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a b  s  t  r a  c t

Real-time  occupancy  predictions are  essential components  for the  smart  buildings  in the  imminent  future.
The  occupancy  information,  such  as  the  presence states  and the  occupants’ number, allows  a  robust
control  of the  indoor environment  to  enhance the  building energy  performances.  With many  current
studies  focusing on the  commercial  building occupancy,  most researchers  modeled either the  occupancy
presence or  the  occupants’ number  without evaluating  the model  potentials on both  of them. This  study
focuses  on 1)  providing a  unique data  set containing  the  occupancy  for  the offices  located  in the  U.S  with
difference  pattern  varieties, 2)  proposing  two  methods,  then  comparing  them  with  four  existing  methods,
and  3)  both  presence of occupancy  and  occupancy number  are  predicted  and  tested  using the  approaches
proposed  in this  study.  In  detail, the  paper develops a  new moving-window  inhomogeneous  Markov
model  based  on  change  point analysis. A hierarchical probability  sampling  model  is  modified  based  on
existed  models. They  are  additional  compared  to  well-known models  from previous researchers.  The
study  further  explores  and  evaluates the  predictive  power  of the models  by  various temporal scenarios,
including  15-min ahead,  30-min  ahead,  1-h ahead,  and  24-h ahead forecasts.  The final results show
that  the  proposed  Markov  model  outperforms  the  other methods  with  a max 22% difference  in  terms
of presence forecasts  for  15-min, 30  min  and  1-h ahead.  The proposed  Markov model also  outperforms
other  models in occupancy  number  prediction  for  all forecast  windows  with  0.34  RMSE  and  0.23 MAE
error  respectively.  However,  there is not much performance difference  between models for  24-h ahead
predictions  of occupancy  presence forecast.

© 2017 Elsevier  B.V.  All  rights  reserved.

1. Introduction

Modern cities consist of sustainable and resilient infrastruc-
tures, where building is  a  major constituent. Buildings’ energy
consumption contributes to more than 70% of the electricity usages
in the cities [1], profoundly impacting the electrical grid operations.
It is necessary to let the building operations not  only provide com-
fort but also minimize energy cost simultaneously. The integrated
way to control the building systems, demonstrated as the smart
building in California [2],  is  a  complex problem especially when
occupants’ comforts are usually the first priority. Humans spend
more than 90% of their time in  buildings [3]. The human and build-
ing interaction, such as lighting operations, consumes around 27%
to 43% of the total amount commercial building energy [4].  Another
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example, the control of the air conditioning via thermostat, uses
around 40% of the total energy source of the residential buildings
[5,6]. Occupancy-based smart controls deployed on those system
could potentially save large amount of energy consumptions [7].

Comparing with residential buildings, human and building
interactions in office environment are either scheduled or lim-
ited while the occupancy information is  easier to  be collected [8].
Therefore, it is possible to use occupancy information in  the com-
mercial building controls, especially when building automations
systems become cable to couple with the occupancy sensors [9,10].
Occupancy detection nowadays is  able to  record the detailed occu-
pants’ number and movements in the office spaces [10,11], and
can be used to satisfy occupants’ illumination comfort by using
occupancy-based automations of the window, blinds and light-
ing systems [8,10,11].  However, the slow response of the thermal
system for large commercial building requires the occupancy infor-
mation to be  known ahead of time rather than instantaneously
detection. Typical or average occupancy schedules can be used
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as indicators to achieve precooling or  heating for thermal condi-
tioning system at building level [12]. However, larger saving and
individual comforts can be achieved through occupancy informa-
tion learning and prediction, which is exactly what Nest thermostat
is doing for residential houses [13].  Many building Model Predic-
tive Control (MPC) studies further demonstrated the need to have
flexible occupancy models of different temporal resolutions (e.g.
intra-hour and hourly) and prediction horizons (e.g. hour-ahead to
day-ahead) [7,14–16].  In conclusion, reaching this vision for smart
building controls requires accurate occupancy forecasts within one
day ahead scale to capture the randomness of occupied periods and
changes of occupancy patterns. The occupancy forecast model for
smart building controls should be capable to predict for different
temporal resolutions (e.g. 15-min to 24-h window), spatial scales
(e.g. a single person room or multiple people house), and occupant
types (e.g. the occupancy presence or the number of occupants),
which is usually studied separately by  previous researchers.

In this paper, the authors provide a  review of current stud-
ies and methods on modeling and predicting the occupancy. One
new Markov model and a modified probabilistic model to predict
both the presence status and the occupancy numbers are proposed.
Insights on the current popular models and their approaches are
presented in Section 2.  Section 3 introduces the new developed
Markov chain model, the modified probability sampling model, and
a brief description of the models used to be compared with. Sec-
tion 4 provides the results of each model on occupancy prediction.
Temporal and spatial differences among models’ predictive per-
formance are further assessed. Section 5 discusses importance and
concludes this study.

2. Current state-of-the art

Two types of occupancy information can be used for the smart
buildings especially by  the predictive controls of the air  condi-
tioning system. The first one, the binary states (the presence and
absence) of individual occupant at space level, addresses individ-
ual thermal comfort and maximum energy saving potentials. The
second one, the number of occupants at space or building level
addresses the ventilation and occupants’ group comforts. There
are three major approaches to model those two types of the occu-
pancy: 1) the sampling method based on the random sampling, 2)
the Markov method based on the Markov chain, and 3)  the statis-
tical learning methods including data mining, agent-based model,
and machine learning.

The random sampling, in essence, generates the distributions
of the key information (e.g. first arrival times) through training
data, and then uses different sampling methods to  reproduce the
occupancy [17–24]. One popular building occupancy simulator is
the light-switch algorithm developed by  Reinhart [17,18].  It  mod-
eled the arrival and departure time per day using cumulative
distribution functions (CDFs). Three intermediate phases, morning,
lunch, and afternoon are  fitted to  Probability Distribution Func-
tions (PDFs) with starting times and duration lengths of absences.
To simulate the occupancy, the first arrival time and last depar-
ture time are firstly identified using random sampling through the
fitted CDFs and PDFs. Then, intermediate absence start times can
be determined by  comparing the pseudorandom numbers against
the intermediate absence PDFs. The durations of the intermedi-
ate events can be obtained by the random sampling again from
the duration PDFs. Later studies developing similar models con-
centrated on the improvement of the model’s simulation accuracy
and generality by introducing different kinds of distribution types,
building samples, and sampling approaches. Wang et al. simulated
occupancy in a single-person office with the occupancy divided to
occupancy and vacancy events. The intervals of the events are fitted

