Occupancy-based Buildings-to-grid Integration Framework for Smart and

Connected Communities

Abstract

Buildings-to-grid (BtG) integration simulations are becoming prevalent due to the development of
smart buildings and smart grid. Buildings are the major energy consumers of the total electricity
production worldwide. There is an urgent need to integrate buildings with smart grid operation to
accommodate the needs of flexible load controls due to the increasing of renewable energy
resources. In the imminent future, smart buildings can contribute to grid stability by changing their
overall demand patterns in response to grid operations. Meanwhile, building thermal energy
consumption is also maintained by building operators to satisfy occupants’ thermal comforts.
However, explicit large-scale demonstrations based on a simulation platform that integrates
building occupancy, building physics, and grid physics at community level have not been explored.
This study develops an occupancy behavior driven BtG optimization platform that can simulate,
predict and optimize indoor temperature and energy consumption of buildings, generator setpoint
and deviation while maintaining acceptable grid frequency. Authors have tested the framework
on two standard power networks. The results show that the integrated framework can provide

potential cost savings up to 60% comparing with the decoupled operation.
Highlights:

e Development of a centralized occupancy-based Buildings-to-grid Model Predictive
Control (MPC) framework.
e Simulation on randomized building clusters and standard IEEE grid systems.

e Findings show 50%-61% cost reduction for BtG integration.



Occupancy Predictor

P Transition probability
a Distribution weight factor
B Smooth factor
s Occupancy state
Building System Physics
C Thermal capacity
R Thermal resistance
Twau Wall temperature
Tone Zone temperature
Q Heat gain
Qsor Solar heat
Qine Internal heat
Qhvac HVAC cooling
n HVAC coefficient of performance
Xp Building temperature states
uy, Building control inputs
Wy Building disturbances
Grid System Physics
6 Bus voltage angle
D Damping coefficient
M Inertia coefficient
P Power
P, Mechanical power input
P, Electricity demand load
Pisc Miscellaneous building load
Pryac Building HVAC load
W Bus frequency
Xg Grid states
ug Building load to grid
U, Controllable mechanical powers to grid
wy Grid disturbances
BtG MPC
C Building cost as the grid price
€ Slack relaxation based on occupancy prediction
a Quadratic generator cost
b Linear generator cost
f Quadratic frequency cost

1. Introduction

In response to dramatic growth of power demand, use of renewable energy, and critical risk of
building power blackouts, smart buildings and smart grid that can communicate with each other
have more benefits for building management and power operation. Recent reports from the U.S.

Department of Energy show that (1) buildings consume 74% of electricity produced by the grid in



the U.S.; (2) buildings are able to reduce their consumption by 20-38% using advanced sensors
and controls; and (3) 90% of the commercial buildings can be aggregated to connect to the grid
[1-3]. Hence, it is necessary to investigate and understand the coupling between buildings and

grids for optimizing the energy consumptions and the operation costs.
1.1 Building MPCs and research gaps

Model predictive control (MPC) is one real-time control algorithm that connects buildings to grids,
thereby establishing a computational framework to co-optimize the decisions of building and grid
operators. Studies interoperating buildings and grids using MPC for demand response are
presented in recent literature overviews [4-5]. For commercial buildings, a bi-level MPC
optimization is designed to control the voltage and current in a distribution grid while building
zonal models are integrated [6]. The study provides a framework comprising mathematical models
of commercial buildings and the distribution grid. Commercial building MPC or model-based
supervisory control can also regulate the building power frequency by controlling the fan power
consumption, the chiller operation sequence, and the air-side ventilation system [7-8]. Those
studies treat buildings as fast demand side resources to reduce frequency deviations in grid
operations. Customized designs of the model-based controllers can further provide ancillary
services to the grid [9-10]. One study optimizes the chiller to respond fast to the demand response
signal [9]. Another study investigates the ancillary service capacity under optimal HVAC usages
[10]. For residential buildings, grid-aware MPCs are carried out to reduce the costs of smart homes
by using energy storage, appliance scheduling, electric vehicles, and distributed generation units
[11-15]. These studies usually focus microgrid or small-scale interactions between buildings and
grids. The majority of the aforementioned research shows significant energy savings given

different building systems with no account for larger scale simulations of building clusters.



One recent study [16] expands the current research scope by using a detailed physics model of a
building cluster for a smart grid optimization. Although large-scale building aggregation is
performed, the models of electricity generation and renewable energy source are oversimplified
with no gird physics. Hence, the grid frequency and power flow transmission cannot be regulated.
Furthermore, how to achieve the optimal control for hundreds of grid-aware commercial buildings
is not demonstrated, especially considering the significant time-scale discrepancy between
building demand change (minutes to hours) and grid power supply (milliseconds to seconds).
Therefore, an explicit simulation of the building dynamics, grid dynamics, generator capacity, and
BtG operation cost from a large-scale control strategy is a critical research question not fully

addressed yet [17].

1.2 Missing of the occupant behavior

Another key component missing in the large scale BtG integration is the building occupancy.
Humans spend more than 90% of their time in buildings, and the buildings themselves are designed
to provide a comfortable indoor environment for occupants [ 18]. The human-building interactions,
such as usage of lighting and air conditioning, consume around one quarter to half of the total
amount of commercial building energy [19]. On the other hand, office workers arrive and leave
the workspaces regularly according to schedules. The stochastic occupancy pattern can be detected
easily by occupancy sensors, which are commonly installed in today’s smart buildings [20].
Therefore, it is a natural idea to utilize the occupancy information to reduce the energy
consumption caused by human-building interaction while maintaining occupants’ comfort [21].
Typical occupancy schedules used to optimize building operations are conservative on energy
savings [22]. Larger savings with stable comfort satisfactions can be further achieved through

learning and prediction of the office occupancy [23].



