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H I G H L I G H T S

• A novel bi-level building demand aggregation and coordination method is proposed.

• Successive subproblem solving method is introduced to alleviate homogeneous oscillations.

• Three-phase optimal power flow based aggregation at the distribution primary feeder level.

• Building electricity cost is reduced while satisfying all distribution operation constraints.
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A B S T R A C T

With big thermal storage capacity and controllable loads such as the heating ventilation and air conditioning

systems, buildings have great potential in providing demand response services to the smart grid. However,

uncoordinated energy management of a large number of buildings in a distribution feeder can push power

distribution systems into the emergency states where operating constraints are not completely satisfied. In this

paper, we propose a bi-level building load aggregation methodology to coordinate the operations of hetero-

geneous smart buildings of a distribution feeder. The proposed methodology not only reduces the electricity

costs of buildings but also guarantees that all the distribution operating constraints such as the distribution line

thermal limit, phase imbalance, and transformer capacity limit are satisfied.

1. Introduction

Increasing integration of intermittent renewable energy resources

introduces greater variability and uncertainty into the electricity grid

[1]. Thus more ancillary services are required in the electricity market

to maintain the reliability of the electricity grid [2], which was pro-

vided only by fossil-fueled power plants in the past. Due to the Clean

Power Plan that encourages less carbon emissions, more demand re-

sponse (DR) resources are being procured in the electricity market [3].

With the help of the rapid development of information and control

technologies, demand response enables electricity consumers to adjust

their electricity usage pattern in response to time-varying electricity

price signals, incentive payments and/or direct dispatch instructions.

Buildings account for a large amount of the total electricity consump-

tion [4] and Heating, ventilating, and air-conditioning (HVAC) systems

consume around a half of buildings’ electricity consumption [5]. Hence,

if the thermal energy storage inherent in the building is properly

managed, buildings can provide an enormous amount of demand re-

sponse services to the electricity grid.

There is a large body of work which studies energy efficient smart

building operations. Lu et al. modeled the major components of HVAC

systems and their interactions in building and presented global opti-

mization technologies for economic operation [6]. Guan et al. improved

building energy efficiency by coordinating and optimizing the opera-

tion of various energy sources and loads in microgrid [7]. Xu et al.

studied coordinating multiple storage devices with HVAC systems and

determined the optimal operating strategy of building energy systems

under time-of-use electricity prices [8]. Maasoumy et al. presented a

hierarchical control architecture for balancing comfort and energy

consumption in buildings based on a simplified, yet accurate model of

the temperature within each room of the building [9]. Ma et al. pre-

sented a stochastic model predictive control (MPC) for building HVAC

systems considering the load uncertainty of each thermal zone [10].

Radhakrishnan et al. proposed a token-based distributed architecture
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Nomenclature

Indices

i node index in building thermal model, with

= … −i n m1, 2, , for wall nodes and = …i m1, 2, , for room

nodes

′ ′ ′i k n, , index of aggregated nodes under the substation for level 2

aggregation, with

′ = … ′ = … ′ = …i N k N n N1, 2, , , 1, 2, , , 1, 2, ,

j index of smart building/flexible load under the substation,

with ∈j J

′j neighboring node index in building thermal model, with

′ ∈j Nwi for wall neighboring nodes and ′ ∈j Nri for

room neighboring nodes

k index of time interval, with = + … + −k t t t W, 1, , 1

l index of the bid points in the demand bid curve, with

= …l L1, 2, ,
′m p, phase index, with ′ = =m p1, 2, 3, 1, 2, 3

s index of secondary feeder system under the substation,

with ∈s secJ

v index of discrete levels of the FCU’s outlet mass flow rate,

with = …v V1, 2, ,

Parameters

Ai the area of wall i (m2)

Awini the total area of window on walls surrounding room i (m2)

ca the specific heat capacity of air ( °J/(kg C))

COP chiller’s coefficient of performance

Cri the heat capacity of the indoor air in room i (J/K)

Cwi the heat capacity of wall i (J/K)

dk the environment disturbances at time interval k

′ ′Fi k
p
, real power flow limit between node ′i and node ′k with

phase p (kW)

Grated
i the rated outlet mass flow rate of the i-th FCU (kg/s)

′ ′ ′′GSFP _
_

i k n
p m
, generation shift factor for real power flow of the branch

which connects node ′i and ′k with phase p when power

injection is at node ′n with phase ′m
gv the v-th discrete value in set V (kg/s)

hi indicator for room i, 0 if no windows, 1 otherwise

J the set of all flexible loads under the substation

sJ the set of flexible loads in a secondary feeder system

numbered s
secJ the set of all aggregated loads after level-1 aggregation

L total number of distinct bid points in the demand bid

curve

m total number of nodes representing the room air tem-

perature

N total number of the secondary feeder system under the

substation

n total number of nodes in building thermal model

riN the set of neighboring nodes to node ri (room i)

wiN the set of neighboring nodes to node wi (wall i)

pinc the price step for the demand bid curve ($/kWh)

prated
i the rated power of the i-th FCU (kW)

pre the price forecast vector in energy market ($/kWh)

pre the upper bound of price forecast ($/kWh)

the lower bound of price forecast ($/kWh)
Ps
Tran the transformer’s rated capacity of the secondary feeder

system s (kW)

qin
k
i

the internal heat generation in room i at time interval k

(W)

qrad
k

i
the solar radiation density on thermal node i at time in-

terval k (W/m2)

ri indicator for wall i, 0 for internal walls, 1 for peripheral

walls

′Rij the resistance between node i and its ′j -th neighboring

node (K/W)

t the current time interval

Tak the ambient temperature at time interval k (°C)

Tmax the upper bound for indoor temperature (°C)

Tmin the lower bound for indoor temperature (°C)

Ts the stacked vector of Tsi
Tsi the temperature of the supply air from the FCU into room i

(°C)

umax the maximum mass flow rate of FCU (kg/s)

umin the minimum mass flow rate of FCU (kg/s)

V the total number of discrete levels for the outlet mass flow

rate of the FCU

W the predicting window size (96 points representing 24 h in

this paper)

αi the absorption coefficient of wall i

βwini the transmissivity of glass of window in room i

γ power imbalance limit between phases (kW)

σ the penalty factor for SSS method

τ the length of time interval in each stage (15min)

Variables

etot the total energy consumption vector of HVAC system

(kWh)

etot
j total energy consumption vector of HVAC system for

building j (kWh)

G u,r
k

k
i

i
the mass flow rate of the supply air from the FCU into

room i at time interval k (kg/s)

Pdj
(0) the energy consumption of demand bid for individual

building j under substation J (kWh)

Pds
(1) the energy consumption of demand bid for aggregated

load s after aggregating all loads under the secondary

feeder system sJ (kWh)

Pd(2) the final aggregated demand bid at the substation node

(kWh)

′ ′PDn m, real power of total demand at node ′n with phase ′m (kW)

′ ′PGn m, real power of generation at node ′n with phase ′m (kW)

′ ′Pd l[ ]n m,

(1) demand bid quantity of the l-th segment of the price sen-

sitive demand bid curve at node ′n with phase ′m (kWh)

Pg l[ ]0
 supply offer quantity of the l-th segment of total supply

offer curve at substation node (kWh)

′ ′Pg l[ ]n m,

(1) supply offer quantity of the l-th segment of the supply

offer curve at node n with phase ′m (kWh)
′

PLoss
m total real power loss at phase ′m (kW)

′P
n
p net injection of real power at node ′n with phase p (kW)

Ptot the total power consumption vector of HVAC system (kW)

′T jk the temperature of the ′j -th neighboring node at time in-

terval k (°C)

Tr
k
i

the indoor air temperature at time interval k (°C)

Tw
k
i

the surface temperature of wall i at time interval k (°C)

U all the decision variables for joint-optimization

Uj the outlet mass flow rate of the i-th FCU at time interval k

for building j (kg/s)

uk the stacked input vector representing the air mass flow

rate of conditioned air into each thermal zone at time

interval k

w the price vector of distinct bid points in the demand bid

curve ($/kWh)

′ ′w l[ ]n m
d

, demand bid price of the l-th segment of the price sensitive

demand bid curve at node ′n with phase ′m (k"$"/kWh)

w l[ ]g
0 supply offer price of the l-th segment of the supply offer

curve at substation node ("$"/kWh)
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for controlling HVAC systems in commercial buildings, which has low

deployment cost and is scalable to buildings with more than 300 zones

[11]. To reduce the overall operating cost, Afram and Janabi-Sharifi

manipulated the temperature set-points of residential building HVAC

systems using an MPC based supervisory controller [12]. In addition,

occupancy-based control methods for HVAC systems have been well

studied. In particular, Dong and Lam designed and implemented a

nonlinear MPC which integrated local weather forecasting with occu-

pant behavior detection, and solved it based on the dynamic pro-

gramming algorithm [13]. Goyal et al. presented experimental eva-

luation on two occupancy-based control strategies for HVAC systems in

commercial buildings and showed that occupancy-based controllers

could yield substantial energy savings over the baseline controllers

without sacrificing thermal comfort and indoor air quality [14]. Peng

et al. used both unsupervised and supervised learning to learn occu-

pants’ behavior, and designed a demand-driven control strategy to

make cooling systems automatically adapt to occupants’ actual energy

demand [15].

