPC Design for Integrated Systems with BESS

423 In an ideal situation, there would be a controller which is aware of all devices models, and
424 disturbances predictions. This ideal scenario is configured as a centralized controller, where one
425 MPC controller produces control actions for all connected devices. To design such a controller,
426 the whole building has been modeled as one system to reduce building operation cost. In this
427 system, control actions include: the AC on/off, water heater on/off, EV on/off , and the battery
428 charge and discharge decisions. The system model includes: the AC and building thermal model,
429 EV battery model, water heater model, and battery and PV model. Disturbances to such a system
430 would be, ambient weather, solar radiation, building load, and PV generation. These devices
431 operation come to affect each other in the battery operation, where the building total load is
432 introduced to the problem. Hence, if the battery management and grid constraints are removed
433 from such a problem, the individual MPC would result in the same operation for the AC, EV, and
434 water heater as the centralized MPC. The ability of this centralized controller to affect other
435 devices load with respect to battery operation will give this controller more flexibility in control,
436 and brings total awareness to the problem. Eq. (7) shows the general form of such a problem,

437 combining four MPC problems of the EV, AC, water heater, and PV-battery into one centralized
 438 format.

$$\min \sum_{i=1}^m p_i \times P_G^i dt + \omega \varepsilon_i \quad (7)$$

Subject to:

$$\begin{bmatrix} A_{AC} & 0 & 0 & 0 \\ 0 & A_{EV} & 0 & 0 \\ 0 & 0 & A_{WH} & 0 \\ a_1 & a_2 & a_3 & A_{Bat} \end{bmatrix} \begin{bmatrix} X_{AC} \\ X_{EV} \\ X_{WH} \\ X_{Bat} \end{bmatrix} \leq \begin{bmatrix} B_{AC} \\ B_{EV} \\ B_{WH} \\ B_{Bat} \end{bmatrix}$$

439
 440 In this Problem A_{AC} , A_{EV} , A_{WH} and A_{Bat} are the constraint matrices explained in each device
 441 section, representing the model of each device and constraints in its operation with previously
 442 defined boundaries (B_{AC} , B_{EV} , B_{WH} and B_{Bat}). Objective of such a problem includes the total
 443 building operation cost and penalties for all slack variables. The objective function of such a
 444 problem can be constructed combining all previously defined objective functions (obj_i^{bat} , obj_i^{AC} ,
 445 obj_i^{EV} , obj_i^{WH}). The following shows how the building total energy cost as the objective can
 446 perform the same as combination of previously define objectives:

447

$$\left\{ \begin{array}{l} P_G = P_L + P_R - P_I \\ P_L = P_{element} x_i^{WH} + P_C x_i^{EV} + P_{AC} x_i^{AC} + P_{rest} \end{array} \right\} \xrightarrow{\text{MPC objective}} p_i \times P_G^i dt + \omega \varepsilon_i \quad (8)$$

$$= p_i \times (P_L^i + P_R^i - P_I^i) dt + \omega \varepsilon_i$$

$$\begin{aligned}
&= p_i \times (P_{element} x_i^{WH} + P_C x_i^{EV} + P_{AC} x_i^{AC} + P_{rest} + P_R^i - P_I^i) dt + \omega_{EV} \varepsilon_{EV}^i + \omega_{AC} \varepsilon_{AC}^i \\
&\quad + \omega_{wh} \varepsilon_{wh}^i + \omega_{Bat} \varepsilon_{Bat}^i \\
&= (p_i P_{element} x_i^{WH} dt + \omega_{wh} \varepsilon_{wh}^i) + (p_i P_C x_i^{EV} dt + \omega_{EV} \varepsilon_{EV}^i) \\
&\quad + (p_i P_{AC} x_i^{AC} dt + \omega_{AC} \varepsilon_{AC}^i) + p_i \times (P_{rest} + P_R^i - P_I^i) dt + \omega_{Bat} \varepsilon_{Bat}^i
\end{aligned}$$

P_{rest} is the rest of the load associated with other appliances consumption, which can be removed from objective as this load is not controllable in this MPC configuration and it is not a function of decision variables.

$$\Rightarrow p_i \times P_G^i dt + \omega \varepsilon_i = obj_i^{bat} + obj_i^{AC} + obj_i^{EV} + obj_i^{WH}$$

448 By removing the uncontrollable portion P_L and P_{rest} , the centralized formulation of the MPC
449 control becomes:

$$\min \sum_{i=1}^m p_i \times P_G^i dt + \omega_{Bat} \varepsilon_{Bat}^i + \omega_{EV} \varepsilon_{EV}^i + \omega_{AC} \varepsilon_{AC}^i + \omega_{wh} \varepsilon_{wh}^i$$

Subject to:

$$\begin{aligned}
P_G &= P_L + P_R - P_I \\
P_{PV} \eta_{con} &= P_{BI} - P_{BO} + P_I / \eta_I - \eta_R P_R \\
S_{Bat}^{i+1} &= S_{Bat}^i + \frac{dt}{Q_{Bat}} (\eta_C P_{BI} - 1 / \eta_D P_{BO}) \\
90 - \varepsilon_{Bat}^i &< S_{Bat}^{i+1} < 20 + \varepsilon_{Bat}^i \\
P_{Gmin} \leq P_G &\leq P_{Gmax} \\
0 \leq \frac{P_I}{P_{Imax}} &\leq d_I \\
0 \leq \frac{P_O}{P_{Rmax}} &\leq 1 - d_I \\
0 \leq \frac{P_{BO}}{P_{Bmax}} &\leq d_B \\
0 \leq \frac{P_{BI}}{P_{Bmax}} &\leq 1 - d_B \\
S_{LB_EV}^{i+1} - \varepsilon_{EV}^i &< S_{EV}^{i+1} < S_{UB_EV}^{i+1} + \varepsilon_{EV}^i \\
S_{EV}^{i+1} &= S_{EV}^i + \frac{dt}{Q_{EV}} (\eta_c P_C x_{EV}^i - \eta_d P_d) \\
T_{LB}^i - \varepsilon_{wh}^i &< T_{wh}^{i+1} < T_{UB}^i + \varepsilon_{wh}^i
\end{aligned} \tag{9}$$

$$\begin{aligned}
T_{wh}^{i+1} &= T_{wh}^i + \frac{P_{element}}{C_{wh}} x_i dt - \frac{\dot{m}C_w}{C_{wh}} (T_{wh}^i - T_{amb}) dt - \frac{K_{wh}}{C_{wh}} (T_{wh}^i - T_{amb}) dt \\
LB_{AC} - k_{oc_AC} \times (1 - OC_i) - \varepsilon_{AC}^i &< T_{in}^{i+1} < UB_{AC} + k_{oc_AC} \times (1 - OC_i) + \varepsilon_{AC}^i \\
T_{in}^{i+1} &= T_{in}^i + (x_{AC}^i) \times \alpha_1 + (T_{out}^i - T_{in}^i) \times \alpha_2 + (Q_{solar}) \times \alpha_3 + \alpha_4 \\
P_L &= P_{element} x_{WH}^i + P_C x_{EV}^i + P_{AC} x_{AC}^i \\
x_{WH}^i, x_{EV}^i, x_{AC}^i &\in \{0,1\} \\
d_I, d_B &\in \{0,1\} \quad P_{BI}, P_{BO}, P_I, \varepsilon_{Bat}^i, \varepsilon_{EV}^i, \varepsilon_{AC}^i, \varepsilon_{wh}^i \in \mathbb{R}_{\geq 0}
\end{aligned}$$

450

451 The MPC problem formulated in this configuration, has different prediction horizon for each
452 device which is defined in each individual MPC problem. Optimization step is chosen as five
453 minutes, corresponding to the lowest desired optimization resolution.

454 **4 Results and Discussions**

455 One year simulation is performed with three different pricing schemas to evaluate energy
456 shifting capabilities and cost savings. The three pricing schemas are: TOU pricing from PG&E in
457 California, day ahead hourly price from ComEd, and five minutes locational marginal price (LMP)
458 from MISO. All prices are scaled to have an average value of 14 cents/kWh. Table 2 reports energy
459 cost savings achieved in each device from traditional on/off to MPC controller. In Table 2 the EV,
460 water heater, and AC savings are reported comparing with the standalone MPC controller and
461 integrated MPC controller sing traditional rule based (on/off) controller as the baseline. The battery
462 energy savings are related to comparing the centralized and standalone MPC with traditional
463 controls of battery.

