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Occupancy-based Buildings-to-grid Integration Framework for Smart and 

Connected Communities 

Abstract 

Buildings-to-grid (BtG) integration simulations are becoming prevalent due to the development of 

smart buildings and smart grid. Buildings are the major energy consumers of the total electricity 

production worldwide. There is an urgent need to integrate buildings with smart grid operation to 

accommodate the needs of flexible load controls due to the increasing of renewable energy 

resources. In the imminent future, smart buildings can contribute to grid stability by changing their 

overall demand patterns in response to grid operations. Meanwhile, building thermal energy 

consumption is also maintained by building operators to satisfy occupants’ thermal comforts. 

However, explicit large-scale demonstrations based on a simulation platform that integrates 

building occupancy, building physics, and grid physics at community level have not been explored. 

This study develops an occupancy behavior driven BtG optimization platform that can simulate, 

predict and optimize indoor temperature and energy consumption of buildings, generator setpoint 

and deviation while maintaining acceptable grid frequency.  Authors have tested the framework 

on two standard power networks. The results show that the integrated framework can provide 

potential cost savings up to 60% comparing with the decoupled operation.  

Highlights:  

 Development of a centralized occupancy-based Buildings-to-grid Model Predictive 

Control (MPC) framework. 

 Simulation on randomized building clusters and standard IEEE grid systems. 

 Findings show 50%-61% cost reduction for BtG integration. 
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 Occupancy Predictor 

𝑝 Transition probability 

𝛼 Distribution weight factor 

𝛽  Smooth factor  

𝑠  Occupancy state  

  

 Building System Physics 

𝐶  Thermal capacity 

𝑅  Thermal resistance 

𝑇𝑤𝑎𝑙𝑙   Wall temperature 

𝑇𝑧𝑜𝑛𝑒  Zone temperature 

𝑄  Heat gain 

𝑄𝑠𝑜𝑙   Solar heat 

𝑄𝑖𝑛𝑡  Internal heat 

𝑄ℎ𝑣𝑎𝑐   HVAC cooling  

𝜂 HVAC coefficient of performance 

𝐱𝐛 Building temperature states 

𝐮𝐛  Building control inputs 

𝐰𝐛  Building disturbances 

  

 Grid System Physics 

𝜃  Bus voltage angle 

𝐷  Damping coefficient 

𝑀  Inertia coefficient 

𝑃  Power 

𝑃𝑚  Mechanical power input 

𝑃𝑒  Electricity demand load 

𝑃𝑚𝑖𝑠𝑐  Miscellaneous building load 

𝑃ℎ𝑣𝑎𝑐  Building HVAC load 

𝜔 Bus frequency 

𝐱𝐠 Grid states 

𝐮𝐠 Building load to grid 

𝐮𝐦 Controllable mechanical powers to grid   

𝐰𝒈 Grid disturbances 

  

 BtG MPC 

𝐶 Building cost as the grid price 

𝜖 Slack relaxation based on occupancy prediction 

𝑎 Quadratic generator cost 

𝑏 Linear generator cost 

𝑓 Quadratic frequency cost 

1. Introduction 

In response to dramatic growth of power demand, use of renewable energy, and critical risk of 

building power blackouts, smart buildings and smart grid that can communicate with each other 

have more benefits for building management and power operation. Recent reports from the U.S. 

Department of Energy show that (1) buildings consume 74% of electricity produced by the grid in 
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the U.S.; (2) buildings are able to reduce their consumption by 20-38% using advanced sensors 

and controls; and (3) 90% of the commercial buildings can be aggregated to connect to the grid 

[1-3]. Hence, it is necessary to investigate and understand the coupling between buildings and 

grids for optimizing the energy consumptions and the operation costs.  

1.1 Building MPCs and research gaps  

Model predictive control (MPC) is one real-time control algorithm that connects buildings to grids, 

thereby establishing a computational framework to co-optimize the decisions of building and grid 

operators. Studies interoperating buildings and grids using MPC for demand response are 

presented in recent literature overviews [4-5]. For commercial buildings, a bi-level MPC 

optimization is designed to control the voltage and current in a distribution grid while building 

zonal models are integrated [6]. The study provides a framework comprising mathematical models 

of commercial buildings and the distribution grid. Commercial building MPC or model-based 

supervisory control can also regulate the building power frequency by controlling the fan power 

consumption, the chiller operation sequence, and the air-side ventilation system [7-8]. Those 

studies treat buildings as fast demand side resources to reduce frequency deviations in grid 

operations. Customized designs of the model-based controllers can further provide ancillary 

services to the grid [9-10]. One study optimizes the chiller to respond fast to the demand response 

signal [9]. Another study investigates the ancillary service capacity under optimal HVAC usages 

[10]. For residential buildings, grid-aware MPCs are carried out to reduce the costs of smart homes 

by using energy storage, appliance scheduling, electric vehicles, and distributed generation units 

[11-15]. These studies usually focus microgrid or small-scale interactions between buildings and 

grids. The majority of the aforementioned research shows significant energy savings given 

different building systems with no account for larger scale simulations of building clusters. 



 4 

One recent study [16] expands the current research scope by using a detailed physics model of a 

building cluster for a smart grid optimization. Although large-scale building aggregation is 

performed, the models of electricity generation and renewable energy source are oversimplified 

with no gird physics. Hence, the grid frequency and power flow transmission cannot be regulated. 

Furthermore, how to achieve the optimal control for hundreds of grid-aware commercial buildings 

is not demonstrated, especially considering the significant time-scale discrepancy between 

building demand change (minutes to hours) and grid power supply (milliseconds to seconds). 

Therefore, an explicit simulation of the building dynamics, grid dynamics, generator capacity, and 

BtG operation cost from a large-scale control strategy is a critical research question not fully 

addressed yet [17]. 

1.2 Missing of the occupant behavior  

Another key component missing in the large scale BtG integration is the building occupancy. 

Humans spend more than 90% of their time in buildings, and the buildings themselves are designed 

to provide a comfortable indoor environment for occupants [18]. The human-building interactions, 

such as usage of lighting and air conditioning, consume around one quarter to half of the total 

amount of commercial building energy [19]. On the other hand, office workers arrive and leave 

the workspaces regularly according to schedules. The stochastic occupancy pattern can be detected 

easily by occupancy sensors, which are commonly installed in today’s smart buildings [20]. 

Therefore, it is a natural idea to utilize the occupancy information to reduce the energy 

consumption caused by human-building interaction while maintaining occupants’ comfort [21]. 