Current research has found a range of strategies to predict and utilize the occupancy in single
building control [24-26]. The optimization of air conditioning systems is demonstrated through
building MPCs using the hidden Markov chain to predict the occupant numbers [27]. First order
Markov chain (MC) is another popular method that can provide online occupancy predictions. One
study trains a MC in a moving window for an occupancy driven MPC of commercial buildings
[28]. The occupied periods are found by aggregated predictions of the occupancy models. The
occupied periods’ setpoint temperature of the air conditioning is reset from the high temperatures
of unoccupied periods. A similar example is shown by penalizing the discomfort index during
occupancy. Occupied periods are estimated using a MC that is trained through Bayesian inference
[29]. Savings are shown by preheating, no conditioning at vacancies, and suppressing the peak
demands. A more detailed description of the Markov model will be introduced in the following
section of methodology. Other occupancy models have also been extensively explored for building
simulations, such as random sampling [30], machine learning [31], data mining [32] and agent-
based models [33]. However, most studies focus on the occupancy-buildings coupling are still
ignoring the complete picture to associate occupancy, buildings, and grids together [34-36]. How
those occupancy-based MPCs effect the aggregation of building demand and influence the

optimization of grid operation remains largely unknown.
1.3 Innovations of the study

Based on the aforementioned review, the study addresses the following research gaps for a large
scale BtG integration: 1) lack of investigation of advanced control strategies for the integration of
occupancy, buildings and grid, and 2) lack of evaluation of the occupancy impact on the individual
thermal comfort and energy savings. Three integration approaches are proposed and studied as: 1)

a decoupled buildings and grid optimization (DB&G), 2) a centralized Buildings-to-Grid



integration (BtG), and 3) a centralized occupancy-based BtG integration (OBtG). DB&G
introduces on/off controls for buildings and model predictive control (MPC) for the grid. BtG
introduces an innovative MPC to control the buildings and grid simultaneously with the time
discrepancy between the buildings and grid operations. OBtG integrates occupancy predictions to
improve energy efficiency by maintaining the thermal comfort at the occupied periods while
reducing energy consumption when buildings are not occupied. BtG and OBtG are used to
generate high-level local control operations for both building systems and grid generators such
that the overall performance is optimized in terms of power network stability, energy savings, and
comfort satisfactions. The contributions of this study are: 1) a new online occupancy predictor to
predict the occupancy at the building level; 2) complete high-level integrations among occupancy,
buildings, and grid with system-level objectives and constraints; and 3) a three-level design of the
buildings-to-grid integrations to address the operation time-scale discrepancy and the large-scale
computational cost. The paper is organized as follows: Section 2 presents the overall methodology
including occupancy model, building physics, grid dynamics, and formulation of the three
integration approaches; Section 3 discusses simulation results; and Section 4 concludes this paper

with open research problems and future studies.

2. Methodology

The final centralized OBtG approach is developed to integrate the systems of occupancy,
buildings, and grid, as shown in Figure 1. The objective is to develop an explicit mathematical
MPC framework for large-scale buildings-to-grid integration with building occupancy behavior
interactions. The MPC structure uses the computationally efficient, convex quadratic
programming for optimization, whereby the control laws for the slower (buildings) and faster

(grid) operations are jointly computed. As shown by Figure 1, the time-steps of the latter (grid) are



nested in the time-steps of the former (buildings) through building variables u, and u_, while the
system states (¥, and x_)and all controllable variables (u; ,u,,and Au, ) jointly evolve according

to the coupling between the physics models of buildings and grids. Non-controllable inputs
including disturbances and constraints that are imposed to the MPC are assumed to be measurable,
such as local weather from on-site weather stations. The model formulations and system physics
are illustrated in Sections 2.1, 2.2 and 2.3 for building occupancy, building physics, and grid

physics respectively. The details of BtG integration are described in Section 2.4.
2.1 Modeling of Occupancy

Three basic types of occupancy models exist in prior studies [37]. Type I is the occupancy status
at a space level, addressing whether or not a space is occupied at a particular time. Type II is the
number of occupants at a space level, addressing how many occupants are in the space at a
particular time. Type III is the occupant tracking, addressing individual movement and behavior
tracking. In this study, the status of building occupants influences the building state constraints
(zone temperature). Thus, Type I information, the occupancy states of presence and absence, are

enough for control purposes.

A modified occupancy approach is integrated with building MPC based on the authors’ recent
work [38]. The modeling technique develops a first order Markov chain with a moving training

window driven by change-point detection. Define a Markov chain given by the time sequence
X, X5, X, ending at time step &, where at each time step, the Markov chain can take values from

the states {s,,s,} representing binary occupancy (i.e., presence or absence). The chance of the

state transition from S; to §; at time step k +1 is decided by the transition probability at time step

k defined as



pij = p(x,, :Sj|xk =5;) (1)

The transition probabilities between states for more than one step are more easily calculated using
a transition matrix. Let the transition matrix P, =(p,) i,; denote the matrix where the element

indexed by (7, ;) represents the probability defined in Eq. (1).

The transition matrix P, is trained within a moving optimal window. Define a moving window
W=1{X,,X,,,...,X,} where 0<¢<s<k holds for the Markov chain prediction at time step k +1.
Within the window, there are 7; transitions from S; to §; among all transitions from S; to §;.

Then, the probability of transition from §; to §; is estimated as

. n+a @
b=
Z(”i/ +a)

1=0
where }A?ij is the estimated transition probability from state S; to §; and & is a smoothing factor.
A properly defined smooth factor could enforce the likelihood of occupancy changes during the
dramatic increase of occupancy presence at the morning ramp-up, varied occupancy at the lunch
break, and dramatic decrease of occupancy presence at the evening ramp-down. The authors note
that this study has a binary inhomogeneous occupancy chain (e.g. presence and absence). Based
on office occupancy patterns, there are periods of very low or zero transition probabilities, defined
as sink transitions [39]. A small smooth factor is preferred in order not to force the unlikely
occupancy changes to be happening during those sink periods. The authors defined the factor as a
time related step function of 0, 0.05, and 0.1, where empirical rules are used to decide the specific

value at certain time.



The Markov occupancy model is going to be integrated into a rolling window MPC. Assuming a
case that the building MPC is rolling at 15 minutes ahead during one test day, there are a total of
96 transition matrices that need to be updated for each optimized step of MPC since one day has
96 intervals of 15 minutes. For each transition matrix, the Markov chain’s transition probabilities
are trained within an optimal window before each of the predicted time step. The period of the
training window is decided by the changing point of the occupancy presence rate based on a daily
occupancy profile, as shown in the hypothetical MPC of Figure 2. Binary occupancy data during
the same time period in this training window (“training window” in Figure 2) for each day of the
ten most recent historical days are the training data for the transition probabilities in Eq. (1). To
overcome the uncertainties from the limited training size, a modified bootstrap sampling strategy

1s used as follows:

1) Randomly sample nine days from the training data and apply Eq. (2) to get one bootstrap
transition matrix;
2) Resample ten times using the procedure above; and

3) Calculate the average values of the ten bootstrap transition matrices.