The existing building energy simulation and control models can be

categorized as physics based (white box) models, data-driven (black

box) models, and those in between (gray box models) [16]. The white

box models can capture the building dynamics well by using detailed

physics-based equations. The white box models such as EnergyPlus [17]

and TRNSYS [18] can capture the building thermal dynamics with high

accuracy. However, they require detailed information of buildings via

extensive energy audit and energy survey. Moreover, the simulations

with white box models are extremely time-consuming and not appro-

priate for real-time applications. The gray box models use simplified

physical models to simulate the behavior of building energy systems.

For example, Resistance and Capacitance (RC) network model is widely

used in online building optimal control and demand response applica-

tions, in which different buildings are represented by different RC

model parameters [16]. The model parameters are identified based on

the operation data using statistics or parameter identification methods,

such as nonlinear regression [19], global and local search [20], and

genetic algorithm-based parameter identification [21]. However, de-

tailed RC model is still very complicated, which makes the parameter

identification and state calculation procedure time-consuming. Hence,

model reduction techniques are used to simplify the model which sa-

crificed some accuracy [22]. The black box models, or the data-driven

models, capture the relationship between building energy consumption

and operation data based on on-site measurements over a certain

period. For example, Vaghefi et al. combined a multiple linear regres-

sion model and a seasonal autoregressive moving average model to

predict the cooling and electricity demand [23]. Recently, with the

rapid development of machine learning (ML) technologies, the ML-

based data-driven approaches (black box models) have been well stu-

died. Huang et al. proposed an artificial neural network model to pre-

dict the temperature change of multi-zone buildings, and proposed an

MPC-based method to maintain the comfortable temperature while

reducing energy consumption [24]. Yang et al. presented a reinforce-

ment learning model to control building consists of a PV/T array and

geothermal heat pumps [25]. Wei et al. formulated the HVAC control as

a Markov decision process and developed a deep reinforcement

learning based algorithm to minimize the building energy cost and

occupants’ discomfort [26]. Behl et al. provided a model-based control

with regression trees algorithm, which allows users to perform closed-

loop control for DR strategy synthesis for large commercial buildings

[27]. Smarra et al. proposed a data-driven MPC using random forests, in

which the classical regression tree and random forest algorithms were

adapted to determine a closed-form expression for the states prediction

function [28]. The data-driven models are model free and require no

expert knowledge. After model training, black box models need less

computation overhead and are much faster than the gray box models

during online optimization. However, black box models often require a

large amount of training data and long training period. Moreover, when

the operating conditions, weather pattern or building structure change,

the trained model is often not usable and needs retraining. Therefore,

each of these models has its own advantages and disadvantages. In this

paper, we choose the simplified RC model, which is analytically tract-

able.

It is inefficient and impractical to manage millions of smart build-

ings directly in the electricity market. Thus load aggregation is one of

the key requirements for implementing buildings’ DR mechanism.

There are already lots of studies on load aggregation. One popular

aggregation method is the coordinated aggregation method, which

aggregates all the loads into one cluster through linear addition and

determines the operation schedule by solving the optimization problem

on the cluster level. For example, all the loads under the building

cluster are considered together and optimized in a decentralized ap-

proach [29]. In the demand response aggregation mechanism [30], the

electricity sent to each household is determined by solving a conic

quadratic mixed-integer problem at the aggregation node. In [31], the

particle swarm optimization is performed to determine the operation

strategies for all loads under the building cluster. Regarding the

building to grid integration frameworks in both [32,33], all buildings

under a transmission network node are regarded as a cluster during

optimization. However, this method is unsuitable and inaccurate for the

situation where loads are distributed in a large distribution network.

Another aggregation method is the bottom-up aggregation, which ag-

gregates loads starting with those connected to low-voltage feeders

(residential and small commercial loads fed from distribution trans-

formers), and moving upward toward distribution substations [34]. The

bottom-up aggregation method has been widely used in industrial and

commercial loads for implementing smart grid functions due to its

advantages including easy implementation, fast computation, and wide

applicability to load types and variations in power demands [35].

However, this method has limited accuracy and is highly dependent on

accurate measurements. Moreover, both methods have not considered

the network operating constraints during aggregation, which may lead

to issues such as voltage violation, equipment overloads and phase

unbalance [36].

To ensure reliable operation of the distribution network, the dis-

tribution network constraints should not be ignored. Some distribution

network operating constraints are considered in the DR management

schemes. In [37], the day-ahead prices for all building loads are

′ ′w l[ ]n m
g

, supply offer price of the l-th segment of the supply offer

curve at node ′n with phase ′m ($/kWh)

xk the stacked state vector representing the temperature of

the nodes in the thermal network at time interval k

yk the temperature vector of each thermal zone at time in-

terval k

yk
i the temperature of thermal zone i at time interval k

zk
i v, 1 if the outlet mass flow rate of the i-th FCU takes g , 0v

otherwise
̂λt the price forecast at current time interval t ($/kWh)

Functions

′ ′Cn m
d

, customer utility function at node ′n with phase ′m
C g

0 cost function of fictious generator at substation node

′ ′Cn m
g

, cost function of distributed generator at node ′n with

phase ′m
f j functions related to inequality constraints of building j

gj functions related to equality constraints of building j

Pc the cooling load power function

Pf the fan power function
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calculated based on social welfare maximization while considering the

network operational constraints. The original integer programming

optimization problem is relaxed into linear programming problem and

solved iteratively in a decentralized approach by the alternating di-

rection method of multipliers (ADMM) based algorithm. In [38], the

joint building and grid optimization is implemented in a two-level ap-

proach. First, each building is optimized to reduce the electricity cost

based on forecasted prices and environment information. Then, based

on the optimized load profiles, a distribution grid power flow analysis is

carried out. In case of security constraint violation, the maximum al-

lowed load is calculated and sent back to buildings. These two steps are

performed iteratively until all the network operating constraints are

met. However, in aforementioned work, the active power losses on the

distribution lines are not modeled. Furthermore, the optimization

procedures are performed on all buildings in the distribution network in

each iteration, which increases the model complexity. Furthermore, the

proposed approach is time-consuming and not suitable for real-time

operations. In [39], most of the distribution network operating con-

straints are taken into account based on linear programming. The linear

approximation of all the constraints and load models improves com-

putational efficiency. However, the approximation could result in per-

formance degradation. In summary, there is a lack of robust algorithm

which is capable of coordinating the operations of a large number of

smart buildings while considering the distribution network operating

constraints. There are two challenges in developing such an algorithm.

Firstly, the optimization model for a single building can be nonlinear.

Thus the building coordination problem can be very complicated when

all the buildings in a distribution feeder are considered. Secondly, the

optimal power flow problem in the distribution network is non-convex

[40], which makes the load aggregation problem non-convex and hard

to solve.

To overcome these difficulties, a novel bi-level aggregation metho-

dology is proposed in this paper, which coordinates the operations of

smart buildings in smart grids while considering the operating con-

straints of the distribution network. The main contributions of this

paper are listed below.

• A novel bi-level building load aggregation and coordination meth-

odology is proposed, which not only reduces the building electricity

costs, but also satisfies the distribution system operating constraints.

The development of the bi-level aggregation is inspired by the

physical structure of the distribution network.

• In level-1 aggregation, the joint optimization problem is formulated

to coordinate the operations of individual buildings subject to

transformer maximum capacity constraint. The SSS method is in-

troduced to decompose the mixed integer linear programming pro-

blem (MILP) problem into a series of small coordinated MILP sub-

problems. This method addresses the homogeneous oscillations

problem. Furthermore, the level-1 aggregation can be performed in

parallel under each secondary feeder system which makes the ap-

proach computationally efficient.

• In level-2 aggregation, the three-phase optimal power flow based

aggregation algorithm is developed which not only aggregate the

demand bids but also satisfy all the distribution operating con-

straints. To the best of the authors knowledge, this is the first at-

tempt to develop building aggregation algorithm with a three-phase

optimal power flow based approach.

The rest of the paper is organized as follows. Section 2 presents an

overview of the proposed smart building operation coordination fra-

mework. Section 3 presents the individual building energy scheduling

algorithm without coordination. Section 4 presents the proposed bi-

level aggregation/disaggregation methodology to coordinate the op-

erations of smart buildings. Section 5 demonstrates the effectiveness of

the proposed bi-level aggregation approach with comprehensive simu-

lations, and Section 6 concludes the paper.

2. Overview of smart building operation coordination framework

The overall framework of the proposed smart building operation

coordination methodology is illustrated in Fig. 1. The proposed fra-

mework is an extension of the proactive demand participation scheme

[41]. The overall framework can be divided into three parts: trans-

mission system, distribution system, and individual buildings. There are

three types of intelligent decision making entities: the independent

system operator (ISO) in the transmission system, the distribution

system operators (DSOs) in the distribution network, and the building

energy scheduling agents (BESAs) in the smart buildings. The high-level

operation procedures of the proposed load aggregation/disaggregation

algorithms are described as follows.