Typical occupancy schedules used to optimize building operations are conservative on energy 

savings [22]. Larger savings with stable comfort satisfactions can be further achieved through 

learning and prediction of the office occupancy [23].  
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Current research has found a range of strategies to predict and utilize the occupancy in single 

building control [24-26]. The optimization of air conditioning systems is demonstrated through 

building MPCs using the hidden Markov chain to predict the occupant numbers [27].  First order 

Markov chain (MC) is another popular method that can provide online occupancy predictions. One 

study trains a MC in a moving window for an occupancy driven MPC of commercial buildings 

[28]. The occupied periods are found by aggregated predictions of the occupancy models. The 

occupied periods’ setpoint temperature of the air conditioning is reset from the high temperatures 

of unoccupied periods. A similar example is shown by penalizing the discomfort index during 

occupancy. Occupied periods are estimated using a MC that is trained through Bayesian inference 

[29]. Savings are shown by preheating, no conditioning at vacancies, and suppressing the peak 

demands. A more detailed description of the Markov model will be introduced in the following 

section of methodology. Other occupancy models have also been extensively explored for building 

simulations, such as random sampling [30], machine learning [31], data mining [32] and agent-

based models [33].  However, most studies focus on the occupancy-buildings coupling are still 

ignoring the complete picture to associate occupancy, buildings, and grids together [34-36]. How 

those occupancy-based MPCs effect the aggregation of building demand and influence the 

optimization of grid operation remains largely unknown.  

1.3 Innovations of the study 

Based on the aforementioned review, the study addresses the following research gaps for a large 

scale BtG integration: 1) lack of investigation of advanced control strategies for the integration of 

occupancy, buildings and grid, and 2) lack of evaluation of the occupancy impact on the individual 

thermal comfort and energy savings. Three integration approaches are proposed and studied as: 1) 

a decoupled buildings and grid optimization (DB&G), 2) a centralized Buildings-to-Grid 
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integration (BtG), and 3) a centralized occupancy-based BtG integration (OBtG). DB&G 

introduces on/off controls for buildings and model predictive control (MPC) for the grid. BtG 

introduces an innovative MPC to control the buildings and grid simultaneously with the time 

discrepancy between the buildings and grid operations. OBtG integrates occupancy predictions to 

improve energy efficiency by maintaining the thermal comfort at the occupied periods while 

reducing energy consumption when buildings are not occupied. BtG and OBtG are used to 

generate high-level local control operations for both building systems and grid generators such 

that the overall performance is optimized in terms of power network stability, energy savings, and 

comfort satisfactions. The contributions of this study are: 1) a new online occupancy predictor to 

predict the occupancy at the building level; 2) complete high-level integrations among occupancy, 

buildings, and grid with system-level objectives and constraints; and 3) a three-level design of the 

buildings-to-grid integrations to address the operation time-scale discrepancy and the large-scale 

computational cost. The paper is organized as follows: Section 2 presents the overall methodology 

including occupancy model, building physics, grid dynamics, and formulation of the three 

integration approaches; Section 3 discusses simulation results; and Section 4 concludes this paper 

with open research problems and future studies.    

2. Methodology 

The final centralized OBtG approach is developed to integrate the systems of occupancy, 

buildings, and grid, as shown in Figure 1. The objective is to develop an explicit mathematical 

MPC framework for large-scale buildings-to-grid integration with building occupancy behavior 

interactions. The MPC structure uses the computationally efficient, convex quadratic 

programming for optimization, whereby the control laws for the slower (buildings) and faster 

(grid) operations are jointly computed. As shown by Figure 1, the time-steps of the latter (grid) are 
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nested in the time-steps of the former (buildings) through building variables bu  and su , while the 

system states ( bx  and 
gx ) and all controllable variables ( bu ,

gu , and 
gu ) jointly evolve according 

to the coupling between the physics models of buildings and grids. Non-controllable inputs 

including disturbances and constraints that are imposed to the MPC are assumed to be measurable, 

such as local weather from on-site weather stations. The model formulations and system physics 

are illustrated in Sections 2.1, 2.2 and 2.3 for building occupancy, building physics, and grid 

physics respectively. The details of BtG integration are described in Section 2.4. 

2.1 Modeling of Occupancy  

Three basic types of occupancy models exist in prior studies [37]. Type I is the occupancy status 

at a space level, addressing whether or not a space is occupied at a particular time. Type II is the 

number of occupants at a space level, addressing how many occupants are in the space at a 

particular time. Type III is the occupant tracking, addressing individual movement and behavior 

tracking. In this study, the status of building occupants influences the building state constraints 

(zone temperature). Thus, Type I information, the occupancy states of presence and absence, are 

enough for control purposes.  

A modified occupancy approach is integrated with building MPC based on the authors’ recent 

work [38]. The modeling technique develops a first order Markov chain with a moving training 

window driven by change-point detection. Define a Markov chain given by the time sequence 

kxxx ,...,, 21  ending at time step k , where at each time step, the Markov chain can take values from 

the states },{ 21 ss  representing binary occupancy (i.e., presence or absence). The chance of the 

state transition from is  to js  at time step 1k  is decided by the transition probability at time step 

k  defined as 
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The transition probabilities between states for more than one step are more easily calculated using 

a transition matrix. Let the transition matrix jikk p ,)(P  denote the matrix where the element 

indexed by ),( ji represents the probability defined in Eq. (1).  

The transition matrix kP  is trained within a moving optimal window. Define a moving window 
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where ijp̂  is the estimated transition probability from state is  to js  and   is a smoothing factor. 

A properly defined smooth factor could enforce the likelihood of occupancy changes during the 

dramatic increase of occupancy presence at the morning ramp-up, varied occupancy at the lunch 

break, and dramatic decrease of occupancy presence at the evening ramp-down. The authors note 

that this study has a binary inhomogeneous occupancy chain (e.g. presence and absence). Based 

on office occupancy patterns, there are periods of very low or zero transition probabilities, defined 

as sink transitions [39]. A small smooth factor is preferred in order not to force the unlikely 

occupancy changes to be happening during those sink periods. The authors defined the factor as a 

time related step function of 0, 0.05, and 0.1, where empirical rules are used to decide the specific 

value at certain time.  