464 Table 2: Energy cost savings

Device:	Overall	Battery	Electric Vehicle	Water Heater	AC
---------	---------	---------	------------------	--------------	----

Controller:	C-MPC	SA-MPC	C-MPC	SA-MPC	C-MPC	SA-MPC	C-MPC	SA-MPC	C-MPC	SA-MPC
Compared to:	RB	RB	RB-MPC*	RB-MPC*	RB	RB	RB	RB	RB	RB
Pricing										
RTP	42.5	42.6	26.5%	26.4%	31.0%	31.0%	28.1%	28.0%	22.3%	22.2%
TOU	26.4	21.8	19.3%	14.3%	14.8%	14.5%	17.4%	17.1%	14.7%	16.3%
Hourly	17.2	14.4	12.0%	9.1%	7.5%	7.5%	14.5%	14.0%	17.0%	18.6%

*RB-MPC: Traditional rule based (RB) battery management with standalone MPC for other devices

RB: On/off rule based controller

C-MPC: Centralized MPC controller

SA-MPC: Stand-alone MPC controller

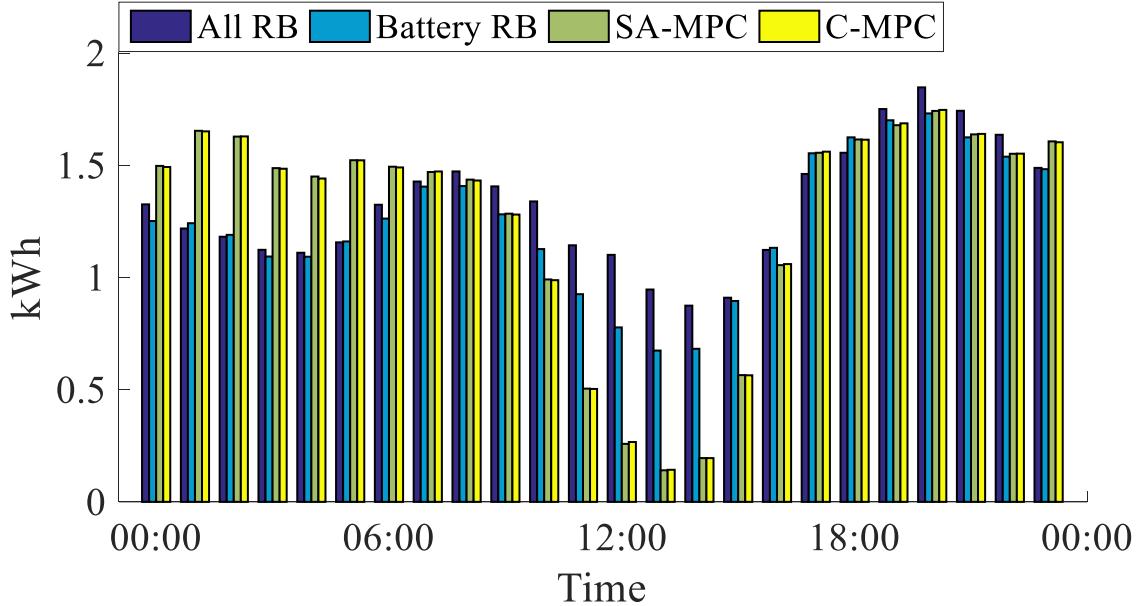
465

466 These results show that this residential building could save more for all appliances when it is
 467 under a real time five minutes pricing, and save the least under an hourly pricing schema. This
 468 shows the effectiveness of TOU pricing in encouraging residential buildings to shift their
 469 consumption. RTP has the largest variance of 3 cent/kWh, TOU in the middle with variance of 0.5
 470 cent/kWh, and DAP with 0.3 cent/kWh. However, frequency of changes and other factors might
 471 affect these savings as well.

472 4.1 Average building load on the grid

473 The following three graphs (Figure 9, Figure 10 and Figure 11), depicts one year average
 474 hourly energy consumption during a day in three pricing schemes (TOU, hourly, RTP). All rule
 475 based control refer to traditional methods of control in all devices, which has the same value in all
 476 graphs. Battery rule based refer to a test scenario where EV, water heater, and AC are controlled
 477 with standalone MPC and the battery is controlled using traditional rule based controller, which is
 478 the scenario of saving comparison reported in the previous table of savings for battery. Stand-alone
 479 MPC is when each device MPC is solved locally at each device and the battery uses control action

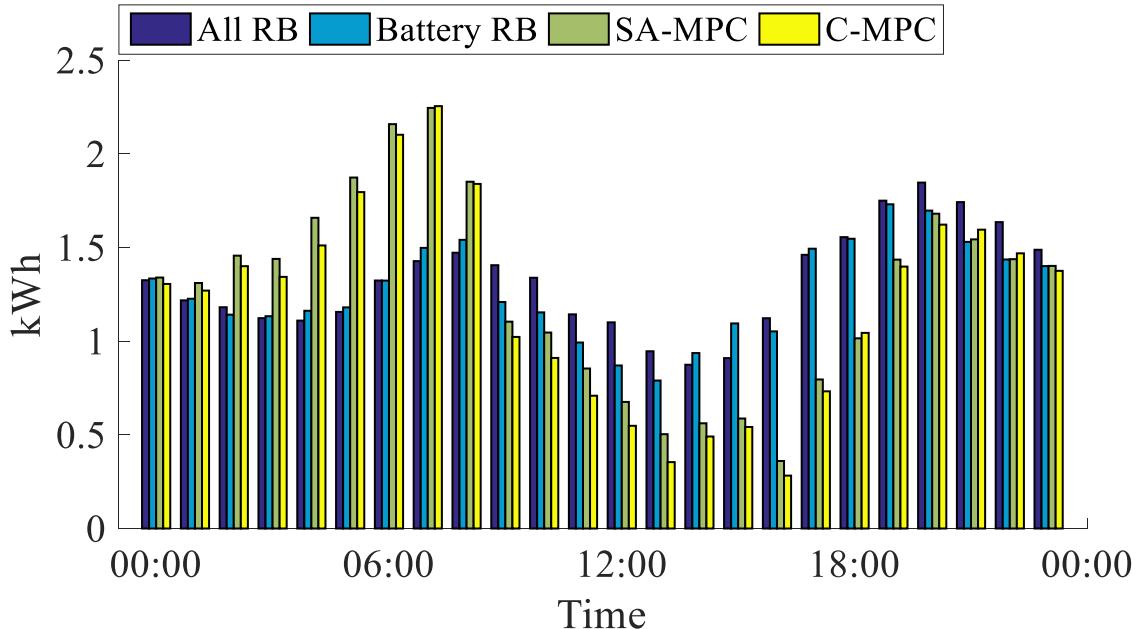
480 prediction from other MPC controllers to design its control action. Finally, centralized MPC is the
 481 ideal situation where all devices and battery are controlled in one integrated MPC problem.



482

483

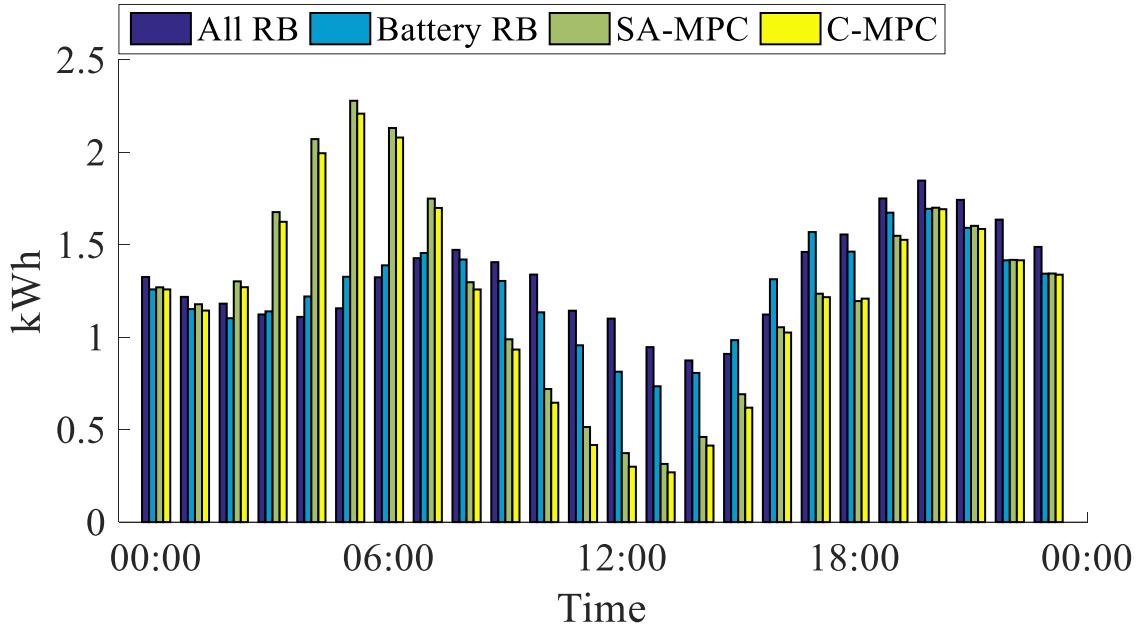
Figure 9: One year average Power flow from the grid in RTP



