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Abstract—This paper puts forth a mathematical framework
for Buildings-to-Grid (BtG) integration in smart cities. The
framework explicitly couples power grid and building’s con-
trol actions and operational decisions, and can be utilized by
buildings and power grids operators to simultaneously optimize
their performance. Simplified dynamics of building clusters and
building-integrated power networks with algebraic equations
are presented—both operating at different time-scales. A model
predictive control (MPC)-based algorithm that formulates the
BtG integration and accounts for the time-scale discrepancy
is developed. The formulation captures dynamic and algebraic
power flow constraints of power networks and is shown to
be numerically advantageous. The paper analytically establishes
that the BtG integration yields a reduced total system cost in
comparison with decoupled designs where grid and building
operators determine their controls separately. The developed
framework is tested on standard power networks that include
thousands of buildings modeled using industrial data. Case stud-
ies demonstrate building energy savings and significant frequency
regulation, while these findings carry over in network simulations
with nonlinear power flows and mismatch in building model
parameters. Finally, simulations indicate that the performance
does not significantly worsen when there is uncertainty in the
forecasted weather and base load conditions.

Index Terms—Buildings-to-Grid Integration, MPC, Demand
Response, Energy Efficiency, Frequency Regulation.

I. INTRODUCTION, PRIOR ART, PAPER CONTRIBUTIONS

BY 2050, a staggering 70% of the world’s population is

bound to live and work in cities [1]. A recent assessment

from the World Bank suggested that two-thirds of global

energy consumption can be attributed to cities, leading to 71%

of global direct energy-related greenhouse gas emissions [2].

Smart cities consist of sustainable and resilient infrastructures,

where buildings are a major constituent. Building energy con-

sumption contributes to more than 70% of electricity usage—

profoundly impacting power grid’s operation. Futuristic cities

equipped with optimized building designs have the auspicious

potential to play a pivotal role in reducing global energy

consumption while maintaining stable electric-grid operations.

As buildings are physically connected to the electric power

grid, it is natural to understand their coupling and develop a

framework for Buildings-to-Grid (BtG) integration. To under-

stand the role and impact of BtG integration, the authors in [3]

provide relevant research questions for BtG integration.
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The installation of smart meters in buildings and across the

power grids enables the BtG integration, which can transform

passive buildings into active dispatchable demand resources.

The U.S. Department of Energy has highlighted the multiple

benefits and opportunities of BtG integration [4]: 1) Buildings

can enjoy significant energy savings; 2) the grid’s resources

are more efficiently utilized, as peak demand is curbed; 3) the

grid can become more stable with fewer frequency excursions;

4) the need for bulk generation and transmission investments

is deferred; and 5) with a BtG integration platform in place,

distributed energy resources at the buildings’ premises, such as

photovoltaic units and electric vehicles, can be more efficiently

integrated with the power grid, turning into significant assets.

Besides the aforementioned technical motivating factors, the

mathematical intuition behind the BtG integration is that when

the grid and the buildings jointly optimize their control deci-

sions, they have the potential to yield larger system benefits

than when they make these decisions separately. This paper

aspires to develop a BtG integration framework, and make

this mathematical intuition precise.

Various studies address a breadth of computational and ex-

perimental aspects of BtG integration. An overview of demand

response potential from smart buildings is presented in [5].

An experimental architecture that enables smart buildings is

proposed in [6] with a focus on heating, ventilation, and air

conditioning (HVAC) systems and grid integration. A bi-level

optimization framework for commercial buildings integrated

with a distribution grid is proposed in [7]. Detailed dynamical

models for buildings with multiple zones (upper level) and

an operational model for the distribution grid with voltage

and current balance equations (lower level) are included;

nonetheless, a dynamical model of the power grid, suitable

for modeling frequency excursions, is missing.

The regulation service provision by smart buildings is inves-

tigated in [8], where price signals are exchanged between grid

and building operators to alter building energy consumption.

Other BtG integration studies have shown that grid-aware

building HVAC controls can provide frequency regulation or

other ancillary services to the grid [9]–[13], largely without

sacrificing the occupants’ comfort. The load-shifting capability

of buildings has also been explored [14]. Explicit account

of the grid dynamics and power flows is on the other hand

missing from the previously mentioned works.

HVAC controls and building dynamics are typically mod-

eled as linearized dynamical systems [15]. The modeling

particulars depend on the size of the building cluster. As the

number of buildings involved in the analysis increase, the

dynamical models tend to become simpler—for obvious com-

putational purposes. A typical thermal resistance and capaci-

tance circuit model can be used to represent heat transfer and



1949-3053 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2017.2761861, IEEE

Transactions on Smart Grid

IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. YY, OCTOBER 2017. 2

thermodynamical properties of the building envelope, and is

widely used in building control studies [16]–[19]. Given these

models for building dynamics, various control routines have

been developed for building controls. Currently, many com-

mercial buildings use PID controllers for HVAC systems [20].

However, model predictive control (MPC) has proved to be

advantageous with respect to PID controllers [21]–[23].

Building HVAC control via MPC has been investigated

under a wide range of scenarios and setups. For example,

uncertainty in the building MPC formulation is considered

in [24]–[26]. Centralized building MPC routines are proposed

in [27], [28], and the works in [21], [22], [29] investigate

decentralized or distributed solvers to building MPC problems.

In addition, explicit MPC routines have also been developed in

the context of building control studies [30]. Other works focus

on integrating occupancy behavior and its impact on indoor

temperature variations, while still attempting to obtain optimal

control laws [23], [31]. The majority of the aforementioned

works show significant energy savings given different system

dynamics, forecast and parametric uncertainty, and computa-

tional limitations.

While the aforementioned research investigated different

challenging problems related to BtG integration and build-

ing MPC routines, none of these studies produces a high-

level mathematical framework that buildings and power

grids operators can simultaneously utilize to optimize their

performance—a framework that explicitly couples power grid

and building control actions and operational decisions. In

addition, the majority of the previously mentioned studies

focus on one or a group of buildings and the corresponding

impact on the power grid, rather than clusters of thousands of

buildings in smart cities. The main challenges associated with

creating such a framework that addresses the aforementioned

research gaps are as follows.

• Building control systems are neither connected to each other,

nor integrated with the grid. Consequently, a unified optimal

energy control strategy—even if it is decentralized—cannot

be achieved unless there is a framework that facilitates

this integration, in addition to the willingness of building

operators to contribute to this framework.

• Grid and building dynamics and control actions clearly

operate at two different time-scales. While the grid controls

and states are often in seconds, the building state dynamics

and controls are much slower, often in minutes. Coupling

the two dynamic systems together entails addressing this

time-scale discrepancy.

• Existence of algebraic equations in grid dynamics, resulting

in differential algebraic equations (DAE), coupled with the

different time-scales, complicates modeling and analysis of

BtG integration. In fact, these algebraic equations depict the

interdependence between grid and building dynamics.

The chief contribution of this paper is a novel mathematical

framework for BtG integration that addresses the aforemen-

tioned challenges in a structured and principled way. The

MPC-based framework couples building dynamics, grid dy-

namics that include the network frequency, and the power

flow equations. The objective is to generate local control

actions for buildings and power generators such that the overall

performance is optimized in terms of stability, energy savings,

and other socio-economic metrics. The time scale discrepancy

between the grid and building dynamics is explicitly accounted

for in the developed MPC-based optimization formulation. The

building-integrated power network dynamics are modeled by

DAEs. In order to include the DAEs into the optimization

framework, the DAEs are discretized using Gear’s method.