by maximum-likelihood algorithm using exponential distributions
[19].  Sun et al. modelled the overtime occupancy and Kolmogorov-
Smirnov tests were used to calibrate the exponential distributions
of overtime durations and the binomial distributions of the number
of overtime occupants respectively [20].  Tabak and Vries utilized a
different statistical curve, the S-curve, to  fit more detailed inter-
mediate events in  the office environment including vacancy times
due to restrooms, visitors, printing, smoking, and sports [21]. Silva
and Ghisi implemented the Latin hypercube sampling on the occu-
pants schedules to design the occupancy model for the EnergyPlus
simulation [22].  Chang and Hong [23] demonstrated the generality
of the sampling models by fitting the daily absences, absence dura-
tion, and the starting time  of each absences of 200 single-occupant
office data collected on-site from a  three floor commercial build-
ing. Besides occupancy simulation, researchers recently started to
use the sampling method to predict the occupancy presence for
building predictive controls. Mahdavi and his  group [24] used the
original Reinhart’s model compared to  two  other types of models,
a Markov model developed by Page [25] and a  non-probabilistic
schedule. They predicted one day ahead occupancy using the uni-
versity offices collected within a  year. The results did not show
significant differences between the models and a  non-probabilistic
schedule, demonstrating the need to revise the occupancy models
original developed for building simulation. Nonetheless, the ran-
dom sampling is one possible model to be integrated with advanced
building control, such as the Model Predictive Control (MPC) of air
conditioning system.

The first order Markov chain is  another popular stochastic
occupancy modeling approach that has been applied in  building
simulations [25–33].  One classic model is the generalized inhomo-
geneous Markov chain model developed by Page [25].  This model is
used to model the binary office occupancy with occasional periods
of long absence. The transitional probabilities are inverse sampled
from the trained transitional PDFs (e.g. presence to  presence). The
other types of the transitions (e.g. presence to absence) are further
calibrated using fitted profile of mobility parameters. The mobil-
ity parameters are empirically defined by the authors to describe
the relationships among the different transitions. On the other
hand, Wang [26] proposed an approach based on homogenous
Markov chain to  simulate the occupants’ number of office build-
ing. The model generates the location for each occupant through a
homogenous Markov matrix and further aggregated as the zonal
level occupants’ number while moving around events such as
going to  the office, getting off work and lunch break have separate
transitional matrixes. However, most occupancy simulations used
inhomogeneous Markov chains for residential building due to  the
more stochastic behaviors and occupancy events of the residential
occupants [27–29].  Furthermore, Anderson [30] designed a  sophis-
ticated dynamic estimation approach “apple to apple” comparing
the simulation accuracy of the inhomogeneous and homogenous
Markov chains. The training of the Markov chains with binary occu-
pancy states are transformation to a generalized linear regression
problem using a  logistic form of the transitional probabilities. The
logarithm likelihood of the joint form of all transitional proba-
bilities at each time is  regressed with only time information of
two polynomial orders. Statistical modelling using spline func-
tion and exponential smoothing are utilized to further improve
the model accuracy. Besides first-order Markov chains discussed
above, a  higher-order Markov model is used to connect several
occupancy events (e.g. the durations) together [31,32].  However,
it is overqualified to  an online predictive control problem of  build-
ing systems, which only interests in binary occupancy states and
limited occupants’ number.

Unlike random sampling, Markov occupancy models have been
widely used in building control studies, especially the predictive
controls of air  conditioning systems. However, the first type of  pre-
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dictive Markov model appeared in  control studies is  the hidden
Markov chain. Hidden Markov chain introduces additional states
(the hidden states) to achieve real-time prediction of the occu-
pancy. The hidden states are the observations of the buildings’
environment measurements. They are assumed to have probabilis-
tic correlations to the occupancy states [33].  Various control studies
have demonstrate the significant savings achieved by  using this
occupancy prediction tool [33,34].  Meanwhile cost and time-delay
problems, to measure the hidden states, prohibit the further appli-
cation in real time control. Namely, the CO2 sensors are expensive to
install and have time lagging issues. Recent research focused on uti-
lizing the first order Markov chain to achieve fast and cost effective
online occupancy predictions. As  mentioned earlier, Mahdavi and
his groups used both Reinhart’s sampling model and Page’s Markov
model to predict one day ahead occupancy for a single office [24].
Similar studies have been done by  Erikson and his  group but sev-
eral modifications were made on the Markov model to predict the
occupants’ number [35–39].  With too many ocs ccupants’ numbers
ahain states, the prediction step may  have no transitional proba-
bility for a specific occupant’s number (a sink state) when using
finite training window in building MPC. A closest distance method
is used to discover the closest sink state in training and guarantees a
representative transitional probability for an incoming occupants’
number [36]. A blended strategy can also be used by training the
data in lower time resolution and linear combine all possible tran-
sitional matrixes to  avoid sink states [37]. A more thorough but
computational expensive way is to  have a  minute level transi-
tional matrix in a moving window that contains all observable chain
states (the occupants’ number) for hourly ahead predictions [38].
Dobbs and Hencey implemented a different approach, the Bayesian
Inference, and demonstrated a self-adaptive training algorithm for
binary occupancy states [39]. By treating the binary occupancy as
a binomial distribution, transitional probability only needs to  be
calculated as the expected value of a  certain transitional distribu-
tion at that specific time. Using fractional occupancy (binary data
averaged out by a fixed dwell time), the transitional distributions
as posterior distributions are estimated from a  uniform distribu-
tion using Bayesian inference. Clearly noticed from those studies
that the occupancy models in  building MPC  require different time
resolution for predictions spanning from intra-hour to intra-day
scale. All models are also specially designed to  predict one aspect
of the commercial building occupancy, either binary occupancy
states (the presence and the absence) or multiple occupancy lev-
els (the occupants’ number in certain space). Therefore, it would
be interesting to explore the possibility to use one general predic-
tive occupancy model covering both  occupancy binary states and
multiple occupancy levels at different temporal resolutions.

The statistical learning methods, including data mining, agent-
based model, and machine learning, emerged recently in  building
occupancy simulations. The first method, data-mining, models the
occupancy events through clustering analysis based on a  large
amount of data, such as hierarchical agglomerative clustering [40],
nearest neighbor clustering [41],  and decision tree classification
[42].  The method required high quality occupancy data which is
not applicable to all building cases. The second learning model,
the agent-based model, is  to use the agent learning ability to
simulate occupancy events based on predefined event rules and
decision-making mechanisms [43].  One typical study done by Liao
and Barooah [44] developed a  Monte-Carlo algorithm based on
mixed rules of the agents (the occupants) to simulate the occupancy
events. For individual agents, the probability of that agent occupy-
ing certain space node at the simulation time step is integrated
with an acceleration rule and a  damping rule. The final profile
is generated by associating with other agents in  a  reduced-order
graphical model. Cook and his group [45] implemented a similar
agent-based model in a  smart home environment and different

occupancy events were simulated from real collected smart home
data. However, the difficult to scale up the model for general build-
ing MPC  studies is obvious due to  the model formulation largely
relies on the specific design rules and tedious calibrations. The last
method, the machine learning approach, has actually been used
in  building occupancy predictions. Yu applied a  generic program-
ming by using time information (day, hour, minute), and occupancy
durations (the length of time the occupant spent in the state prior to
the previous state, the length of time the occupant has been in  the
office since the first arrival of the day) to predict the occupancy for
five different offices [46]. Dong et al. applied more robust machine
learning tools, such as Artificial Neural Network and Support Vec-
tor Regression, to  predict the occupants’ number in  building MPC
studies [34,47,48].  Chen and Soh [49] compared the machine learn-
ing methods to Markov model, Multivariate Gaussian Sampling,
and Autoregressive model to predict the occupants’ number in a
research lab. Superior of the Support Vector Regression is  demon-
strated with lower root mean square error while Artificial Neural
Network has lower mean error.

