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a b s t r a c t

Occupancy models are necessary towards design and operation of smart buildings. Developing an

appropriate algorithm to predict occupancy presence will allow a better control and optimization of the

whole building energy consumption. However, most previous studies of development of such model only

focus on commercial buildings. The occupancy model of residential houses are usually based on Time

User Survey data. This study focuses on providing a unique data set of four residential houses collected

from occupancy sensors. A new inhomogeneous Markov model for occupancy presence prediction is

proposed and compared to commonly used models such as Probability Sampling, Artificial Neural

Network, and Support Vector Regression. Training periods for the presence prediction are optimized

based on change-point analysis of historical data. The study further explores and evaluates the predictive

capability of the models by various temporal scenarios, including 15-min ahead, 30-min ahead, 1-hour

ahead, and 24-hour ahead forecasts. The spatial-level comparison is additionally conducted by evalu-

ating the prediction accuracy at both room-level and house-level. The final results show that the pro-

posed Markov model outperforms the other methods in terms of an average 5% correctness with 11%

maximum difference in 15-min ahead forecast of the occupancy presence. However, there is not much

differences observed for 24-hour ahead forecasts.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, buildings are increasingly expected to meet higher

and potentially more complex standards on the energy efficiency,

sustainability, comfort, and yet to be maintained economically.

The latest smart building can yield substantial savings on the

energy consumptions and help maintain thermal comfort [1].

Occupancy plays a key role to provide information for smart

building controls. Occupancy in offices is less varied comparing to

homes, which has a large uncertainty in residential environment

[2,3]. Meanwhile, the occupancy states (e.g. the presence and the

number), rather than actions are more relevant to building auto-

mation system, especially when buildings are equipped with oc-

cupancy sensors [4,5]. However, occupancy detection in

residential homes is usually difficult because of privacy issues.

Hence, it is interesting to investigate occupancy models in

residential buildings and how to utilize such model to predict

future changes of behavior patterns. In addition, this model should

be able to predict in different temporal resolutions (e.g. 15-min to

24-hour window), spatial scales (e.g. a single person room or

multiple people house), and occupant types (e.g. the occupancy

presence or the number of occupants), which is missing in current

literature.

The majority of previous models are used to generate stochastic

daily occupancy profiles as a specific estimation problem for

building energy performance simulation tools rather than real-time

optimal controls. They are considered to be “validated” if one aspect

of the interested information (e.g. mean and variance) of the oc-

cupancy is simulated in a statistically reasonable way. In other

words, the models are matching the similarities between the

simulated occupancy profiles and the monitored data in terms of

the average arrival time, the average occupied rates, and the

average departure time. They are not evaluated by an exact “one to

one” matching between the prediction and ground truth at each

time step, which is necessary in the advanced control applications

such as ventilation control of an occupied space.* Corresponding author.
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This paper is organized as following: the authors review and

provide insights on the shortcomings of current studies on

modeling approaches of the occupancy in Section 2; Section 3 in-

troduces the new developed Markov chain model for predictive

control purpose, and three commonly used modeling tools, which

are probability sampling, Artificial Neural Network and Support

Vector Regression models; Section 4 provides the results of each

model on occupancy prediction of four residential houses and

temporal and spatial differences between models' predictive per-

formance are further assessed; Section 5 discusses importance and

concludes this study.

2. Current state-of-the art

The occupancy modeling is gaining more attentions in both

building design and operation related research studies. Many

modeling techniques have been developed. The most commonly

used approaches are the probability sampling and the Markov

process [6e8]. These two models are developed based on proba-

bility theories and suitable for both estimation and prediction.

Statistical learning is another approach. It utilizes the statistical

mining, such as decision tree branching [9], to cluster the occu-

pancy schedules. Machine learning is an enhanced approach that

can further be used to predict occupancy. Three basic types of

occupancy information can be modeled for the aforementioned

approaches [10,11]: 1) occupied status at a space level, which refers

to whether or not a space is occupied at a particular time; 2)

number of occupants at a space level, which refers to how many

occupants are in a space at a particular time; and 3) occupant

tracking, which refers to individual movement and behavior

tracking. In this section, we focus on the review of sampling and

Markov approaches.