While this discretization method has been the basis for the

numerical solution of DAEs for several decades [32], it is the

first time that it is brought in to facilitate the development of a

BtG integration framework. The paper analytically establishes

that the BtG integration yields a reduced total system cost

with respect to decoupled designs in which grid and building

operators determine their controls separately.

The developed framework is tested in standard IEEE net-

works that include hundreds to thousands of buildings modeled

using ASHRAE data. The building HVAC load is driven

by realistic ambient weather patterns and typical temperature

requirements for commercial buildings. The simulations are

performed for various power networks, and a reduction of

up to 20% and 43% in total system cost—with respect to

two other decoupled designs—is demonstrated. Finally, sim-

ulations indicate that the performance does not significantly

worsen when there is uncertainty in the building parameters

or forecasted weather and base load conditions.

The remainder of this paper is organized as follows. In

Sections II and III, we present the dynamics of building

clusters and of the building-integrated power network. Optimal

power flow is also integrated in these models. In Section IV,

we propose our approach for BtG integration, while addressing

the aforesaid challenges. Then, the optimal control problem

that models the BtG integration is formulated. A customized

algorithm is also developed to seamlessly include the optimal

power flow into the integrated framework. Section V produces

an analytical discussion on the advantages of the BtG frame-

work over decoupling the optimization of buildings and power

grids. Case studies with realistic building parameters and grid

constraints are given in Section VI. Finally, future work is

outlined in Section VII.

II. BUILDING CLUSTERS DYNAMICS

The patterns of energy usage in buildings are impacted

by local climate, heat transfer through the building envelope,

daily operation, and occupancy behaviors. Detailed energy

models have been developed based on physics and statistics

to simulate heat transfer in buildings.

For a large-scale application such as BtG integration, it is

unrealistic to consider every thermal zone of each building—

thousands of buildings will generate millions of zones. This

approach would produce a highly intractable BtG integration

problem. Hence, at a BtG integration level, the amount of

cooling energy needed which is optimized to minimize the

total operation cost is allocated to each building; we define

this quantity as P
(l)
HVAC for building l. Then, at the local

level of building l, the decision variables of the air-side

system (setpoints for air-handling units, damper opening for
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Fig. 1. An RC-network model for a thermal zone [33].

terminal systems) and the water-side system (flows for pumps,

chiller temperature setpoints) can be optimized to maintain the

preferred zone temperature, while not exceeding the cooling

load limits set by P
(l)
HVAC. This approach of solving for the

cooling loads and then feeding the setpoints to local lower

level problems is common in recent building studies; see [22].

In this paper, we focus on the high-level commercial

buildings problem described above. We use a typical thermal

resistance and capacitance (RC) network to model heat transfer

and the thermodynamics of the building envelope, which has

been widely used in building control studies [16]–[19]. The RC

network model assumes a steady-state heat transfer through

the building envelope. Considering that the building dynamics

have time constant of hours, this model is sufficient for a

high-level BtG integration study. A typical three-resistance

and two-capacitance (3R-2C) model is shown in Fig. 1. In

this model, a building is treated as a super-zone where the

resistance parameters represent the thermal resistance of the

building structure, the external facades’ convection, and the in-

ternal walls’ convection. Building dynamics with temperatures

Twall(t) = Twall and Tzone(t) = Tzone are written as

Ṫwall =
Tamb − Twall

CR2
+

Tzone − Twall

CR1
+

Q̇sol

C

Ṫzone =
Twall − Tzone

CzoneR1
+

Tamb − Tzone

CzoneRwin
+

Q̇int + Q̇HVAC

Czone
,

where Rwin, R2, and R1 are physical parameters of the build-

ing envelope; C is the lumped thermal capacity of all walls

and the roof; Czone is the thermal capacity of the zone; Q̇sol(t)
is the total absorbed solar radiation on the external wall;

Q̇int(t) is the total internal heat gain from space heat sources

such as desktops, people, and lights; Tzone(t) and Twall(t)
are respectively the zone (space) and wall temperatures; and

Tamb(t) is the outside ambient temperature. The cooling load

can be calculated as Q̇HVAC(t) = µHVACPHVAC(t), where

PHVAC is the power consumed by the HVAC system, and

µHVAC is the coefficient of performance of the HVAC system.

The dynamics of building l are described by

ẋ
(l)
b (t) = A

(l)
b x

(l)
b (t) +B(l)

ub
u
(l)
b (t) +B(l)

wb
w

(l)
b (t), (1)

where x
(l)
b = [Twall Tzone]

>
l is the state of building l;

u
(l)
b =

[

PHVAC

]

l
is the control input variable; w

(l)
b =

[Tamb Q̇sol Q̇int]
>
l is a random uncontrollable input. Various

methods have been developed to provide an estimate of w
(l)
b ,

denoted by ŵ
(l)
b , for each building [34]. The system state-

space matrices in (1) are defined as

A
(l)
b =









−
1

C

(

1

R1
+

1

R2

)

1

CR1

1

CzoneR1
−

1

Czone

(

1

R1
+

1

Rwin

)









l

B(l)
ub

=

[

0
µ

Czone

]

l

,B(l)
wb

=







1

CR2

1

C
0

1

CzoneRwin
0

1

Czone







l

.

The notation [·]l implies that each building l has a different

set of RC parameters. In this paper, we consider clusters of

buildings with each cluster connected to a power grid node.

Since we aim to understand the impact of buildings’ contribu-

tion to frequency regulation and overall energy consumption

costs, we present the dynamics of building clusters

ẋb(t) = Abxb(t) +Bub
ub(t) +Bwb

wb(t) , (2)

where nb is the total number of buildings in the net-

work; xb ∈ R
2nb ,ub ∈ R

nb , and wb ∈ R
3nb .

In the absence of communication between buildings, the

state-space matrices Ab, Bub
, and Bwb

will all be

block diagonal matrices: Ab = diag(A
(1)
b , . . . ,A

(nb)
b ) ∈

R
2nb×2nb , Bub

= diag(B
(1)
ub , . . . ,B

(nb)
ub ) ∈ R

2nb×nb , Bwb
=

diag(B
(1)
wb , . . . ,B

(nb)
wb ) ∈ R

2nb×3nb .

Remark 1. Here, we assume that the variables to be solved for

are the high-level, total cooling load setpoints for individual

buildings ub(t). From this cooling load, building operators

solve low-level control and optimization problems. This is

customary in building control studies; see for comparison [22].

III. BUILDING-INTEGRATED POWER NETWORK:

DYNAMICS AND CONNECTION TO OPF

In this section, we present the dynamics of the building-

integrated power network and define the main variables in-

volved in the BtG integration framework. In addition, we

discuss the connection of the BtG integration model with the

optimal power flow (OPF).

A. DAE Dynamics of a Power Network with Building Loads

Let B = {1, . . . , n} and G = {1, . . . , ng} denote the

sets of buses and generators in a power network. Also, let

Nk be the neighborhood set of adjacent nodes connected

to the kth bus. Generators are indexed by m ∈ G. The

mechanical input power to the mth generator is denoted by

Pm. Define generator-to-node and building-to-node incidence

matrices Γ ∈ R
n×ng and Π ∈ R

n×nb with entries given by

γk,m =

{

1 if generator m is attached to bus k
0 otherwise,

(3a)

πk,l =

{

1 if building l is attached to bus k
0 otherwise.