In  conclusion, occupancy models in building simulations could
be used for real occupancy predictions with certain changes.
Namely, Page’s Markov model and Reinhart’s sampling approach
could be trained in fixed moving window strategy to  predict binary
occupancy states [24].  However, major modifications should be car-
ried out. Namely, Page’s Markov model is designed to simulate long
term data. Hence a  week profile of mobility parameters including
weekends is utilized by a long term period training (e.g. 5 years data
in  the study). Firstly, it is  very difficult for every building to have
such high quality long term data. Secondly, with fixed training win-
dow in  building predictive control, the data normally would not be
expected to be fully used more than one month. How this effects the
model parameter calibrations is  unknown. Similar issues existed
for Reinhart’ model. Additionally, previous research did not investi-
gate much on the models’ potentials to  forecast both the occupancy
presence and the occupants’ number. A general occupancy predic-
tor could be very helpful to  fulfill multiple control tasks in  a  smart
building. It is  also necessary to evaluate the model’s generality
at different temporal resolution and prediction horizons, as men-
tioned earlier in the previous discussions on the current building
MPC  studies.

3.  Methodology

Given the current state of the art, the authors have  developed
two systematic approach of short-term predictions of the occu-
pancy profile for commercial buildings. One is  a new integrated
Markov model including a change-point analysis with a  mov-
ing window training. The other is a  modified random sampling
approach that able to predict both occupancy presence and number.
Here, “short-term” means within 24-h ahead prediction. They are
compared with two  simulation models (Page’s Markov model and
Reinhart’s Light-switch sampling model [17,25]) and two  machine
learning methods (Artificial Neural Network and Support Vector
Regression) for predictions of occupancy presence and number
respectively. Occupancy presence data from four different offices
are  collected every 5-min time step. The data log for motion sen-
sors entails a sequence of times stamped from the presence (value
of 1)  to the absence (values of 0). Occupancy number data from one
laboratory is  recorded by a monitoring system with cameras. The
image process technique processes hundreds of videos to  ensure
the correct documents of the occupants’ number. A low pass filter
is utilized to both data to generate the time  series occupancy in  15-
min, 30-min and 1-h interval for different prediction window. The
occupancy model, developed upon these data, is designed to  deliver
the necessary inputs for the model predictive controls of  the built
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Fig. 1. The  overview of the methods and approaches in this study.

environment. In the following sections, the developed new Markov
process model to predict occupancy is presented and discussed
in Section 3.1. Section 3.2 demonstrates an integrated hierarchi-
cal probability model based on the random sampling approach
that capable to forecasts both occupancy presence and occupancy
number. Section 3.3 presents the brief model settings of the two
simulation models and two machine learning approaches (Fig. 1).

3.1. An innovative inhomogeneous markov chain model

Let a Markov chain X at time step k  be a  time sequence x1,  x2,
..., xk and the occupancy states be S =  {s1, s2,  ...,  sn} where n ≤ k.  The
chance of xk(containing occupancy state si)  transit to  xk + 1 (con-
taining occupancy state sj) at time step k +  1 is decided by the
transitional probability defined as:

P
ij
k

= p(xk+1 = sj|xk = si) (1)

Where p(xk+1 = sj|x1,  x2, ..., xk)  = p(xk+1 = sj|xk).
Given nij pairs of the transitional states observed as {si, sj} of

all pairs of the transitional states {si, sl} that belong to the training
data, the transition probability is  estimated as:

p̂ij =
nij + ˛

k
∑

l=1

(nil + ˛)

(2)

Where � is a smooth factor. A smooth factor could increase the
likelihood of the states’ transitions and reduce the “sink” states,
discussed in the Section 2.  It  can also enhance the dramatic occu-
pancy changes at the morning ramp-up and decrease at the evening
ramp-down. Noticed that offices will have very low or zero tran-
sition probabilities during long vacancy and occupancy periods
with constant occupancy number. A smooth factor could force the
unlikely occupancy to  happen. To address the issue, authors define
the smooth factor as time serious step function with small values of
0, 0.05 and 0.1 only decided by empirical. Namely, a  factor of 0 for
conservative estimated long working periods in the morning and
afternoon. A higher value of 0.1 for ramp-up or ramp-down peri-
ods. Similar rules are applied to  the transitional probabilities of the
occupancy number.

The authors use a new approach to  develop the inhomogeneous
Markov chain by integrating a  change-point analysis with an opti-
mal  moving window training strategy [50].  Modifications are made

for office occupancy data containing both binary occupancy and
occupancy number. Assuming a  building MPC  is  rolling at 15-min
resolution, there will be total 96 set of transition probabilities need
to be updated for a  day ahead MPC  optimization. For  each set of
the time inhomogeneous transitional probabilities, it is  estimated
within an optimal window before each of the occupancy predicted
time step. The period of the optimal window is  decided by  the
changing point of the occupancy rate based on a  daily profile of  the
historical occupancy, as shown in  the hypothetical MPC  of Fig. 2.
Training data contains historical occupancy in  this training win-
dow (“training window” in  Fig. 2)  from recent working days. For
the hypothetical example to predict the chain state xk +  1, a change
point is detect after the chain state xm. Hence, the optimal win-
dow length spans from m +  1 to k  time steps. The training data set
is the historical occupancy states observed in this time window
of the recent working days as {(xm +  1, xm + 2, ...,  xk);..;(xm +  1 − 96 ×  d,
xm  + 2 − 96 × d,  ..., xk  − 96 × d)} where d is  the historical day index. Here,
authors selected limited training size of 10 working days for one-
step ahead forecast and 20 working days for day-ahead forecast.

As shown in Fig. 2,  the training data set of the model relies on
the occupancy change-point analysis. Since the authors design the
model for a rolling MPC, the daily profile is  constantly updated.
Thus a  visual identifications of change points are not  adaptive. Let
D = {d1, ...,  d24 × z}  represents all historical occupancy before predic-
tion day. Here, historical data contains all the working days z that
are updated for MPC. A discrete profile of the occupancy rate in
daily scale is generated by:

P(i) =

z
∑

j=1

(�z−j · d(j−1)×24+i)

z ×  max(D)
(3)

Where d  is the chain state which could be binary occupancy con-
tains only 0 and 1 or multiple occupancy states contains occupants’
number, i is  the time step of the daily profile where 1 ≤ i ≤ 96 if
the occupancy data is  in 15-min scale, max(D) gives the maximum
number observed of the total occupancy data, and � is  an exponen-
tial forgetting factor, which is below 1. The forgetting effect reduce
the influence from the too old occupancy information.