• Load aggregation: The BESA first collects the information of each

individual building and sends it to the DSO. Then, the DSO ag-

gregates the smart buildings and all other flexible loads in the dis-

tribution network using the proposed bi-level aggregation method.

The output of the bi-level aggregation algorithm is a price-sensitive

Fig. 1. Coordinated smart building operation framework with bi-level aggregation/disaggregation.
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demand bid which represents the overall willingness of all buildings

to use electricity under different electricity prices. At this point, the

whole distribution feeder/substation is viewed as a virtual power

plant [42]. Finally, the DSO sends the aggregated price-sensitive

demand bid curve to the ISO for market clearing and resource dis-

patch.

• Load disaggregation: After the wholesale energy market is cleared

by the ISO, the market clearing results including the dispatch

schedules of the aggregated loads and the locational marginal prices

of energy are sent back to the DSO. The DSO then disaggregates the

dispatch schedules and sends back the dispatch operating points of

individual buildings to each BESA. Finally, the BESA will operate

the electrical equipment and follow the dispatch operating points.

To better illustrate the hierarchical bi-level aggregation/dis-

aggregation in the proposed framework, a brief overview of power

distribution network topology is given here. A power distribution net-

work can be divided into three levels: the primary feeder, the lateral,

and the secondary feeder. At the top level, the primary feeder dis-

tributes the electric power from the distribution substation to the lateral

feeders. The primary feeder model of the IEEE 13-bus test feeder [43] is

shown in Fig. 2a for illustration purpose. In Fig. 2a, node 650 represents

the substation node which serves as the point-of-integration to the

transmission system. The other nodes can be expanded as the corre-

sponding lateral feeders and secondary feeders as shown in Fig. 2b. The

laterals distribute electric power downstream to the secondary feeder

systems. Each of the secondary feeders usually consists of the service

transformers, the low-voltage secondary lines, and the individual

buildings. For example, there are six secondary feeder systems under

the sample primary feeder node as shown in Fig. 2b.

Note that since the operating constraints above the secondary feeder

system are the same during aggregation and disaggregation, we will

consider the aggregation/disaggregation process on the lateral feeder

and primary feeder network together without distinction, and classify

both of them into the primary feeder level. Thus, we can divide the

hierarchical aggregation into two levels and illustrate it as follows.

• Level-1 aggregation: The level-1 load aggregation is performed

first at the distribution system secondary feeder level (i.e., under the

secondary feeder system). A joint optimization problem is for-

mulated for the level-1 aggregation algorithm which takes the

transformer capacity constraint into consideration. A sequential

subproblem solving method [44] is used to solve the joint optimi-

zation problem without homogeneous oscillations.

• Level-2 aggregation: The level-2 load aggregation is performed at

the distribution system primary feeder level (i.e., above the sec-

ondary feeder system) by formulating and iteratively solving a series

of three-phase direct-current optimal power flow (DCOPF) pro-

blems. The distribution system operating constraints such as the line

flow limits, power losses, and the phase imbalance constraints are

carefully modeled here.

After the market clears, the disaggregation is performed by DSO

based on the dispatched locational marginal price information.

Accordingly, the hierarchical disaggregation is divided into two levels,

i.e., the level-2 disaggregation at the distribution system primary feeder

level and the level-1 disaggregation at the distribution system sec-

ondary feeder level. The details of the bi-level aggregation/dis-

aggregation will be illustrated in Section 4.

For any smart buildings/flexible loads being aggregated under the

substation, the following hierarchical relationship holds:

∈ ⊆ ∀ ∈ ∀ ∈j j s, ,s
secJ J J J

where j denotes the subscript for the j-th smart building/flexible load,

J denotes the set of all flexible loads under the substation, and sJ

denotes the set of flexible loads in a secondary feeder system numbered

s. After level-1 aggregation, the set of all aggregated loads under each

secondary feeder system s is denoted by secJ , and the total number of

the secondary feeder system under the substation network is denoted by

N. More details about the bi-level aggregation/disaggregation proce-

dure will be illustrated in Section 4.

3. Smart building operation without coordination

At the individual building level, it has been shown that appro-

priately managing flexible energy loads can effectively reduce the total

energy cost of buildings [45]. In this section, each smart building in the

distribution network will be operated without coordination. In the

following subsections, we will introduce the building thermal dynamics

model, the MPC-based building energy scheduling algorithm, and the

demand bid curve generation methodology for an individual building.

Finally, all the buildings will be linearly added up based on the gen-

erated demand bid curve. For simplification of notations, the subscript

for the building index is neglected in this section.

3.1. A model for building thermal dynamics

We use the well-established RC networks to model the thermal

dynamics of a building as in [9], where each wall and room is modeled

as a separate node. After zero-order hold (ZOH) discretization, a dis-

crete-time model representing the building thermal dynamics can be

obtained. Suppose there are n nodes in total. m of the nodes represent

air temperature in rooms and −n m represent walls. The temperature of

the i-th ( = … −i n m1, 2, , ) wall is governed by the following equation:

∑− = ⎡
⎣
⎢⎢

− + ⎤
⎦
⎥⎥

+
′∈

′
′

C T T τ
T T

R
r α A q( ) ·w w

k
w
k

j

j
k

w
k

ij
i i i rad

k1
i i i

i

i
Nwi

where Cwi, αi and Ai are the heat capacity, absorption coefficient and

area of wall i, respectively.Tw
k
i
is the surface temperature of the wall i at

time interval k. τ is the length of time interval in each stage. wiN is the

Fig. 2. One-line diagram for IEEE 13-node test feeder [43] including primary

feeders, lateral feeders, and secondary feeder system.
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set of neighboring nodes to node wi (wall i). ′T jk is the temperature of the

′j -th neighboring node at time interval k. ′Rij is the resistance between

wall i and its ′j -th neighboring node. ri is equal to 0 for internal walls

and 1 for peripheral walls. qrad
k

i
is the solar radiation density on wall i at

time interval k.

The air temperature of the i-th ( = …i m1, 2, , ) room is governed by

the following equation:

∑− = ⎡
⎣
⎢⎢

− + − + + ⎤
⎦
⎥⎥

+
′∈

′
′

C T T τ
T T

R
G c T T h β A q q( ) · ( )r r

k
r
k

j

j r

ij
r
k

a s r i win win rad
k

in
k1

i i i

i

i i i i i i i
Nri

where Cri is the heat capacity of the indoor air. Tr
k
i
is the indoor air

temperature at time interval k. riN is the set of neighboring nodes to

room i. Gr
k
i
and Tsi denote the mass flow rate and temperature of the

supply air from the fan coil unit (FCU) into room i at time interval k,

respectively. ca is the specific heat capacity of air. Awini is the total area

of window on walls surrounding room i β, wini
is the transmissivity of

glass of window in room i. qrad
k

i
is the solar radiation density radiated

from the window to the room at time interval k, and qin
k
i
is the internal

heat generation in room i at time interval k. =h 0i if room i does not

have any window, while =h 1i otherwise.

The above heat transfer differential equations of walls and rooms

can be transformed into the following state space equations:

= + ∘ − ++x x u T y dA B E( )k k k s k k1 (1)

=y xCk k (2)

where the subscript kmeans the discrete state at time interval k, and ∘ is
the elementwise product operator for two vectors. �∈xk

n is the

stacked state vector representing the temperature of the nodes in the

thermal network. = …[ ]u G G G, , ,k r
k

r
k

r
k T
m1 2

is the stacked input vector re-

presenting the air mass flow rate of conditioned air into each thermal

zone. = …[ ]T T T T, , ,s s s s
T

m1 2 is the stacked vector of Tsi. �∈yk
m is the

temperature of each thermal zone. dk denotes the environment dis-

turbances.

In the HVAC system, most of the electricity is consumed by the fan,

the cooling load and the heating load. Here we assume that heating

power is provided by natural gas. Thus the total electricity consumption

of HVAC system Ptot can be approximated by the sum of fan power Pf
and cooling load power Pc. The fan power is approximately proportional

to the cubic of its speed. After substitutingGr
k
i
by =u Gk

i
r
k
i
, the fan power

of the i-th FCU can be expressed as follows:

=P u p u G( ) ·( / )f k
i

rated
i

k
i

rated
i 3

(3)

where prated
i and Grated

i are the rated power and rated outlet mass flow

rate of the i-th FCU, respectively. The cooling load is estimated by a

function of the mass air flow rate and ambient temperature as in [46]:

∑= −
=

u yP
c

COP
u T T( , ) ( )c k k

a

i

m

k
i

ak s

1

i
(4)

where COP is the coefficient of performance for the chiller, and Tak is

the ambient temperature at time interval k. So we can obtain the total

power consumption of HVAC system at time interval k as follows:

∑= +
=

P u yk P P u[ ] ( , ) ( )tot c k k

i

m

f k
i

1 (5)

=e Pk τ k[ ] · [ ]tot tot (6)

where P k[ ]tot and e k[ ]tot are the total power and energy consumption of

HVAC system at time interval k, respectively.