(3b)

The transients of the kth bus in a power network can be

modeled by the swing equation which relates the rotor angle δ
with the angular velocity δ̇ and the angular acceleration δ̈ [35].
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Define Mk and Dk as the inertia and damping coefficients of

the generator located kth bus; if the kth bus does not have a

generator, then Mk = 0 and Dk = 0. The swing equation for

the kth bus (k ∈ B) can be written as

Mk δ̈k(t) +Dk δ̇k(t) = γk,mPm(t)− PLk
(t)

−
∑

j∈Nk

bkj sin(δk(t)− δj(t)). (4)

The load at bus k, PLk
(t) is described by

PLk
(t) = PBLk

(t) +D′
k δ̇k(t) +

nb
∑

l=1

πk,lP
(l)
bldg(t). (5)

In (5), the first two terms represent uncontrollable loads, while

the last one defines the controllable load. Specifically, PBLk
(t)

denotes the frequency-insensitive uncontrollable base load at

bus k, which is typically available via forecasts. The term

D′
k δ̇k denotes the frequency-sensitive portion of the uncontrol-

lable load at bus k. It is assumed specifically that a portion of

the load at bus k responds linearly to the frequency variations,

which is a classical model [36]; the linear coefficient is D′
k,

and the frequency is the derivative of the angle δ̇k(t). It must

be emphasized that the uncontrollable loads are not optimiza-

tion variables. The term
∑

l πk,lP
(l)
bldg(t) defines the load from

buildings indexed by l and attached to bus k participating

in regulation. The building load is further decomposed as

P
(l)
bldg(t) = P

(l)
HVAC(t) + P

(l)
misc(t), where l ∈ {1, 2, . . . , nb}

is the index of buildings. The quantity P
(l)
HVAC(t) denotes the

portion of controllable power consumption of building l, while

P
(l)
misc(t) represents the uncontrollable miscellaneous power

consumption of building l such as lighting, computers, equip-

ment, elevators—amounting to a building’s base-load. The

quantity P
(l)
HVAC(t) is an optimization variable, and P

(l)
misc(t)

is typically available via forecasts.

We can now rewrite (4) as

Mk δ̈k(t) = −Dk δ̇k(t) + γk,mPm(t)

−
∑

j∈Nk

bkj sin (δk(t)− δj(t))−D′
k δ̇k(t)

−PBLk
(t)−

nb
∑

l=1

πk,l

(

P
(l)
HVAC(t) + P

(l)
misc(t)

)

. (6)

In (6), Pm(t) for generator bus m can be written as Pm(t) =
P̄m + ∆Pm(t), where P̄m is a solution of an optimal power

flow problem—computed every 15 minutes—and ∆Pm(t) is

the deviation from the setpoint P̄m, which will be furnished

by the proposed BtG integration framework.

The angular velocity is δ̇k = ωk, where ωk = ωtrue
k − ω0,

ωtrue
k is the actual frequency of the kth bus, and ω0 is the

synchronous frequency, e.g., 2π60 rad/sec in North America.

Given (6), we obtain two first-order differential equations

representing the dynamics of the kth bus

δ̇k(t) = ωk(t)

Mkω̇k(t) = − (Dk +D′
k)ωk(t) + γk,mPm(t)

−PBk
(t)−

nb
∑

l=1

πk,l

(

P
(l)
HVAC(t) + P

(l)
misc(t)

)

−
∑

j∈Nk

bkj sin (δk(t)− δj(t)) , k ∈ B.

The resulting state-space model is a nonlinear system, and is

formulated as

Egẋg(t) = Agxg(t) +ΦΦΦ(δδδ(t)) +Aub
ub(t)

+Bug
ug(t) +Bwg

wg(t), (7)

where xg(t) = [δ1 . . . δn ω1 . . . ωn]
> = [δδδ>(t) ωωω>(t)]>

is the state of the grid; ΦΦΦ(δδδ(t)) is the vectorized nonlinear

power flow equations in (6); ub(t) = [P
(1)
HVAC . . . P

(nb)
HVAC]

>

is the control input vector of the buildings, as defined in (2),

and ug(t) = ūg + ∆ug(t) = [P̄1 + ∆P1(t) . . . P̄ng
+

∆Png
(t)]> is the power network’s control variable; wg(t) =

[w>
BL,w

>
misc]

> = [PBL1
. . . PBLn

, P
(1)
misc . . . P

(nb)
misc ]

> is a

random vector collecting the nodal base loads and miscella-

neous building loads. Load forecasting is a very mature area;

in the sequel, the forecast of wg(t), denoted by ŵg(t) =
[ŵ>

BL, ŵ
>
misc]

>, is assumed to be available. The state-space

matrices in (7) are obtained as follows

Eg =

[

In 0n×n

0n×n M

]

,Ag =

[

0n×n In
0n×n −D

]

,Aub
=

[

0n×nb

−Π

]

M = diag(M1, . . . ,Mn), Φ(δ) = [0>
n ,Φ1(δ), . . . ,Φn(δ)]

>

Φk =
∑

j∈Nk

bkj sin (δk − δj) , k = 1, . . . , n

D = diag(D1 +D′
1, . . . , Dn +D′

n), Bug
=

[

0n×nb

Γ

]

Bwg
= diag(BBL,Bmisc),BBL =

[

0n×n

−In

]

,Bmisc =

[

0n×nb

−Π

]

where Eg ∈ R
2n×2n is a singular matrix, Ag ∈ R

2n×2n,

Aub
∈ R

2n×nb , Bug
∈ R

2n×ng , and Bwg
∈ R

2n×(2n+nb).

Dynamic systems of the form (7) are called differential

algebraic equations (DAE), and the systems following such

equations are called descriptor systems. The chief difference

between descriptor systems and standard dynamical systems is

that the former have a matrix Eg that multiples ẋg and may be

singular. This is indeed the case here, where entries in the M

matrix corresponding to non-generator buses are zero, giving

rise to entire rows of zeros. The next section describes how

the generation setpoints in (7) are computed.

B. Connection to the Optimal Power Flow

Recall that ug(t) is written as ug(t) = ūg+∆ug(t), where

ūg contains the generator setpoints, and ∆ug(t) is the real-

time deviation from these setpoints that automatically drives

the power grid to stability after load deviations. Typically, the

setpoints are computed every 5–15 minutes through solving

economic dispatch or OPF routines [35]. A linearized OPF

(LOPF) problem is described by the following program

LOPF: minimize
ūg={ūgi

}
ng

i=1

J(ūg) = ū>
g Jug

ūg + b>
ug
ūg + cug

(8a)

subject to ūmin
g ≤ ūg ≤ ūmax

g (8b)

(Γūg −Π(ub + ŵmisc)− ŵBL)
>
1n = 0 (8c)

|Lptdf (Γūg −Π(ub + ŵmisc)− ŵBL) | ≤ Fmax . (8d)
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In (8), J(ūg) is a convex cost function that represents the

generators’ cost curves. Constraint (8b) represents the safety

upper and lower bounds on the generator’s active power.

Vectors ub, wmisc, and wBL were introduced in the previ-

ous subsection and represent respectively the building HVAC

loads, building miscellaneous loads, and nodal base loads.

We use the notations ŵmisc and ŵBL to emphasize that the

respective forecasted versions of the building miscellaneous

loads and nodal base loads enter the OPF.

Matrix Γ has entries defined in (3a), and thus Γūg is an

n × 1 vector that gives the generation for each bus of the

network. Likewise, matrix Π has entries defined in (3b), and

Π(ub + ŵmisc) is an n × 1 vector that gives the building

loads per bus. Therefore, vector Γūg−Π(ub+ŵmisc)−ŵBL,

which appears in both (8c) and (8d), represents the net nodal

power injections. With 1n ∈ R
n defined as a vector of all

ones, (Γūg −Π(ub + ŵmisc)− ŵBL)
>
1n gives the sum of

all net nodal injections, and constraint (8c) ensures the supply-

demand balance. In addition, Fmax ∈ R
nl is the vector

containing the thermal limits for real power flow on the nl

branches of the network; and Lptdf ∈ R
nl×n is a matrix of

power transfer distribution factors [37]. This matrix maps net

nodal injections to line power flows, and thus (8d) guarantees

the satisfaction of line flow limits. Formulation (8) is useful

in the next sections.