The change-point detection algorithm uses relative density-
ration estimation with the Pearson divergence scoring the possible
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Fig. 2.  Markov model training and predicting in  a rolling MPC.

change points of the daily profile P(i). For a  data set m sampled from
the daily profile D, the divergence score is defined as follows [51]:

∫

Pˇ(m)

[

P(D)
Pˇ(m)

−  1

]2

d(m) +

∫

P(D)

[

Pˇ(m)

P(D)
− 1

]2

d(D) (4)

Where Pˇ(m)  = ˇP(D) +  (1 −  ˇ)P(m), P is the probability density func-
tion of the corresponding data set, and the factor ˇ  is a weight factor
which is 0.5 to put equal weight of the distributions. For the exam-
ple of Fig. 2,  the day file as the sample D  contains 96 occupancy rates
in 15-mintue resolution. The data set m is  sampled using a  sliding
window size of 12 (3 h data). The sliding continues forwardly until
end of the day and then resample backwardly again. A symmetric
score is calculated by  the summation of forward sliding and back-
ward sliding scores using Eq.  (4).  MATLAB toolbox developed by Liu
is used in this study [51].

As shown in Fig. 2 again, the predictive power of the model
depends on a modified leave-one-out validation for multiple train-
ing rounds. For each round of training validation, d −  1 (e.g. 9 for
one-step ahead forecast) days of historical data in the optimal win-
dow randomly selected to calculate the transitional probabilities
based on Eq. (2). Validations will be performed in  the same optimal
window of all d historical days. The process compares a  thresh-
old value with transitional probabilities to  generate occupancy. For
example, the binary transition probability from presence states to
absence states give a  vacancy if below the threshold of 0.5 (mean
value of a uniform distribution). Similar strategy used for occu-
pancy number prediction. Number of the rounds of validations is
the same as the number of training days and total d (e.g. 10 for
one-step ahead forecast) contingency tables can be produced. The
correctness C of each contingency table, calculated by comparing
the generated occupancy and the training occupancy data, is:

C =

∑

TP

N
(5)

Where TP represents the number of correct validated occupancy
and N is the total number of the occupancy at the validation process.
The set of the transitional probabilities produce the maximum cor-
rectness will be the final transitional probabilities for that  trained
time step (the time step k for the hypothetical example). By mov-
ing the optimal window and change the window length according
to the change points, each time step will have a  cross-validation
validated time inhomogeneous probabilities for the Markov chain.

The pseudo algorithm of the complete training process in Fig. 2  is
illustrated as following (Fig.  3).

3.2. Hierarchical probability sampling

The authors develop a  hierarchical approach based on a classic
model by Reinhart’s light-switch and modify it to  predict both the
presence states and occupancy levels. The hierarchical model has
two levels. The first level predicts presence and the second level
predicts the occupancy number. For the first level, the light-switch
model utilized the probability density functions (PDFs) on the inter-
mediate breaks of the morning, the lunch and the afternoon periods,
along with the fitted PDFs of the absence lengths for each type of
the intermediate absences. Details of the methods have discussed in
the review part of Section 2. However, the light-switch used empir-
ical rules to visually determine the different periods (e.g. morning)
which is  not adaptive enough in  a rolling window MPC. Hence, the
change-point analysis illustrated in  previous Section 3.1  is used
again to auto determining the morning, noon, and afternoon phases
based on the local change-point scores, as illustrated in Fig. 4. Here,
the “local” is statistically defined extremes in a given range that is
opposite to the “global” maxima or  minima. From Fig. 4,  there are
apparently 3 peaks, which are three “local” maxima and one high-
est peak, which is the “global’ maxima. Beginning and ending of the
morning and afternoon periods only decided by the first and last
local maximum score. The noon period is  determined by the mid-
dle local maximum score. The middle score is  found by ranking the
local maximum values by appearing time. To determine the noon
period, the distance between the closest local minima and the mid-
dle maxima is found and the noon period is the double values of this
distance as the middle maxima is  the center time point. Noticed if
no middle maxima is found, there is no obvious noon period (pat-
tern in Fig. 6(b) and (d)) A single long period for intermediate events
will be used instead.

The first arrival, last departure, intermediate absence starting
time, and the intermediate absence durations are fitted by twelve
common probability distributions. They are t location-scale, Loglo-
gistic, Logistic, Inverse Gaussian, Brinbaum-Saunders, Lognormal,
Rician, Normal, Weibull, Extreme Value, Rayleigh, and Exponen-
tial. Noticed that a  direct fitting to get the training data’s empirical
distribution is  possible. However, it is a bootstrap sample limited
by the training period. Hence, authors assume the training data
belongs to a  ‘true’ distribution that a  statistical fitting need to  be
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Fig. 3. Algorithm of the Markov model training for predictive purpose.

Fig. 4.  Detection of morning, noon and afternoon periods.

performed. All the distributions are fitted using maximum likeli-
hood and ranked according to  the Bayesian Information Criteria
(BIC) defined as follows:

BIC = −2LnL̂ + kLn (n) (6)

Where L̂ is the maximized value of the likelihood function of the fit-
ted distribution, k  is the number of free parameters to be estimated
based on fitting distribution type and n is the number of fitting
data. The ones with the highest ranked Bayesian Information Cri-
teria are used to represent the cumulative distribution functions
(CDFs) of the first arrival time and the last departure time, the PDFs
of the intermediate absence beginning times, and the CDFs of the
intermediate vacancy durations for different periods (e.g. morning,
noon, etc).

For the second level of the model, the number of occupants is fit-
ted by an empirical distribution of the occupancy level at each time

step. The authors avoid to use continuous distributions like Gaus-
sian distribution in previous studies [35,49] owing to the occupancy
number is discrete integer. Let the observed set of occupancy lev-
els is L =  {l1, l2,  ...,  ln}  at time step k  for all training n days. Then the
empirical CDF is defined as:

Fn(l) =
1
n

n
∑

i=1

I(xi ≤ l) (7)

Where I  is the indicator function calculating the observed frequency
when occupancy number l happens. The function gives value 1 if
the occupancy level xi at  the time step i is smaller than l. Otherwise,
it gives value 0. The pseudo algorithm of the training is  illustrated
as following.
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3.3. Model Comparison

This section will briefly discuss the previous researchers’ model
used for comparison in this study. For binary occupancy, authors
select two well know models, Page’s and Reinhart’s occupancy
simulation models, and two machine learning approaches. The
machine learning approaches are further used to compare for the
predictions of the occupancy number. To have “apple-to-apple”
comparison, how to do  predictions are  also discussed for all the
models including the two models proposed by authors.