 9 

The Markov occupancy model is going to be integrated into a rolling window MPC. Assuming a 

case that the building MPC is rolling at 15 minutes ahead during one test day, there are a total of 

96 transition matrices that need to be updated for each optimized step of MPC since one day has 

96 intervals of 15 minutes. For each transition matrix, the Markov chain’s transition probabilities 

are trained within an optimal window before each of the predicted time step. The period of the 

training window is decided by the changing point of the occupancy presence rate based on a daily 

occupancy profile, as shown in the hypothetical MPC of Figure 2. Binary occupancy data during 

the same time period in this training window (“training window” in Figure 2) for each day of the 

ten most recent historical days are the training data for the transition probabilities in Eq. (1). To 

overcome the uncertainties from the limited training size, a modified bootstrap sampling strategy 

is used as follows: 

1) Randomly sample nine days from the training data and apply Eq. (2) to get one bootstrap 

transition matrix; 

2) Resample ten times using the procedure above; and 

3) Calculate the average values of the ten bootstrap transition matrices. 

The details of the changing-point detection are described next. Let },...,{ 961 zddD    represent the 

selected data from z  days before the time step to be predicted. Here, if the occupancy presence 

state to be predicted is in a working day, the selection of D  only contains the available profiles of 

z working days. Additionally, d  is binary state that represents the presence and absence as 1 and 

0, respectively. A discrete profile of the presence probability [38] is generated by  
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where 961  m  if the occupancy data is in 15-minute scale and  is an exponential forgetting 

factor, which is smaller than one. Again, the building MPC is performing rolling window 

optimization and new occupancy information is updated through an ongoing measurement. During 

the continuous updates of the occupancy presence rates of Eq. (3), the forgetting factor gives more 

weight on the recent occupancy presence information rather than the old one.  

The authors assume that a change of the optimal training window length should happen based on 

the change points of the presence rate calculated by Eq. (3). The change detection algorithm in this 

study uses relative density-ratio estimation with the Pearson divergence as a measure to score the 

possible change points.  For a subsample distribution )(mp  selected from the sample distribution 

)(np , the symmetric divergence score [40] is defined as 
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where S  is the score, and )()1()()( mpnpmp   . Notice that )(mp and )(np  are the 

preselected probability density functions of the corresponding variables, and the factor   is a 

density ratio. For the example of Figure 2, the day file contains 96 occupancy rates in 15-minute 

resolution which indicates the sample n  in Eq. (4) follows a preselected Gaussian distribution 

)(np  fitted by 96 presence probabilities. The change point is detected by using a sliding window 

size of 12 intervals (3-hour data) which indicates a preselected Gaussian distribution )(mp  fitted 

by 12 presence probabilities for this subsample m  in Eq. (4). The sliding window moves forward 

from the beginning of the day until the end of the day and then resamples backwards from the end 

to the beginning again. The symmetric score is calculated by the summation of the forward sliding 
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and backward sliding scores S  using Eq. (4). The MATLAB toolbox developed by Liu is used 

[40]. 

In this study, the occupancy number of each building for OBtG optimization is generated from an 

occupancy simulator developed by Lawrence Berkeley National Laboratory (LBNL) [41]. The 

LBNL simulator gives detailed occupancy number simulation at the building level for a selected 

simulation period, which provides Type II occupancy information. A filter is used to pass the 

simulated occupancy number to occupancy presence which is the Type I occupancy information 

needed in this study. The passing threshold is 30% of the max number observed in the simulated 

data for each building respectively. The presence rate is then calculated based on Eq. (3) for each 

building again.  As shown in Figure 2, the individual optimized windows are decided using Eq. 

(4). The transition matrices are updated using Eq. (2) afterwards. Prediction for the occupancy 

presence and absence is made based on all updated transition matrices accordingly during the 

building MPC. 

2.2 Modeling of Building Dynamics  

The total electricity load of a commercial building is composed by two parts: base power demand 

and controllable power demand. Electrical load of lighting, electrical equipment, and other 

appliances are the base demand, which can be modelled and predicted by operation schedules. In 

contrast, electricity load of HVAC systems is a controllable load which is possible to be altered by 

adjusting building indoor temperature setpoints. Here, as the first attempt for a large-scale 

buildings-to-grid integration within a community, only an ideal cooling system for each building 

is modeled where the optimal control variable is temperature set-point. It is assumed that a 

decoupled or distributed PID control strategy could achieve the optimized setpoint at the lower 
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level (air handling unit, roof top units, etc.), which has been demonstrated in a few prior research 

studies [42-44].   

The optimal HVAC demand is predicted through the control of the building physics model, and 

specifically, the thermal resistance and capacitance (RC) network. The lowest order network, 

namely 1R-1C, is limited to a well-insulated room with fewer heat sources [45]. The high order 

network, 3R-2C or even higher, provides accurate estimations of the temperature response in retail 

stores, campus buildings, and skyscrapers [46-49]. However, the 3R-2C model is computationally 

complex for modeling all zones within hundreds or thousands of buildings within a community.  

In this study, a 2R-1C thermal network model is developed which only has two temperature states, 

namely, building zone temperature Tzone and building wall structure temperature Twall for each 

building, as depicted in Figure 3. 

From Figure 3, the temperature states Twall and Tzone, of the “super-zone” are given by 
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(5) 

where 
1R ,

2R , winR  are the aggregated thermal resistances of the exterior structure, interior 

structure, and window; zoneC , and C are the aggregated thermal capacitances of the zone and walls’ 

structure; ambT , wallT , and zoneT  are the ambient exterior temperature,  the walls’ structure 

temperature, and the aggregated zone temperature; and solQ , intQ , and hvacQ are the solar 

disturbance heat gain, the internal heat gain from the miscellaneous power consumption, and the 

HVAC load from the conditioning power consumption. 
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Considering building clusters comprising hundreds of buildings, the state-space formulation is 

expressed as  

bwbbubbbb wBuBxAx   (6) 

where bx  are building temperature states, hvachvac PQub  is the building air conditioning 

control input and   is the coefficient of performance of the HVAC systems, bw  are the building 

disturbances, bA  is the coefficient matrix of the building states,  ubB  is the coefficient matrix of 

the control inputs, and wbB  is the coefficient matrix of the building disturbances. 

2.3 Modeling of Grid Dynamics 

The electricity grid has three functions: generation, transmission, and distribution of electricity 

power. The connection points between the grid transmission lines and the generators are grid 

buses. A typical IEEE test grid with multiple buses [51] is illustrated in Figure 4, which is one test 

case of this study. Three large generators are connected to grid through the three buses at 

generation sides (Buses 4, 6, and 8). The power flows through the transmission lines to distribution 

buses (Bus 5, 7, and 9) and connected to demand-side building clusters. It is also noticed that each 

generation bus is connected to two distribution buses in the example of Figure 4.  There are 

generally different costs for generators and buildings at distribution buses. An optimal power flow 

problem can be formulated to minimize the overall system cost.  