IV. HOW CAN BUILDINGS IMPACT POWER GRIDS?

ADDRESSING THE MAIN CHALLENGES AND BTG-GMPC

In the previous section, we formulate the dynamics of the

buildings-integrated power network. The presence of ub(t)
in (7), exemplifies the control potential that buildings have on

power system operation and control, and hence the integration

advocated in this paper. In this section, we investigate the

discrepancies in time-scales between the building (2) and

power network dynamics (7) and discuss a formulation of the

joint optimal control problem that addresses the time-scale

discrepancies, while seamlessly incorporating objectives and

constraints from the power grid and building clusters.

A. The Not-So-Cruel Curse of Time-Scales

The formulated dynamics in Sections II and III clearly

operate in two different time-scales. While grid regulation

problems and mechanical input power variations are often in

seconds, the building dynamics and controls are much slower.

For example, temperatures in buildings change slowly in

comparison with frequencies and voltages in power networks.

To overcome this limitation, we design local optimal control

laws that operate at different scales. Specifically, the time-step

for application of building optimal control laws is hb; and the

time step for application of grid optimal control laws is hg ,

where hg << hb. This approach reflects the physical realities

for these systems, and this consideration can be imposed via

constraints in the optimal control problem, whose construction

is the objective of this section. Since buildings possess slower

dynamic behavior, we restrict the controls of buildings to be

fixed for the faster time-scale of the power network.

Given this integration scheme, the discrepancy in time-

scales between building and grid dynamics, the natural ex-

istence of algebraic equations in the power network model,

and the necessity of including hard constraints such as tight

frequency and temperature bounds, model predictive control

(MPC) is the natural solution to solve the joint optimal control

problem. Other control methods such as rule-based control or

PID control can still be used for individual buildings, but these

techniques provide inferior results in comparison to MPC as

discussed in [21]–[23]. In addition, analytical optimal control

techniques that are based on deriving a closed form solution of

the optimal control law cannot be computed due to the reasons

outlined above.

B. Discretization of the Dynamics via Gear’s Method

Another challenge with BtG integration is the presence

of algebraic equations in (7) emerging from power flows

of load nodes. Here, we present a simple, yet high-fidelity

discretization routine for two dynamical systems with different

time-scales and algebraic constraints.

First, we assume that the sampling times for the power grid

[cf. (7)] and building [cf. (2)] dynamics are respectively hg and

hb; note that hb >> hg . The discretization we utilize in this

paper is based on Gear’s method—a backward differentiation

routine—for DAE (descriptor) systems [38]. The discretization

of (7) can be written as follows:∗

xg(kghg) = fg(xg,ug,ub,wg) = Āg

s
∑

i=1

αiEgxg(hg(kg − i))

+B0

(

Aub
ub(kghg) +Bug

ug(kghg) +Bwg
wg(kghg)

)

, (9)

where Āg = (Eg − hgβ0Ag)
−1,B0 = hgβ0Āg, β0 =

(
∑s

i=1 1/i)
−1, αi = (−1)i+1β0

∑s
j=i j

−1
(

j
i

)

; kg is the time-

step for the grid dynamics; and s is called the order of the

method. This method requires a set of s initial conditions; see

Remark 2. Similarly, the discrete form of (2) can be written

as follows

xb(kbhb) = fb(xb,ub,wb) = Āb

s
∑

i=1

αixb(hb(kb − i))

+B1 (Bub
ub(kbhb) +Bwb

wb(kbhb)) , (10)

where Āb = (I2nb
− hbβ0Ab)

−1,B1 = hbβ0Āb, β0 =
(
∑s

i=1 1/i)
−1, αi = (−1)i+1β0

∑s
j=i j

−1
(

j
i

)

, and kb is time-

step for dynamic operation of buildings.

Gear’s discretization amounts to a backward Euler-like

implicit method. Gear’s method is applicable to DAEs where

the matrix Eg is allowed to be singular; notice that (9) does

not rely on the inverse of Eg . Interestingly, when the matrix

Eg is identity and s = 1, Gear’s method reduces to the

standard backward Euler’s method. The principal merit of

implicit methods is that they are typically more stable for

solving systems with a larger step size h, while still performing

well for systems with faster time-constants [38].

∗For the discretization purposes, we use the linearized power flows by
assuming that sin(δi−δj) = δi−δj . This implies that the state-space matrix
Ag in (9) is different than Ag in (7), where the former includes the Laplacian
matrix of the network with weights equal to line inductances. However, we
simulate the system with the nonlinear power flows in Section VI.
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Remark 2 (Convergence of Gear’s Method). The states of

the discretized descriptor system in (9) and (10) converge to

the actual ones in a finite number of time-steps, even if the

s-initial conditions are arbitrarily chosen [38]. A method to

compute the correct initial conditions is also provided in [38].

C. Joint Optimal Control Problem: BtG-GMPC

The joint optimal control problem, Building-to-Grid Gear

MPC (BtG-GMPC), is formulated as in (12). The variables,

cost function, and constraints of BtG-GMPC are as follows:

• Tp is the prediction horizon and t is the initial starting

point of the MPC. The formulation shows the MPC for one

prediction horizon.

• Ub = {ub(t + hb),ub(t + 2hb), . . . ,ub(t + Tp)},∆Ug =
{∆ug(t + hg),∆ug(t + 2hg), . . . ,∆ug(t + Tp)}, and ūg

are the three sets of optimization variables that we defined

previously. In addition, the two sets of states defined as

Xb = {xb(t + hb),xb(t + 2hb), . . . ,xb(t + Tp)} and

Xg = {xg(t + hg),xg(t + 2hg), . . . ,xg(t + Tp)} are also

optimization variables.

• The cost function f(∆Ug, ūg,Ub,Xg,Xb) is defined as the

weighted summation of the building costs, the steady-state

LOPF costs, the penalties on the deviation from the steady-

state generation, and the deviation cost from the nominal

synchronous frequency:

f(·) = J(ūg) +
hb

Tp

Tp/hb
∑

kb=1

[

c>b (t+ kbhb)ub(t+ kbhb)
]

+
hg

Tp

Tp/hg
∑

kg=1

[∆u>
g (t+ kghg)R∆ug(t+ kghg)

+x>
g (t+ kghg)Qxg(t+ kghg)], (11)

where

– J(ūg) is the LOPF cost function (8a). The parameters

of this cost function are widely available in the power

systems literature [37].

– cb(t + kbhb) is a time-varying vector representing the

cost of electricity at time t + kbhb. These prices are

the wholesale price of electricity for commercial building

operators.

– The third term in f(·) penalizes the deviations in the me-

chanical power setpoints of generators through a quadratic

cost function, with matrix R ∈ R
ng×ng being the

quadratic penalty matrix, which is assumed to be positive

semidefinite.

– The fourth term in f(·) penalizes the deviations of the

generator frequencies from their nominal value using

matrix Q ∈ R
2n×2n. The reader is referred to [35], [39]

for related constructions. This cost function is similar to

the linear quadratic regulator, which is used in dynamical

systems and power network stability studies.

– The terms multiplying the summations are meant to

average the building and grid costs across the planning

horizon Tp.

• Constraints (12b)–(12d) depict the dynamics of the building-

integrated power grid, as well as lower and upper bounds

on the states and inputs of the grid states and controls.