3.2. MPC-based building energy scheduling algorithm

Based on the building thermal dynamics model, we formulate a

MPC-based optimization problem in energy market, targeting at mini-

mizing the financial cost while meeting HVAC system’s requirements.

∑
=

+ −
pr ek kmin [ ]· [ ]

u k t

t W

e tot

1

k
i

(7)

subject to:

⩽ ⩽ ∀u u u i k, ,min k
i

max (8)

⩽ ⩽ ∀T Tk y k i k[ ] [ ], ,min k
i

max (9)

Constraints (1), (2), (3), (4), (5), (6)

where pr k[ ]e denotes the forecasted locational marginal price at time

interval k. umin and umax are the minimum and maximum mass flow

rate, respectively. T k[ ]min and T k[ ]max are the lower bound and upper

bound for indoor temperature at time interval k, respectively.

Constraint (8) represents physical bounds for the mass flow rate from

FCU. Constraint (9) denotes bounds for room temperature to satisfy

building occupants’ comfort. Note that the term ∘u yk k in Eq. (1) is bi-

linear, which makes the problem nonconvex and difficult to solve. Since

the mass flow rate of FCU is always designed as discrete levels in

practice [47], so without loss of generality, we assume that the outlet

mass flow rate of the FCU has a total of V discrete levels, and gv is

introduced to indicate the v-th discrete value as in [48]. Thus we have

the following equations:

∑=
=

u z g·k
i

v

V

k
i v

v
1

,

(10)

∑=
=

P u p z g G( ) ·( / )f k
i

rated
i

v

V

k
i v

v rated
i

1

, 3

(11)

∑ ⩽ ∀
=

z i1,
v

V

k
i v

1

,

(12)

where zk
i v, is an integer variable, =z 1k

i v, means that the outlet mass

flow rate takes gv at time interval k, otherwise, =z 0k
i v, . By substituting

constraint (3) with constraint (11), and adding constraints (10) and

(12), the original optimization problem can be reformulated as a MILP

problem, which can be solved efficiently by commercial solvers such as

CPLEX and Gurobi.

The MPC-based algorithm is run periodically. At each time interval

t, it determines the optimal mass air flow rate trajectory

+ … + −u u ut t t W[ ( ), ( 1), , ( 1)] for a predicting window from time t to

time + −t W 1. Once the optimal trajectory is determined, the MPC-

based algorithm will implement the first entry u t( ) to control the

building HVAC system and operator. Then when the time interval

moves forward to +t 1, the predicting window will be from time +t 1

to time +t W .

3.3. Demand bid curve generation for individual buildings

Based on the MPC-based algorithm in previous section, we can

construct the price-sensitive demand bid curve for an individual

building [41]. For simplification of notation, we use prMPC t( , )j e to

present the MPC-based algorithm in Section 3.2 for the j-th building in

the distribution network at time interval t based on the price forecast

vector pre. This algorithm will return the j-th building’s optimal demand

schedules within the predicting window starting at time interval t.
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Algorithm 1. Demand bid curve generation for individual building j.

As shown in Algorithm 1, the price forecast vector pre and other

price and time information are required as input. ̂λt is the price forecast

in current time interval t. The number of distinct bid points L is de-

termined at line 1. First, ̂λt is set to the lower bound of price forecast

pr t[ ]e . Then the current interval’s electricity price in real-time profile

pre is updated with price forecast ̂λt at line 4. Then after MPC-based

algorithm finishes at line 5, the possible energy price and the corre-

sponding demand bid are stored into w and Pdj
(0) at line 6, respectively.

In each iteration, ̂λt increases by pinc until
̂λt reaches the upper bound

of price forecast pre . Finally, for current time interval t, those isolated

energy price-demand pairs = …w Pdl l l L{( [ ], [ ]) | 1, 2, , }j
(0) are connected

sequentially to form the demand bid curve. A sample price sensitive

demand bid curve for an individual customer in a specific time interval

is shown in Fig. 3. Particularly, this customer will not use any electricity

when the energy price goes above 4.7 ¢/kWh, and want to use at most

0.8kWh electricity when the energy price is between 2.2 ¢/kWh and

4.7 ¢/kWh. When the energy price drops below 2.2 ¢/kWh, this cus-

tomer will use at most 3.37 kWh electricity.

3.4. Linear additive aggregation

As described in Section 2, after generating the bid curves of individual

buildings using Algorithm 1, all buildings will be aggregated together in the

proactive demand participation scheme. An aggregated bid curve re-

presenting the whole distribution substation will be sent to ISO for market

clearing process. Without coordinating the operations of smart buildings,

demand aggregation can be performed by directly adding up the bid curves

of individual buildings in the network as in [41]. For comparison with the

proposed bi-level aggregation approach, we will divide this algorithm into

two similar sub algorithms. The aggregation algorithm at the secondary

feeder level is shown in Algorithm 2, where the input Pdj
(0) denotes the

energy consumption of demand bid for individual building j under substa-

tion J , and output Pds
(1) denotes the energy consumption of demand bid

for aggregated load s after aggregating all loads under the secondary feeder

system sJ . Afterwards, the aggregation at the primary feeder level is shown

in Algorithm 3, where Pd(2) denotes the final aggregated demand bid at the

substation node.

Algorithm 2. Linear additive aggregation at secondary feeder level.

Input: Pdj
(0) ▷ ∈j sJ

Output: Pds
(1) ▷ ∈s secJ

1: ← ×Pd [0]s L
(1)

1
▷ Initialization

2: for each ∈j sJ

do

▷ Traverse all loads in set sJ

3: ← +Pd Pd Pds s j
(1) (1) (0) ▷ Linearly add up all bids

4: end for

Algorithm 3. Linear additive aggregation at primary feeder level.

Input: Pds
(1) ▷ ∈s secJ

Output: Pd(2) ▷ Aggregated bid at substation node

1: ← ×Pd [0] L
(2)

1 ▷ Initialization

2: for each ∈s secJ do ▷ Traverse all loads in set secJ

3: ← +Pd Pd Pds
(2) (2) (1) ▷ Linearly add up all bids

4: end for

Remark 1 (Necessity of coordinating operations of smart buildings). Under

normal operation conditions, smart buildings can operate without

coordination while satisfying the distribution network constraints.

However, it is not suitable to perform simple linear building load

aggregation nowadays due to the following reasons: (1) As more

buildings proactively participate in the electricity market, the load

diversity factor in the distribution network may decrease and the

coincident peak demand of loads is very likely to increase; (2) The

building energy consumption will increase as new electrical appliances

are added based on consumers’ new requirements; (3) The degradation

of devices (e.g., transformers and lines) may decrease the rated

capacities. Thus, the network operating constraints cannot be

guaranteed if individual buildings determine their own dispatch

operating points without coordination. For example, simulation

results in [49] show that when HVAC loads are controlled to respond

to certain signals, the load diversity among these HVAC loads is lost,

and new load peaks are sharper and the magnitude can be very high.

Scenarios in [50] show that with high penetration of electric vehicles,

uncoordinated charging could lead to distribution transformer

overloading.

4. Smart building operation coordination based on bi-level

aggregation/disaggregation

To coordinate the operations of smart buildings, the proposed bi-
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Fig. 3. Sample demand bid curve.

Input: pr , MPCe j ▷ pr pr p tOther auxiliary inputs: , , ,e e inc

Output: Pdj
(0) ▷ ∈j sJ

1: ← − +pr prL t t p( [ ] [ ])/ 1e e inc ▷ Determine number of distinct bid points

2: for ≔l 1 to L do ▷ Traverse all price-demand pairs

3: ̂ ← + ∗ −prλ t p l[ ] ( 1)t e inc

4: ̂←pr t λ[ ]e t
▷ Update price forecast at time interval t

5: ←∗P prtMPC ( , )tot j e

6: ̂← ← ∗w Pd Pl λ l[ ] , [ ] [1]t j tot
(0) ▷ Save energy price-demand pair

7: end for
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level aggregation and disaggregation approach will be illustrated in

details in this section. The distribution network operating constraints

are carefully considered in the aggregation and disaggregation process.

4.1. Level-1 aggregation - Demand bid aggregation at the secondary feeder

level

In this subsection, a joint optimization based energy scheduling

algorithm will be introduced to coordinate the operations of individual

buildings subject to transformer maximum capacity constraint. Then, a

new demand bid curve generation algorithm is proposed to aggregate

the demand bids at the secondary feeder level. Note that the line losses

on the secondary feeder system are negligible, because buildings under

the secondary feeder system are usually very close to each other.

4.1.1. Joint optimization based building energy scheduling algorithm

To coordinate the operations of smart buildings while satisfying the

transformer capacity constraint, a joint optimization algorithm for all

the smart buildings under the secondary feeder system is needed. For

ease of illustration, the optimization problem in Section 3 for building

indexed by j is rewritten as follows.