3.3.1. Machine learning models

Two machine learning techniques are tested here for occu-
pancy predictions: Artificial Neural Network (ANN) and Support
Vector Regression (SVR). For ANN, feed forward neural network
(FFNN) is used with three layer structure. FFNN is  modeled with
20 training neurons at the training layer and multiple input
neurons at the input layer (time lagged values of historical occu-
pancy states). The input layer uses the hyperbolic tangent sigmoid
functions for the neurons and the linear transfer function for
the training layer. Weights of training neurons are learned from
Levenberg-Marquardt back-propagation algorithm. Model valida-
tion is performed on a  holdout set of the data using the criteria of
the mean squared error, where the training set contains at most
70% of the input set. All those model settings are adjusted in Neu-
ral Network Toolbox of MATLAB [52].  For  support vector regression
(SVR), LibSVM is used in  this study through MATLAB interface [53].
A radial basis function of 3 ◦ with weighting factor 0.1 is used. The
authors tune the model parameters using 10 fold cross-validation
based on mean square error. The grid search cross validation is used
with parameters searched in a  range of 103 to  10−3. More detailed
methodologies, model formulations, and model settings can refer
to authors previous studies [54,55].

The machine learning methods train a black-box model with a
training label set and the validation label  set. The validation set
is {xk  − n,.xk − n + 1,..., xk} which is  n time steps back historical occu-

pancy. To train for one time step ahead forecast (the 15-min to 1 h
ahead), the training label uses a Markov order 4 label, as follows:

H1 :

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

xk−n−1 xk−n ·  ·  ·  xk−1

xk−n−2 xk−n−1 · ·  ·  xk−2

xk−n−3 xk−n−2 · ·  ·  xk−3

xk−n−4 xk−n−3 · ·  · xk−4

⎫

⎪
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⎪

⎬

⎪

⎪

⎪

⎪

⎭

(8)

For day ahead forecast, the training label uses older historical
information:

H2 :

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

xk−n−d xk−n+1−d · ·  · xk−d

xk−n−2d xk−n+1−2d · ·  ·  xk−2d

...
...

. . .
...

xk−n−5d xk−n+1−5d ·  ·  ·  xk−5d

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(9)

Where d  is  the time length of one day (e.g. 96 for 15 min  resolution).
By comparison to one time  step ahead training, day ahead training
needs the historical occupancy at the same time from yesterday,
the day before yesterday, ., and the day before one week. These
matrix orders are selected by minimizing the coefficient of determi-
nation of the validation label. The authors produce two  predictive
labels as the inputs to predict the occupancy state xk + 1 based on the
trained models. For one step ahead and one day ahead prediction,
the predict labels are {xk, xk −  1,  xk − 2,  xk − 3}

T and {xk  + 1  − d,  xk  + 1  −  2d,
...,  xk + 1−5d}

T. To predict using machine learning is  straightforward:

1) define the prediction time step and prediction horizon (one step
ahead or one day ahead);

2)  determined training and validation labels using Eqs. (8) and (9);
3) set model parameters discussed in  beginning of Section 3.3.1

and further tune the model structure using the training and
validation labels;

Fig. 5. Algorithm of the training of the hierarchical probability sampling.
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4) predict the occupancy using prediction labels on the trained
machine learning models.

3.3.2. Occupancy Models from Page and Reinhart

As mentioned in Section 2,  Reinhart’s model have distribu-
tions for four key occupancy information: the first arrival, the
last departure, and intermediate departure, and the intermedi-
ate absence duration for the intermediate phase (morning, lunch
and afternoon) [17,18].  The approach is corresponding the pres-
ence predictions of the hierarchical probability sampling approach
developed in this study. To be fair, both approaches predict occu-
pancy using trained distributions (CDFs and PDFs refer to Fig. 5) as
follows:

1) Draw two random number r1 and r2 from a  uniform distribution;
2) Inverse sample the first arrival time tf based on CDFf(tf)  =  r1;
3) Inverse sample the last departure time tl based on CDFl(tl) =  r2;
4) Loop between tf and tl to draw two random number r3 and r4

from a uniform distribution for each prediction step;
5) if r3 ≤ PDFa(t), an absence event happened, and inverse sampling

the absence period based on the duration type (e.g. morning)
where CDFd(T) =  r4;

6) Jump T time steps ahead in looping if an absence event happened
or else continue step 4) until the last departure time is  reaches;

7) Predict the occupancy number N during looping only if occupied
at  the time step and inverse sample the number by  CDFn(N) =  r5

where r5 is also draw from a  uniform distribution.

The other occupancy model developed by Page derives the tran-
sitional probabilities based on aggregated presence probabilities of
one weeks in the original work [25]. It  is  not possible to generate
accurate weekly presence profile unless long period data (e.g. one
year) is used. Hence, authors here only use aggregated one day pro-
file of the presence probabilities. A mobility parameter defined by
user as � is used to calculate both the transitional probability T01(t)
and T11(t) at individual time step t (absence state 0 to presence state
1 and presence state 1 to  presence state 1 respectively):

T01(t) =
� − 1
� + 1

P(t) +  P(t + 1)

T11(t)  =
P(t) − 1

P(t)

(

� − 1
� + 1

P(t) + P(t +  1)
)

+
P(t +  1)

P(t)

(10)

Where P() is the aggregated one day profile of the presence prob-
abilities and more details on how to derive Eq.  (10) can refer to
Page’s original work [25].  The thresholds of parameter of � are esti-
mated with “low”, “medium” and “high” mobiles based on Page’s
definitions [25] and constant numbers 0.3, 0.6 and 0.9 are used
for different periods of a day based on empirical rules. With the
predestinated mobility parameter and daily presence probabilities,
each time step will have a  time inhomogeneous set of transitional
probabilities generated.

To predict the occupancy, both Page’s model and this study’s
Markov model use the same procedures. For one step ahead pre-
diction, predictions are based on only observed states. Namely, if
current observed state is  presence, only T11 of  this time step is  used.
If a random number draw from a  uniform distribution is  smaller
than T11, a prediction of presence state is  predicted. For  day ahead
prediction, the prediction continues based on predicted occupancy.
For example, the first step will predict based on initial observation.
However, the following steps can only predict base on predicted
occupancy state and treat them as the “true observations” until
predictions are made for the whole day. Similar strategy is adopted
for occupancy number predictions.

4. Results

4.1. Prediction of occupant presence

In this section, four university offices located on the second floor
of a university building are used to do prediction test. The test is
performed from Oct 1st 2015 to  April 1st 2016. The presence prob-
abilities of the samples during this period are presented in  Fig. 6.
These offices belong to  a  research institute that provides services for
the visiting scholars and graduate students. Frequent group meet-
ings outside of the individual offices are expected, which explain
the varied 50% to 80% max  presence rate. Office A is  occupied by
a  junior assistantship. From Fig. 6(a), consistent patterns can be
observed except Monday, where a higher presence rate is  discov-
ered during the afternoon. For working days besides Monday, there
is clearly high working load in  the morning and other tasks need
absences from the office in  the afternoon. Office B is  occupied by
a  full-time advisor, which illustrates a single-mountain pattern in
Fig. 6(b). Again, the occupancy at Monday is expected to be the
highest. Office C is  occupied by a  senior administrator who demon-
strates a  twin-summit pattern: two highest presence peaks during
the morning and the afternoon. A typical lunch break is  observed
as the deep valley in  Fig. 6(c).  Office D is  occupied by two  staffs.
One is a  student assistantship and the other is a  financial secretary.
This explains the long presence periods, sometimes lasting until
midnight in  Fig. 6(d).