Traditionally, building occupancy simulation is based on pre-

defined static schedules. With newly developed co-simulation

platform, it is possible to replicate relatively realistic occupancy

schedules by integrating energy simulation software with sto-

chastic occupancy models [12]. The probability sampling approach

is one popular model that estimates the stochastic occupancy

presence [12e15]. The presence profile is generated from a sam-

pling process of the fitted distributions from historical data. The

training data containing occupancy information is normally

collected from multiple rooms of the same space type in one

building. Then, the average occupied hour per day, the average

vacancy ratio per day, the average departure and arrival time per

day, and their standard deviations can be compared and modeled

for multiple days in a cross-sectional analysis [14,15]. In essence,

the modeling of these key information using probabilistic distri-

butions is through the cumulative distribution functions (CDFs),

describing the first arrival time and the last departure time.

Meanwhile, several probability distribution functions (PDFs) are

used to fit the intermediate departure time, intermediate absences

for morning, lunch, afternoon, and overtime period. To generate the

daily occupancy profile from the fitted CDFs and PDFs, the first

arrival time and last departure time are firstly identified using the

inverse sampling method. Then, intermediate activities can be

determined by comparing the pseudo random number against the

intermediate departure PDFs. The durations of the intermediate

activities can be obtained by the inverse sampling from the dura-

tion PDFs [13].

Markov chain is another stochastic process that has been

applied in the occupancy presence modeling. Different algorithms

have been explored using both homogeneous and inhomoge-

neous Markov chains. Those studies include reproducing the

Time-User Survey data through integrated Markov Montel Carlo

technique [16], modeling the inhomogeneous Markov chain by

utilizing the inverse function method [17], and developing a hi-

erarchical approach that combines homogeneous model with the

occupants' movement at different locations of offices [18]. There

are also several efforts to extend the basic structures of Markov

models by integrating more sophisticated statistical techniques

such as logistic transformation to a generalized linear model [19],

defining the closest distance between two states [20] or blending

the transition matrixes linearly using the approximated co-

efficients by a slot function [20]. For all first-order Markov chain

models, the key assumption is that only previous time-step state

influences current time-step state. However, in an occupancy

prediction scenario, there may be also a habitual sequence that

connecting several previous occupancy states together. The

studies carried out by Wkike [21], using a higher-order Markov

model, provided a preliminary research results on habitual

sequence problems. The transitional matrixes were calculated by

an integration of the several previous occupancy states that are

assumed to contribute to the current transition probabilities. A

similar study was conducted to generate the presence distribu-

tion in residential buildings based on an integration of the

discrete histogram from the presence duration [22]. As previous

research studies show that a Markov chain of higher order has

more complex calculations and non-bimodal characters than the

first-order model.

In summary, the successful implementation of the aforemen-

tioned models to accurately capture the occupancy patterns de-

pends on model inputs and level of complexity. Endogenous inputs

(e.g. CO2) other than the occupancy information required by certain

type of models could be a solution for commercial buildings (data

could be from building automation system) but almost impossible

for residential buildings. A complex model could have a limitation

on computation time, such as a high order Markov chain model. It

normally takes tremendous time and efforts to develop the model

for one specific scenario. In this study, authors avoid using a com-

plex model. Instead, authors propose a hybrid approach that in-

tegrates basic Markov process with a optimal moving-window for

occupancy presence prediction.