The details of the changing-point detection are described next. Let D ={d,,...,d, .} represent the

selected data from z days before the time step to be predicted. Here, if the occupancy presence
state to be predicted is in a working day, the selection of D only contains the available profiles of
z working days. Additionally, & is binary state that represents the presence and absence as 1 and
0, respectively. A discrete profile of the presence probability [38] is generated by
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where 1 < m <96 if the occupancy data is in 15-minute scale and A is an exponential forgetting
factor, which is smaller than one. Again, the building MPC is performing rolling window
optimization and new occupancy information is updated through an ongoing measurement. During
the continuous updates of the occupancy presence rates of Eq. (3), the forgetting factor gives more

weight on the recent occupancy presence information rather than the old one.

The authors assume that a change of the optimal training window length should happen based on
the change points of the presence rate calculated by Eq. (3). The change detection algorithm in this
study uses relative density-ratio estimation with the Pearson divergence as a measure to score the

possible change points. For a subsample distribution p(m) selected from the sample distribution

p(n), the symmetric divergence score [40] is defined as

“4)
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where S is the score, and p,(m)= fp(n)+(1—-B)p(m). Notice that p(m) and p(n) are the
preselected probability density functions of the corresponding variables, and the factor g is a
density ratio. For the example of Figure 2, the day file contains 96 occupancy rates in 15-minute
resolution which indicates the sample n in Eq. (4) follows a preselected Gaussian distribution
p(n) fitted by 96 presence probabilities. The change point is detected by using a sliding window
size of 12 intervals (3-hour data) which indicates a preselected Gaussian distribution p(m) fitted
by 12 presence probabilities for this subsample m in Eq. (4). The sliding window moves forward
from the beginning of the day until the end of the day and then resamples backwards from the end

to the beginning again. The symmetric score is calculated by the summation of the forward sliding

10



and backward sliding scores S using Eq. (4). The MATLAB toolbox developed by Liu is used

[40].

In this study, the occupancy number of each building for OBtG optimization is generated from an
occupancy simulator developed by Lawrence Berkeley National Laboratory (LBNL) [41]. The
LBNL simulator gives detailed occupancy number simulation at the building level for a selected
simulation period, which provides Type II occupancy information. A filter is used to pass the
simulated occupancy number to occupancy presence which is the Type I occupancy information
needed in this study. The passing threshold is 30% of the max number observed in the simulated
data for each building respectively. The presence rate is then calculated based on Eq. (3) for each
building again. As shown in Figure 2, the individual optimized windows are decided using Eq.
(4). The transition matrices are updated using Eq. (2) afterwards. Prediction for the occupancy
presence and absence is made based on all updated transition matrices accordingly during the

building MPC.

2.2 Modeling of Building Dynamics

The total electricity load of a commercial building is composed by two parts: base power demand
and controllable power demand. Electrical load of lighting, electrical equipment, and other
appliances are the base demand, which can be modelled and predicted by operation schedules. In
contrast, electricity load of HVAC systems is a controllable load which is possible to be altered by
adjusting building indoor temperature setpoints. Here, as the first attempt for a large-scale
buildings-to-grid integration within a community, only an ideal cooling system for each building
is modeled where the optimal control variable is temperature set-point. It is assumed that a

decoupled or distributed PID control strategy could achieve the optimized setpoint at the lower
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level (air handling unit, roof top units, etc.), which has been demonstrated in a few prior research

studies [42-44].

The optimal HVAC demand is predicted through the control of the building physics model, and
specifically, the thermal resistance and capacitance (RC) network. The lowest order network,
namely 1R-1C, is limited to a well-insulated room with fewer heat sources [45]. The high order
network, 3R-2C or even higher, provides accurate estimations of the temperature response in retail
stores, campus buildings, and skyscrapers [46-49]. However, the 3R-2C model is computationally
complex for modeling all zones within hundreds or thousands of buildings within a community.
In this study, a 2R-1C thermal network model is developed which only has two temperature states,
namely, building zone temperature 7,one and building wall structure temperature 7wan for each

building, as depicted in Figure 3.

From Figure 3, the temperature states 7Twan and Tyone, of the “super-zone” are given by

. T  —T T -—-T
C]—lvgll — amb wall + zone wall + le
R, R, %)
. Tr —T T -T
C — wall zone + amb zone +0. + ‘
zone]wzone Rl R th thac

win

where R ,R,, R, are the aggregated thermal resistances of the exterior structure, interior

structure, and window; C, ., and C are the aggregated thermal capacitances of the zone and walls’

zoned

structure; 7, , T and 7., are the ambient exterior temperature, the walls’ structure

wall > zone

temperature, and the aggregated zone temperature; and O, , , Q.. , and 0,,. are the solar

disturbance heat gain, the internal heat gain from the miscellaneous power consumption, and the

HVAC load from the conditioning power consumption.
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Considering building clusters comprising hundreds of buildings, the state-space formulation is

expressed as

X, =A,x, +B,u, +B W, (©)

where x, are building temperature states, u, =7Q, .. =P,..1s the building air conditioning

vac

control input and 7 is the coefficient of performance of the HVAC systems, w, are the building
disturbances, A, is the coefficient matrix of the building states, B, is the coefficient matrix of

the control inputs, and B, is the coefficient matrix of the building disturbances.

2.3 Modeling of Grid Dynamics

The electricity grid has three functions: generation, transmission, and distribution of electricity
power. The connection points between the grid transmission lines and the generators are grid
buses. A typical IEEE test grid with multiple buses [51] is illustrated in Figure 4, which is one test
case of this study. Three large generators are connected to grid through the three buses at
generation sides (Buses 4, 6, and 8). The power flows through the transmission lines to distribution
buses (Bus 5, 7, and 9) and connected to demand-side building clusters. It is also noticed that each
generation bus is connected to two distribution buses in the example of Figure 4. There are
generally different costs for generators and buildings at distribution buses. An optimal power flow

problem can be formulated to minimize the overall system cost.