484

485

Figure 10: One year average Power flow from the grid in TOU pricing



486

487

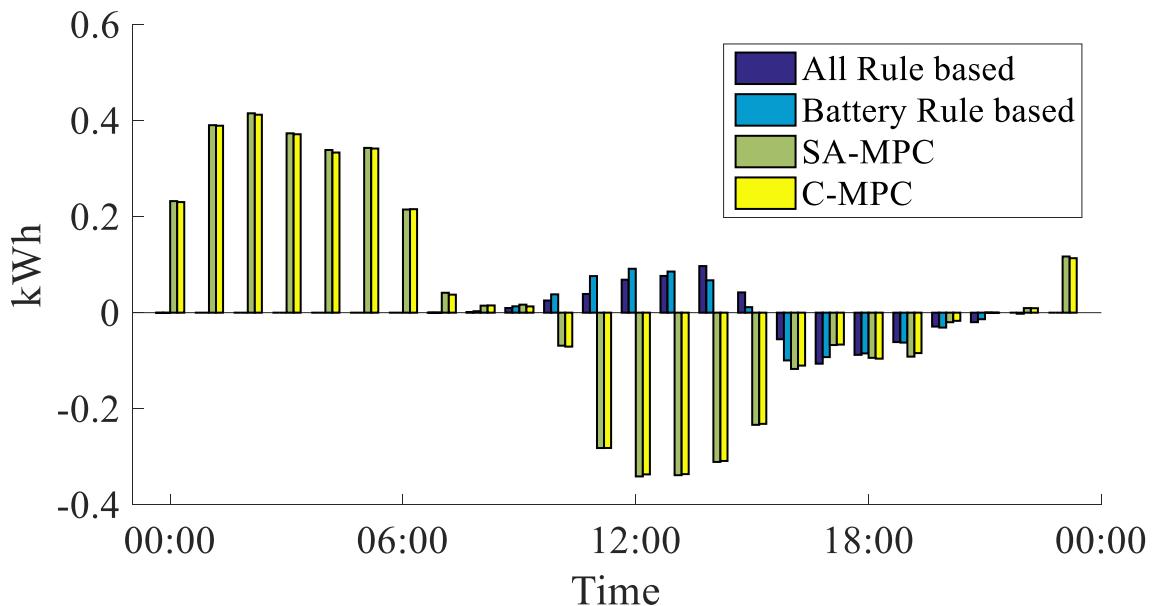
Figure 11: One year average Power flow from the grid in Hourly DAP

488

489 In all these figures (Figure 9, Figure 10 and Figure 11) the minimum required power from
490 the grid happens at 1:00 PM corresponding to maximum PV generation. Maximum required power
491 from the grid in a traditional operation happens at 8:00 PM corresponding to peak building
492 consumption due to occupant behavior. However, under battery MPC control in both centralized
493 and stand-alone schemes move the peak power flow to 5:00 AM in the hourly pricing and 7:00
494 AM in TOU pricing. Figure 9 shows that under RTP required power flow from the grid is more
495 smoothed out with less peaks. This demonstrates the advantage of charging buildings under RTP
496 compared to other pricing schemes from the grid perspective and peak shaving purposes. Figure
497 10 and Figure 11 show similar patterns for required power from grid.

498 4.2 Average battery load

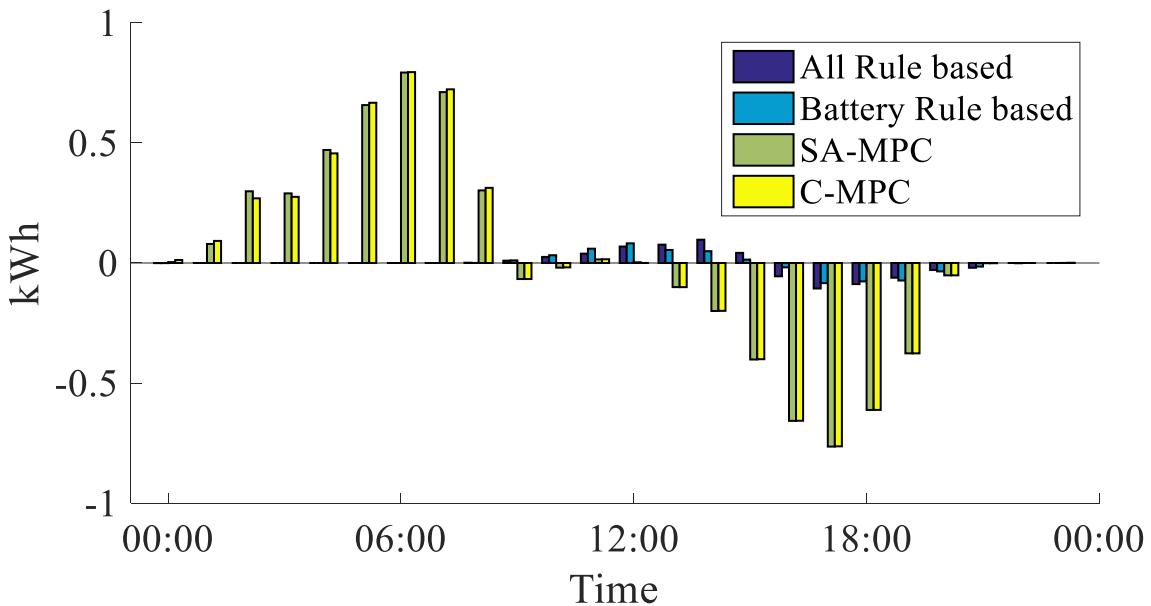
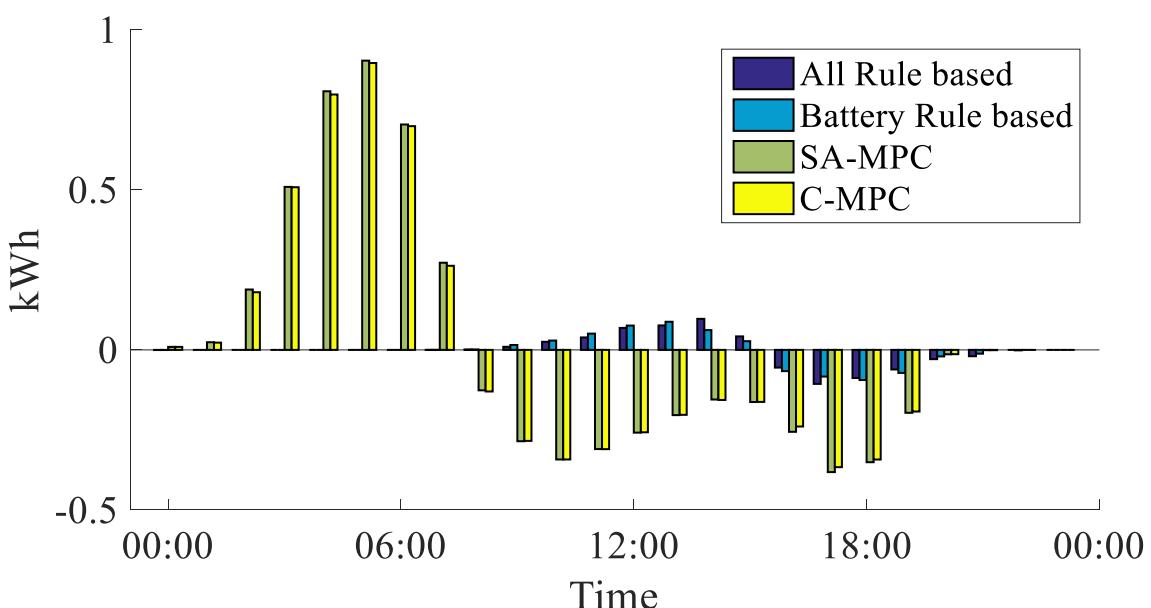
499 Figure 12, Figure 13 and Figure 14 show the average battery power flow for one year
 500 simulation in each hour of the day for different pricing schemes. In all the pricing schemes the
 501 battery is being charged during the night and tempt to discharge during the day corresponding to
 502 lowest and highest average electricity price. In RTP (Figure 12) the battery discharging time falls
 503 in noon time to maximize grid feed-in corresponding to high average RTP in these hours. In TOU
 504 (Figure 13) discharging happen in peak price period between 2:00 PM and 9:00 PM, and in DAP
 505 (Figure 14) discharging happen between 8:00 AM and 7:00 PM. These discharging periods show
 506 how DAP pricing behave between RTP and TOU in grid favor. In other words, if we assume that
 507 the ideal building load on the grid behavior is happening in real time locational marginal pricing
 508 (RTP), then DAP have a closer behavior to the ideal behavior than TOU.