∑
⩽ =

=

+ −
pr e

f U g U

k kmin [ ]· [ ]

subject to:

( ) 0, ( ) 0

U
k t

t W

e tot
j

j j j j

1

j

where = …U u u u[ , , , ]j k
j

k
j

k
m j1, 2, , , and uk

i j, represents the outlet mass flow

rate of the i-th FCU at time interval k for building j, and e k[ ]tot
j re-

presents the total energy consumption at time interval k for building j.

f j and gj represents all the inequality and equality constraints for

building j, corresponding to constraints (1), (2), (4)–(6), (8)–(12). Then

by introducing the coupling constraint representing the transformer’s

capacity limit, we can formulate the following joint optimization pro-

blem which is denoted as prtMPC ( , )s
agg

e

∑ ∑
=

+ −

∈
pr ek kmin [ ]· [ ]

U
k t

t W

j

e tot
j

1

j
sJ (13)

subject to:

⩽ = ∀ ∈f U g U j( ) 0, ( ) 0,j j j j sJ (14)

∑ ⩽ ∀
∈

e k τ P k[ ] · ,
j

tot
j

s
Tran

sJ (15)

where the objective function is the summation of individual building’s

objective function. The constraints of the joint optimization problem

includes all individual buildings’ operating constraints (14) together

with the coupling constraints (15) representing the transformer’s ca-

pacity limit. Ps
Tran is transformer’s rated capacity of the secondary

feeder system s.

The joint optimization problem is still a MILP problem. The com-

putational complexity of the optimization problem increases ex-

ponentially when the number of buildings increases linearly. A

Lagrangian relaxation [51] based approach is adopted here to overcome

the computational complexity challenge. The coupling constraints (15)

is relaxed and added to the objective function by introducing the La-

grangian multipliers. Thus, the joint optimization problem can be di-

vided into subproblems, each for an individual building. However,

since the buildings within the same secondary feeder system may have

similar optimization parameters, serious solution oscillations may exist

when standard Lagrangian relaxation (SLR) based methods are applied.

To address the oscillation problem, the successive subproblem solving

(SSS) method based on Lagrangian relaxation [44] is applied, which has

been used to efficiently solve the unit commitment problem with

identical units. The first step of SSS method is to add penalty terms

associated with the coupling constraints to the standard Lagrangian as

follows:

∑ ∑ ∑ ∑

∑ ∑

= + ⎛
⎝⎜

− ⎞
⎠⎟

+ ⎧
⎨⎩

− ⎫
⎬⎭

=

+ −

∈ =

+ −

∈

=

+ −

∈

U λ pr e e

e

σ k k λ k τ P

σ k τ P

( , , ) [ ]· [ ] [ ] ·

max [ ] · , 0

k t

t W

j s

e tot
j

k t

t W

k

j s

tot
j

s
Tran

k t

t W

j s

tot
j

s
Tran

1 1

1

L
J J

J (16)

where = ∈U U j{ | }j sJ represents all the decision variables,

= ⩾ = + … + −λ λ k t t t w{ 0 | , 1, , 1}k denotes the Lagrangian multipliers

for relaxing the coupling constraints (15), and ⩾σ 0 is the penalty

factor. Then, the dual problem can be formulated as follows:

=∗ ⩾ λ σΦ max Φ( , )
λ

σ
0

where the dual function is

=λ U λσ σΦ( , ) min ( , , ).
U

L

After introducing the penalty term, the Lagrangian defined in (16) is

no longer decomposable. Moreover, the subgradients of Φ(·) with re-

spect to λ are difficult to obtain. However, a surrogate subgradient

defined in [52] could be used as a proper direction for updating the

multipliers. Define the subproblem for building j as minU jjL with

∑ ∑= + + +
=

+ −

=

+ −
U λ pr e e eσ k k λ k σ k Q( , , ) { [ ]· [ ] [ ]} max{ [ ] , 0}j j

k t

t W

e tot
j

k tot
j

k t

t W

tot
j

j

1 1

L

(17)

where

∑= −
∈ ≠

eQ k τ P[ ] · .j

jj jj j

tot
jj

s
Tran

,sJ (18)

Since

∑ − = +
∈

e ek τ P k Q[ ] · [ ]
j

tot
j

s
Tran

tot
j

j

sJ (19)

By substituting (19) into (16), we have

∑ ∑
∑ ∑
∑ ∑ ∑

= +

+ + + +

= + +

=

+ −

∈ ≠

=

+ −

=

+ −

=

+ −

∈ ≠ =

+ −

pr e pr e

e e

pr e

k k k k

λ k λ Q σ k Q

k k λ Q

{ [ ]· [ ] [ ]· [ ]}

( [ ] ) max{ [ ] , 0}

[ ]· [ ] .

k t

t W

e tot
j

jj jj j
e tot

jj

k t

t W

k tot
j

k j

k t

t W

tot
j

j

j

k t

t W

jj jj j

e tot
jj

k t

t W

k j

1

,

1 1

1

,

1

s

s

L

L

J

J (20)

The interaction variable Qj defined in (18) is related to the dual

solutions of the other subproblems, and can be treated as constant if

subproblem minU jjL is solved successively. Thus, the Lagrangian in

(20) has two parts: the first term in (20) related to the subproblem for

building j, and the other two terms related to the other subproblems.

The SSS method works as follows:

Step 1: Initialization. Set the iteration number index =ll 0 and

initialize =λ 00 . Solve sub-problem U λmin ( , , 0)U j j
0

jL iteratively to

obtainU j
0 for each building ∈j sJ without the penalty term, which

is equivalent to the algorithm in Section 3.2.

Step 2: Update the Lagrangian multipliers. Calculate the gradient

directions of the Lagrangian multipliers λ by

∑= −
∈

eg k τ P[ ] ·
k
ll

j

tot
j

s
Tran

sJ (21)

Then choose the step size stepll, which satisfies:

< < −∗ gstep0 (Φ )/‖ ‖ll ll ll 2L (22)

where ∗Φ can be estimated by the method in [44]. Update the La-

grangian multipliers according to:
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= ++λ λ step gmax{0, · }k
ll

k
ll ll

k
ll1

(23)

Step 3: Update the solutions of the sub-problems. Find +U ll 1,

which satisfy:

= <+ + + +U λ U λσ σ( , , ) ( , , )ll ll ll ll ll1 1 1 1L L L (24)

The solutions can be obtained as follows. In terms of building j,

substitute the results etot
jj corresponding to ∈ ≠U jj jj j{ | , }jj

ll
sJ into

(18) and solve sub-problem (17) U λ σmin ( , , )U j j
ll

jL to obtain +U ll 1.

If no +U ll 1 can be found, then let =+U Ull ll1 . By iteratively solving

all sub-problems (17), all the solutions of the sub-problems will be

updated while satisfying (24). Note that each subproblem is a small-

scale MILP problem and could be solved by MILP solvers efficiently.

Step 4: Check the criterion. If − < ∊+λ λ‖ ‖ll ll1 or ll exceeds the

maximum allowed iterations, go to step 5; otherwise, go to step 2.

Step 5: Construct the feasible solution. The feasible solution is

constructed based on the near-optimal solution of the Lagrangian

relaxation dual problem obtained by steps 1–4.

The convergence proof of the SSS method can be found in [44].

Since the interaction variable Qj defined in (18) will be updated after

solving each subproblem in Step 3, the dual solutions of buildings with

similar optimization parameters could be different. Thus the SSS

method could address the homogeneous oscillations associated with

traditional Lagrangian relaxation based method.

4.1.2. Demand bid curve generation for level-1 aggregation

To aggregate the building demand with consideration of the trans-

former’s capacity limit, a new demand bid curve generation algorithm

for a secondary feeder system is proposed as shown in Algorithm 4. The

demand bid curve aggregation algorithm starts by executing the linear

additive aggregation Algorithm 2 at line 1. Then the joint optimization

model MPCs
agg is formed at line 2. Then we will traverse all the energy

price-demand pairs from the lowest price (corresponding to the max-

imum demand quantity) to the highest price (corresponding to the

minimum demand quantity) on the aggregated bid curve Pds
(1). If the

aggregated demand does not exceed the transformer’s rated capacity

during the iteration process, then linear additive aggregation solution

will be selected. Otherwise, the demands bids have to be updated. In

such case, we will update the energy price forecast at time interval t

corresponding to the price-demand pairs which violate the transformer

capacity constraint at line 5. Then we will solve the joint-optimization

program MPCs
agg at line 6 using the SSS method. Finally, the energy

demand bids Pd l[ ]s
(1) that violates the constraint will be updated by the

coordinated optimal scheduling results ∗P [1]tot at line 7. By adopting

Algorithm 4, the proposed level-1 demand bid aggregation procedure

guarantees that the aggregated demand bids will not violate the

transformer’s maximum capacity constraint.

Algorithm 4. Level-1 aggregation (Aggregation at secondary feeder

level).