The authors used a fixed sliding window to predict the occu-
pancy by looping forward the whole test period. A two  week
window size (10 working days) is used for one-step ahead fore-
cast and one month is  used to predict day-ahead forecast. Different
training algorithms of the models in Section 3 are applied to the
historical data of the sliding window. Predictive performance is
evaluated by the exact one-to-one match between the ground-
truth and the occupancy predictions. Among the total l predictions,
if there are m predicted presence while the observations of  the
rooms are occupied and n predicted absence while the observa-
tions of the rooms are not occupied, the overall accuracy is thus
calculated as a percentage, 100 × (m +  n)/l. Additionally, the evalu-
ation periods are  limited for the working time. Office A’s hours are
from 8 am to 7 pm,  Office B from 9 am to  6 pm,  Office C from 9  am
to 7 pm,  and lastly Office D from 10 am to 9pm. All these periods
are matching with the working periods shown in Fig. 6(e).

The prediction results are presented in  Table 1.  In general, the
probability sampling approaches, either Hierarchical Probability
sampling or Reinhart’s model, are  less accurate during the predic-
tion especially for one step ahead forecast (15-min, 30-min and
1-h ahead forecast). Difference up  to 22% accuracy can be observed
between the new Markov model and the sampling approaches. The
authors further compare with Page’s Markov model and machine
learning approaches while the differences among them are not sig-
nificant. It  is evident that Markov models and machine learning
approaches all have separate inputs’ configurations for one step
ahead and day ahead forecast. Namely the machine learning input
in  Eq. (8) (the last column of the training label) use occupancy infor-
mation of four time steps before the prediction step to  train the
model. This kind of inputs’ configurations catches the key informa-
tion that may  help predict the irregular short absence or  presence
in  the more stochastic pattern as shown in the occupancy pat-
terns of Fig. 6. Meanwhile, the probability sampling approaches are
developed based on a  “day by day” simulation mechanism without
such separated input configurations. Additionally, the light-switch
uses the empirical rules to  determine the periods of the morning,
lunch, and afternoon during training [17].  However, a  slight higher
prediction accuracy is observed for the hierarchical sampling with
a  maximum 5%  difference. The improvement of the hierarchical
probability sampling is  due to  the optimizations of the morning,
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Fig. 6.  Occupancy rates of the offices samples.

lunch, afternoon periods. Nonetheless, from the highlighted red
numbers, the proposed Markov model outperforms other models
at most prediction horizons for 15-min, 30-min, and 1-h cases.

Day ahead predictions are provided based on two different time
resolutions (15-min and 1-h) for all methods. The need for dif-
ferent time resolutions of predictive control design are discussed



Z. Li, B. Dong / Energy and Buildings 158  (2018) 268–281 277

Table  1

Comparison between models in terms of the correctness.

Methods UTSA Markov (%)  Page’s Model (%) Hierarchical Model (%) Reinhart’s Model (%)  ANN (%) SVR (%)

Office A 15-min 78.16 66.69 66.36 63.71 75.35 75.76
30-min 72.28 68.78 69.23 65.91 73.81 71.54
1-h  68.00 63.16 65.25 62.53 69.77 70.56
24-h(15) 64.93 63.58 66.59 63.61 69.41 69.69
24-h(1 h) 67.07 64.82 65.01 62.43 69.58 69.52

Office  B 15-min 87.59 86.23 73.02 70.52 81.96 81.92
30-min 82.41 81.58 76.27 71.34 79.76 79.80
1-h  81.68 81.58 80.02 78.38 74.29 74.51
24-h(15) 67.40 72.47 73.62 69.69 73.36 74.28
24-h(1 h) 63.15 74.31 78.75 78.53 75.29 75.20

Office  C 15-min 84.50 87.57 74.11 74.13 84.09 81.41
30-min 81.89 78.57 70.50 70.25 71.89 78.05
1-h  78.65 71.14 71.43 71.77 76.34 74.80
24-h(15) 64.41 69.40 73.68 74.92 73.80 75.33
24-h(1 h) 69.65 68.13 69.41 69.90 75.89 73.65

Office  D 15-min 85.22 78.71 67.11 63.13 76.41 76.57
30-min 79.34 71.03 64.37 60.25 75.18 75.05
1-h  75.86 71.94 69.62 66.12 72.59 72.09
24-h(15) 69.41 70.74 66.37 62.33 70.20 72.22
24-h(1 h) 71.51 71.32 70.93 67.28 70.62 72.37

early in Section 2. It  is  clearly that ANN and SVR models are cap-
turing the patterns in a 24-h scale shown by the red numbers of
the one day ahead predictions. The Markov models does not out-
perform machine learning approaches while probability sampling
approaches are competitive for some samples. For example, the
hierarchical mode outperforms ANN and SVR for 24-h ahead fore-
cast in 1-h resolution and most of the prediction errors of the
day-ahead cases are  not significantly different than the machine
learning approaches. In  summary, for extremely short term fore-
cast from 15-min to 1-h ahead, the Markov model is recommended
while the machine learning approaches are suggested for 24-h
ahead forecasts.

The authors further evaluate the first arrival, the last departure,
the duration of intermediate absences, and the starting times of
intermediate departures. One thing should be noticed that  these
evaluations are not available to be evaluated based on the one step
forecasts. For example, the first arrival time may  be only useful
for the preheating and precooling of the conditioning systems. If
perdition is too short at the time scale, the thermal comfort will be
largely influenced and mostly be violated due to the slow response
of the building thermal envelope. Hence, only day ahead predic-
tions are evaluated and results for 15-min resolutions are  provided
in Table 2. The error of the first arrival time is calculated by subtract-
ing the ground truth from the predicted values. Same applies to last
departure. The error of the intermediate departure time, however,
is calculated by an absolute value between the prediction and the
ground truth. The occupancy duration is estimated by  counting the
number of occupied intervals.