Several models of grid systems exist, with different accuracy and computational complexity [51-

52]. Considering the example in Figure 4, the total electrical power injection kS  into bus k  can be 

expressed as 

kkk iQPS   (7) 
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where i  is imaginary number, kP  is the active power injection and kQ  is the reactive power 

injection. It is also noticed that the power variable is a complex number. Physical considerations 

dictate the following complex parameter for the transmission line connecting bus k  and bus j  

kjkjkj ibgY   (8) 

where kjY  is the admittance of the transmission line connecting bus node k  and bus node j , kjg  is 

the conductance of the transmission line, and kjb  is the susceptance of the transmission line. The 

real and reactive power injections into bus k become power flows on the transmission lines. Using 

Ohm’s Law, the real and reactive power flows on the line connecting buses k and j are expressed 

as 

)]cos()sin([

)]sin()cos([
2

2

jkkjjkkjjkkjkkj
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bgVVgVP
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




 

(9) 

where kV , jV , k , j  are the voltage magnitudes (kV) and voltage angles of buses k  and j

respectively. 

However, the accurate power flow equations in (9) are computationally challenging in the scope 

of large-scale BtG integration, because they are nonlinear and nonconvex. A simplified power 

flow model can be alternatively formulated under reasonable assumptions that tend to hold in 

practice [53]. These assumptions enable the linearization of Eq. (9): 

1) The resistance for each branch of the transmission line is negligible compared to the 

reactance and therefore can be set to zero, which leads to 0kjg .  

2) The voltage magnitudes at all buses are (approximately) equal to their base (nominal) 

values. 
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3) The voltage angle differences across each transmission lines are small, and thus 

1)cos(  jk   and jkjk   )sin(  hold. 

By substituting the assumptions into Eq. (9), the power flow model is reduced to 

)(2

jkkmokm bVP    (10) 

where oV  is the base (nominal) voltage magnitude (kV). The parameter oV  can be further 

eliminated by scaling it to a dimensionless per unit (p.u.) quantity so that ..1 upVo  . 

The generators connected to the grid are normally synchronous machines with rotors that spin at 

synchronous speed. The dynamics of the mechanical power transfer to electricity power by the 

generators are modeled by the rotational counterpart of Newton’s law 

em TTJ   (11) 

where   is the rotor voltage angle, J  is the moment of inertia, mT  is the mechanical torque input 

to the generator from the turbine, and eT  is the electrical torque on the generator rotor. The 

electrical torque corresponds to the electrical power that the generator provides. This electrical 

power serves any load attached to the generator bus or is converted to power flows on the lines 

leaving the generator bus. The first derivative   is the angular frequency  .  The left-hand side 

of Eq. (11) is typically augmented by a damping torque that is proportional to  . The nominal 

value of the angular frequency corresponds to the electrical frequency of 60 Hz that is used in 

North America’s grid. Supposing that the angular frequency remains close to its nominal value, 

the mechanical and electrical torques in Eq. (11) are converted to powers by multiplying with the 

nominal angular frequency, which results in the swing equation for bus k  
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where n is the number of buses, k  is the bus voltage angle, kM  is the inertia coefficient, kD  is 

the damping coefficient, m

kP  is the mechanical power input to generator, e

kP  is the electricity load 

demand at bus k , kjP  is the power flow from bus k to bus j , and 


n

j

kjP
1

 is the cumulative power 

flow over  line (k,j), and n  is the number of buses in the network. The power flow kjP  in Eq. (12) 

is given by Eq. (10) 

)( jkkjkj bP    (13) 

where 𝑃𝑘𝑗 = 0 if there is no line connecting buses k and j. The electricity load e

kP  at the k th bus 

of Eq. (12) can be decomposed into three components as 





kL

l

b

lk

i

kkk

e

k PPEP
1

},{  
(14) 

where kkE   is the frequency-sensitive uncontrollable load, i

kP  is the frequency-insensitive load, 

bP  is individual building power load, and 


kL

l

b

lkP
1

},{  is the cumulative power demand from the 

buildings that are connected to the k th bus, and the total number of buildings connected to bus k  

is kL .  

The individual building power load in Eq. (14) is defined as 

mischvac

b PPP   (15) 

where hvacP  is the HVAC load that can participate in frequency regulation and was introduces in 

Section 2.2, and miscP  represents the miscellaneous loads with no potential to contribute to 

frequency regulation in this study.  
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By combining Eq. (12)-(15), the authors obtain a governing equation by letting kk    for the 

grid system as follows 


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A linear state-space representation of the grid system can be derived based on Eq. (16) as 

gwgmmbubggge wBuBuAxAxA   (17) 

where gx  is the grid state, bu  is the building load to grid which was introduced in Eq. (6), mu  is 

the controllable mechanical power to grid, and gw  is the frequency-insensitive grid load including 

grid base load and the building miscellaneous load. 

2.4 Modeling of Buildings-to-Grid Integration  

The objective of the BtG framework in this study is to generate high level control setpoints for 

buildings and power generators such that the overall performance is optimized—in terms of system 

stability, energy savings, and cost reductions. The dynamics in Eq. (5) and Eq. (16) clearly operate 

at two different time-scales. Model predictive control (MPC) is developed to control the physics 

responses of these systems based on Eq. (6) and (17), and the time discrepancies are solved via 

constraints in the optimal problem formulations. In order to formulate the BtG framework, both 

MPCs for building and grid are developed. The building only MPC is introduced at Section 2.4.1. 

The grid only MPC is introduced at Section. 2.4.2. The BtG integrated MPC is presented at Section 

2.4.3. 

2.4.1 Building MPC 

The building MPC discussed here is designed for building cluster only without considering the 

grid dynamics. The uniqueness of the large-scale buildings-to-grid integration is that a cluster of 
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buildings needs to be simulated and controlled simultaneously. The canonical linear form of the 

building MPC during the prediction horizon ],0[ pt  for the dynamics defined in Eq. (6) is derived 

as 

bU
min  

p

dt

t

0

b

T
uc )(  

s.t.  
bwbbubbbb wBuBxAx   

)(Oub

max

bb

min

b εxxx   
max

bb

min

b uuu   

(18) 

where c  refers to the cost of building power consumption based on the grid price ($/KWh), min

bu

, max

bu , min

bx , max

bx  are the minimum and maximum constraints on the control inputs bu  or the 

building states bx , and other parameter notations are same as in Eq. (6).  