3. Methodology

Given the current-state-of-the-art, authors have developed a

new approach of short-term predictions of the occupancy profile

of residential buildings for specific advanced control purpose. The

overall approach is described in Fig. 1. Here, “short-term” means

within 24-hrs ahead prediction. Specifically, a new Markov pro-

cess model has been developed. It is compared to a modified

probability sampling method and two machine learning methods,

Artificial Neural Network (ANN) and Support Vector Regression

(SVR). Occupancy presence data from different residential houses

are collected in 5-min interval. The data log for motion sensors

entails a sequence of time stamped from the presence (value of 1)

to the absence (values of 0). A low pass filter is utilized to generate

a time series data in 15-min, 30-min and 1-hour intervals for

different prediction window. The occupancy model, developed

based on these data, is designed to deliver the necessary inputs for

the predictive control design. In the following sections, the

formulation of the inhomogeneous chain is described in Section

3.1. The development of new Markov process model is

discussed in Section 3.2. Section 3.3 demonstrates a probability

sampling model adopted for the residential house case and sec-

tion 3.4 presents two commonly used machine learning

approaches.
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3.1. Traditional inhomogeneous Markov chain model

The Markov process, developed for building energy simulation

tools or other building applications, is usually in a discrete form

with fixed time steps. The states of the Markov chain are not

necessarily correlated with environmental variables of the building

(e.g. indoor air temperature). The endogenous information

collected from the occupancy sensors will be enough as the training

inputs. The key assumption tomodel the first-orderMarkov chain is

that only the instant previous state has the influence on the present

state of the occupant (called Markovian property).

Let a Markov chain X at time step k be a sequence containing

variables x1; x2; :::; xk and the observed set of occupancy states is S ¼

fs1; s2; :::; sng where n � k. The chance of the chain to move from

the state si to the state sj at time step kþ 1 is decided by the

transitional probability defined as:

P
ij
k
¼ p

�
xkþ1 ¼ sjjxk ¼ si

�
(1)

where pðxkþ1 ¼ sjjx1; x2; :::; xkÞ ¼ pðxkþ1 ¼ sjjxkÞ.

Usually, time inhomogeneity implies changes in the underlying

probability of the transition between the same pair of the states as

time goes on:

p
�
xkþ1 ¼ sjjxk ¼ si

�
sp

�
xk ¼ sjjxk�1 ¼ si

�
(2)

The transition probabilities between states for more than one

step is more easily to be calculated by a transition matrix. Let

P ¼ ðpkÞi;j denote the matrix where each element at index ði; jÞ

represents the probability defined in Equation (1). Suppose that the

probabilities are fixed when they are not influenced by any other

factors in the current time step, the transitional matrix is defined

as:

P ¼
�
pij

�

n�n
¼

2

664

p00 p01 / p0n
p10 p11 … p1n
« « «

pn0 pn1 / pnn

3

775 (3)

where
Pn

j¼1pij ¼ 1 for any 0 � i � n.

The transition matrix trained for the Markov chain in this study

uses the maximum likelihood estimation (MLE) with a moving

window optimization. In essence, the moving window is a trimmed

window covering the sequence W ¼ fxt ; xtþ1; :::; xsg in the Markov

chain X where 0 � t < s � k for the prediction of state xsþ1. Given

one moving window where there are nij pairs of the states'

sequence fsi; sjg in the all pairs of the sequences fsi; slg for t � l � s,

the transition probability estimated by MLE is:

bpij ¼
nij þ a

Pk
l¼1ðnil þ aÞ

(4)

where a is a smooth factor ð0<a<0:1Þ. Owing to the limitation of

the window size, the occupancy may enter a “sink” state with an

extremely small probability of transition. The smooth factor is used

to avoid the “sink” state to appear in the stages of estimations.

3.2. New Markov chain model

In this study, the authors propose to integrate the moving-

window strategy to estimate the transitional probability matrix

and utilize the model for prediction with a change-point analysis.

The authors try to answer two questions: 1) at which time step

should be the horizon of the moving window change; and 2) how

long should the historical data be chosen in one horizon of the

window. Let D ¼ fd1; :::; d24�zg represents the all selectable his-

torical data before the state that need to be predicted. Here, if the

occupancy presence state to be predicted is in a working day, the

selection of D only contains the available profiles of zworking days.