Comparing the models’ predictions in Table 2, there is no sin-
gle model consistently outperforming other models but machine
learning approaches show marginal advantages. The probability
sampling models (hierarchical model and Reinhart’s model) tend
to have better predictions of the first arrival and the last depar-
ture for the occupancy shape of the sharp summits (Office A and
Office C). The errors stays in the maximum range around −0.95 h
to +0.79 h with smallest departure error of 0.44 h for Office A and
0.35 h for Office C.  Machine learning approaches could achieve a
similar performance with better performances on the first arrival
time predictions (0.44 h for Office A and 0.18 for Office C). Machine
learning approaches also tend to have competitive performances on
the predictions of occupancy durations and the intermediate depar-
tures for the occupancy shape of the two sharp summit, especially
Office C (indicated by red numbers). Office B has a  high presence

rate with a gradually increasing and decreasing ramps indicating a
shorter consistent presence period (12p.m. to 3p.m.). The Markov
models (Page’s model and UTSA model) show better predictive per-
formances with low errors of occupancy duration (0.96 h) and the
inter departure time (0.51 h). Office D has a  very smooth presence
rate but  lower in the presence (around 0.5) and more random at the
first arrival and the last departure (long ramps). Such scenario cre-
ates difficulties for all models. It is obvious that the absolute errors
are larger than 2 h for most predictions regardless of the model
used, except machine learning approach, such as ANN.

4.2. Prediction of occupant level

The data used to test the model’s ability to forecast the num-
ber of occupants was collected from a student laboratory in the
same building tested for occupancy presence predictions. The test
period is from February 1st through June 30th, 2016. All the absence
days without any occupancy were eliminated. The average occu-
pancy number and the variances are presented in Fig. 7  using 1.5
interquartile range (99% confidence interval) of box-and-whisker
plots. The blue box in Fig.  7 for each time marks the full range
of variation from the 1st quartile to  the 3rd quartile of the data
(total of 50% of the data covered from the first quartile to the third
quartile). Additional 1.5 quartiles beyond the first and third quar-
tile as the black lines shown are  expanded to  cover the 99% of the
data at that time. Daily analyses reveal the difference of occupancy
number based on the working days, as shown from Fig.  7(a)–(e).
These plots illustrated the occupancy of all the days from Mon-
day to Friday. Monday, Wednesday and Thursday have very  similar
occupancy patterns (blue boxes in (a), (c) and (d)), where there
are large variances of occupants’ number during the daytime for
Wednesday, Thursday and Friday (black lines in  (c), (d), and (e)).
Overall, gradual ramp-up and ramp-down are observed on most
days between 7 am to 6 pm,  except Tuesday. On Tuesday, more fre-
quent meeting outside laboratory is  scheduled which explains the
low occupancy level (maximum 4 people) and less varied pattern
(fewer black lines besides blue boxes). By averaging all occupancy
numbers for all days, a  gradual ramp-up is  observed between 7
am to 11 am while a  ramp-down is identified from 2 pm to 6  pm
in  Fig. 7(f). This indicates a  very irregular first arrival time and last
departure time. Large variances are also observed during the whole
occupied period. The average variance is more than 2 people at each
time’s occupancy around the median (blue boxes of Fig.  7(f)). This is
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Table  2

Comparison between models in terms of the statistical means.

UTSA Markov (hr) Page’s Model (hr) Probabilistic Model (hr) Reinhart’s Model (hr) ANN (hr) SVR (hr)

Office A First Arrival Time 1.22 −0.89 −0.53 −0.95 0.44 −0.67
Last  Departure Time 0.73 0.71 0.62 0.70 0.76 0.85
Occupancy Duration 0.36 4.38 2.19 2.33 −0.47 0.39
Inter  Departure Time 2.7 2.50 1.05 1.87 1.49 1.33

Office  B First Arrival Time −2.69 −1.81 −2.39 −3.35 −1.63 −1.82
Last  Departure Time 2.15 2.46 2.39 2.74 2.170 2.44
Occupancy Duration 0.96 1.82 2.87 2.63 1.49 1.43
Inter  Departure Time 0.97 0.51 1.08 1.88 1.17 0.58

Office  C First Arrival Time 1.14 −0.92 −0.35 −0.20 0.18 −0.53
Last  Departure Time 1.47 0.41 0.35 0.79 0.84 1.25
Occupancy Duration 0.40 1.70 1.88 1.11 −0.09 0.91
Inter  Departure Time 2.37 2.20 2.94 4.13 2.03 2.30

Office  D First Arrival Time −1.15 −2.16 −3.78 −3.54 −1.46 −1.56
Last  Departure Time 1.63 2.08 3.78 3.82 1.31 1.80
Occupancy Duration 2.42 2.01 2.91 2.98 1.63 2.09
Inter  Departure Time 2.84 2.18 3.65 2.54 1.67 2.43

Table 3

Comparison between models.

Methods UTSA Markov
(hr)

Hierarchical
Model (hr)

ANN (hr) SVR (hr)

RMSE 15-min 0.510 1.135 1.283 1.241
30-min 0.736 1.303 1.394 1.281
1-h 1.046 1.280 1.463 1.388
24-h(15 min)1.052 1.146 1.387 1.088
24-h(1 h) 1.069 1.255 1.588 1.127

MAE 15-min 0.204 0.675 0.730 0.709
30-min 0.327 0.711 0.807 0.744
1-h 0.523 0.666 0.951 0.839
24-h(15 min)0.524 0.625 0.849 0.679
24-h(1 h) 0.567 0.629 1.061 0.705

caused by the different working schedules from individual student.
The maximum occupancy contains 6 students (black lines up to 6
occupancy level of Fig. 7(f)).

We  applied two widely used evaluation error criteria, the root
mean square error (RMSE) and the mean absolute error (MAE), to
quantify the performances of the predictions:

RMSE =

√

√

√

√

1
N

N
∑

i=1

(

yi − ŷi

)2
(11)

MAE  =
1
N

N
∑

i=1

|yi − ŷi|  (12)

Where yi and ŷi are the actual and predicted occupancy number at
each time step, and N is the total length of the data. The first error
RSME amplifies and severely punishes large errors using the square
form while the second error MAE  provides a  view on  how close the
forecasts and the measurements are  in  absolute scale. Predictions
under the two error criteria of all forecast horizons are shown in
the following table.

As shown in Table 3,  the occupancy number can be more accu-
rately predicted (0.204–0.523 by  MAE  error) in the extremely
short-term forecast (e.g. 15-min till 1-h) based on the proposed
Markov model. Poor performances are observed for other models
while Hierarchical Probability Sampling Model has a  similar per-
formance compared to  the proposed Markov model in  1-h ahead
case (0.666 MAE  and 1.280 RMSE). In terms of RMSE, the pro-
posed Markov model has large errors when prediction horizons
are extended (e.g. from 1-h ahead to 24-h ahead). It  shows the
difficulty for the proposed model to predict longer period of the

dynamic occupancy pattern in  this study. The occupancy of the
samples has an average variance of 2 people at each time step,
shown as the 1st quartile to the 3rd quartile of the data deviated
from the median (blue boxes of Fig. 7(a)). It  is also noticed that
the Hierarchical Probability Sampling and SVR have a  very similar
predictive performances at 24-h ahead forecasting cases although
the proposed Markov model still has marginal improvements on
both RMSE and MAE. In general, the prediction for 24-h ahead case
in 15-min resolution is easier than the cases in 1-h resolution for
all the methods (e.g. all the errors of 24-h ahead cases in 15-min
resolutions being smaller than the cases in  1-h resolutions). Mean-
while, it is noted that the errors in  this study for longer prediction
window (24-h ahead) are  comparable to a  recent research study,
which reported the error ranges from 0.53 to 1.27 in terms of RMSE,
and from 0.21 to 0.80 in terms of MAE  [49].