Note that xg(t + kghg) = fg(xg,ug,ub, ŵg | t, s)
∆
=

Āg

∑s
i=1 αiEgxg(t+hg(kg− i))+B0(Aub

ub(t+kghg)+
Bug

ug(t+kghg)+Bwg
ŵg(t+kghg)), where s corresponds

to the order of Gear’s method.

• Constraints (12e)–(12g) represent the building cluster dy-

namics and the bounds on the states and inputs of the

individual buildings, while constraint (12h) imposes the

constraints of the LOPF as discussed in the previous section.

• The final constraint (12i) represents the idea of the time-

scales integration whereby the building control variables are

kept constant between two consecutive building instances.

Since hb > hg , we assume that between two consecutive

building sampling instances (i.e., kbhb and (kb + 1)hb),

the building controls ub(kbhb) are all constant variables

to be found. Hence, for all ∀ kghg ∈ [kbhb, (kb + 1)hb),
ub(kbhb) = ub(kghg) = ūb.

BtG-GMPC:

minimize
Ub,∆Ug,ūg

Xb,Xg

f(∆Ug, ūg,Ub,Xg,Xb) (12a)

subject to xg(t+ kghg) = fg(xg,ug,ub, ŵg | t, s) (12b)

∆umin
g ≤ ∆ug(t+ kghg) ≤ ∆umax

g (12c)

xmin
g ≤ xg(t+ kghg) ≤ xmax

g (12d)

∀ kg ∈ {1, . . . , Tp/hg}

xb(t+ kbhb) = fb(xb,ub, ŵb | t, s) (12e)

umin
b ≤ ub(t+ kbhb) ≤ umax

b (12f)

xmin
b ≤ xb(t+ kbhb) ≤ xmax

b (12g)

∀ kb ∈ {1, . . . , Tp/hb}

(8b), (8d)† (12h)

ub(t+ kghg) = ūb = ub(t+ kbhb) (12i)

∀ kghg ∈ [kbhb, (kb + 1)hb).

Algorithm 1 illustrates a routine that implements BtG-GMPC’s

rolling horizon window along with the integration of the LOPF

problem. Given the BtG-GMPC parameters (including the

first s-initial steps of the discretized dynamics), the algorithm

computes the optimal solutions to the LOPF problem and

the joint MPC. For simplicity, we assume that the prediction

horizon Tp is equivalent to the time-scale in which the optimal

dispatch is solved, i.e., 5 to 15 minutes.
We also assume that hg < hb < Tp << Tfinal and hb/hg ,

Tp/hb, Tp/hg are all positive integers. The algorithm starts

by finding the solution to the generator’s operating points

ūg for any multiple of the prediction horizon Tp, as well

as the deviation from this setpoint ∆ug(t) and ub(t) up

until the next planning horizon, and so on. As in classical

MPC routines, only the first instance of the optimal control

trajectory is applied, while the rest are discarded. Note that

the BtG-GMPC with LOPF is only solved for when t (the

counter) is a multiple of Tp. If t is not a multiple of Tp, but

†Constraint (8c) (the supply-demand balance) is removed from BtG-GMPC
as it is implicitly present in the discretized algebraic equations in (12b).
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Algorithm 1 Moving Horizon BtG-GMPC & LOPF Coupling

input: BtG-GMPC forecasts and parameters, xb(−(s−1)hb : hb :
0),xg(−(s− 1)hg : hg : 0), Tp, Tfinal

output: {ū∗
g,∆u

∗
g,u

∗
b} ∀t ∈ [0, Tfinal]

while t < Tfinal

if t = κTp (multiple of Tp, i.e., t = 0, Tp, 2Tp, . . .)
solve BtG-GMPC (12) for U∗

b ,∆U
∗
g, ū

∗
g

apply ū
∗
g ∀t ∈ [κTp, (κ+ 1)Tp]

apply U
∗
b(1) ∀t ∈ [t, t+ hb]

apply ∆U
∗
g(1) ∀t ∈ [t, t+ hg]

discard U
∗
b(2 : end),∆U

∗
g(2 : end)

else if (t = κ1hg) ∧ (t 6= κ2Tp) ∧ (t 6= κ3hb)
solve (12) without ūg,Ub, while eliminating con-

straints (12e)–(12i) where Ub, ūg are the optimal constant values
from the previous/subsequent steps

apply ∆U
∗
g(1) ∀t ∈ [t, t+ hg]

discard ∆U
∗
g(2 : end)

else if (t = κ1hb) ∧ (t 6= κ2Tp)
solve (12) without ūg , (12h), and J(ūg)
apply U

∗
b(1) ∀t ∈ [t, t+ hb]

apply ∆U
∗
g(1) ∀t ∈ [t, t+ hg]

discard U
∗
b(2 : end),∆U

∗
g(2 : end)

end if
t← t+ hg

end while

a multiple of the building’s sampling time hb, the building

and grid controls are computed. The final case captures the

gap between the two time-scales: where the building and grid

controls are applied, the building controls are kept constant

from the previous optimal computations, while grid controls

are computed in the meantime for every grid sampling time.

Remark 3 (Tractability of BtG-GMPC). Problem (12) is a

quadratic program. Even for large-scale systems, this optimiza-

tion routine is tractable, and can be solved by off-the-shelf

solvers such as CPLEX, MOSEK, or Matlab’s QuadProg.

Remark 4 (Fast MPC and Time-Complexity). The BtG-

GMPC optimization is applied online as predictions for the

uncontrollable inputs might not be available for times greater

than the prediction horizon Tp. However, given that prediction

for uncontrollable inputs are available prior to the start of

the day, this problem can be solved offline. If solved online,

fast online MPC algorithms for quadratic programs have been

developed in [40] and can be immediately applied to BtG-

GMPC. Otherwise, the problem can be solved offline, which

eases the communication requirement of exchanging optimal

solutions. Note that in BtG-GMPC, the maximum total number

of variables at each time-step is equal to 3nb+2n+2ng = N .

As reported in [40], MPC formulations take O(Tp · N3) at

each time-step. This is based on novel interior-point-based

implementations.

V. COMPARISONS WITH DECOUPLED BTG DESIGNS

The BtG integration framework developed in this paper

enables building and grid operators to jointly optimize their

decisions. This section analytically formalizes and compares

the BtG framework with decoupled designs, in which the

grid and the building operators schedule generation and the

building power consumption separately.

Problem (12) jointly optimizes over two groups of vari-

ables: grid decisions (ūg,∆Ug,Xg) and building decisions

(Ub,Xb). The problem can be written in the following way,

which brings out the coupling between the grid and building

decisions.

f∗
BtG = minimize

ūg,∆Ug,Xg,
Ub,Xb

fg(ūg,∆Ug,Xg) + fb(Ub,Xb) (13a)

subject to (ūg,∆Ug,Xg,Ub) ∈ C (13b)

(ūg,∆Ug,Xg) ∈ Fg (13c)

(Ub,Xb) ∈ Fb. (13d)

The objective (13a) corresponds to (12a). All constraints of

problem (12) are captured by one of the constraints of prob-

lem (13). Specifically, set C represents the coupling between

grid and building decisions, that is, C is the set of all decisions

(ūg,∆Ug,Xg,Ub,Xb) that satisfy (12b) and (8d). Set Fg

represents all the constraints pertaining to grid decisions only,

that is, constraints (8b), (12c), and (12d). Set Fb represents all

constraints pertaining to building decisions only, that is, (12e),

(12f), (12g), and (12i).