509

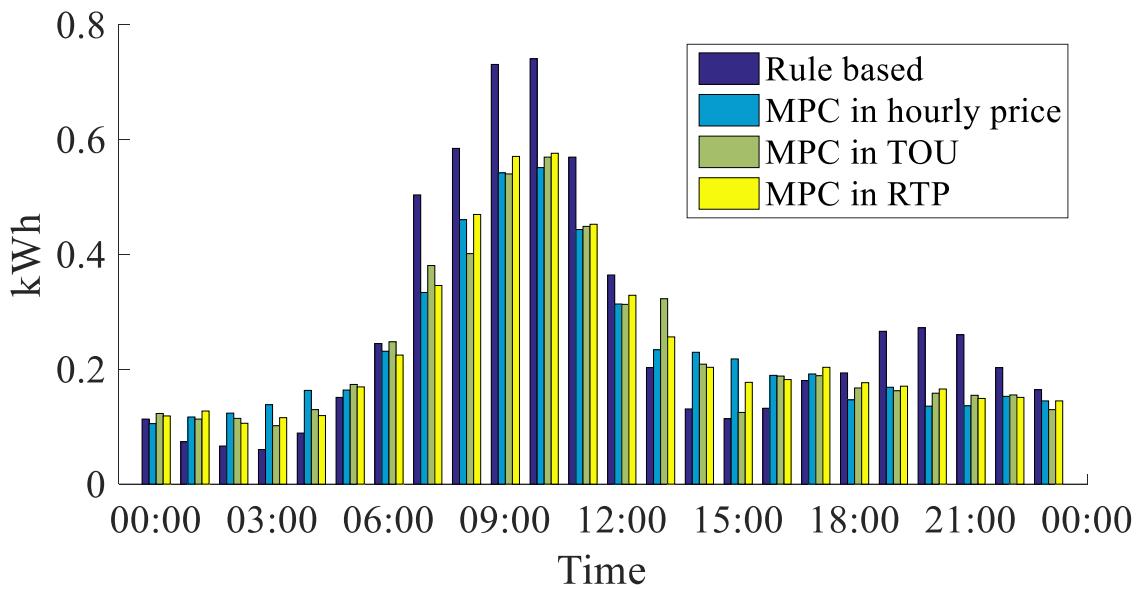
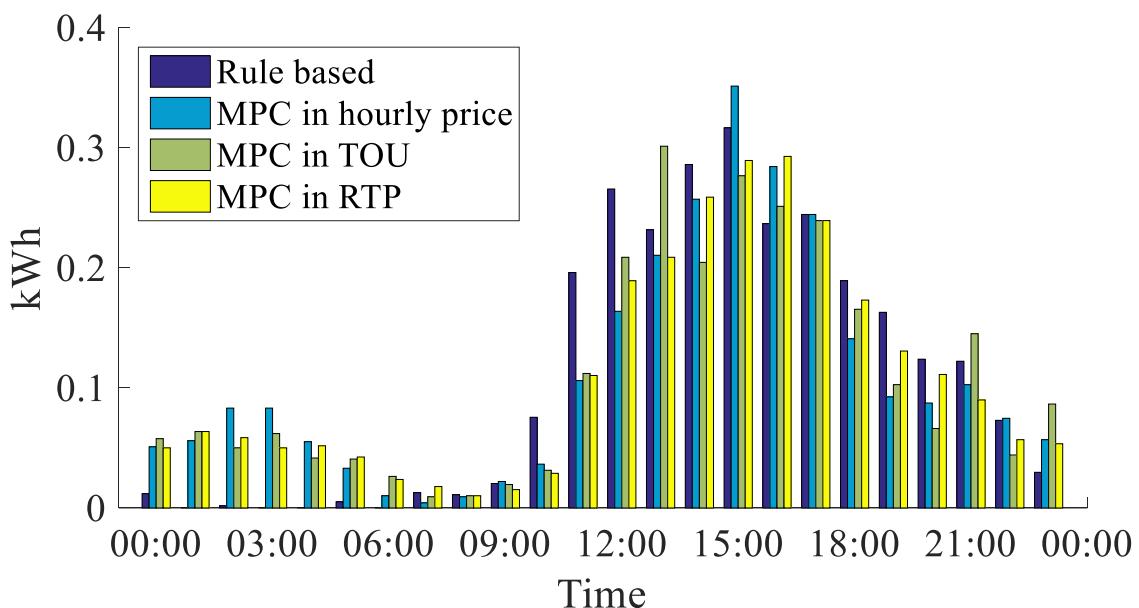
510 Figure 12: Average battery power flow in RTP

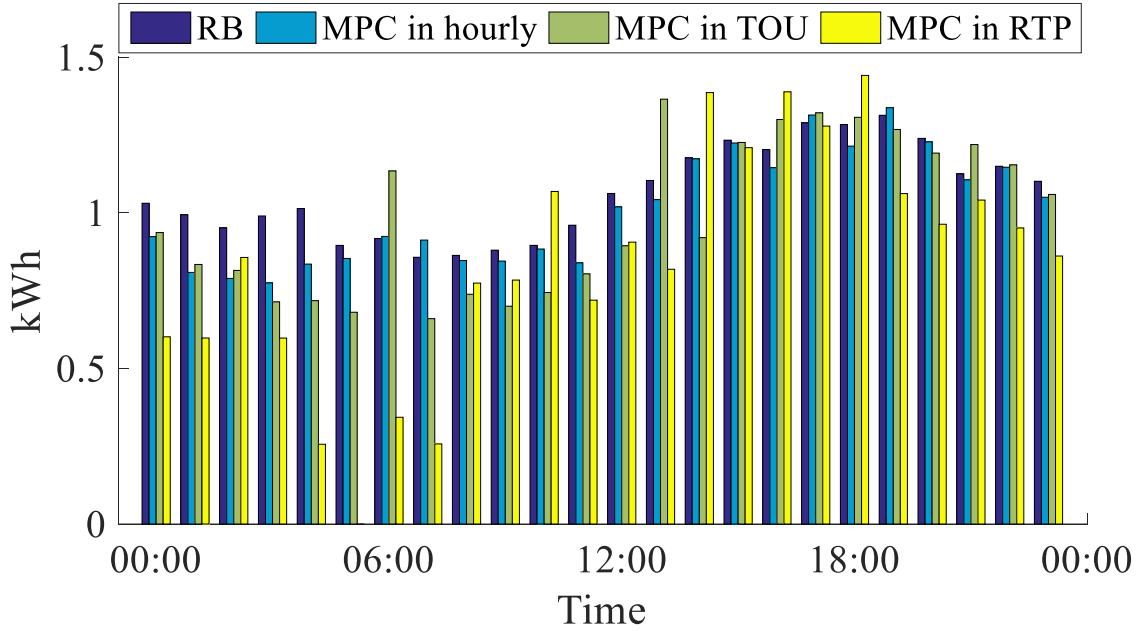
511



518 4.3 Energy consumption Analysis

519 Figure 15, Figure 16, and Figure 17 show the average energy consumption of the EV, AC,
520 and water heater for one year simulation in different pricings. The water heater consumption has
521 a peak at 9:00 AM and 10:00 AM corresponding to occupant behavior on taking shower in studied
522 residential building. This peak consumption has been smoothed out utilizing MPC controller for
523 all pricing schemes. The EV has a peak energy consumption at 3:00 PM (Figure 16) corresponding
524 to this residential building EV arrival time. In traditional charging control of EV there are barely
525 any charging during the night. However, MPC shifts some of charging periods to nigh hours, when
526 price of electricity is lower. It should be considered that, occupant behavior in using these devices,
527 directly affect the amount of savings in each pricing scheme. For instance, if a device is usually
528 being used around 9:00 AM is less capable in saving cost compared to a device which is usually
529 being used around 9:00 PM. This is due to the fact that price of electricity is increasing for hours
530 after 9:00 AM, so shifting consumption from 9:00 AM to later hours most likely will not save the
531 cost. On the other hand, price of electricity tends to drop after 9:00 PM which brings opportunity
532 for savings by few hours shifting.