Several models of grid systems exist, with different accuracy and computational complexity [51-
52]. Considering the example in Figure 4, the total electrical power injection S, into bus £ can be

expressed as

Sy =PF, —i0, (7
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where i is imaginary number, P, is the active power injection and O, is the reactive power

injection. It is also noticed that the power variable is a complex number. Physical considerations

dictate the following complex parameter for the transmission line connecting bus & and bus ;

Y, =g, —iby (®)

where 1, is the admittance of the transmission line connecting bus node 4 and bus node j, g, is
the conductance of the transmission line, and b, is the susceptance of the transmission line. The

real and reactive power injections into bus k£ become power flows on the transmission lines. Using
Ohm’s Law, the real and reactive power flows on the line connecting buses k& and j are expressed

as

Py =V gy —ViV,[gy cos(0, —0,) = by sin(6, —0,)] ©)
O, =Vib, —V,V,[g, sin(6, —0,)+b, cos(6, —0,)]

where V, ,V;,0,, 0, are the voltage magnitudes (kV) and voltage angles of buses k and ;
respectively.
However, the accurate power flow equations in (9) are computationally challenging in the scope
of large-scale BtG integration, because they are nonlinear and nonconvex. A simplified power
flow model can be alternatively formulated under reasonable assumptions that tend to hold in
practice [53]. These assumptions enable the linearization of Eq. (9):

1) The resistance for each branch of the transmission line is negligible compared to the

reactance and therefore can be set to zero, which leads to g, =0.

2) The voltage magnitudes at all buses are (approximately) equal to their base (nominal)

values.
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3) The voltage angle differences across each transmission lines are small, and thus

cos(6, —0,)~1 and sin( 6, —6,) ~ 6, — 6, hold.
By substituting the assumptions into Eq. (9), the power flow model is reduced to

Pkm = Vozbkm (ek - HJ) (10)

where V, is the base (nominal) voltage magnitude (kV). The parameter ¥, can be further

o 4

eliminated by scaling it to a dimensionless per unit (p.u.) quantity so that |V | = 1 p.u..

The generators connected to the grid are normally synchronous machines with rotors that spin at
synchronous speed. The dynamics of the mechanical power transfer to electricity power by the
generators are modeled by the rotational counterpart of Newton’s law
JO=T"-T* (11)

where @ is the rotor voltage angle, J is the moment of inertia, 7" is the mechanical torque input
to the generator from the turbine, and 7°° is the electrical torque on the generator rotor. The
electrical torque corresponds to the electrical power that the generator provides. This electrical
power serves any load attached to the generator bus or is converted to power flows on the lines
leaving the generator bus. The first derivative @ is the angular frequency @ . The left-hand side
of Eq. (11) is typically augmented by a damping torque that is proportional to & . The nominal
value of the angular frequency corresponds to the electrical frequency of 60 Hz that is used in
North America’s grid. Supposing that the angular frequency remains close to its nominal value,
the mechanical and electrical torques in Eq. (11) are converted to powers by multiplying with the

nominal angular frequency, which results in the swing equation for bus k

.. ) ” . (12)
ngk +Dk0k =B"-F _Zpkj

J=1
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where 7 is the number of buses, 6, is the bus voltage angle, M, is the inertia coefficient, D, is

the damping coefficient, A" is the mechanical power input to generator, P is the electricity load

demand at bus &, B, is the power flow from bus & to bus ;, and z P, is the cumulative power
j=1

flow over line (k,), and n is the number of buses in the network. The power flow F; in Eq. (12)

is given by Eq. (10)

B, =b;(6, —06)) (13)
where Py ; = 0 if there is no line connecting buses & and j. The electricity load B’ at the & th bus

of Eq. (12) can be decomposed into three components as

o (14)
Pi=Ebf +P+) P,
=1

where E, 6, is the frequency-sensitive uncontrollable load, P’ is the frequency-insensitive load,
Ly

P’ is individual building power load, and ZP{Z,} is the cumulative power demand from the
I=1

buildings that are connected to the & th bus, and the total number of buildings connected to bus &

s L, .

The individual building power load in Eq. (14) is defined as

PP=P +P (15)

hvac misc

where P, .. is the HVAC load that can participate in frequency regulation and was introduces in

Section 2.2, and P

misc

represents the miscellaneous loads with no potential to contribute to

frequency regulation in this study.
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By combining Eq. (12)-(15), the authors obtain a governing equation by letting ék = @, for the

grid system as follows

| : & (16)
Mka)k = _(Dk + Ek)a)k + I)kn + Zbk/(ek - 9/) - })kl - Z(])hvac + Pmisc)
Jj=1 I=1
A linear state-space representation of the grid system can be derived based on Eq. (16) as
AXx, =AX, +A,u, +Bu +B w, a7

where x, is the grid state, u, is the building load to grid which was introduced in Eq. (6), u,, is

the controllable mechanical power to grid, and W, is the frequency-insensitive grid load including

grid base load and the building miscellaneous load.
2.4 Modeling of Buildings-to-Grid Integration

The objective of the BtG framework in this study is to generate high level control setpoints for
buildings and power generators such that the overall performance is optimized—in terms of system
stability, energy savings, and cost reductions. The dynamics in Eq. (5) and Eq. (16) clearly operate
at two different time-scales. Model predictive control (MPC) is developed to control the physics
responses of these systems based on Eq. (6) and (17), and the time discrepancies are solved via
constraints in the optimal problem formulations. In order to formulate the BtG framework, both
MPC:s for building and grid are developed. The building only MPC is introduced at Section 2.4.1.
The grid only MPC is introduced at Section. 2.4.2. The BtG integrated MPC is presented at Section

2.4.3.
2.4.1 Building MPC

The building MPC discussed here is designed for building cluster only without considering the

grid dynamics. The uniqueness of the large-scale buildings-to-grid integration is that a cluster of
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buildings needs to be simulated and controlled simultaneously. The canonical linear form of the

building MPC during the prediction horizon [0,¢,] for the dynamics defined in Eq. (6) is derived

as

(18)

tf’
: T
min ! (c"u, )dt

st. x, =A x, +B,u, +B,w,

max

X< x, <X+ g, (0)

max

min
u, <u, <u,

min

where ¢ refers to the cost of building power consumption based on the grid price (§/KWh), u,

max min max

, Uy, Xp, X are the minimum and maximum constraints on the control inputs u, or the

building states X, , and other parameter notations are same as in Eq. (6).