An occupancy-based MPC is additionally developed to evaluate the impacts of occupancy and 

enable deeper energy savings. The authors introduce an occupancy-based slack relaxation on the 

building states’ constraints in Eq. (18). The occupancy information such as presence and absence 

is simulated and predicted based on the model developed in Section 2.1. It is designed to focus on 

the occupancy status at the whole building level. For example, the occupancy model predicts the 

lunch break as absence during certain time periods if the aggregated training data show a majority 

of the people leaving the offices for lunch. Hence, the upper bounds on indoor temperature increase 

from max

bx  to )(Oub

max

b εx   during cooling condition. Function )(Oubε   is the occupancy-based 

slack relaxation function, and O  is the binary occupancy state at optimized time step t . The 

relaxation function in Eq. (18) is defined as 
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where T  is the constraint adjustment threshold for building states (1-2 °C) , and conditional 

function   is defined as ))}1(()1()1(,0max{)(  tOttOO ub

max

bb εxx  where bx  is the 

building states vector and max

bx  is the predefined upper bound on building states. This empirical 

derived relaxation formulation is designed to balance the feasibility of the numerical solver and 

the savings of the optimal solution.  

2.4.2 Grid MPC 

The grid MPC in this study optimizes the power generation costs as well as the cost of frequency 

deviations. It is assumed that each generator has variable and fixed costs of production while 

transmission losses are negligible. Simplified cost optimization is developed without 

considerations of the no-load operation, startup or shutdown costs, and ramping constraints. Let 

mu  in Eq. (17) to be 
mmm Δuuu   where 

mΔu  is the additional adjustments on the mechanical 

power setpoints 
mu  of Eq. (20), the total cost function of the generators takes the form as 

   dtcc

t
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uB  has units of  

$/MWh, 
mΔu , 

ΔuA , ΔuB  are all defined similarly  to 
mu , 

uA , and uB , gx  is the grid state in Eq. 

(17), c  is the penalty factor on generators’ adjustments, and nngg ffdiag 22)00(  ωF  

is a diagonal matrix with the frequency deviation penalty gf  for the frequency   in gx .   
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The canonical linear form of the grid only MPC during the prediction horizon ],0[ t  combining Eq. 

(17) and Eq. (20) is written as 

bU
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t

 
0

)( gω

T

gm

T

ΔumΔu

T

mm

T

umu

T

m xFxΔuBΔuAΔuuBuAu  

s.t.  
gwgmmbubggge wBΔuuBuAxAxA  )( m

  

max

mm

min

m ΔuΔuΔu   
max

mm

min

m uuu   
max

gg

min

g xxx   

neqgf FxA   

(21) 

where bu  is introduced in Eq. (6) and 
min

mΔu ,
max

mΔu ,
min

mu ,
max

mu , min

gx , max

gx  are the minimum and 

maximum constraints for the corresponding building control variables and grid system states. 

Other parameter notations are the same as Eq. (17). The authors also introduce an inequality 

constraint neqgf FxA   to enforce the thermal limits on the transmission lines. 

2.4.3 Buildings-to-grid MPC 

The integration of the two MPCs from Sections 2.4.1 and 2.4.2 can formulate a centralized MPC 

that optimizes the cost of the buildings and grid simultaneously. Given the case of large-scale BtG 

MPC, the authors first limit the rolling window of MPC at 15-minute ahead prediction for each 

rolling step. The rolling step is 10 seconds to match the normal grid operation. During each period 

of 10 seconds, the MPC optimized control trajectories are calculated for both building and grid for 

15 minutes ahead. However, it is not necessary to optimize the building control at 10-second 

interval for each MPC due to the slow responses of the building thermal states. The authors propose 

a three-level hierarchical MPC that addresses the issues of the operation time discrepancy between 

buildings and grid to reduce the computational complexity, where the control variables are 

described next and are depicted in Figure 5. 
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(1) Level 1: The first level of MPC is only used exactly every 15 mins. In other words, only 

the rolling steps that occur every 15 mins use level-one MPC to optimize the three control 

variables of Eq. (18) and Eq. (21): the building HVAC power bu , the mechanical power 

setpoint 
mu  for generator, and the adjustment of the mechanical power setpoint 

mΔu . For 

the example of Figure 5, one generator’s setpoint mu , one generator’s adjustment mu , and 

one building HVAC power bu  are going to be optimized simultaneously every 15 mins.  

(2) Level 2: Continuing to roll the MPCs in between the intervals of 5 mins, the authors design 

a level-two MPC based on the optimized building HVAC power bu  and the optimized 

mechanical power setpoints 
mu  from the previous MPCs. Only the adjustments 

mΔu  are 

optimized every 10 secs. Using the example in Figure 5 again, the rolling steps from 10 

secs to 4 mins and 50 secs have constant mu  and bu  at all the times for each rolling MPC 

while mu  is optimized during each MPC. The values of mu  and bu  are optimized values 

from the first level-one MPC. 

(3) Level 3:  If the rolling MPC is exactly every 5 mins, a level-three MPC is designed that the 

building HVAC power bu  is updated for next 5 minutes. For the example in Figure 5, the 

MPC at the 5- and 10-minute time steps are updated. Meanwhile, for periods between 5 to 

10 mins, and 10 to 15 mins, the level-two MPCs are using the updated bu , the building 

HVAC power, from level-three MPCs. A similar strategy is applied to all future steps of 

integrated MPC.  

For each level of the MPC, a quadratic programming formulation from Eq. (18) and Eq. (21) is 

developed as 
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where x is used here to include all the optimizations variables for each MPC. 

(22) 

3. Results and Discussions  

3.1 Description of simulation case studies  

3.1.1 Parameters of buildings  

A prototype commercial building from a previous case study is used to generate the building 

clusters [54]. The sample building is a three stories commercial building. Building floor plans and 

constructions materials are known from design documents. Thermal resistance and capacitance are 

calculated based on the ASHRAE standard 90.1 [55]. Random factors drawn from a uniform 

distribution are further used to randomize the building parameters and sizes for a large-scale 

simulation. The internal load is determined by the ASHRAE standard definitions on the lighting 

and equipment power densities per meter square. Detailed building parameters are included in 

Appendix A.1. For the building HVAC system, one week of summer weather data collected by a 

local weather station at San Antonio are used as shown in Figure 6. The overall COPs of the HVAC 

systems in buildings are assumed to be constant and equal to 3. The maximum cooling power is 

limited to 330 KW per building. A night setback strategy for non-office hours is used for the 