Input: pr Pd, MPC ,e j j
(0) ▷ ∈j sJ

Output: Pds
(1) ▷ ∈s secJ

1: ←Pds
(1) Algorithm 2

2: ← ∀ ∈jMPC JOIN{MPC | }s
agg

j sJ ▷ Formulate joint

optimization for this secondary

feeder system s

3: for ≔l 1 to L do ▷ Traverse all price-demand

pairs

4: if ⩾Pd l P[ ]s s
Tran(1) then ▷ Coupling constraint violated

5: ← + ∗ −pr prt t p l[ ] [ ] ( 1)e e inc ▷ Update price forecast at

time interval t

6: ←∗P prtMPC ( , )tot s
agg

e

7: ← ∗PPd l[ ] [1]s tot
1 ▷ Update violated bids

8: end if

9: end for

4.2. Level-2 aggregation - Demand bid aggregation at the primary feeder

level

In this subsection, a three-phase optimal power flow (OPF) based

aggregation algorithm is proposed to aggregate the demand bids at the

primary feeder level subject to the distribution operating constraints.

First, we will introduce the three-phase OPF algorithm, and then we

will illustrate how we can aggregate the demand bids up to the sub-

station node. After aggregation, the entire distribution feeder or sub-

station can be treated as a virtual power plant with its own aggregated

demand bid curve.

4.2.1. Three-phase optimal power flow algorithm

The key operating constraints which need to be considered in the

aggregation process at primary feeder level include the phase im-

balance constraints and the line flow limit constraints. Besides, the

distribution line losses should be carefully modeled. A three-phase

DCOPF model [53] can be leveraged to coordinate the operations of

various distributed energy resources while satisfying the operating

constraints of the power distribution network. The details of the DCOPF

model is provided here.

Suppose there are +N 1 node in the distribution system, the sub-

station node (for example, node 650 in Fig. 2a) is denoted by node 0,

and the other aggregated nodes or renewable distributed resources

belonging to = … N{1, 2, , }secJ are denoted by node 1 to node N. Node

0 is selected as the swing bus of the distribution system, and an

equivalent system supply offer is created at node 0. The aggregated

demand bids on node 1 to node N will be decomposed into three phases

for problem formulation.1 Then the three-phase DCOPF problem can be

formulated as follows:

∑ ∑ − −
′= ′=

′ ′ ′ ′ ′ ′ ′ ′Pd Pg PgC C Cmax { ( ) ( )} ( )
n

N

m

n m
d

n m n m
g

n m
g

1 1

3

, ,

(1)

, ,

(1)
0 0

 
(25)

subject to:

∑ ∑= + ′ =
′=

′ ′
=

′ ′ ′
PG PD P m, 1, 2, 3

n

N

n m

n

N

n m Loss
m

0

,

0

,
(26)

∑ ∑ − ⩽ ∀ ′ ′ ′ ≠ ′ =
′= ′=

′ ′ ′′ ′ ′ ′ ′ ′ ′_
_

GSFP PG PD F i k i k p( ) , , and , 1, 2, 3
n

N

m
i k n
p m

n m n m i k
p

1 1

3

, , , ,

(27)

∑ ∑− ⩽ ′ = ′ ≠
′=

′ ′
′=

′P P γ m p m p, , 1, 2, 3 and
n

N

n
m

n

N

n
p

1 1 (28)

∑= ∀ ′ ∈ ′ =′ ′ ′ ′
=

′ ′ ′ ′Pd w PdC l l n m( ) [ ]· [ ], and 1, 2, 3n m
d

n m

l

L

n m
d

n m
agg

, ,

(1)

1

, ,

(1)
J 

(29)

∑= ∀ ′ ∈ ′ =′ ′ ′ ′
=

′ ′ ′ ′Pg w PgC l l n m( ) [ ]· [ ], and 1, 2, 3n m
g

n m
l

L

n m
g

n m
agg

, ,

(1)

1
, ,

(1)
J 

(30)

1 In the previous aggregation procedures, the aggregated bids provision can

be calculated on three phases. However, the phase term is omitted for simpler

notation. For a single-phase load, the loads on other two phases are regarded as

fixed loads with zero demand.
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∑=
=

Pg w PgC l l( ) [ ]· [ ].g

l

L
g

0 0
1

0 0
 

(31)

where ′ ′Pd l[ ]n m,

(1) and ′ ′Pg l[ ]n m,

(1) represent the demand bid quantity and the

supply offer quantity of the l-th segment of the price sensitive demand

bid curves at node ′n with phase ′m , respectively. Pg l[ ]0
 denotes the

supply offer quantity of the l-th segment of total supply offer curve at

substation node. ′ ′PGn m, and ′ ′PGn m, are the real power of generation and

total demand at node ′n with phase ′m , respectively.
′

PLoss
m is the total real

power loss at phase ′m , respectively. ′ ′ ′′GSFP _
_

i k n
p m
, is the generation shift

factor for real power flow of the branch which connects node ′i and ′k
with phase p when power injection is at node ′n with phase ′m . ′P

n
p is the

net injection of real power at node ′n with phase p. ′ ′Fi k
p
, is the real power

flow limit between node ′i and node ′k with phase p. γ is the power

imbalance limit between phases. ′ ′w l[ ]n m
d

, is the demand bid price of the

l-th segment of the price sensitive demand bid curve at node ′n with

phase ′m . ′ ′w l[ ]n m
g

, is the supply offer price of the l-th segment of the

supply offer curve at node ′n with phase ′m . w l[ ]g
0 is l-th supply offer

price of the l-th segment of the supply offer curve at substation node.

The objective function (25) maximizes the total surplus of custo-

mers and producers in a distribution system. The first term of function

(25) denotes customers’ utility function, the second term denotes the

sum of generation cost for each node except for Node 0, while the last

term denotes the generation cost of Node 0. The real power balance

constraints are represented by Eq. (26). Eq. (27) is the power flow limit

constraints which guarantees that the power flow will not exceed the

thermal capacity on each distribution line. Phase imbalance constraints

are represented in Eq. (28), which are effective in mitigating phase

imbalance problems. Customer utility function and generator cost

function are calculated in Eqs. (29)–(31).

The three-phase DCOPF problem can be solved by the iterative

three-phase DCOPF algorithm in our previous work [53], which is

capable of finding a good approximation to the three-phase alternative-

current optimal power flow (ACOPF) problem in a computationally

efficient manner. Under the assumption of unitary voltage and small

angle deviations, the power flow equation could be linearized around

the flat solution, and the system parameters including ′ ′ ′′GSFP _
_

i k n
p m
, for the

linearized three-phase power flow equation can be obtained.2 Then the

three-phase DCOPF problem (Eqs. (25)–(31)) can be solved as a linear

optimization problem. In our three-phase DCOPF algorithm, the linear

optimization problem is solved iteratively until the solution converges.

The fictitious nodal demand (FND) model in [54] is adopted in the

algorithm, which can distribute system losses among distribution lines

to eliminate significant mismatch at the reference bus. As shown in

[54], the FND-based DCOPF yields a closer approximation to the results

of ACOPF. The three-phase DCOPF algorithm is summarized as follows:

Step 1: Initially set linearized system parameters, power injections

and power flows. Set FNDs, power losses to zeros.

Step 2: Solve the linear optimization problem, update the power

injections and power flows.

Step 3: Update the parameters of the linearized system, FNDs and

power losses based on the new solution.

Step 4: Solve the linear optimization problem again.

Step 5: Check the dispatch of loads and generation resources. If the

difference between the current iteration and previous iteration’s

result is larger than the pre-defined tolerance, go the Step 3.

Otherwise, the final three-phase OPF solution is obtained.

With the supply offer price at the substation node and the demand

bid curve for the other nodes as inputs, we can easily compute the

optimal dispatch operating points for each node based on the proposed

three-phase DCOPF algorithm.

4.2.2. Demand bid curve generation for level-2 aggregation

Suppose that the supply offer price at the substation node is fixed at

some value (i.e., the supply offer bid curve is a straight line) in the

three-phase OPF problem, the dispatch demand quantity at each node

indicates how much energy each node want to consume at current of-

fered electricity price. Particularly, the dispatched demand quantity at

the substation node indicates how much energy all the buildings under

this substation want to consume at a certain electricity price. As we

increase (decrease) the supply offer price at the substation node, the

corresponding demand quantity at substation node will decrease (in-

crease). These pairs of supply offer price and demand quantity explicitly

quantify the flexibility of all loads under this feeder/substation. Based

on this idea, we can perform the aggregation procedure at the primary

feeder level by Algorithm 5.

Algorithm 5. Level-2 aggregation (Aggregation at primary feeder

level).