An occupancy-based MPC is additionally developed to evaluate the impacts of occupancy and
enable deeper energy savings. The authors introduce an occupancy-based slack relaxation on the
building states’ constraints in Eq. (18). The occupancy information such as presence and absence
is simulated and predicted based on the model developed in Section 2.1. It is designed to focus on
the occupancy status at the whole building level. For example, the occupancy model predicts the
lunch break as absence during certain time periods if the aggregated training data show a majority

of the people leaving the offices for lunch. Hence, the upper bounds on indoor temperature increase

max max

from x;** to x;** +¢€,,(0) during cooling condition. Function &,,(O) is the occupancy-based

slack relaxation function, and O is the binary occupancy state at optimized time step /. The

relaxation function in Eq. (18) is defined as
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AT if 0<I(0)<l1
&y (0) =1min{ AT, x, (1 =) =x,;" (¢ -1) -2, (OC-1)} i r©O)>1 (19)
0 if T()=1

where AT is the constraint adjustment threshold for building states (1-2 °C) , and conditional
function I' is defined as I'(0) = O+ max{0,x, ( —1)—x; " (t —1)—¢g,, (Ot —1))} where x, is the

max

building states vector and x;" is the predefined upper bound on building states. This empirical

derived relaxation formulation is designed to balance the feasibility of the numerical solver and

the savings of the optimal solution.
24.2 Grid MPC

The grid MPC in this study optimizes the power generation costs as well as the cost of frequency
deviations. It is assumed that each generator has variable and fixed costs of production while
transmission losses are negligible. Simplified cost optimization is developed without
considerations of the no-load operation, startup or shutdown costs, and ramping constraints. Let

u, in Eq. (17) to be u,, =u,, +Au,, where Au, is the additional adjustments on the mechanical

power setpoints u,, of Eq. (20), the total cost function of the generators takes the form as

y 20
[, Au, +Blu, +cAul A, Au, +cB} Au, +x,"F,x,)dt (20)
0
u, a, b,
where u, =| : |,A; = has units of $/MW?h, and B, =| : | has units of
Z/_ll’l an bl’l

g g g

$/MWh, Au,,, A,,, B,, are all defined similarly to u,, A;, and By, X, is the grid state in Eq.

Au?

(17), ¢ is the penalty factor on generators’ adjustments, and F,, =diag(0 f, - 0 f,),,.,

is a diagonal matrix with the frequency deviation penalty f, for the frequency @ in x, .
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The canonical linear form of the grid only MPC during the prediction horizon [0,7] combining Eq.

(17) and Eq. (20) is written as

e2y)

t
min [(u," AU, +BU, +cAup A, Au,, +cB) Au,, +x,"F,x,)dt
b
0

st Ax,=AXx,+A,u, +B (u,+Au,)+B w,
min max
Au" <Au,, <Au,,

ﬁ:llln < ﬁ < umax

— Tm — T m

min max
< <
Xg = Xg = Xg

min Aumax —min —max min max
> m

o u, LU, Lxg", xg™ are the minimum and

where u, is introduced in Eq. (6) and Au S, U
maximum constraints for the corresponding building control variables and grid system states.

Other parameter notations are the same as Eq. (17). The authors also introduce an inequality

constraint A;x, <F,  to enforce the thermal limits on the transmission lines.

2.4.3 Buildings-to-grid MPC

The integration of the two MPCs from Sections 2.4.1 and 2.4.2 can formulate a centralized MPC
that optimizes the cost of the buildings and grid simultaneously. Given the case of large-scale BtG
MPC, the authors first limit the rolling window of MPC at 15-minute ahead prediction for each
rolling step. The rolling step is 10 seconds to match the normal grid operation. During each period
of 10 seconds, the MPC optimized control trajectories are calculated for both building and grid for
15 minutes ahead. However, it is not necessary to optimize the building control at 10-second
interval for each MPC due to the slow responses of the building thermal states. The authors propose
a three-level hierarchical MPC that addresses the issues of the operation time discrepancy between
buildings and grid to reduce the computational complexity, where the control variables are

described next and are depicted in Figure 5.
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(1) Level 1: The first level of MPC is only used exactly every 15 mins. In other words, only

the rolling steps that occur every 15 mins use level-one MPC to optimize the three control
variables of Eq. (18) and Eq. (21): the building HVAC power u,, the mechanical power
setpoint u,, for generator, and the adjustment of the mechanical power setpoint Au,,. For
the example of Figure 5, one generator’s setpoint # , one generator’s adjustment Au,, , and
one building HVAC power u, are going to be optimized simultaneously every 15 mins.
(2) Level 2: Continuing to roll the MPCs in between the intervals of 5 mins, the authors design
a level-two MPC based on the optimized building HVAC power u, and the optimized
mechanical power setpoints u,, from the previous MPCs. Only the adjustments Au_ are
optimized every 10 secs. Using the example in Figure 5 again, the rolling steps from 10
secs to 4 mins and 50 secs have constant #, and u, at all the times for each rolling MPC
while Au,, is optimized during each MPC. The values of #, and u, are optimized values

from the first level-one MPC.

(3) Level 3: Ifthe rolling MPC is exactly every 5 mins, a level-three MPC is designed that the
building HVAC power u, is updated for next 5 minutes. For the example in Figure 5, the
MPC at the 5- and 10-minute time steps are updated. Meanwhile, for periods between 5 to
10 mins, and 10 to 15 mins, the level-two MPCs are using the updated u,, the building
HVAC power, from level-three MPCs. A similar strategy is applied to all future steps of

integrated MPC.