HVAC baseline simulation. Office hours are defined from 7:30 am to 8:00 pm, while early start-

up of the system is set from 7:00 am to 7:30 am. The set-point for office hours is 21.4°C   0.6 

while the set-point for non-office hours is 23.5°C   0.5. After all parameters of the buildings are 

randomized, the physics models are obtained as detailed in Section 2.2. 
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All the commercial building occupancy profiles are simulated and generated using the LBNL 

occupancy simulator [41] to produce the synthetic occupancy data as the ground truth for 

individual buildings. The authors first introduce the occupancy density multiplier based on the 

randomized building size. Then, the original algorithm in [41] is modified to randomize the user-

predefined parameters of the occupancy transitions among zones, including private cubicles, 

meeting spaces, auxiliary rooms, etc. The empirical rules based on the authors’ previous 

occupancy studies [38] are used to define the upper and lower limits for the transition probabilities’ 

randomizations. Lastly, the authors randomize the first arrival and the last departure times based 

on the previous occupancy study again [38]. For BtG MPC, each building occupancy profile 

generated by LBNL simulator is predicted in short term based on the algorithm presented in 

Section 2.1. The example occupancy profiles are presented using 965 randomized buildings in 

Figure 7.  

3.1.2 Power Grid Parameters  

Two standard IEEE power networks modeled in Matpower are used [51]: case 9 (9-bus system) 

and case 14 (14-bus system). For case 9, a total of 3 large generators are modeled to supply the 

power demand of 965 buildings while a total of 5 generators are modeled to supply 1058 buildings 

for case 14. The number of buildings for each case are decided based on the generation capacities 

and nominal bus loads predefined in Matpower. The parameters of the power network and the 

generator costs are all obtained from the provided casefiles in Matpower [51]. Examples of the 

grid parameters are listed in Appendix A.2. The real-time electricity prices for the same period as 

the weather data used are obtained from the Electric Reliability Council of Texas [56], as shown 

in Figure 8. The simulations are performed on MATLAB [57]. All occupancy, buildings, and grid 

are modeled and communicated through the authors’ modularized Matlab functions, including the 
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interaction between the Matpower library and the LBNL simulator.  All optimization problems are 

solved using CPLEX [58].  

3.1.3 Simulation Cases 

This study investigates three cases: 1) DB&G, 2) BtG, and 3) OBtG. For DB&G, the authors use 

the traditional bang-bang approach for building simulations and a grid MPC as shown in Eq. (21). 

The simulation entails that each building cluster has a corresponding processing unit that 

determines its own control law, while the grid is optimized and dispatched based on centralized 

optimization performed by the market operator (Figure 9 (a)). In DB&G, the building load is 

merely input to the grid. The building controls are assumed to use bang-bang control of ideal 

cooling demands. This means that the HVAC system only has two modes: “off” for no cooling, 

and “on” for ideal cooling to meet with loads. The cooling load is decided by 

)( setzonezonezonehvac TTmCQ   (23) 

where 
hvacQ   is the cooling load, 

zoneC   is the building thermal capacity, 
zonem  is the building 

thermal mass, zoneT  is the building zone temperature, and 
setT   is the setpoint.  

An alternative to the status-quo DB&G, a central BtG controller (as shown in Figure 9 (b)) collects 

all individual component (generators, buildings) parameters and constraints, including 

measurements, and solves the control problem with a global optimization function. The resulting 

optimization is a large-scale quadratic program as described in Section 2.4. Referring to Sections 

2.4.1 to 2.4.2, BtG optimizes the buildings outputs of Eq. (18) as the inputs to Eq. (21) without 

any occupancy prediction. The night setback HVAC control strategy in DB&G is used again by 

embedding the assumed working schedules. An OBtG can be further proposed as the third 

simulation case for more energy savings and evaluations of the building thermal comforts. The 
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occupancy information such as presence and absence is predicted based on the innovative approach 

described in Section 2.1. The occupancy model simulates and predicts the occupancy state in terms 

of group behaviors at the whole building level. Two discomfort indexes are introduced to evaluate 

the potential violations of the comfort on people as 

 Discomfort Index I (DI) 
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 Discomfort Index II (DII) 
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where d  is the length of the evaluated time horizon, MPCT  is the MPC optimized zone temperature, 

setT  is the setpoint temperature, 
upperT  and 

lowerT  are the upper bound and lower bound of the zone 

temperatures respectively.  

3.2 Results 

3.2.1 Building thermal behavior 

For DB&G, the HVAC is only operated when the simulated zone temperatures are outside the 

setpoint temperature bands. Consequently, DB&G turns the HVAC equipment on and off at a fast 

frequency to maintain the building temperatures around the setpoints, as shown in the top graph in 

Figure 10 (a). The office hour setpoints are 21.4°C while the non-office hour setbacks are 23.5°C. 

Building temperatures are maintained within the temperature bounds most of the time. Meanwhile, 
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the deviations of the zone temperatures for DB&G during night setback periods are smaller than 

the daytime periods of the office hours, as shown from the blue shades of the top graph in Figure 

10 (a). Comparing the HVAC cooling powers of office hours and non-office hours of DB&G in 

Figure 10 (b), the cooling demands increase and decrease frequently during daytime (the large area 

of blue shades) due to the disturbance changes from the solar heat gain and outdoor air temperature. 

Thus, the zone temperatures frequently fluctuate and tend to deviate more from setpoints during 

office hours.  

The performance of BtG is further depicted in Figure 10. For the first day of the simulation in 

Figure 10 (a), the zone temperatures of the building cluster evolve gradually up to the upper bounds 

(24.0°C) during non-office hours from the initial value (22.0°C), owing to the high setpoint of 

night setback periods. In the morning, overcooling occurs during the short start-up periods while 

the lower bounds of the office hours are reached. This is caused due to the high costs (50000$/Hz) 

on frequency deviations in the centralized BtG optimization of Eq. (25). Since the primary 

objective of power grid operators is to maintain stable operation, the frequency should always be 

as close as possible to 60 Hz to avoid damages to the grid’s assets or in the worst case, black-outs. 

As a result, the $50,000/Hz cost is artificial in the sense but is preferred more than a $500/Hz cost, 

although a low cost (500$/HZ) on frequency deviations with same costs for other objectives gives 

no overcooling. After the overcooling, the zone temperatures return to the upper bound of office 

hours (22.0°C) very quickly. Near the end of the day, the evening setbacks gradually restore the 

zone temperatures to 24°C during the nights. The following days show similar temperature 

responses. However, zone temperatures are mostly maintained at 24°C for weekend periods except 

overcooling again in the morning. The results of cooling load from BtG as shown in Figure 10 (b), 
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comparing to DB&G, further illustrate the smoother load patterns and lower energy usages of the 

buildings.  