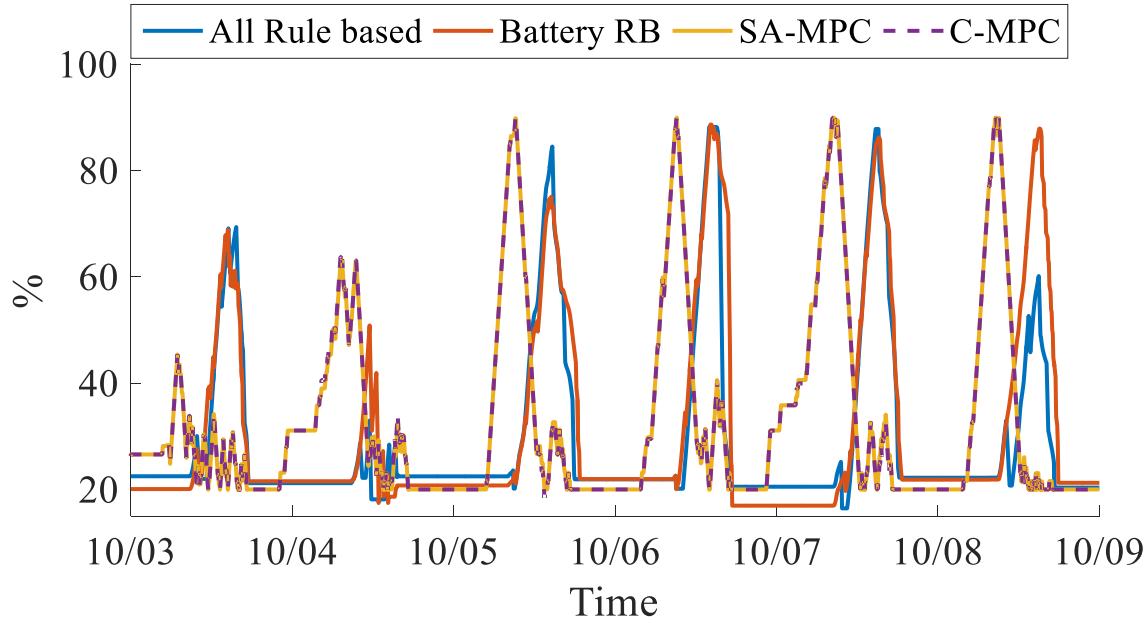
539

540

Figure 17: AC average electricity consumption in different pricings

541 4.4 Controlled variables under different pricing scenarios

542 Figure 18 and Figure 19 shows the battery SOC under different control strategies for RTP,
 543 and centralized MPC under three different pricing schemes. Battery SOC behave largely different
 544 in rule based controllers from MPC controllers as shown in Figure 19. Under TOU pricing, the
 545 battery is charged before the price rises and discharge when the price is high and correspond to PV
 546 generation and load. This charging and discharging periods are slightly different in hourly price as
 547 this pricing has more changes during a day, and much different in RTP. This behavior can result
 548 in slightly longer battery life in TOU pricing compared to other pricing methods, as the battery has
 549 less charging and discharging periods.