For each level of the MPC, a quadratic programming formulation from Eq. (18) and Eq. (21) is

developed as
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min x"H x+Fx (22)
st. A, Xx=b,
A x<b.

ineq ineq
X" < x < x™™
where x is used here to include all the optimizations variables for each MPC.
3. Results and Discussions
3.1 Description of simulation case studies

3.1.1 Parameters of buildings

A prototype commercial building from a previous case study is used to generate the building
clusters [54]. The sample building is a three stories commercial building. Building floor plans and
constructions materials are known from design documents. Thermal resistance and capacitance are
calculated based on the ASHRAE standard 90.1 [55]. Random factors drawn from a uniform
distribution are further used to randomize the building parameters and sizes for a large-scale
simulation. The internal load is determined by the ASHRAE standard definitions on the lighting
and equipment power densities per meter square. Detailed building parameters are included in
Appendix A.1. For the building HVAC system, one week of summer weather data collected by a
local weather station at San Antonio are used as shown in Figure 6. The overall COPs ofthe HVAC
systems in buildings are assumed to be constant and equal to 3. The maximum cooling power is
limited to 330 KW per building. A night setback strategy for non-office hours is used for the
HVAC baseline simulation. Office hours are defined from 7:30 am to 8:00 pm, while early start-
up of the system is set from 7:00 am to 7:30 am. The set-point for office hours is 21.4°C + 0.6
while the set-point for non-office hours is 23.5°C t 0.5. After all parameters of the buildings are

randomized, the physics models are obtained as detailed in Section 2.2.
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All the commercial building occupancy profiles are simulated and generated using the LBNL
occupancy simulator [41] to produce the synthetic occupancy data as the ground truth for
individual buildings. The authors first introduce the occupancy density multiplier based on the
randomized building size. Then, the original algorithm in [41] is modified to randomize the user-
predefined parameters of the occupancy transitions among zones, including private cubicles,
meeting spaces, auxiliary rooms, etc. The empirical rules based on the authors’ previous
occupancy studies [38] are used to define the upper and lower limits for the transition probabilities’
randomizations. Lastly, the authors randomize the first arrival and the last departure times based
on the previous occupancy study again [38]. For BtG MPC, each building occupancy profile
generated by LBNL simulator is predicted in short term based on the algorithm presented in
Section 2.1. The example occupancy profiles are presented using 965 randomized buildings in

Figure 7.
3.1.2 Power Grid Parameters

Two standard IEEE power networks modeled in Matpower are used [51]: case 9 (9-bus system)
and case 14 (14-bus system). For case 9, a total of 3 large generators are modeled to supply the
power demand of 965 buildings while a total of 5 generators are modeled to supply 1058 buildings
for case 14. The number of buildings for each case are decided based on the generation capacities
and nominal bus loads predefined in Matpower. The parameters of the power network and the
generator costs are all obtained from the provided casefiles in Matpower [51]. Examples of the
grid parameters are listed in Appendix A.2. The real-time electricity prices for the same period as
the weather data used are obtained from the Electric Reliability Council of Texas [56], as shown
in Figure 8. The simulations are performed on MATLAB [57]. All occupancy, buildings, and grid

are modeled and communicated through the authors’ modularized Matlab functions, including the
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interaction between the Matpower library and the LBNL simulator. All optimization problems are

solved using CPLEX [58].
3.1.3 Simulation Cases

This study investigates three cases: 1) DB&G, 2) BtG, and 3) OBtG. For DB&G, the authors use
the traditional bang-bang approach for building simulations and a grid MPC as shown in Eq. (21).
The simulation entails that each building cluster has a corresponding processing unit that
determines its own control law, while the grid is optimized and dispatched based on centralized
optimization performed by the market operator (Figure 9 (a)). In DB&G, the building load is
merely input to the grid. The building controls are assumed to use bang-bang control of ideal
cooling demands. This means that the HVAC system only has two modes: “off” for no cooling,

and “on” for ideal cooling to meet with loads. The cooling load is decided by

thac = Czonemzone (]-;one - I'vet ) (23)

where Q, = is the cooling load, C is the building thermal capacity, m_  is the building

zZone zZone

thermal mass, T

zone

1s the building zone temperature, and 7, 1is the setpoint.

An alternative to the status-quo DB&G, a central BtG controller (as shown in Figure 9 (b)) collects
all individual component (generators, buildings) parameters and constraints, including
measurements, and solves the control problem with a global optimization function. The resulting
optimization is a large-scale quadratic program as described in Section 2.4. Referring to Sections
2.4.1 to 2.4.2, BtG optimizes the buildings outputs of Eq. (18) as the inputs to Eq. (21) without
any occupancy prediction. The night setback HVAC control strategy in DB&G is used again by
embedding the assumed working schedules. An OBtG can be further proposed as the third

simulation case for more energy savings and evaluations of the building thermal comforts. The
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occupancy information such as presence and absence is predicted based on the innovative approach
described in Section 2.1. The occupancy model simulates and predicts the occupancy state in terms
of group behaviors at the whole building level. Two discomfort indexes are introduced to evaluate

the potential violations of the comfort on people as

e Discomfort Index I (DI)

d
Type(k)—T,,, (k)
DI = kZ_H | (24)
d

e Discomfort Index II (DII)

3IAD

DI =5
(25)
TMPC - 7;‘”‘”6’. gf TMPC > T;tpper
s.t. AD = TMPC - T;ower U(‘ 7w[ower < TMPC
0 else

where d is the length of the evaluated time horizon, T, is the MPC optimized zone temperature,

T,,, is the setpoint temperature, 7, . and 7, . are the upper bound and lower bound of the zone

temperatures respectively.

3.2 Results

3.2.1 Building thermal behavior

For DB&G, the HVAC is only operated when the simulated zone temperatures are outside the
setpoint temperature bands. Consequently, DB&G turns the HVAC equipment on and off at a fast
frequency to maintain the building temperatures around the setpoints, as shown in the top graph in
Figure 10 (a). The office hour setpoints are 21.4°C while the non-office hour setbacks are 23.5°C.

Building temperatures are maintained within the temperature bounds most of the time. Meanwhile,
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the deviations of the zone temperatures for DB&G during night setback periods are smaller than
the daytime periods of the office hours, as shown from the blue shades of the top graph in Figure
10 (a). Comparing the HVAC cooling powers of office hours and non-office hours of DB&G in
Figure 10 (b), the cooling demands increase and decrease frequently during daytime (the large area
of blue shades) due to the disturbance changes from the solar heat gain and outdoor air temperature.
Thus, the zone temperatures frequently fluctuate and tend to deviate more from setpoints during

office hours.