The optimal start-up, lunch-break and setback time for OBtG are shown as the bottom graph in 

Figure 10 (a). Slightly higher zone temperature responses are observed at morning precooling (the 

blue line) period, noon break (the blue shade), and evening setbacks (the blue line) for each 

working day. It is worth noticing that the occupancy model predicts the absence periods if the 

aggregated occupancy presence shows that a majority of the people leave the offices. Hence, the 

constraints on the zone temperatures increase, thereby sacrificing the individual comfort of people 

who stay in the office during the optimized periods. The HVAC cooling load responses are further 

shown as the bottom graph in Figure 10 (b). Comparing to BtG, more consumption spikes are 

observed (the pink shade) due to the occupancy relaxations and their influences on the frequency 

responses of the grid operations are explored in the next section 3.2.2. Figure 11 further illustrates 

the difference between BtG and OBtG based on one day occupancy profile.  

In OBtG, the uncertainty of the occupancy predictions may sacrifices occupants’ comfort even 

when the majority of the people leave the office for lunch. Hence, the discomfort indexes of 

DB&G, BtG, and OBtG need to be analyzed and compared as shown in Table 1 for the simulated 

week. DB&G is robust enough with a deviation range around 0.11°C from the desired setpoint 

according to the comfort index DI. There are no violations beyond the upper and lower constraints 

during occupancy period, which is the same as BtG. Meanwhile, BtG allows more deviation 

(around 0.5°C) from the setpoint to save the energy consumption while maintaining the room 

temperatures in a comfort zone within the temperature constraints in Eq. (25). Compared to BtG, 

OBtG allows even more temperature deviation (up to 0.73°C) for the unoccupied period, although 

the uncertainty of the occupancy prediction creates difficulties to keep up with the constraints as 
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shown by DII index. However, the violation is small enough to be neglected and has no significant 

impact on the occupants’ comfort.  

3.2.2 Grid Performance 

For DB&G, the coupling between the local and decoupled control actions of building clusters and 

the power system is achieved via the optimization of grid control inputs for the system-level 

performance objectives. The grid system control is using the same approach introduced in Section 

2.4.2 for frequency regulation. In general, the grid MPC minimizes the electricity generation costs 

and maintains frequency stabilities during the grid operations. DB&G in Figure 12 (a) shows the 

example of IEEE Case 9 grid MPC based on the DB&G building controls. There are three types 

of grid load: the building base load, the building HVAC load, and the grid base load. Small spikes 

in Figure 12 (a) can be observed between the total generation and the total load for DB&G owing 

to the dynamic building HVAC load pattern. As the DB&G of Figure 10 (b) shows, the building 

HVAC load pattern exhibits large variations during the entire day, which causes the varied bus 

angles and frequency deviation depicted in Figures 12 (b) and (c). In conclusion, DB&G can 

handle certain level of dynamic changes of the load pattern, as shown by the small spikes of all 

the bus angles in Figure 12 (b) and frequency deviations in Figure 12 (c) during some periods.  

However, it is obvious that BtG is necessary since very large spikes of the frequencies are observed 

for DB&G of Figure 12 (c) at certain periods. Smoother responses from the bus angles of BtG, 

shown in Figure 12 (b), are detected by comparing to DB&G. BtG also has fewer mismatch spikes 

between the total grid generation and the total grid load in Figure 12 (a). In Figure 12 (c), a 

significant reduction in frequency deviations can be found when comparing DB&G with BtG. The 

frequency during all simulation periods is also very close to nominal value (60 Hz) for BtG. 
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Overall, BtG shows a more stable and cost effective optimization on both building and grid 

systems. 

Last but not least, OBtG has little cost impacts on the grid operations, as shown from OBtG plots 

in Figure 12. In Figure 12(a), the total grid load is consistently balanced by the total grid generation 

except the morning periods for OBtG. The mismatch spikes in the morning is caused by the 

occupancy-based rescheduling of the cooling start time. A more dynamic pattern of the cooling 

load can be observed at the precooling stages as shown from OBtG in Figure 10 (b). Compared 

with BtG, the bus angles and frequency responses are very similar and stable. In general, no 

significant impacts from OBtG can be observed on the grid operations although OBtG alters the 

HVAC load patterns of the individual buildings. 

3.3 Extended simulations and results  

Extended simulations are performed on the IEEE Case 14 grid system with similar testing 

configurations as explained in Sections 2.1 through 2.4. This section provides the detailed cost 

analysis  in Table 2 based on simulations of Case 9 and Case 14 for all tested scenarios: DB&G, 

BtG, and OBtG. Comparing frequency penalties for the three scenarios, there are significant 

decreases of the frequency costs during the grid operations when BtG and OBtG are used. As 

discussed before, the grid frequencies experience very high deviations from the nominal value (60 

Hz) for the Case 9 DB&G simulation, as shown in Figure 12 (c). However, the frequency 

deviations for BtG and OBtG are less noticeable. Similar observations can be made for the Case 

14 simulation. In contrast, the costs for electricity generations from the generators are very close 

to each other for all test scenarios. Maximum 2% of cost saving can be observed for both Case 9 

and Case 14 systems, although the maximum absolute saving amount is around 34 thousand 

dollars. Meanwhile, the building costs based on the real time price show higher savings for OBtG 
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and BtG comparing to DB&G. The maximum saving is around 5.4% for BtG and around 6.7 % 

for OBtG during a whole week simulation. The largest saving amount is around 276 thousand 

dollars. By calculating the total costs, it is clear that BtG already has very large saving potential 

while OBtG slightly improves the system performance. The total savings for BtG and OBtG of 

Case 9 comparing to baseline are 60% and 61% respectively. The total savings for BtG and OBtG 

of Case 14 comparing to baseline are 50% and 51% respectively. 