5. Results and Discussions

In  general, the real occupancy patterns in building environments
may differ significantly from each other as shown in Figs. 6 and 7.
Meanwhile, most studies to  model occupancy in commercial build-
ings usually focus on one part of the information for limited
samples, such as presence only or occupants’ number for single
office space. By realizing the issues, IEA-EBC Annex 66 is promoting
a  broader and systematic definition and simulation of occupancy
behavior in buildings [56,57].  Recent studies are  expanding the
limitations of the test-beds (e.g. multiple office rooms) or the pre-
diction horizon (e.g. day-ahead forecast) [35–40].  Although many
still argued that a single model is unlikely to be general enough to
cover all solutions and not necessary for building simulations [57],
the advanced predictive controls of the building systems discussed
in Section 2 demonstrated the need to develop occupancy mod-
els able to forecast in different time scales and occupancy types.
For real-time control applications, an integrated occupancy model,
such as the proposed hierarchical sampling model and the new
developed Markov model could be adapt enough to provide uni-
versal solution from extremely short term forecasts (e.g. 15-min
ahead) to day-ahead predictions (e.g. 24-h ahead) of different occu-
pancy information including the presence and the number.

One of the key contributions of this study is to investigate
whether the proposed Markov Model and Hierarchical Probabil-
ity Sampling Model are adaptive enough to  handle the temporal
changes at various prediction horizons (15-min ahead to 24-h
ahead) and different types of the occupancy (the presence and
number of occupancy). The proposed Markov model is  specifically
designed to handle not  only binary occupancy states (presence and
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Fig. 7. Occupancy number of the laboratory.

absence) but also multiple occupancy level (the number of occu-
pants). The moving window optimization for different prediction
horizons can find the change of the presence patterns based on
change-point analysis and the cross validations insure the optimal
estimations of the transition probabilities of the model based on
historical information. If only the binary forecast is needed, the
proposed Markov model states can only use the binary presence
information. Otherwise, the Markov chain states will fully utilize
the occupants’ number information. The study further expands
the  traditional probability sampling model to  create a  hierarchi-

cal framework that could produce occupancy number predictions
based on the presence forecast. By comparison to  other state-
of-the-art models, results in  Section 3 suggest that the proposed
models are competitive for the applications of the predictive con-
trol.

Another contribution is  the investigation on the popular occu-
pancy models’ predictive performances on different patterns of
occupancy presence. The authors evaluated different samples
including twin summits shape and single summit shape with high
and low occupancy rate at different periods of time. The predictive
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Table  4

Comparison between models and studies.

Study Method First Arrival (hr) Last Departure (hr) Occupancy State Matching (%) Occupancy Duration (hr)

Mahdavi [11] Reinhart 1.2 2.4 52 2.3
Page 1.4 2.4 52 2.2
Aggregated Optimized Schedule 1.0  2.4 55 1.6

UTSA  Officesa UTSA Model 1.5 1.5 76 1.0
Hierarchical Model 1.8 1.7 72 2.5
Page 2.9 2.7 69 2.9
Reinhart 2.0  2.0 66 2.1

a Absolute values of the average errors of the all  four offices.

performances of the models are evaluated from different perfor-
mance matrixes: the prediction correctness, the first arrival error,
the  last departure error, the occupancy state one-to-one match-
ing error, and the occupancy duration of the intermediate presence
[24].  Detailed analysis in  Section 3.1 suggests the possible impacts
from the occupancy diversities on  the models’ performances. Dif-
ferent models have their own  advantages to predict certain types of
occupancy presence patterns. Meanwhile, the average errors of all
four offices are compared to  a recent study conducted in  the office
environment [24], as shown in Table 4. It is noticed again that there
are significant differences between the models’ performance due to
different samples of the occupancy presence profiles even for the
same models (e.g. Page and Reinhart’s models in Mahdavi’s study
and this study). For the same prediction settings (24-h ahead in
15-min resolution) of this study and a  recent reported study, the
results of the proposed Markov model and aggregated optimized
schedule have slight higher predictive powers.

6. Conclusion

This paper aims to  develop and demonstrate an innovative
Markov approach and an integrated sampling model to forecast
occupancy of office buildings. By predicting future occupancy pres-
ence and occupancy number at different time scales (15-min to
24-h ahead), the proposed Markov model and the integrated sam-
pling model demonstrate their predictive power specifically for the
purpose of control application. The results are validated through
long term measured data from the field tests of the offices and
compared to other commonly used models for occupancy predic-
tions, such as the Page’s model, Reinhart’s model, Artificial Neural
Network and Support Vector Regression. The final results show
that the proposed models outperform the other methods in  terms
of an average 7% correctness with 22% maximum difference for
one time step ahead forecast of the occupancy presence. Mean-
while, maximum 0.34 RMSE and 0.23 MAE  differences for the
occupancy number predications are observed at all time steps.
In day ahead prediction, not much difference could be concluded
among the models. Artificial Neural Network and Support Vector
Regression tend to have slightly better performance for presence
predictions for day-ahead cases and the proposed Markov model
could outperform them to  predict occupancy number. In conclu-
sion, implementing such adaptive occupancy models will be  a
solution for integrated predictive controls that handle multiple
building optimizations.

This study also observes a  significantly lower performance for
24-h ahead prediction scenario compared to  the other prediction
window (e.g. 15-min to  1-h ahead) for both occupancy presence
and number predictions. It is extremely necessary for advanced
building control to  have more accurate forecasts on longer window
of the occupancy presence such as the day ahead (24-h) forecast
when renewable building systems are involved. However, it is  chal-
lenging to improve the forecast accuracy even with the changes
of temporal resolution (sampling rate) between 15-min and 1-h

resolution. But the results show competitive performances com-
pared to recent studies [24,51].  Another limitation related to the
proposed model is the lack of cross sectional comparison when
testing the forecast ability of the models for both the presence and
the occupancy level. The authors already deployed more than ten
occupancy detection systems of the test building. Owing to the pri-
vacy and installation issues, four of the offices were able to have
the occupancy presence information collected while only one lab
successfully record long term pattern of the occupancy number.
The total sample size is abundant compared to previous research,
but more samples from different occupants should be included to
further validate the generalization of the proposed models.

Further investigation on improvements of the day ahead predic-
tions could be conducted by the more advanced statistical inference
or analysis to  detect the irregular dynamics at daily scale in  the
occupancy data. By evaluating the uncertainty of the occupancy
patterns, a classification process of the data before the predictions
could also help to  realize the difficulty to  forecast specific types
of occupancy. The last but not the least, software packages for
the models should be developed on an open source programming
language (e.g. Python) which is much preferred by the real-time
control tests.
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