Grid and building controls are optimized separately in

traditional power systems. In particular, building operators

control the building HVAC load Ub based on electricity prices

cb, forecasted weather conditions, and occupancy behaviors

[with the latter two captured by wb(t)]. Bang-bang control or

more sophistacted MPC methods may be used to determine the

building HVAC load. In turn, grid operators forecast the grid

load, which comprises the building load ub + ŵmisc and the

remaining base load ŵBL, and determine generator setpoints

and mechanical power adjustments.

The previously described process can be formalized within

the proposed framework as follows. Supposing the building

HVAC controls are optimized via MPC, the building operators

solve the following optimization problem:

fMPC
b = minimize

Ub,Xb

fb(Ub,Xb) (14a)

subject to (Ub,Xb) ∈ Fb. (14b)

That is, the objective is to minimize the cost of building

operation, subject to the dynamical constraints of the buildings

as well as the state and control bounds. It is actually not

difficult to see that the previous optimization can be performed

by each building operator separately. Let UMPC
b ,XMPC

b be the

solution of problem (14).

The grid operator optimizes the generator setpoints and

mechanical power adjustments based on the predicted grid

load, which includes building loads UMPC
b . The grid operator

thus solves the following optimization problem:

fMPC
g = minimize

ūg,∆Ug,Xg

fg(ūg,∆Ug,Xg) (15a)

subject to (ūg,∆Ug,Xg,U
MPC
b ) ∈ C (15b)

(ūg,∆Ug,Xg) ∈ Fg. (15c)

Let ūMPC
g ,∆UMPC

g ,XMPC
g be the solution of (15).

The total cost of operation for the previously mentioned

decoupled design is fMPC
g + fMPC

b , where fMPC
g and fMPC

b

are respectively the optimal values of (15) and (14). The
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relationship with the cost from BtG integration f∗
BtG [cf. (13)]

is provided in the following proposition.

Proposition 1. It holds that

f∗
BtG ≤ fMPC

g + fMPC
b . (16)

Proof: Consider the decisions

(ūMPC
g ,∆UMPC

g ,XMPC
g ,UMPC

b ,XMPC
b ). These are feasible

for problem (13), because they are feasible for problems (15)

and (14). Since f∗
BtG is the optimal value of (13), it holds for

any feasible point that

f∗
BtG ≤ fg(ū

MPC
g ,∆UMPC

g ,XMPC
g ) + fb(U

MPC
b ,XMPC

b )
(17)

But UMPC
b ,XMPC

b is the solution of (14), and

therefore, fb(U
MPC
b ,XMPC

b ) = fMPC
b holds. Likewise,

ūMPC
g ,∆UMPC

g ,XMPC
g is the solution of (15), and

fg(ū
MPC
g ,∆UMPC

g ,XMPC
g ) = fMPC

g holds. Utilizing

the latter two optimal values in (17), (16) follows.

The previous proposition asserts that the decoupled design

incurs a total system cost that is no smaller than the one of the

proposed BtG integration scheme. Intuitively, the BtG design

allows to jointly look for grid and building control actions in

set C, as opposed to fixing the building controls first, and then

solving the grid optimization problem.

Attention is now turned to the case where bang-bang control

is used to determine the HVAC loads. Bang-bang control is

the simplest type and most common type of HVAC control

where the controller follows a strict temperature set point (e.g.,

22.22◦C). The HVAC control system is switched on (or off) as

soon as the zone temperature exceeds (or is below) the dead

band which is generally ±0.5◦C. Bang-bang control thus does

not optimally solve (14), because it restricts when the control

system is turned on. To make a fair comparison, it is supposed

that the dead band is tuned so that the resulting temperatures

do not go outside of the intervals specified by (12g). Likewise,

the control action is not allowed to exceed the bounds dictated

by (12f). By design, bang-bang control adheres to the building

dynamics described by (12e).

Let UBB
b ,XBB

b be the control actions and resulting states

of bang-bang control; the previous discussion implies that

(UBB
b ,XBB

b ) is feasible for problem (14). Let fBB
b be the

resulting cost of building operation. Also, let f̌MPC
g be the

optimal value of (15) where UMPC
b is replaced by UBB

b ;

the resulting system cost is f̌MPC
g + fBB

b . The following

proposition relates the costs derived from bang-bang control

with the costs of MPC based operation.

Proposition 2. Suppose that (UBB
b ,XBB

b ) is feasible for

problem (14). Then it holds for the resulting building operation

cost that

fMPC
b ≤ fBB

b (18)

and for the system cost that

f∗
BtG ≤ f̌MPC

g + fBB
b . (19)

Proof: Eq. (18) follows from the fact that (UBB
b ,XBB

b )
is feasible for (14), while fMPC

b is the optimal value of the

same problem.

To prove (19), let ˇ̄uMPC
g ,∆ǓMPC

g , X̌g be the solution

of (15) where UMPC
b is replaced by UBB

b . It follows that

(ˇ̄uMPC
g ,∆ǓMPC

g , X̌MPC
g ,UBB

b ,XBB
b ) is feasible for prob-

lem (13). Thus it holds that

f∗
BtG ≤ fg(ˇ̄u

MPC
g ,∆ǓMPC

g , X̌MPC
g ) + fb(U

BB
b ,XBB

b )

from which (19) follows.

The previous proposition asserts that MPC for building

HVAC controls incurs smaller costs than bang-bang control, as

long as the bang-bang control adheres to the same constraints

as MPC—a fact that has previously been demonstrated in

the building literature. But more importantly, similarly to

Proposition 1, it is concluded that fixing the building controls

to the particular scheme cannot improve the system costs over

jointly designing the building and grid controls.

For easier reference, we refer to the decoupled design

where the building HVAC loads are computed via bang-bang

control and subsequently the grid is optimized via MPC as

Scenario I (with optimal value f̌MPC
g +fBB

b , cf. Proposition 2).

The respective design where the building HVAC loads are

optimized via MPC is referred to as Scenario II (with optimal

value fMPC
g + fMPC

b , cf. Proposition 1). The developed BtG

framework is referred as Scenario III (with optimal value

f∗
BtG) . The next section provides numerical simulations that

test the previously mentioned designs, and corroborate the

analytically derived comparisons.

VI. CASE STUDIES

In this section, we investigate the impact of the proposed

BtG integration on the performance of grid’s stability and the

cost-effectiveness of building control systems.

A. Experimental Setup and Parameters

The case studies are performed on various power net-

works for Tfinal = 24 hours. In particular, we use casefiles

(case9,case14,case30,case57) from Matpower [37]

to test different power networks, parameters, and total number

of buildings. Table I documents the total number of buses,

generators, buildings in the aforementioned casefiles. All of

the data and the codes needed to reproduce the results are made

available on this page: https://github.com/ahmadtaha1/BtG.

The codes are simulated using CPLEX’s quadratic program

solver [41], and are written in the Matlab environment. The

simulations are performed on a PC running Windows 10 En-

terprise, Intel(R) Xeon(R) CPU E3-1271 V3 with a 3.60-GHz

processor, and 32 GB of RAM. The code allows the testing

of any power network with custom-defined total number of

buildings at predefined load buses.

The parameters, exact constraints, weather data, electricity

prices, and other details of the problem are carefully chosen

to reflect reasonable conditions and IEEE/ASHRAE practices.

The parameters are chosen as follows.

• The grid’s base load forecast and the miscellaneous loads

of all buildings are chosen carefully. The base-load vari-

ations are based on the National Grid New York elec-

tricity company’s posted demand curve from the Standard

Service in New York: https://www9.nationalgridus.com/
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TABLE I
BUILDING-INTEGRATED POWER NETWORK SETUP.