4. Conclusions 

This paper develops and demonstrates new algorithms that facilitate the interaction of building 

load controls with power grid, leading to an occupancy-based Buildings-to-Grid integration. The 

study introduces a simulation framework that explicitly includes all detailed physics models of the 

occupancy, the buildings, and the grid at community scale for high-level optimization. Occupancy-

based air conditioning model predictive control for building clusters is developed for reducing 

billing costs and maintaining comfort satisfaction. Additionally, optimal power flow problems for 

frequency control are explored for two standard power systems. The simulations are performed 

using real data collected from a local weather station, ground truth prices, and occupancy 

information to mimic the practical cases. Simulations show significant reduction of frequency 

deviations for grid operations (99%) while fair cost savings for electricity generations (1-2%) and 

building billings (5-7%). This centralized framework can be used for day-ahead planning to reduce 

the real-time grid control and communication problems for smart cities. A grid system operator 

ideally could solve the BtG integration problem proposed in this study to let the commercial 

building managers to response to the globally optimized routine. The framework is useful for city 

scale planning and operation evaluations for energy industry and utility operators. 
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The larger contribution of operation cost saving on frequency regulation is similar to some studies’ 

findings that use BtG integration at smaller scale in terms of the number of buildings [7-8]. More 

ancillary services could be provided by buildings [6,9,11,15-16], but building occupancy comforts 

and operation costs are rarely considered jointly [10].  This study demonstrate the potential to 

design and optimize an integrated BtG platform with detailed physics models for occupancy, 

buildings, and grids. However, the performance of OBtG with occupancy forecasts is similar to 

BtG because of the night setback strategy. The night setback is already indicating an occupancy-

based scheduling since the main vacancy period of office occupancy is the night time. Thus, OBtG 

could only improve energy efficiency for buildings up to a reasonable level (up to 2% difference) 

by optimizing other shorter absence periods (e.g. lunch breaks). On the other hand, occupancy 

information of Type II, number of people in a building, could be more valuable for controlling 

building operations. For example, the ventilation air flow depends on the number of people. By 

integrating with more occupancy information and control objectives, more savings on the grid 

generation and building billings could be expected, which will be an extension of this study.  

It is also noticed that the centralized BtG MPC uses a simplified building thermal network model 

for a large-scale optimization problem in this study. The benefit is to provide a feasible optimal 

solution for fast decision-making of a utility operator. It is possible to extend the current study to 

include complex building and grid models, namely high-order thermal networks such as 

Energyplus and power grid models, to achieve multi-objective optimization in the BtG integration. 

For example, the optimization problem could be joint regulation of the grid voltage and frequency 

[59-61], optimization of the building demand response [62-63], etc. However, this will yield a 

much more complex optimization problem and computation cost. The foreseen optimization 

problem would no longer be a simple quadratic program. Other limitations of the study are brought 
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by the centralized optimization design. The centralized structure is not practical for systems with 

a very large number of buildings at a city scale, while privacy concerns from building operators 

also likely not allow collecting all relevant building parameters and control constraints to the 

system operator. To alleviate these issues, distributed approaches could be alternatively explored 

but are beyond the scope of the present study. 
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Appendix A:  

A.1: Building system parameters.  

Recalling from Section 2.2, the example Case 9 BtG randomization in this study produces the 

building parameters as follows: 

 )/(1 WCR   )/(2 WCR   )/( WCRwin

  )/1( CCzone

  )/1( CC   

min 2.5710-5 2.57 10-5 0.85 10-2 4.53 107 1.15 109 

mean 5.8010-5 5.81 10-5 1.68 10-2 9.72 107 2.34 109 

max 1.2110-4 1.22 10-4 2.54 10-2 1.89 108 4.86 109 

 

A.2: Grid system parameters.  

The grid system parameters are extracted from the Matpower6.0 b1 version. Recalling from 

Section 2.3, the example of 210 MVA Case 9 BtG in this study uses the IEEE 9 bus system 

parameters: 

1) Buses loads: 



 37 

Bus Number 1 2 3 4 5 6 7 8 9 

Limit (MW) 0 0 0 0 189 0 210 0 262 

2) Branch transmission: 

Branch 1-4* 4-5 5-6 3-6 6-7 7-8 8-2 8-9 9-4 

Susceptance 17.36 10.86 5.88 17.06 9.92 13.88 16 6.21 11.76 

*The brunch 1-4 means the branch from bus No.1 to No. 4. 

3) Generator cost: 

Generator Quadratic($/MW2h) Linear ($/MWh) Constant ($) 

1 0.11 5 150 

2 0.085 1.2 600 

3 0.1225 1 335 

 

 

Figure 1. Schematics for the BtG MPC framework.  
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Figure 2. Occupancy model training and predicting in a rolling MPC [38]. 

 

Figure 3. 2R-1C Thermal Network [50]. 
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Figure 4. A hypothetical grid system. 

 

Figure 5. BtG MPC at three levels of time periods. 
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Figure 6. The outdoor air temperature and the horizontal solar irradiance. 

  

Figure 7. The occupancy profiles from the modified LBNL simulator for large-scale building 

cluster simulations. 

 

Figure 8. Electricity prices from Electric Reliability Council of Texas [56]. 
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(a) A decoupled control  

(b) A centralized control 

Figure 9. Different control scenarios. 

 

(a) Zone temperature responses 
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(b) Building cooling power 

Figure 10. Performance of building within the BtG framework. 

 

Figure 11. One-day comparison between the BtG MPC and the occupancy-based BtG MPC 

 

(a) Total grid generation and other loads (Base Load 1: The grid’ base load; Base Load 2: 

The buildings’ bases load; HVAC Load: The buildings’ cooling load). 
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(b) Grid buses’ angle changes with Bus 3 as the reference bus. 

 

(c) Grid frequency responses 

Figure 12. Performance of building within the BtG framework 

Table 1 Discomfort Indexes per day for Case 9  

 

 
DB&G BtG OBtG 

DI* DII* DI DII DI DII 

06/17 0.1102 0 0.5043 0 0.7310 0.0044 

06/18 0.1086 0 0.50358 0 0.7312 0.0045 

06/19 0.1157 0 0.5043 0 0.7303 0.0046 

06/20 0.1102 0 0.5042 0 0.7305 0.0046 

06/23 0.1191 0 0.5044 0 0.7299 0.0045 

*All units for DI and DII presented are in °C. 
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Table 2 Cost comparison for all scenarios (unit of cost in 1000$). 

Test Case Cost Type DB&G BtG OBtG 

 

Case 9 

Frequency Penalty 7493.09 6.63 (99%) 6.64 (99%) 

Generator Generation 1650.61 1618.43 (1.9%) 1616.45 (2.1%) 

Building Energy Cost 3647.29 3462.91 (5.1%) 3415.11 (6.8%) 

Total BtG Cost 12790.99 5087.98 (60%) 5038.21 (61%) 

 

Case 14 

Frequency Penalty 6396.10 5.95 (99%) 11.58 (99%) 

Generator Generation 2673.56 2659.06 (0.5%) 2651.17 (0.8%) 

Building Energy Cost 4065.12 3845.87 (5.4%) 3789.68 (6.7%) 

Total BtG Cost 13134.79 6510.89 (50%) 6452.44(51%) 
 

 