The performance of BtG is further depicted in Figure 10. For the first day of the simulation in
Figure 10 (a), the zone temperatures of the building cluster evolve gradually up to the upper bounds
(24.0°C) during non-office hours from the initial value (22.0°C), owing to the high setpoint of
night setback periods. In the morning, overcooling occurs during the short start-up periods while
the lower bounds of the office hours are reached. This is caused due to the high costs (50000$/Hz)
on frequency deviations in the centralized BtG optimization of Eq. (25). Since the primary
objective of power grid operators is to maintain stable operation, the frequency should always be
as close as possible to 60 Hz to avoid damages to the grid’s assets or in the worst case, black-outs.
As a result, the $50,000/Hz cost is artificial in the sense but is preferred more than a $500/Hz cost,
although a low cost (500$/HZ) on frequency deviations with same costs for other objectives gives
no overcooling. After the overcooling, the zone temperatures return to the upper bound of office
hours (22.0°C) very quickly. Near the end of the day, the evening setbacks gradually restore the
zone temperatures to 24°C during the nights. The following days show similar temperature
responses. However, zone temperatures are mostly maintained at 24°C for weekend periods except

overcooling again in the morning. The results of cooling load from BtG as shown in Figure 10 (b),
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comparing to DB&G, further illustrate the smoother load patterns and lower energy usages of the

buildings.

The optimal start-up, lunch-break and setback time for OBtG are shown as the bottom graph in
Figure 10 (a). Slightly higher zone temperature responses are observed at morning precooling (the
blue line) period, noon break (the blue shade), and evening setbacks (the blue line) for each
working day. It is worth noticing that the occupancy model predicts the absence periods if the
aggregated occupancy presence shows that a majority of the people leave the offices. Hence, the
constraints on the zone temperatures increase, thereby sacrificing the individual comfort of people
who stay in the office during the optimized periods. The HVAC cooling load responses are further
shown as the bottom graph in Figure 10 (b). Comparing to BtG, more consumption spikes are
observed (the pink shade) due to the occupancy relaxations and their influences on the frequency
responses of the grid operations are explored in the next section 3.2.2. Figure 11 further illustrates

the difference between BtG and OBtG based on one day occupancy profile.

In OBtG, the uncertainty of the occupancy predictions may sacrifices occupants’ comfort even
when the majority of the people leave the office for lunch. Hence, the discomfort indexes of
DB&G, BtG, and OBtG need to be analyzed and compared as shown in Table 1 for the simulated
week. DB&G is robust enough with a deviation range around 0.11°C from the desired setpoint
according to the comfort index DI. There are no violations beyond the upper and lower constraints
during occupancy period, which is the same as BtG. Meanwhile, BtG allows more deviation
(around 0.5°C) from the setpoint to save the energy consumption while maintaining the room
temperatures in a comfort zone within the temperature constraints in Eq. (25). Compared to BtG,
OBtG allows even more temperature deviation (up to 0.73°C) for the unoccupied period, although

the uncertainty of the occupancy prediction creates difficulties to keep up with the constraints as
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shown by DII index. However, the violation is small enough to be neglected and has no significant

impact on the occupants’ comfort.

3.2.2 Grid Performance

For DB&G, the coupling between the local and decoupled control actions of building clusters and
the power system is achieved via the optimization of grid control inputs for the system-level
performance objectives. The grid system control is using the same approach introduced in Section
2.4.2 for frequency regulation. In general, the grid MPC minimizes the electricity generation costs
and maintains frequency stabilities during the grid operations. DB&G in Figure 12 (a) shows the
example of IEEE Case 9 grid MPC based on the DB&G building controls. There are three types
of grid load: the building base load, the building HVAC load, and the grid base load. Small spikes
in Figure 12 (a) can be observed between the total generation and the total load for DB&G owing
to the dynamic building HVAC load pattern. As the DB&G of Figure 10 (b) shows, the building
HVAC load pattern exhibits large variations during the entire day, which causes the varied bus
angles and frequency deviation depicted in Figures 12 (b) and (c¢). In conclusion, DB&G can
handle certain level of dynamic changes of the load pattern, as shown by the small spikes of all

the bus angles in Figure 12 (b) and frequency deviations in Figure 12 (c) during some periods.

However, it is obvious that BtG is necessary since very large spikes of the frequencies are observed
for DB&G of Figure 12 (c) at certain periods. Smoother responses from the bus angles of BtG,
shown in Figure 12 (b), are detected by comparing to DB&G. BtG also has fewer mismatch spikes
between the total grid generation and the total grid load in Figure 12 (a). In Figure 12 (c), a
significant reduction in frequency deviations can be found when comparing DB&G with BtG. The

frequency during all simulation periods is also very close to nominal value (60 Hz) for BtG.
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Overall, BtG shows a more stable and cost effective optimization on both building and grid

systems.

Last but not least, OBtG has little cost impacts on the grid operations, as shown from OBtG plots
in Figure 12. In Figure 12(a), the total grid load is consistently balanced by the total grid generation
except the morning periods for OBtG. The mismatch spikes in the morning is caused by the
occupancy-based rescheduling of the cooling start time. A more dynamic pattern of the cooling
load can be observed at the precooling stages as shown from OBtG in Figure 10 (b). Compared
with BtG, the bus angles and frequency responses are very similar and stable. In general, no
significant impacts from OBtG can be observed on the grid operations although OBtG alters the

HVAC load patterns of the individual buildings.
3.3 Extended simulations and results

Extended simulations are performed on the IEEE Case 14 grid system with similar testing
configurations as explained in Sections 2.1 through 2.4. This section provides the detailed cost
analysis in Table 2 based on simulations of Case 9 and Case 14 for all tested scenarios: DB&G,
BtG, and OBtG. Comparing frequency penalties for the three scenarios, there are significant
decreases of the frequency costs during the grid operations when BtG and OBtG are used. As
discussed before, the grid frequencies experience very high deviations from the nominal value (60
Hz) for the Case 9 DB&G simulation, as shown in Figure 12 (c¢). However, the frequency
deviations for BtG and OBtG are less noticeable. Similar observations can be made for the Case
14 simulation. In contrast, the costs for electricity generations from the generators are very close
to each other for all test scenarios. Maximum 2% of cost saving can be observed for both Case 9
and Case 14 systems, although the maximum absolute saving amount is around 34 thousand

dollars. Meanwhile, the building costs based on the real time price show higher savings for OBtG
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and BtG comparing to DB&G. The maximum saving is around 5.4% for BtG and around 6.7 %
for OBtG during a whole week simulation. The largest saving amount is around 276 thousand
dollars. By calculating the total costs, it is clear that BtG already has very large saving potential
while OBtG slightly improves the system performance. The total savings for BtG and OBtG of
Case 9 comparing to baseline are 60% and 61% respectively. The total savings for BtG and OBtG

of Case 14 comparing to baseline are 50% and 51% respectively.