Regardless of the occupancy level, D is processed into a data set

containing only the presence and absence as 1 and 0. A discrete

profile of the presence probability in daily scale is generated by:

Pm ¼

Pz
j¼1

�
lz�j

$dðj�1Þ�24þm

�

z
(5)

where 1 � m � 24 if the occupancy data is in hourly scale and l is

an exponential forgetting factor, which is below 1. Without

forgetting effect, the data of all periods are treated equally with

regards to the information that such data contains and to generate

the distribution of presence. An exponential forgetting could

maximize the penalty on the older information of the data and

allow the presence probability to retain the most recent informa-

tion only.

Change point detection is implemented to check at which time

step in a daily profile of the set D that an occupancy presence

distribution is changed. The assumption is that a change of the

moving window should happen based on the change of presence

distribution on a daily scale. The detection algorithm in this study

used relative density-ration estimation with the Pearson diver-

gence as a divergence measure to score the possible change points.

Fig. 1. The overview of the methods and approaches in this study.
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For a subsample m selected from the distribution n, the symme-

trized divergence score is defined as follows [23]:

Z
paðmÞ

�
pðnÞ

paðmÞ
� 1

�2
dðmÞ þ

Z
pðnÞ

�
paðmÞ

pðnÞ
� 1

�2
dðnÞ (6)

where paðmÞ ¼ apðnÞ þ ð1� aÞpðmÞ, p is the probability density

function of the corresponding variables, and the factor a is a

smooth factor to the plain density ration.

Four main patterns can by basically extracted and recognized

from occupancy presence data: long absence, low presence rate,

high presence rate and long presence. They can be attributed to

each of the classified windows. During prediction, each of the state

in the next day after the setD is assumed to have the same changing

points that are estimated from the presence distribution of the set

D. The tuning of the training data, as an answer to the second

question, in a moving window depends on the prediction horizon.

In an extremely short-term forecast case, models are commonly

trained with within one moving window (e.g. 15-min, 30-min, and

1-hour ahead cases). The size of the window is determined by a

contingency table with a leave-one-out validation. The validation is

performed on two sub sets of data in fivemost recent working days.

Commonly used 10-folder validation is not suitable in this case due

to the limited length of window size. Each tuning length within the

horizon is assigned a score that added the true positive value and

true negative value from the contingency table. The highest score

represents a suitable candidate of the tuning length of one moving

horizon. In 24-hour ahead prediction, it is impossible to access the

intraday information to calibrate the inhomogeneity. Hence the

assumption is that two consecutive days have a similar pattern. The

predictions thus are simulated in a daily scale where the full ho-

rizon of each moving window classified by Eq. (6) is used as the

tuning length in that movingwindow. Amore detailed algorithm to

predict the occupancy is shown in Fig. 2.

3.3. Probability sampling model

This approach applies the random sampling process on the data

by assuming that it does not have the Markov properties. Currently,

the probability samplingmethod has been validated in certain level

to predict the states of the presence [24,25]. However, these studies

are limited to the office buildings. In this study, the authors will

adopt the popular methodologies designed for office environments

to predict the occupancy presence in the residential samples.

The model is developed mainly based on the probability profile

of the historical presence. The prediction is made by inverse sam-

pling during the presence periods. The simulation algorithm only

depends on the profile of the presence probabilities generated by

Eq. (5). For each time step of the day to be predicted, the occupancy

state is decided by comparing the presence probability at that time

step from the profile with a random number drawn from the uni-

form distribution. The room is considered to be occupied only if the

number is smaller than the presence probability. The algorithm to

predict the presence using the random sampling is shown in Fig. 3.

3.4. Machine learning approaches

Machine learning is a black box approach. It is usually compared

to the “white” model, such as the stochastic model, where each

probability can be interpreted by the occupancy presence rate. It

utilizes advanced computational learning algorithms as the “arti-

ficial intelligence” to learn patterns from the data set. Various

empirical and theoretical studies have proven the capability of this

approach for different kinds of applications [26,27].