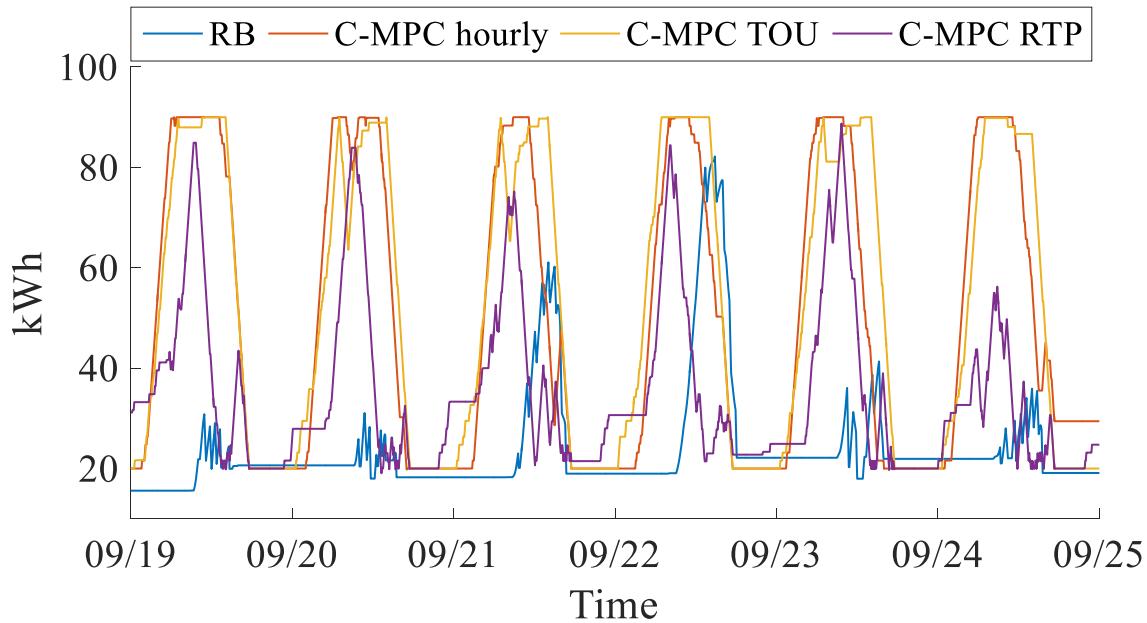


550

551

Figure 18: Battery SOC in different controllers in RTP

552



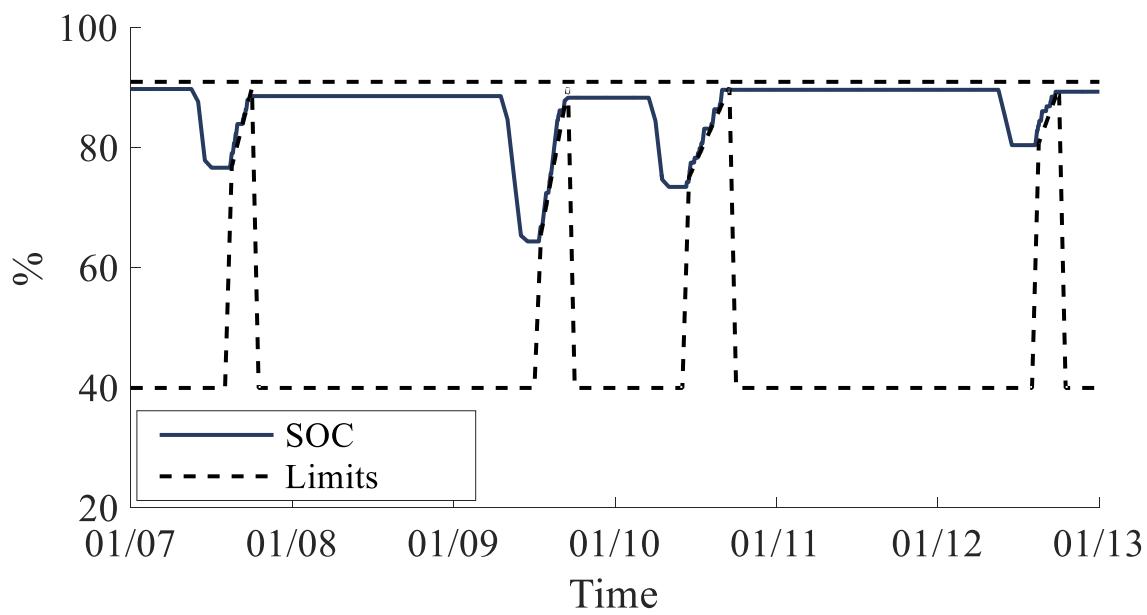
553

554

Figure 19: Battery SOC with C-MPC in different pricings

555

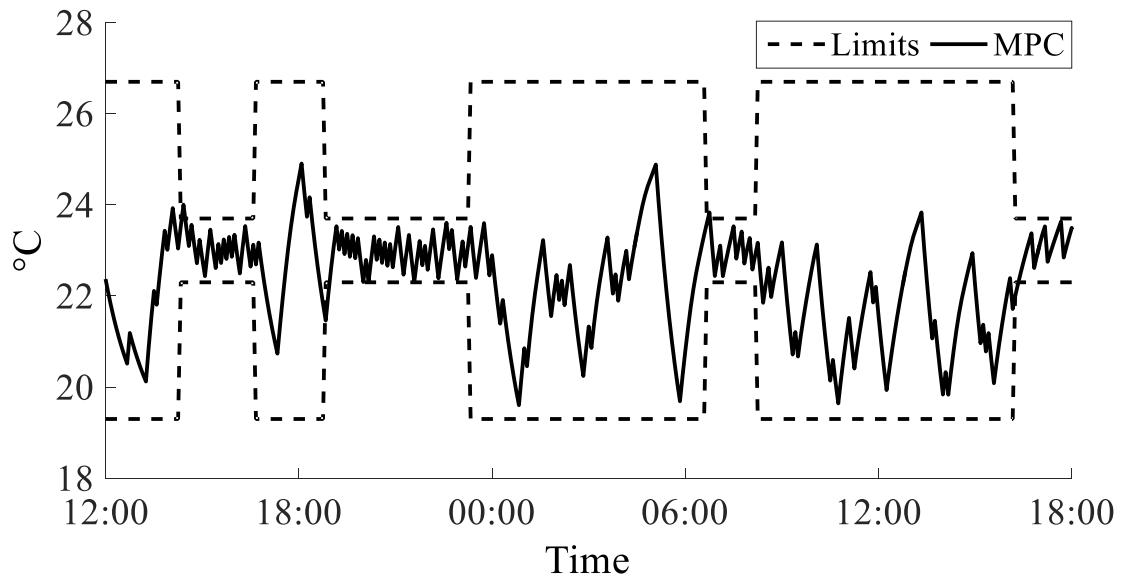
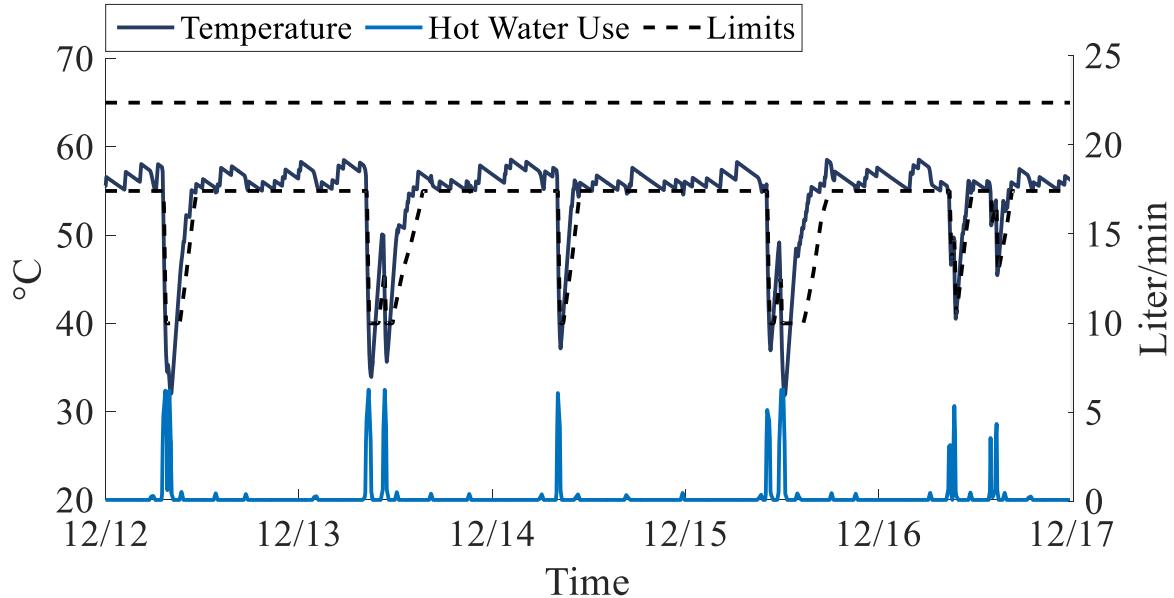
556 Figure 20, Figure 21, and Figure 22 show how each device behave in the behavior price driven
557 MPC controllers. In Figure 20 EV SOC is maintained in the defined boundaries. The lower limit
558 boundary is designed to charge the battery before the departure time. The SOC drops show EV
559 usage estimated from the smart meter data and charging starts close to arrival time. In Figure 21
560 indoor temperature is maintained in the thermostat dead band, when the building is occupied and
561 relaxed when the building is not occupied. In Figure 22 water temperature is maintained in the
562 defined boundaries. Sharp temperature drops in this figure correspond to extreme hot water usage
563 such as taking a shower.



564

565

Figure 20: EV SOC MPC control



572 **5 Conclusion**

573 In this paper a behavior and price driven building energy management system for a residential
574 building is introduced using MPC method. A centralized MPC configuration, and a stand-alone
575 MPC configuration are compared with the traditional way of controls. An air conditioner, water
576 heater, electric vehicle, and battery are controlled as the main consumers of electricity in a
577 residential building. Occupant behavior is introduced into this control problem considering the
578 occupancy presence in AC control, average hot water need by the occupants in water heater
579 control, and driving patterns in EV charging control. Demand response capabilities of these
580 controllers were tested in three different electricity rates, including: time of use, hourly and real
581 time 5 minutes pricing. One year simulation results show that residential buildings can achieve
582 cost savings up to 26% under TOU price, 42% under real time price, and 17% under hourly pricing,
583 compared to traditional on/off controls. This savings shows the capabilities of TOU and RTP in
584 affecting residential buildings operation.

585 The limitations of this study include: 1) occupancy presence data: it is a challenge to collect
586 occupancy presence data in any residential building due to privacy issues. In this study, the
587 occupancy presence data is given from another study [69]; and 2) lack of verification of observed
588 behavior from smart meter data: we extract occupant behavior patterns from historical smart meter
589 data without actual verification of that behavior due to limited access to the house;

590 The future study could focus on the impact of collective behavior of residential building load
591 control on the smart grid. In other words, if all the buildings use the same control shifting strategy,
592 it is possible that such control behavior could cause a frequency deviation problem for the grid
593 operation.

594 **Acknowledgement**

595 This research is supported by the National science foundation (NSF) under *Collaborative*
596 *Research: Empowering Smart Energy Communities: Connecting Buildings, People, and Power*
597 *Grids* Award Number: 1637249 and Department of Energy (DOE) under *Building-Grid*
598 *Integration Research and Development Innovators Program (BIRD IP)*.

599 **References**

- 600 [1] C. Becchio, S. P. Corgnati, C. Delmastro, V. Fabi, and P. Lombardi, "The role of nearly-
601 zero energy buildings in the transition towards Post-Carbon Cities," *Sustainable Cities and*
602 *Society*, vol. 27, no. Supplement C, pp. 324-337, 2016/11/01/ 2016.
- 603 [2] L. Gelazanskas and K. A. A. Gamage, "Demand side management in smart grid: A review
604 and proposals for future direction," *Sustainable Cities and Society*, vol. 11, no. Supplement
605 C, pp. 22-30, 2014/02/01/ 2014.
- 606 [3] F. Brahman, M. Honarmand, and S. Jadid, "Optimal electrical and thermal energy
607 management of a residential energy hub, integrating demand response and energy storage
608 system," *Energy and Buildings*, vol. 90, pp. 65-75, 2015.
- 609 [4] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, "Hardware demonstration of a home
610 energy management system for demand response applications," *IEEE Transactions on*
611 *Smart Grid*, vol. 3, no. 4, pp. 1704-1711, 2012.
- 612 [5] R. Missaoui, H. Joumaa, S. Ploix, and S. Bacha, "Managing energy smart homes according
613 to energy prices: analysis of a building energy management system," *Energy and Buildings*,
614 vol. 71, pp. 155-167, 2014.
- 615 [6] F. Oldewurtel, D. Sturzenegger, and M. Morari, "Importance of occupancy information for
616 building climate control," *Applied energy*, vol. 101, pp. 521-532, 2013.
- 617 [7] S. Ahmadi-Karvigh, B. Becerik-Gerber, and L. Soibelman, "A framework for allocating
618 personalized appliance-level disaggregated electricity consumption to daily activities,"
619 *Energy and Buildings*, vol. 111, pp. 337-350, 1/1/ 2016.
- 620 [8] S. Ahmadi-Karvigh, A. Ghahramani, B. Becerik-Gerber, and L. Soibelman, "One size does
621 not fit all: Understanding user preferences for building automation systems," *Energy and*
622 *Buildings*, vol. 145, pp. 163-173, 6/15/ 2017.
- 623 [9] J. Zhang, G. Liu, R. Lutes, and M. R. Brambley, "Energy savings for occupancy-based
624 control (OBC) of variable-air-volume (VAV) systems," 2013.
- 625 [10] A. Mirakhorli and B. Dong, "Occupancy behavior based model predictive control for
626 building indoor climate—A critical review," *Energy and Buildings*, vol. 129, pp. 499-513,
627 2016.