Case 9 Case 14 Case 30 Case 57

Number of Buses 9 14 30 57
Number of Generators 3 5 6 7
Number of Buildings 965 1058 376 1822

niagaramohawk/business/rates/5 load profile.asp. In addi-

tion, the disturbances to the buildings, hourly data for

Tamb, Q̇sol, Q̇int, PBL, and Pmisc are all included in the

Github link.

• Building loads are modeled based on one reference commer-

cial building located at the main campus of the University

of Texas at San Antonio. For this reference building, the

construction materials are known and further determined

by ASHRAE standard 90.1-2016. The building size is

calculated based on design documents.

• The RC-parameters for all buildings are obtained using a

normal distribution around the following reference (mean)

building. The mean parameters are R1 = R2 = 1.16×10−4

(◦C/W), Rwin = 6.55×10−3 (◦C/W), Czone = 7.033×109

(J/◦C), and C = 1.133×109 (J/◦C). The average building

size is around 10, 000m2.

• The prices of electricity for the HVAC loads are reproduced

from [22]. The cost functions for generator mechanical

power setpoints ūg are extracted from Matpower [37]. The

same quadratic cost is used for the variations (∆ug(t)).
The deviation in frequency is penalized with Qk = 50000
$/(rad/sec)2 (Qk is the kth diagonal entry in Q), and the

angles are left without any penalties in the Q-matrix.

• The parameters of the power network, including line pa-

rameters bkj ,Mk, and Dk for all buses k ∈ B, are obtained

from Matpower [37] and the power system toolbox [42].

• We choose hg = 10 sec, hb = 300 sec, and a prediction

horizon Tp = 900 sec. For simplicity, 1st order Gear’s

method is used in the simulations. The value of hg is

consistent with the discrete time interval at which automatic

generation control commands are dispatched [43, Sec. 12.3].

• The bound-constraints in (12) are as follows: (a) 59 ≤ fk =
ωtrue
k /2π ≤ 61 (Hz), (b) 21.5 ≤ Tzone ≤ 23 (◦C) for time-

periods between 8AM and 8PM, (c) 22 ≤ Tzone ≤ 25
(◦C) for time-periods between 8PM and 8AM, and (d)

0 ≤ PHVACl
≤ 800 (KW). The limits on the output power

of generators can be found in Matpower [37].

B. Impact on Frequency Regulation & Energy Savings

In this section, we present the numerical results for the

BtG-GMPC and Algorithm 1 (also named Scenario III in the

sequel), in comparison with solving the optimal control of

buildings and power grids separately via MPC (Scenario II).

In addition, we compare the results of BtG-GMPC with bang-

bang control of HVAC systems, which is still very common

in today’s industries, combined with grid-only MPC (Scenario

I). The three scenarios are analytically discussed in Section V,

have increasing sophistication, but use the same parameters,

initial conditions, constraints, and costs. The reader is referred

to Section V for a comparison between the decoupled designs

(Scenarios I and II) and BtG-GMPC.

For brevity, we only show the plots for case57 from [42]

with 1822 commercial buildings, but present a cost comparison

for all other casefiles. The uploaded Github codes contain the

data for other simulations with the corresponding figures for

building and power network states and optimal control inputs.

In addition, Table II shows the cost comparison between the

different scenarios. The cost functions are defined as follows:

x>
g Qxg denotes the frequency deviation cost; ∆u>

g R∆ug

represents the mechanical input power deviations cost; J(ūg)
is the LOPF cost; c>b ub depicts the HVAC cooling load

costs. Note that these costs are all multiplied by $1,000. In

the next section, we compute the perfect cost reduction and

compare the different scenarios. The percent reduction in cost

is computed as follows:

% reduction =
(Cost in Scenario X) − (Cost in Scenario Y)

(Cost in Scenario X)

where the ‘Cost’ refers to any of the reported cost functions

in Table II and X,Y correspond to any of the three scenarios.

1) Scenario I: The resulting HVAC power consumptions

and corresponding zone temperatures for all buildings are

shown in Fig. 2-(c,d). As expected, the bang-bang building

control maintains the temperature in the aforementioned band.

After simulating this case over a period of 24 hours, these

bang-bang HVAC inputs are provided to the grid optimal con-

trol problem, which is formulated as an MPC based on Gear’s

method. Figs. 2-(c,d) show the frequencies, zone temperatures,

total generation and HVAC loads for all 1822 buildings and

57 buses in the network. Due to the intermittent nature of

the HVAC load, the grid frequency experiences significant

deviations from its nominal value (60 Hz); see Fig. 2-(c). The

frequency variations are more prominent at durations when the

total load is at peak values. The total costs for Scenario I are

provided in Table II.

2) Scenario II: In this scenario, we solve the MPC prob-

lems for buildings and the power grid separately. First, the

building optimal controls are computed via the same MPC for-

mulated in (12), while eliminating the power grid constraints

and variables. The MPC solution for the building’s HVAC

loads is then fed into a grid-only MPC. This scenario is useful

in the sense that grid operators can model the building’s load

via a classical building MPC model—this can be viewed as

a decoupled BtG-GMPC. The numerical results of this case

show an improvement in the HVAC power consumption of

buildings from Scenario I. Specifically, the cooling load costs

decreased (from Scenario I to Scenario II) by 42.9, 16.6, 16.4,

and 16.5% for Case 9, Case 14, Case 30, and Case 57. In

addition, the overall system costs decreased by an average of

29.7% for all casefiles (from Scenario I to II).

3) Scenario III (BtG-GMPC): In this scenario, we test the

performance of Algorithm 1 and the corresponding optimiza-

tion problem (12). Scenario I and II are separately compared

to Scenario III. As asserted by the analytical discussion in

Section V, the BtG-GMPC results show significant improve-

ment in grid’s frequency deviations and the overall costs as

shown in Fig. 2-(a) and Table II. The frequency variations are
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(a) BtG-GMPC: Bus fequencies and optimal power generation.
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(b) BtG-GMPC: HVAC power consumption and zone temperatures.

(c) Scenario I: Bus fequencies and optimal power generation.

0 2 4 6 8 10 12 14 16 18 20 22 24

21

22

23

24

25

0 2 4 6 8 10 12 14 16 18 20 22 24

0

100

200

300

400

(d) Scenario I: HVAC power consumption and zone temperatures.

Fig. 2. Numerical results for Scenarios I and III simulated on case57 with 1822 buildings. The figures show the power generation range and average for
all generators, frequencies (ω or f in Hz) of all the buses, HVAC power range and average for all buildings, and the range and average of zone temperatures.

notably lower in comparison with the previous two scenarios,

and this is clear from a comparison between Figs. 2-(a) and

(c). Also, there is a significant reduction in the overall cost

of operation. The results show around 43, 35, 30, and 36%

total cost reduction between Scenarios I and III (for Case

9, Case 14, Case 30, and Case 57), and 20, 15, 9, and 2%

total cost reduction between Scenarios II and III. Also, the

grid frequency deviations are reduced, leading to a decrease

in the cost of grid operation by an average of 74.53% from

Scenario I to III and 46.75% from Scenario II to III for

all casefiles. Finally, the plots in Fig. 2 show that the zone

temperatures are well-maintained within the required range,

with very little fluctuation (in comparison with Scenario I),

and the total HVAC consumption is reduced by an average of

16.52% which is also clear from Figs. 2-(b,d). For brevity, we

do not show the plots for Scenario II and other scenarios for

other power networks as they are included in the Github link.