Two common methods are applied and tested here: Artificial

Neural Network (ANN) and Support Vector Regression (SVR). For

ANN, feed forward neural network (FFNN) of a single layer and a

double layer configuration are explored. However, due to the over-

fitting problem, good forecasts are not found from the double

hidden layer structure [26,28]. Neurons calculate the weights sum

of the inputs and produce the output by transfer functions as

follows:

f ðxÞ ¼
XN

j¼1

wj4j

"
XM

i¼1

wijxi þwio

#
þwjo (7)

wherew is the weights for input, hidden, and output layers, x is the

training input, N represents the total number of hidden neurons,M

represents the total number of inputs, and M represents the

transfer function for each hidden neuron. In this paper, FFNN is

modeled as 1 hidden layer with 20 neurons, 1 output neuron (the

prediction of presence state), and multiple input neurons (several

time lagged values of historical occupancy states depending on the

forecasting window). The transfer functions are the hyperbolic

tangent sigmoid functions for the input layer, and the linear

transfer function for the output layer. Hidden layer weights in

Fig. 2. The simulation diagram of the first-order inhomogeneous Markov chain.
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Equation (7) are learned from Levenberg-Marquardt back-propa-

gation algorithm [29]. Model validation is performed on a holdout

set of the data using the criteria of the mean squared error, where

the training set contains at most 70% of the input set.

For support vector regression (SVR), the SVR approximates the

inputs and outputs using the following form.

f ðxÞ ¼ wfðxÞ þ b (8)

where fðxÞ represents the transfer function and parameters w and

b are estimated by minimizing the regularized risk function:

min
1

2
wT

$wþ C
Xn

i¼1

�
xi þ x*i

�

s:t: yi �wTfðxiÞ � b � εþ xi (9)

wTfðxiÞ � b� yj � εþ x*i

where n represents the total number of training samples, x is the

error slacks guaranteeing the solutions, C is the regularized penalty,

and ε defines the desired error tolerance. LibSVM [30] is used in our

study. A radial basis function of 3� with weighting factor g is used.

The authors find the SVR model is relatively insensitive to the value

of ε smaller than 0.01 whereas both C and g necessitate indepen-

dent tuning. These parameters are determined by 10 fold cross-

validation based on mean square error. The grid search scale for C

and g is maintained among the range from 103 to 10�3.

The training process of the two methods is facilitated by testing

different configurations of the inputs from the historical presence

information. The input set for the 15-min, 30-min and 1-hour

ahead windows, defined as H1, is a Markov order 4 sequence:

H1 : f ðOt�1;Ot�2; :::;Ot�4Þ (10)

where Ot-1 represents the occupancy presence from the previous

one time step back,…, and Ot-4 represents the occupancy presence

from the previous four time steps back.

Input set H2 is used to forecast the next 24-hour ahead occu-

pancy presence of the current time step Ot:

H2 : f ðOt�24;Ot�48;Ot�72; ::;Ot�168Þ (11)

For one time step ahead forecast (the 15-min, the 30-min and

1 h ahead forecast), inputs include the historical occupancy pres-

ence from 1 to 4 time steps back. By comparison, 24-hour ahead

case needs the historical occupancy at the same time from

yesterday, the day before yesterday, …, and the day before one

week. These features are selected based on an exhaustive search by

minimizing the coefficient of determination.

4. Results

4.1. Description of testbeds

The occupancy data in this research are collected from four

houses in west side of San Antonio, as shown in Fig. 4. The four

samples are single-family dwellings around 110 m2 each. Houses

are named according to construction materials: SIP (Structure

Insulated Panel), ACC (Autoclaved Aerated Concrete), Container

(Steel Container), and Stick (Wood). They are leased and operated

mostly by part-time workers and low-income people. The pres-

ences of occupancy are detected at 5 min intervals from over 30

sensors for all the rooms including kitchen, bathroom, living and

bedroom areas during the year of 2014. The occupancy detection

sensors are passive infrared sensors. Sensors are attached under

ceiling in the middle of each room. Monitoring data are stored in

the on-board memories. All the collected data are further exported

to SQL database. To pre-process 5-minute data to other time in-

tervals, presence counts are processed using moving average filters

of Savitzky-Golay algorithm. To retain a realistic pattern, only 0.95

factor is used in each time interval. The following testing periods

are selected for occupancy modeling and prediction: ACC was

modeled from Sep 17th to Oct 31st. Container was modeled from

May 21st to July 31st. SIP was modeled from Jan.1st to Apr.30th.