4. Conclusions

This paper develops and demonstrates new algorithms that facilitate the interaction of building
load controls with power grid, leading to an occupancy-based Buildings-to-Grid integration. The
study introduces a simulation framework that explicitly includes all detailed physics models of the
occupancy, the buildings, and the grid at community scale for high-level optimization. Occupancy-
based air conditioning model predictive control for building clusters is developed for reducing
billing costs and maintaining comfort satisfaction. Additionally, optimal power flow problems for
frequency control are explored for two standard power systems. The simulations are performed
using real data collected from a local weather station, ground truth prices, and occupancy
information to mimic the practical cases. Simulations show significant reduction of frequency
deviations for grid operations (99%) while fair cost savings for electricity generations (1-2%) and
building billings (5-7%). This centralized framework can be used for day-ahead planning to reduce
the real-time grid control and communication problems for smart cities. A grid system operator
ideally could solve the BtG integration problem proposed in this study to let the commercial
building managers to response to the globally optimized routine. The framework is useful for city

scale planning and operation evaluations for energy industry and utility operators.
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The larger contribution of operation cost saving on frequency regulation is similar to some studies’
findings that use BtG integration at smaller scale in terms of the number of buildings [7-8]. More
ancillary services could be provided by buildings [6,9,11,15-16], but building occupancy comforts
and operation costs are rarely considered jointly [10]. This study demonstrate the potential to
design and optimize an integrated BtG platform with detailed physics models for occupancy,
buildings, and grids. However, the performance of OBtG with occupancy forecasts is similar to
BtG because of the night setback strategy. The night setback is already indicating an occupancy-
based scheduling since the main vacancy period of office occupancy is the night time. Thus, OBtG
could only improve energy efficiency for buildings up to a reasonable level (up to 2% difference)
by optimizing other shorter absence periods (e.g. lunch breaks). On the other hand, occupancy
information of Type II, number of people in a building, could be more valuable for controlling
building operations. For example, the ventilation air flow depends on the number of people. By
integrating with more occupancy information and control objectives, more savings on the grid

generation and building billings could be expected, which will be an extension of this study.

It is also noticed that the centralized BtG MPC uses a simplified building thermal network model
for a large-scale optimization problem in this study. The benefit is to provide a feasible optimal
solution for fast decision-making of a utility operator. It is possible to extend the current study to
include complex building and grid models, namely high-order thermal networks such as
Energyplus and power grid models, to achieve multi-objective optimization in the BtG integration.
For example, the optimization problem could be joint regulation of the grid voltage and frequency
[59-61], optimization of the building demand response [62-63], etc. However, this will yield a
much more complex optimization problem and computation cost. The foreseen optimization

problem would no longer be a simple quadratic program. Other limitations of the study are brought
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by the centralized optimization design. The centralized structure is not practical for systems with

a very large number of buildings at a city scale, while privacy concerns from building operators

also likely not allow collecting all relevant building parameters and control constraints to the

system operator. To alleviate these issues, distributed approaches could be alternatively explored

but are beyond the scope of the present study.
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Appendix A:
A.1: Building system parameters.

Recalling from Section 2.2, the example Case 9 BtG randomization in this study produces the

building parameters as follows:

RCCIW) | R(CCIW) | R, (CC/W) | C,.ArC) | C1/rC)
min 257x10° | 257x10° | 0.85x102 | 453x10" | 1.15x10°
mean 580x10° | 581x10° | 1.68x107 | 9.72x10" | 234x10°
max 121x10% | 1.22x10% | 2.54x102 | 1.89x10° | 4.86x10°

A.2: Grid system parameters.

The grid system parameters are extracted from the Matpower6.0 bl version. Recalling from
Section 2.3, the example of 210 MVA Case 9 BtG in this study uses the IEEE 9 bus system

parameters:

1) Buses loads:
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Bus Number 1
Limit (MW) 0 0 0 0 189 0 210 0 262

N
w
EoN
W
=)
|
=]
=)

2) Branch transmission:

Branch 1-4* 4-5 5-6 3-6 6-7 7-8 8-2 8-9 9-4
Susceptance | 17.36 | 10.86 5.88 17.06 9.92 13.88 16 6.21 11.76
*The brunch 1-4 means the branch from bus No.1 to No. 4.

3) Generator cost:

Generator | Quadratic($/MW?h) | Linear ($/MWh) | Constant ($)
1 0.11 5 150
2 0.085 1.2 600
3 0.1225 1 335

Figure 1. Schematics for the BtG MPC framework.
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Figure 4. A hypothetical grid system.
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(b) Building cooling power

Figure 10. Performance of building within the BtG framework.
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Figure 12. Performance of building within the BtG framework
Table 1 Discomfort Indexes per day for Case 9
DB&G BtG OBtG
DI* DII* DI DII DI DII
06/17 0.1102 0 0.5043 0 0.7310 0.0044
06/18 0.1086 0 0.50358 0 0.7312 0.0045
06/19 0.1157 0 0.5043 0 0.7303 0.0046
06/20 0.1102 0 0.5042 0 0.7305 0.0046
06/23 0.1191 0 0.5044 0 0.7299 0.0045

*All units for DI and DII presented are in °C.

43



Table 2 Cost comparison for all scenarios (unit of cost in 10008$).

Test Case Cost Type DB&G BtG OBtG

Frequency Penalty 7493.09 6.63 (99%) 6.64 (99%)
Case 9 Generator Generation 1650.61 1618.43 (1.9%) | 1616.45 (2.1%)
Building Energy Cost 3647.29 3462.91 (5.1%) | 3415.11 (6.8%)
Total BtG Cost 12790.99 5087.98 (60%) | 5038.21 (61%)

Frequency Penalty 6396.10 5.95 (99%) 11.58 (99%)
Case 14 Generator Generation 2673.56 2659.06 (0.5%) | 2651.17 (0.8%)
Building Energy Cost 4065.12 3845.87 (5.4%) | 3789.68 (6.7%)
Total BtG Cost 13134.79 6510.89 (50%) | 6452.44(51%)
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