Input: ′Pds m,
(1) ▷ ∈ ′ =s mand 1, 2, 3secJ

Output: Pd(2) ▷ Aggregated bid at substation

node

1: ← ′ − ′ +pr prL m m p( [ ] [ ])/ 1e e inc

2: for ≔l 1 to L do

3: ← ′ + ∗ −prλ m p l[ ] ( 1)e inc0

4: ← ×w λ[ ] L0 0 1 ▷ Set supply offer price

5: ∗ ∗ ∗PG PG PG( , , )0,1 0,2 0,3 ←DCOPF

( ′w Pd, s m0 ,
(1) )

6: ←w step λ[ ] 0 ▷ Save energy price

7: ← ∑ ′= ′∗Pd step PG[ ]
m m

(2)
1

3
0,

▷ Save total demand

8: end for

As shown in Algorithm 5, for each possible energy bid price λ0 at

line 3, the supply offer price at substation node is set to be constant as

that price at line 4. After solving the DCOPF problem at line 5, we can

get the demand quantities on each phase at substation node, which also

equals to the total optimal dispatched load on each phase, respectively.

Finally, at line 6 and line 7, all the price-total demand pairs in each

iteration are stored and connected sequentially to form the aggregated

demand bid curve on each phase at the substation node. The generated

bid curve will be submitted to the wholesale market by the DSO.

4.3. Demand disaggregation

After the wholesale market clears, the dispatch operating points for

the aggregated loads need to be disaggregated into the dispatch in-

structions at the individual building level. Since we aggregate the de-

mand bids at two levels, we will also disaggregate the dispatch oper-

ating signals at two levels by using the locational marginal price

information.

Level-2 disaggregation - Disaggregation at the primary feeder

level: First, with the cleared market price at the substation node, the

three-phase DCOPF problem in Section 4.2 is solved again. The mar-

ginal price for each primary feeder node can be calculated after solving

this DCOPF problem [53].

Level-1 disaggregation - Disaggregation at the secondary feeder

level: If the dispatched load for the secondary feeder system do not

exceed the transformer’s maximum capacity, the price signal is sent to

each individual building directly, and the MPC-based algorithm is run

separately to determine the optimal schedule for the current time in-

terval. Otherwise, based on the marginal price for each aggregated node

presenting a secondary feeder system, the joint optimization model

MPCs
agg in Section 4.1 is solved again to determine the dispatched2Detailed derivations can be found in [53].
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schedules for each individual buildings. Finally, each individual

building will control its flexible loads according to the dispatch sche-

dules.

5. Simulation and analysis

In this section, we investigate the impact of smart building opera-

tions on the distribution grid, and demonstrate the effectiveness of the

proposed bi-level aggregation methods.

5.1. Simulation setup

Numerical studies are conducted on the IEEE 13-node test feeder

[43] as shown in Fig. 2. HVAC control systems are assumed to be the

major flexible loads of a typical building model in the simulation. The

simulations are implemented in MATLAB on a PC with 3.30-GHz Intel

(R) Xeon(R) E3-1226 v3 CPU and 8 GB of RAM. The MILP subproblem

is modeled by YALMIP [55] and solved by Gurobi [56]. The major si-

mulation parameters are chosen as follows.

• The ambient temperature and solar radiation for a whole day in the

simulation are shown in Fig. 4. The forecasted energy prices are

based on PJM’s historical price data and are shown in Fig. 5.

• The reference building model is adapted from [46], whose para-

meters have been validated through EnergyPlus [17] simulation.

The building is modeled as a single zone with four peripheral walls,

one roof and one floor. The zone size is × ×10 m 10 m 3 m, and the

thermal parameters are shown in Table 1.

• There are already lots of occupancy data set available online

[57,58]. For simplicity, we use four typical different occupancy

patterns to represent the customers’ occupancy behaviors in our

simulation. As shown in Fig. 6, within each horizontal bar re-

presenting 24 h, occupied hours are filled with color, and un-

occupied hours are left blank.

• Regarding the level-1 aggregation, we assume that there are ten

buildings under each of the secondary feeder system as shown in

Fig. 2b. The thermal parameters of each building are randomized

around the reference building model, and the occupancy profile of

each customer is generated by randomly picking one of the occu-

pancy patterns.

• In terms of the level-2 aggregation, we perform the simulation based

on aggregated bid curves on the primary nodes. More details will be

shown in Section 5.3.

• For each individual building, the comfortable indoor temperature

(defined by the lower temperature bound Tmin and upper tempera-

ture bound Tmax in (9)) is determined by its predicted occupancy

presence. The comfortable indoor temperature should fluctuate be-

tween °21 C and °25 C when the building is occupied. There are no

requirements for indoor temperature when the building is un-

occupied.

• Regarding the MPC-based algorithm, the time interval t is assumed

to be 15min, and the predicting window W is set to be 24 h.

5.2. Case study for level-1 aggregation

In this subsection, we will first compare the proposed level-1

building load aggregation algorithm with two benchmarking algo-

rithms, and show that the proposed level-1 building aggregation and

coordination algorithm not only reduces building electricity costs but

ensures reliable operation of power distribution network. Then we will

analyze the SSS method adopted here and demonstrate that it alleviates

the homogeneous oscillation problem caused by the standard

Lagrangian relaxation method. At last, a typical aggregated demand bid

curve will be generated as the output of the level-1 aggregation.

5.2.1. Evaluation of the proposed level-1 aggregation algorithm

The performance of the proposed level-1 building load aggregation

and coordination algorithm will be compared with two benchmarking

algorithms through three different aggregation scenarios under a sec-

ondary feeder system. The transformer’s rated capacity for this sec-

ondary feeder system is 35 kW. The setup of the three aggregation

scenarios are summarized in Table 2. The implementation details of the

three scenarios are described here.

Scenario I: In the first benchmarking algorithm, individual build-

ings do not participate in any demand response program. In addition,

buildings do not explicitly coordinate with each other when controlling

flexible loads. The bang-bang controller [59] does not optimally control

the HVAC because the control input is fixed at the maximum level when

the HVAC is turned on [32]. Thus, to make a fair comparison, a multi-

state control model similar to [60] is adopted here. In the multi-state

control model, different control input levels are triggered at different

temperature bands. The temperature bands and the input levels are

carefully selected and tuned to make sure the temperature will not

violate the temperature bound constraint (9). All building loads under

this algorithm will be aggregated by the linear additive aggregation

Algorithm 2.

Scenario II: In the second benchmarking algorithm, individual

buildings participate in the proactive demand response program

without considering the network operating constraints. The MPC-based

algorithm in Section 3.2 is utilized to control the HVAC system. All

building loads under the secondary feeder are aggregated by the linear

additive aggregation Algorithm 2.

Scenario III: In the proposed level-1 building aggregation and co-

ordination Algorithm 4, individual buildings participate in the proac-

tive demand response program while considering the network oper-

ating constraints. As described in Section 4.1, the joint optimization

model MPCs
agg is formulated and solved by the SSS method to control all

HVAC systems under the secondary feeder.

The simulation results of three scenarios are shown in Table 2, and

the active power of the aggregated loads of the distribution secondary

under the three scenarios are shown in Fig. 7. Compared with scenario

I, scenario II achieved a lower building electricity cost (12.48% re-

duction) through price-based MPC algorithm. However, it also in-

troduced a higher peak load. This is mainly caused by the un-

coordinated building load operations. With similar optimization

parameters and real-time electricity price forecasts, the load diversity

factor under scenario II becomes much lower than that of scenario I.

Hence, the peak load of scenario II increased to 38.31 kW which ex-

ceeds the transformer’s rated capacity constraint. Similar phenomenon

is also shown in [49]. In contrast, the proposed algorithm in scenario III

coordinated the operations of the smart buildings and reduced the peak

load of the secondary feeder below the transformer’s rated capacity.

Although the electricity bill in scenario III is slightly higher than sce-

nario II, our proposed algorithm still achieved a 9.73% electricity cost

reduction when compared with scenario I.

5.2.2. Performance of the SSS method

To make a comparison between the SSS method and the SLR

method, the joint optimization problem MPCs
agg is solved by the two
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mulation.
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methods respectively. The concept of violation degree [44] are used

here to evaluate the convergence rate and the solution feasibility of

both methods. The violation degree is defined as

∑ ∑ −=
+ −

∈ e k Pmax{ [ ] , 0}
k t

t W

j tot
j

s
Tran1

sJ
, which represents the total amount

of power violation in a whole day. The violation degree measures “how

far” a dual solution is away from a feasible one.

As shown in Fig. 8, the feasible solutions and infeasible solutions are

marked with circles and asterisks respectively in each of the optimi-

zation iterations. From the results, we can see that after the fifth

iteration, the SLR method starts oscillating between two solutions (one

feasible solution and one infeasible solution) and has a difficult time

converging. This is because customers with similar building parameters

and occupancy patterns have similar electricity usage behavior. On the

other hand, with the help from the additional penalty term, the SSS

method can find a feasible solution after one iteration, and converges

quickly after the third iteration. Since the coupling constraints are

simple and can be met with little efforts, the SSS method can always

converge after a few iterations in our simulation. Therefore, the SSS

method successfully mitigates the homogeneous oscillation problem for

the joint optimization problem MPCs
agg in the level-1 building load ag-

gregation algorithm.

Fig. 8 shows that the SLR method may face the oscillation problem

in the level-1 load aggregation algorithm. Hence, the SSS method is

adopted in the proposed framework.
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Table 1

Thermal parameters of the reference building model.