Stick was modeled from Jan.1st to March.31st. All periods are in

Year 2014 and only include weekdays.

The average rate of the presence was plotted for the monitored

rooms of the four samples, as shown in the upper part of each figure

in Fig. 5. All four houses demonstrate significant differences of the

presence pattern at the room level. However, the similarity is

revealed in a cross-sectional comparison. Master bedrooms are

mostly occupied during the night. Living rooms or kitchens are

occupied mostly around afternoons and evenings. The variances

from all rooms' presence rate of the individual house are presented

in the lower part of each figure in Fig. 5 using 1.5 interquartile range

Fig. 3. Predictions of the occupancy using the probabilistic model.

Fig. 4. Four test houses.
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(99% confidence interval) in box-and-whisker plots. Large variances

are observed in first three houses while the fourth one has a less

varied pattern. More details can be referred to the study of those

samples [8].

Further analyses reveal the consistent patterns at the house

level, as shown in Fig. 6. It shows that until 10 a.m., most of the

residents in the houses (except SIP) have the presence probabilities

close to 100% of sleeping, where there are large variances of oc-

cupancy presence during the daytime. The ACC's occupant has a

probability of 70% to leave the house between 10 a.m. and 4 p.m.

and back after 5 p.m. A more gradual ramp-up and ramp-down is

observed in the Container house between 10 a.m. and 6 p.m. SIP's

resident is a part-timeworker whoworks or leaves during the night

explaining the lack of presence during the night while Stick's family

has dependents at home all day, explaining the high occupancy

during the daytime. It is also clear that the variances of the presence

rate at the house level in Fig. 6 is significantly smaller compared to

those at the room level in Fig. 5. Based on these analyses, two as-

sumptions are made for modeling this specific data set: 1) for each

day of working days in Fig. 6, less variance (mostly below 20%) is

observed and thus training does not need to differentiate individual

day types such as Monday or Friday; 2) the modeling from the

house level rather than the room level will be acceptable for oc-

cupancy presence forecast if they maintain a similar prediction

accuracy.

4.2. Model performance at the room level

The key to utilize the stochastic models depends on the opti-

mization of the moving window as mentioned in Section 3.2. One

example of the changing points between the windows is shown in

Fig. 7 for the prediction of occupancy presence at ACC's master

room on Oct 15th. The normalized score is calculated based on a

forgetting factor of 0.8 with a span of all the historical records

before the date. Based on the analysis of historical data, there

should be five windows for prediction of that specific day. The first

one starts from 12 a.m. until 7 a.m., the next one ends around 10

a.m., the third one ends around 6 p.m., the fourth one ends around

8 p.m., and the last one lasts till the end of the day (12 a.m.). The

predictive performance of the models is evaluated based on the

correctness of the occupancy predictions in terms of the occupied

and unoccupied states. The correctness is used in previous studies

[13,19]. In summary, there are two predicted classes: presence and

absence. Of the total l predictions, if there arem predicted presence

when the observations of the rooms are occupied and n predicted

absence when the observations of the rooms are not occupied, the

overall accuracy is thus calculated as a percentage: 100� ðmþ nÞ=l.

All results of the stochastic models' predictions for the individual

rooms are presented in Figs. 8e12 for 15-min ahead, 30-min ahead,

1-hour ahead and 24-hour ahead respectively.