628 [11] F. Wu and R. Sioshansi, "A two-stage stochastic optimization model for scheduling electric
629 vehicle charging loads to relieve distribution-system constraints," *Transportation Research*
630 *Part B: Methodological*, vol. 102, pp. 55-82, 2017.

631 [12] PG&E. (2016, 2016). *TOU*. Available: https://www.pge.com/en_US/residential/rate-plans/rate-plan-options/time-of-use-base-plan/time-of-use-plan.page?

632 [13] PJM. (2016, 2016). *Daily Day-Ahead LMP*. Available: <http://pjm.com/markets-and-operations/energy/day-ahead/lmpda>

633 [14] MISO. (2016, 2016). *Real-Time LMP 5-Min.* Available: <https://www.misoenergy.org/Library/MarketReports/Pages/MarketReports.aspx>

634 [15] N. Javaid, I. Khan, M. Ullah, A. Mahmood, and M. Farooq, "A survey of home energy
635 management systems in future smart grid communications," in *Broadband and Wireless
636 Computing, Communication and Applications (BWCCA), 2013 Eighth International
637 Conference on*, 2013, pp. 459-464: IEEE.

638 [16] A. Afram, F. Janabi-Sharifi, A. S. Fung, and K. Raahemifar, "Artificial neural network
639 (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state
640 of the art review and case study of a residential HVAC system," *Energy and Buildings*,
641 vol. 141, pp. 96-113, 2017.

642 [17] S. Sayadi, G. Tsatsaronis, and T. Morosuk, "Reducing the Energy Consumption of HVAC
643 Systems in Buildings by Using Model Predictive Control," 2016: CLIMA.

644 [18] M. Aftab, C. Chen, C.-K. Chau, and T. Rahwan, "Automatic HVAC Control with Real-
645 time Occupancy Recognition and Simulation-guided Model Predictive Control in Low-
646 cost Embedded System," 2017.

647 [19] A. Ghofrani and M. A. Jafari, "Distributed air conditioning control in commercial buildings
648 based on a physical-statistical approach," *Energy and Buildings*, vol. 148, no. Supplement
649 C, pp. 106-118, 2017/08/01/ 2017.

650 [20] S. Faizollahzadeh Ardabili, A. Mahmoudi, and T. Mesri Gundoshmian, "Modeling and
651 simulation controlling system of HVAC using fuzzy and predictive (radial basis function,
652 RBF) controllers," *Journal of Building Engineering*, vol. 6, no. Supplement C, pp. 301-
653 308, 2016/06/01/ 2016.

654 [21] F. Ascione, N. Bianco, C. De Stasio, G. M. Mauro, and G. P. Vanoli, "Simulation-based
655 model predictive control by the multi-objective optimization of building energy
656 performance and thermal comfort," *Energy and Buildings*, vol. 111, pp. 131-144,
657 2016/01/01/ 2016.

658 [22] M. J. Risbeck, C. T. Maravelias, J. B. Rawlings, and R. D. Turney, "A mixed-integer linear
659 programming model for real-time cost optimization of building heating, ventilation, and
660 air conditioning equipment," *Energy and Buildings*, vol. 142, pp. 220-235, 2017.

661 [23] R. K. Kalaimani, S. Keshav, and C. Rosenberg, "Multiple time-scale model predictive
662 control for thermal comfort in buildings," in *Proceedings of the Seventh International
663 Conference on Future Energy Systems Poster Sessions*, 2016, p. 11: ACM.

664 [24] T. Ekwevugbe, N. Brown, V. Pakka, and D. Fan, "Improved occupancy monitoring in non-
665 domestic buildings," *Sustainable Cities and Society*, vol. 30, no. Supplement C, pp. 97-
666 107, 2017/04/01/ 2017.

667 [25] T. Hong, Y. Chen, Z. Belafi, and S. D'Oca, "Occupant behavior models: A critical review
668 of implementation and representation approaches in building performance simulation
669 programs," *Building Simulation*, journal article vol. 11, no. 1, pp. 1-14, February 01 2018.

670

671

672

673 [26] J. R. Dobbs and B. M. Hencey, "Model predictive HVAC control with online occupancy
674 model," *Energy and Buildings*, vol. 82, pp. 675-684, 2014.

675 [27] J. R. Dobbs and B. M. Hencey, "Predictive HVAC control using a Markov occupancy
676 model," in *American Control Conference (ACC), 2014*, 2014, pp. 1057-1062: IEEE.

677 [28] M. Soudari, S. Srinivasan, S. Balasubramanian, J. Vain, and U. Kotta, "Learning based
678 personalized energy management systems for residential buildings," *Energy and Buildings*,
679 vol. 127, pp. 953-968, 2016.

680 [29] F. C. Sangogboye, K. Arendt, A. Singh, C. T. Veje, M. B. Kjærgaard, and B. N. Jørgensen,
681 "Performance comparison of occupancy count estimation and prediction with common
682 versus dedicated sensors for building model predictive control," *Building Simulation*,
683 journal article vol. 10, no. 6, pp. 829-843, December 01 2017.

684 [30] T. Sharmin, M. Güll, and M. Al-Hussein, "A user-centric space heating energy management
685 framework for multi-family residential facilities based on occupant pattern prediction
686 modeling," *Building Simulation*, journal article vol. 10, no. 6, pp. 899-916, December 01
687 2017.

688 [31] B. Dong and K. P. Lam, "A real-time model predictive control for building heating and
689 cooling systems based on the occupancy behavior pattern detection and local weather
690 forecasting," *Building Simulation*, journal article vol. 7, no. 1, pp. 89-106, February 01
691 2014.

692 [32] V. Lešić, A. Martinčević, and M. Vašak, "Modular energy cost optimization for buildings
693 with integrated microgrid," *Applied Energy*, vol. 197, pp. 14-28, 2017/07/01/ 2017.

694 [33] H. Pombeiro, M. J. Machado, and C. Silva, "Dynamic programming and genetic algorithms
695 to control an HVAC system: Maximizing thermal comfort and minimizing cost with PV
696 production and storage," *Sustainable Cities and Society*, vol. 34, no. Supplement C, pp.
697 228-238, 2017/10/01/ 2017.

698 [34] F. Ascione, N. Bianco, C. De Stasio, G. M. Mauro, and G. P. Vanoli, "A new
699 comprehensive approach for cost-optimal building design integrated with the multi-
700 objective model predictive control of HVAC systems," *Sustainable Cities and Society*, vol.
701 31, no. Supplement C, pp. 136-150, 2017/05/01/ 2017.

702 [35] M. E. Gerards and J. L. Hurink, "Robust peak-shaving for a neighborhood with electric
703 vehicles," *Energies*, vol. 9, no. 8, p. 594, 2016.

704 [36] C. Ahn, C.-T. Li, and H. Peng, "Optimal decentralized charging control algorithm for
705 electrified vehicles connected to smart grid," *Journal of Power Sources*, vol. 196, no. 23,
706 pp. 10369-10379, 2011/12/01/ 2011.

707 [37] J. Soares, T. Sousa, H. Morais, Z. Vale, B. Canizes, and A. Silva, "Application-Specific
708 Modified Particle Swarm Optimization for energy resource scheduling considering
709 vehicle-to-grid," *Applied Soft Computing*, vol. 13, no. 11, pp. 4264-4280, 2013/11/01/
710 2013.

711 [38] K. M. Tan, V. K. Ramachandaramurthy, and J. Y. Yong, "Integration of electric vehicles
712 in smart grid: A review on vehicle to grid technologies and optimization techniques,"
713 *Renewable and Sustainable Energy Reviews*, vol. 53, pp. 720-732, 2016.

714 [39] Y. Xiong, B. Wang, C.-c. Chu, and R. Gadh, "Distributed Optimal Vehicle Grid Integration
715 Strategy with User Behavior Prediction," *arXiv preprint arXiv:1703.04552*, 2017.

716 [40] D. Thomas, O. Deblecker, and C. S. Ioakimidis, "Optimal operation of an energy
717 management system for a grid-connected smart building considering photovoltaics'

uncertainty and stochastic electric vehicles' driving schedule," *Applied Energy*, 2017/07/22/ 2017.