Parameter Value Definition

Cw1 ×2.39 10 J/K6 Thermal capacitance of four peripheral walls.

Cw2 ×7.89 10 J/K6 Thermal capacitance of roof/floor.

Cair ×3.69 10 J/K5 Thermal capacitance of the room air.

Rout,1 × −1.19 10 m·K/W2 Thermal resistance between the peripheral

wall and the outside air.

Rout,2 × −3.61 10 m·K/W3 Thermal resistance between roof/floor and the

outside air.

Rin,1 × −1.36 10 m·K/W2 Thermal resistance between the peripheral

wall and the room air.

Rin,2 × −4.11 10 m·K/W3 Thermal resistance between roof/floor and the

room air.

Fig. 6. Buildings’ occupancy patterns in the simulation.

Table 2

Main features and results of three different aggregation scenarios.

Scenario # Features Results

Control

method

DR Coordination Aggregation

method

Peak

load

(kW)

Total

cost ($)

Scenario I Multi-

state

No No Algorithm 2 31.98 16.03

Scenario II MPC Yes No Algorithm 2 38.31 14.03

Scenario III MPCagg Yes Yes Algorithm 4 34.30 14.47
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Fig. 7. Total demand of all loads under a secondary feeder under the three

scenarios.
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5.2.3. Demand bid curve of the level-1 aggregation

After applying the proposed level-1 building load aggregation

Algorithm 4, the aggregated demand bid curves for this secondary

feeder are generated. For example, the bid curve at 11:00 a.m. is shown

in Fig. 9.

5.3. Case study for level-2 aggregation

In this subsection, we will compare the proposed level-2 building

load aggregation algorithm with the linear additive algorithm at the

primary feeder level. The simulations are set up as follows. Assume that

there are four flexible aggregated loads at node 633, 634, 652 and 611.

The fixed loads are set up in the same way as in the IEEE 13-bus test

feeder benchmark document [43]. It is assumed that the flexible loads

of the three phases are not completely balanced at node 633, 634, 652,

and 611. The demand bid curve shown in Fig. 9 is used as the bid curve

for each secondary feeder to construct the bid curves for the flexible

loads. The final demand bid curves for flexible loads on the four nodes

are shown in Fig. 10. Note that node 652 and 611 are single-phase

nodes.

Two scenarios are simulated. In scenario A, the demand bids on

each node will be aggregated by the linear additive load aggregation

Algorithm 3. In scenario B, the demand bids on each node will be

aggregated based on the level-2 load aggregation Algorithm 5. Different

distribution network constraints are analyzed under both scenarios to

demonstrate the effectiveness of our proposed level-2 building load

aggregation algorithm.

(1) Analysis of the line flow limit: In the simulation, the thermal

limit for line 〈 − 〉632 633 in Fig. 2a is set to be 400 kVA. After load ag-

gregation process, the daily maximum apparent power flows on three

phases of this line under different bid prices are shown in Fig. 11. As

can be seen from the figure, the linear additive load aggregation

Algorithm 3 results in thermal limit violation when the energy bid price

is lower than $0.02/kWh. The proposed level-2 load aggregation

Algorithm 5 in scenario B, on the other hand, satisfies the thermal limit

constraints all the time.

(2) Analysis of the three-phase imbalance: The maximum al-

lowed phase imbalance power is set to be 60 kW in the simulation. The

aggregated demand bid curves of the phase a b, , and c, as well as the

maximum phase imbalance at the substation node are presented in

Fig. 12. It can be easily seen that the bid curves for three phases in

scenario B (Fig. 12b) are much closer to each other than that of the

scenario A (Fig. 12a). As shown in Fig. 12c, the linear additive load

aggregation Algorithm 3 violates the maximum phase imbalance con-

straints. In contrast, by utilizing the proposed level-2 aggregation

Algorithm 5 in scenario B, the maximum phase imbalance does not

exceed the maximum allowed phase imbalance power.

(3) Analysis of the power losses: The linear additive load ag-

gregation Algorithm 3 used in scenario A ignores the power losses in the

Fig. 10. Bid curves for the flexible loads on node 633, 634, 652 and 611 in IEEE 13-node test feeder.
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distribution network. In contrast, the proposed level-2 load aggregation

Algorithm 5 leverages the iterative three-phase DCOPF algorithm

shown in Section 4.2 to capture the power losses in scenario 2. This

feature makes the proposed load aggregation much more accurate. As

shown in Fig. 13, the total power losses under different bid prices range

from 113.7 kW to 144.0 kW, which account for 3–5% of the total de-

mand. Hence, the power losses cannot be ignored and should definitely

be considered in the load aggregation process.

5.4. Scalability of the aggregation algorithm

In this subsection, the scalability of the bi-level aggregation algo-

rithm will be verified by test cases of different sizes.

To validate the scalability of the level-1 aggregation algorithm,

simulations are conducted by assuming different number of buildings

are connected to the distribution transformer in the secondary feeder

system. The transformer’s rated capacity is chosen in such a way that

the peak load without coordination will exceed the rated capacity. As

discussed in Section 4.1.1, the subproblems of SSS method in Algorithm

4 are solved sequentially. However, the joint optimization problem

under different energy price forecasts (i.e., Step 6 in Algorithm 4) can

be solved in parallel. The simulation results are shown in Table 3,

where the third column represents the maximum parallel computation

time of SSS method under ten different bid prices.

It can be seen from Table 3 that the computation time of the SSS

method increases approximately in a linear fashion when the number of

buildings under a distribution transformer increases. This is because the

subproblems of SSS method are solved sequentially. However, in the

real world, the number of buildings connected to a distribution trans-

former is very limited. For example, a commonly used 25 kilovolt-

ampere (kVA) neighborhood transformer serves on average five to

seven homes [61]. Another example is that a typical 12 kV distribution

feeder [62] serves between 1000 and 2000 customers with over 400

transformers. Thus, the computation time for level-1 aggregation is less

than 21 s in most real-world cases.

To validate the scalability of the level-2 aggregation algorithm, si-

mulations are conducted on five IEEE distribution feeder test cases. In

each test case, flexible loads are added on 50% of the nodes, and the

total computation time for Algorithm 5 is recorded. Note that to create

the aggregated demand bid, the DCOPF algorithm runs ten times for ten

different bidding prices. As shown in Table 4, the computation time of

Algorithm 5 is very short. For the 123-bus system, the total computa-

tion time for Algorithm 5 is less than 3 s.

The above simulation results show that the bi-level aggregation

algorithm takes less than one minute to finish in most real-world cases.

The performance is quite reasonable as the real-time electricity market

is cleared every five minutes. In summary, the simulation results

showed that the proposed methodology is robust, scalable, and can be

implemented in real-time market operations.

It should be noted that the unitary voltage assumption is used in the

three-phase DCOPF model. However, there exist some cases where

some long, rural feeders which may face severe voltage problem. To

take the severe voltage problem into consideration, the ACOPF algo-

rithm proposed in [63], which has already included the voltage con-

straint, can be adapted to replace the DCOPF algorithm here. Based on

the results of [63], the computation time of the ACOPF algorithm on the

123-bus test system is around 27 s. Thus, if we adopt the ACOPF al-

gorithm in parallel under different bid prices in Algorithm 5, the final

total computation time can meet operation requirement in the real-time

energy market. Meanwhile, the proposed bi-level aggregation frame-

work still works after adopting this change.

6. Conclusion

This paper proposes a novel bi-level building demand aggregation

methodology to coordinate the operations of smart buildings in smart

grids. The proposed method improves upon the existing work by taking

the key distribution system operating constraints including the line

thermal limit, phase imbalance, and transformer capacity limit into

consideration during the aggregation process. At the distribution

Fig. 12. Aggregated bid curves of phase, a b c, , , and the maximum phase

imbalance at the substation node.
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Table 3

Scalability of level-1 aggregation.

Number of buildings Pmax (kW) Maximum computation time (s)

6 21 16.49

10 35 21.07

20 70 43.15

30 105 74.53
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secondary feeder level, a joint optimization problem is formulated to

perform the level-1 aggregation. The successive subproblem solving

method is introduced to alleviate the homogeneous oscillations pro-

blem. At the distribution primary feeder level, a three-phase direct-

current optimal power flow based method is developed to perform the

level-2 aggregation. The simulation results demonstrate that the pro-

posed smart building coordination and aggregation method not only

reduces building electricity costs but also satisfies all distribution

system operating constraints.

In the future, we plan to extend the proposed smart buildings ag-

gregation framework in three directions. First, the other types of flex-

ible loads such as stationary energy storage systems and electric ve-

hicles will be incorporated into the modeling framework. Second, we

will explore ways to develop a three-phase alternative-current optimal

power flow based smart buildings aggregation algorithm at the primary

feeder level to better represent the nonlinearity of the distribution

networks. Third, we will investigate the tradeoff between the accuracy

of the building thermal dynamics model and the complexity of the

optimization formulation of the secondary level building aggregation

problem.
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