4) Computational Speed: The computational times for run-

ning a 24-hour time-horizon are shown in Table III for the four

power networks. The power network Case57 requires 3.74

hours to run for the entire 24-hour simulation horizon. The

computational times project that if a larger power network or

a micro-grid is considered, with potentially 10,000 buildings

or more (and thousands of buses), Algorithm 1 can still be

implemented in real time. This is due to two reasons. Firstly,

a system operator or a utility company (see Remark 5) will

have more computational power at their disposal. Secondly, a

fast MPC routine as the one described in Remark 4 can also

be implemented to speed up the computations.

5) Robustness to Forecast and Model Uncertainty: Of-

fline, Day-Ahead Solutions: In the previous section, Fig. 2

and Table II present the results from the MPC solu-

tion (Xg,Xb,Ub,Ug) using the predicted unknown inputs

(ŵg, ŵb) for the linearized power system using Gear’s method.

In this section, we 1) extract the optimal MPC control variables

(Ub,Ug) for the entire simulation horizon; 2) feed these

inputs to the nonlinear continuous-time DAE solver for (7)

and linear ODE solver for (1); 3) add zero-mean Gaussian
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TABLE II
COST COMPARISON IN 1,000$ FOR THE DECOUPLED PROBLEMS

(SCENARIOS I AND II) VERSUS BTG-GMPC.

Test Case Cost Function Scenario I Scenario II BtG-GMPC

Case 9

∑
x>
g Qxg 490.51 205.57 20.33

∑
∆u>

g R∆ug 60.00 58.95 59.39
∑

J(ūg) 125.08 121.05 120.26
∑

c>
b
ub 656.73 548.40 548.56

Total Grid Cost 675.59 385.56 199.98

Total Cost 1332.33 933.96 748.54

Case 14

∑
x>
g Qxg 289.19 134.75 3.02

∑
∆u>

g R∆ug 70.49 69.60 70.39
∑

J(ūg) 81.32 77.61 77.22
∑

c>
b
ub 705.48 588.12 588.24

Total Grid Cost 441.01 281.96 150.62

Total Cost 1146.49 870.08 738.86

Case 30

∑
x>
g Qxg 49.49 20.69 0.02

∑
∆u>

g R∆ug 3.19 3.15 3.12
∑

J(ūg) 1.44 1.31 1.33
∑

c>
b
ub 253.02 211.30 211.31

Total Grid Cost 54.12 25.14 4.46

Total Cost 307.14 236.45 215.78

Case 57

∑
x>
g Qxg 466.91 25.75 0.09

∑
∆u>

g R∆ug 159.61 156.95 155.40
∑

J(ūg) 49.31 46.40 46.48
∑

c>
b
ub 1230.20 1027.18 1027.18

Total Grid Cost 675.83 229.10 201.97

Total Cost 1906.03 1256.28 1229.15

TABLE III
COMPUTATIONAL TIME FOR RUNNING BTG-GMPC AND ALGORITHM 1.

Case 9 Case 14 Case 30 Case 57

Computational Time (Hours) 0.26 0.50 0.82 3.74

noise with 10% standard deviation from the unknown inputs

ŵg in (7) and ŵb in (1); and 4) perturb the 3R-2C building

model (1) with zero-mean Gaussian noise with 10% standard

deviation from the nominal matrices Ab,Bub
, and Bwb

.

Four major reasons justify this numerical simulation,

namely, 1) to validate Gear’s discretization method; 2) to

assess the performance of the integration framework on the

nonlinear continuous-time DAE model for the grid under

mismatch between the forecasted and true disturbances; 3)

to test the temperature behavior of buildings under model

uncertainties that could be a result of parametric misidenti-

fication from building operators; and 4) to examine a scenario

where the demand response signals are communicated a day

prior to the schedules. The latter essentially alleviates the real-

time communication burden of the BtG integration framework,

by allowing the grid operators to send the demand response

schedules way ahead in time and thereby avoiding the neces-

sity to communicate the schedules in real time.

Fig. 3 illustrates that the frequency deviations and zone

temperatures are kept within reasonable ranges, even un-

Fig. 3. Performance of BtG-GMPC under Forecast and Model Uncertainty:
This simulation is performed using a nonlinear DAE solver for the grid
dynamics (Matlab’s ode15i) and ODE solver for the building dynamics.
The plots depict the grid frequency and zone temperatures for all buildings.

der significant parametric and load uncertainty (10% load

mismatch is relatively large in power networks), and the

results hence depict that BtG-GMPC is robust to significant

disturbances. Note that the MPC scheme is solved offline

given the prediction of the loads and the temperatures, and

the resulting controls were used as inputs to the nonlinear

DAE solver, which demonstrated the good performance of the

developed framework. Specifically, the zone temperatures for

all buildings are still within the acceptable range, although

some buildings experience zone temperatures of 25◦C and

20◦C, which is due to the parametric mismatch. This can be

compared to Fig. 2-b. In addition, the load mismatch does not

destabilize the grid’s frequencies; see Fig. 3 and Fig. 2-a for

comparison.

Remark 5 (Who Solves BtG-GMPC?). BtG-GMPC assumes

the knowledge of various parameters such as building RC-

constants and generator cost curves. We consider the follow-

ing: 1) A system operator or a large utility ideally solves

BtG-GMPC; 2) commercial building operators contributing

to this routine are required to provide modeling parameters

for their buildings; and 3) the global signals computed are

communicated to the now-contributing operators of individual

buildings and generators. The added value of this coupling

is two-fold. First, the theoretical impact of expanding the

feasible space of two separate problems ensures that the

coupled problem’s solution will be superior to the decoupled

one as illustrated in the previous section. Second, the coupling

translates into tangible impact for buildings and the grid, as

has been demonstrated in this section. With that in mind, the

communication costs are not considered here, and it is as-

sumed that the computed optimal setpoints are communicated

instantly to individual buildings and generators.
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VII. PAPER SUMMARY AND LIMITATIONS; FUTURE WORK

This paper introduces the first explicit building-to-grid in-

tegration dynamical model with optimal power management

formulations and different time-scales. The paper considers

realistic, high-level building models and frequency-focused

grid dynamics, in addition to algebraic equations modeling

the nodes without generation. We also introduced Gear’s

method as a high fidelity DAE discretization routine that is

leveraged to model BtG integration. The developed framework

and optimization problem BtG-GMPC provides setpoints for

individual buildings and power grid generators, as well as

buildings-aware, optimized optimal power flow setpoints for

generators. The formulated problem can be solved efficiently

using any quadratic program solver. Case studies have demon-

strated the impact of BtG-GMPC on reducing overall energy

costs and minimizing frequency deviations.

We have kept the dynamical models simple as the focus is

on energy consumption and frequency deviations. However,

the framework is general and interested researchers can seam-

lessly extend BtG-GMPC to include advanced models. Given

that, three main challenges are not addressed here.

• We do not consider the problem of controlling or adjusting

the reactive power of buildings, and its impacts on regulating

the grid’s voltages. Since the focus of this work is on the

framework with specific impacts on frequency regulation,

we leave this natural extension to future work. Note that

Gear’s method and the discretization still holds for models

with reactive powers and voltages.

• The BtG framework developed in this paper pertains to

normal grid operation. Unplanned incidents and contingen-

cies can occur and require appropriate response. In order

to deal with plausible contingencies, system operators in-

clude reserve scheduling in OPF [44]. Incorporating reserve

scheduling is thus an interesting future direction.

• The impact of slow communications between grid and

building operators, load prediction errors, and mismatch in

building parameters are all investigated in Section VI, and

shown to have little impact on the system states. A more

sophisticated BtG-GMPC (12) that incorporates uncertainty

in loads and building models is an important improvement

that yields a BtG routine tolerant to these unknown inputs.
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