[41] M. Razmara, G. R. Bharati, D. Hanover, M. Shahbakhti, S. Paudyal, and R. D. Robinett, "Building-to-grid predictive power flow control for demand response and demand flexibility programs," *Applied Energy*, vol. 203, pp. 128-141, 2017/10/01/ 2017.

[42] C. Sun, F. Sun, and S. J. Moura, "Nonlinear predictive energy management of residential buildings with photovoltaics & batteries," *Journal of Power Sources*, vol. 325, pp. 723-731, 2016.

[43] A. Ahmad, T. Anderson, A. Swain, T. Lie, J. Currie, and W. Holmes, "Residential household electrical appliance management using model predictive control of a grid connected photovoltaic-battery system," 2016.

[44] EIA. (2013). *Heating and cooling no longer majority of U.S. home energy use*. Available: <https://www.eia.gov/todayinenergy/detail.php?id=10271>

[45] F. Sossan, A. M. Kosek, S. Martinenas, M. Marinelli, and H. Bindner, "Scheduling of domestic water heater power demand for maximizing PV self-consumption using model predictive control," in *Innovative Smart Grid Technologies Europe (ISGT EUROPE), 2013 4th IEEE/PES*, 2013, pp. 1-5: IEEE.

[46] V. Kapsalis and L. Hadellis, "Optimal operation scheduling of electric water heaters under dynamic pricing," *Sustainable Cities and Society*, vol. 31, no. Supplement C, pp. 109-121, 2017/05/01/ 2017.

[47] K. Lajoie, D. A. Halamay, and T. K. Brekken, "Residential water heaters as a grid-scale energy storage solution using model predictive control," in *Technologies for Sustainability (SusTech), 2013 1st IEEE Conference on*, 2013, pp. 62-69: IEEE.

[48] S. Goyal, W. Wang, and M. R. Brambley, "An agent-based test bed for building controls," in *American Control Conference (ACC), 2016*, 2016, pp. 1464-1471: American Automatic Control Council (AACC).

[49] P. Zhao, S. Suryanarayanan, and M. G. Simoes, "An energy management system for building structures using a multi-agent decision-making control methodology," *IEEE Transactions on Industry Applications*, vol. 49, no. 1, pp. 322-330, 2013.

[50] R. Yang and L. Wang, "Development of multi-agent system for building energy and comfort management based on occupant behaviors," *Energy and Buildings*, vol. 56, pp. 1-7, 2013.

[51] B. Qiao, K. Liu, and C. Guy, "A multi-agent system for building control," in *Proceedings of the IEEE/WIC/ACM international conference on Intelligent Agent Technology*, 2006, pp. 653-659: IEEE Computer Society.

[52] J. Cai, D. Kim, R. Jaramillo, J. E. Braun, and J. Hu, "A general multi-agent control approach for building energy system optimization," *Energy and Buildings*, vol. 127, pp. 337-351, 9/1/ 2016.

[53] L. Ma *et al.*, "Multi-party energy management for smart building cluster with PV systems using automatic demand response," *Energy and Buildings*, vol. 121, pp. 11-21, 2016.

[54] H. Shakouri G and A. Kazemi, "Multi-objective cost-load optimization for demand side management of a residential area in smart grids," *Sustainable Cities and Society*, vol. 32, no. Supplement C, pp. 171-180, 2017/07/01/ 2017.

[55] B. Asare-Bediako, W. L. Kling, and P. F. Ribeiro, "Multi-agent system architecture for smart home energy management and optimization," in *Innovative Smart Grid Technologies Europe (ISGT EUROPE), 2013 4th IEEE/PES*, 2013, pp. 1-5: IEEE.

764 [56] B. Asare-Bediako, P. F. Ribeiro, and W. L. Kling, "Integrated energy optimization with
765 smart home energy management systems," in *Innovative Smart Grid Technologies (ISGT
766 Europe), 2012 3rd IEEE PES International Conference and Exhibition on*, 2012, pp. 1-8:
767 IEEE.

768 [57] A. Mirakhorli and B. Dong, "Occupant-behavior driven appliance scheduling for
769 residential buildings," *Building Simulation*, 2017.

770 [58] A. Mirakhorli and B. Dong, "An Open Source Smart Building Energy Management
771 Platform through VOLTTRON," *IBPSA-USA Journal*, 2017.

772 [59] A. Khakimova *et al.*, "Optimal energy management of a small-size building via hybrid
773 model predictive control," *Energy and Buildings*, vol. 140, pp. 1-8, 2017.

774 [60] M. Rahmani-Andebili, "Scheduling deferrable appliances and energy resources of a smart
775 home applying multi-time scale stochastic model predictive control," *Sustainable Cities
776 and Society*, vol. 32, no. Supplement C, pp. 338-347, 2017/07/01/ 2017.

777 [61] M. Farrokhifar, F. Momayyezi, N. Sadoogi, and A. Safari, "Real-time based approach for
778 intelligent building energy management using dynamic price policies," *Sustainable Cities
779 and Society*, vol. 37, no. Supplement C, pp. 85-92, 2018/02/01/ 2018.

780 [62] T. Sattarpour, D. Nazarpour, and S. Golshannavaz, "A multi-objective HEM strategy for
781 smart home energy scheduling: A collaborative approach to support microgrid operation,"
782 *Sustainable Cities and Society*, vol. 37, no. Supplement C, pp. 26-33, 2018/02/01/ 2018.

783 [63] G. Bruni, S. Cordiner, V. Mulone, V. Sinisi, and F. Spagnolo, "Energy management in a
784 domestic microgrid by means of model predictive controllers," *Energy*, vol. 108, pp. 119-
785 131, 2016.

786 [64] D. Zhang, S. Li, M. Sun, and Z. O'Neill, "An Optimal and Learning-Based Demand
787 Response and Home Energy Management System," *IEEE Transactions on Smart Grid*, vol.
788 7, no. 4, pp. 1790-1801, 2016.

789 [65] A. Anvari-Moghaddam, H. Monsef, and A. Rahimi-Kian, "Optimal smart home energy
790 management considering energy saving and a comfortable lifestyle," *IEEE Transactions
791 on Smart Grid*, vol. 6, no. 1, pp. 324-332, 2015.

792 [66] T. Namerikawa and S. Igari, "Optimal energy management via MPC considering
793 photovoltaic power uncertainty," in *Smart Grid Communications (SmartGridComm), 2016
794 IEEE International Conference on*, 2016, pp. 57-62: IEEE.

795 [67] E. Birrer, C. Picard, P. Huber, D. Bolliger, and A. Klapproth, "Demand response optimized
796 heat pump control for service sector buildings," *Computer Science-Research and
797 Development*, pp. 1-10, 2016.

798 [68] M. Beaudin and H. Zareipour, "Home energy management systems: A review of modelling
799 and complexity," *Renewable and Sustainable Energy Reviews*, vol. 45, pp. 318-335, 2015.

800 [69] B. Dong, Z. Li, and G. McFadden, "An investigation on energy-related occupancy behavior
801 for low-income residential buildings," *Science and Technology for the Built Environment*,
802 vol. 21, no. 6, pp. 892-901, 2015/08/18 2015.

803 [70] Pecan Street Inc, Dataport 2016.

804 [71] E. F. Camacho and C. B. Alba, *Model predictive control*. Springer Science & Business
805 Media, 2013.

806 [72] M. Maasoumy, M. Razmara, M. Shahbakhti, and A. S. Vincentelli, "Selecting building
807 predictive control based on model uncertainty," in *American Control Conference (ACC),
808 2014*, 2014, pp. 404-411: IEEE.

809 [73] B. Dong, Z. Li, S. M. Rahman, and R. Vega, "A hybrid model approach for forecasting
810 future residential electricity consumption," *Energy and Buildings*, vol. 117, pp. 341-351,
811 2016.

812 [74] R. Diao, S. Lu, M. Elizondo, E. Mayhorn, Y. Zhang, and N. Samaan, "Electric water heater
813 modeling and control strategies for demand response," in *2012 IEEE Power and Energy
814 Society General Meeting*, 2012, pp. 1-8: IEEE.

815 [75] T. Williams, K. Kalsi, M. Elizondo, L. Marinovici, and R. Pratt, "Control and coordination
816 of frequency responsive residential water heaters," in *Power and Energy Society General
817 Meeting (PESGM), 2016*, 2016, pp. 1-5: IEEE.

818 [76] J. Hu, H. Morais, T. Sousa, and M. Lind, "Electric vehicle fleet management in smart grids:
819 A review of services, optimization and control aspects," *Renewable and Sustainable
820 Energy Reviews*, vol. 56, pp. 1207-1226, 2016.

821