Comparing the plots with Fig. 5, the presence can be more
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Fig. 5. The presence rate of the rooms in the four houses.
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accurately predicted (>75%) in the extremely short-term forecast

(e.g. 15-min till 1-hour) for the Markovmodel if the presence rate is

smooth enough. For example, the presence rate of Container

compared to other samples does not have the small spikes

observed consistently. The predictive power of the model is also

correlated with the variances. The examples are the living room of

ACC (blue line) in (Fig. 5a) and the guest bed 2 of Stick (red line) in

Fig. 5d). The living room may be a special case owing to the

extremely low presence rate (<20%) which represents an absence

dominated pattern. In contrast, the guest bedroom 2 with a
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Fig. 6. Presence rate of the house profiles during weekdays.
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persistent presence (between 40% and 60%) can be interpreted as a

stationary type, where the resident leaves or enters their roomwith

a regular schedule. Another case that is a combination of reasonable

smoothness and variance is the guest room of SIP (red line) in

Fig. 5c) that still can reach 80% of accuracy. The only variance is

observed between 6 a.m. and 9 a.m. which is up to 50%. Although

the similar findings can be claimed for the probability sampling

models, the average accuracy of prediction for each room is much

lower than the Markov model. In contrast, ANN and SVR tend to

provide comparable performances and even better in some cases

(e.g. one guest room of ACC). For 24-hour ahead predictions, there

are no significant differences in terms of accuracy among all four

models. It is mainly because all models are based on the assump-

tion that each day's presence pattern should be similar. This kind of

assumption actually could be a drawback for a more stochastic

sample. Only a few exceptions existed in Fig. 11 and Fig. 12 where

they have more than 75% correct predations. This is one of the

limitations of this study which is discussed in the conclusion part.

4.3. Model performance at the house level

Themodel performance at the house level is more important for

applications such as smart control on thermostats. In this case,

occupancy presence can be predicted and derived in two ways: 1)

aggregates the room-level predictions to generate the prediction

for the house-level, and 2) processes the data to a house-level first

and then directly predict the occupancy status. The results of both

ways are presented in Fig. 13 for all samples. Regardless of models,

forecasts for the individual house have not much differences from

the room level. The blue lines (the house level) and the red lines

(the room level) are very similar. However, individual house does

have different predictive potentials, although they are bounded

within 60e80% correctness (two circles bounded the blue and red

lines in Fig. 13). Another error criteria is called receiver operating

characteristic (ROC) scores which is based on the true positive rate

against the false positive rage. It is further presented in the

Appendix.

The probability sampling model is improved in this case. This

could be explained by fewer noises in datasets at the house level

compared to the room level. Meanwhile, the Markov model is still

expected to have a promising performance from 15-min to 1-hour

forecast (the square, the round and the diamond shape labels in

Fig. 13). Fig. 6 shows that the samples can be categorized as four

different types: the single-square shape (ACC), the single-valley

shape (Container), the twin-valley shape (SIP) and the flat shape

(Stick). By ranking the overall accuracy of the individual house's

predictions from Fig. 13 (the red and blue dashed lines), it can be

concluded that the shape of the presence rate (Fig. 6) does not

necessarily correlated to the predictive capabilities of the models

(Fig. 13). The best case is Stick house, where most predictions are

more than 80% of accuracy (the blue and red dashed curves at all

the lower right quarters of each error polar plot in (Fig.13). The next

case with a similar mean and variance (50%e90% in Fig. 6) is SIP.

The Container house hasmore variety, which is from 20% to 100% as

shown in Fig. 6. In general, results from aMarkov process model are

similar to the probability sampling. However, Container house has

the worst performance by comparing the accuracy curves (the blue

and red dashed lines) in the left-upper quarter of the polar plots of

Fig. 13a) and b). As shown in Fig. 13a), the prediction accuracy can

achieve near 80% (meaning correctness of 80%), which demon-

strates the accurate predictions made by the proposed Markov

model.
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Fig. 8. Presence predictions for the residential houses (15-min ahead in 15-min resolution).
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A further comparison among all accuracy curves (blue and red

dashed lines) of Fig. 13bed) can conclude the similar performances

for all samples forecasted by the probability sampling, Artificial

Neural Network and Support Vector Regression. The probability

sampling and the machine learning approaches have stable fore-

casting performance regardless of the forecasting windows, as

shown in b), c) and d) of Fig. 13 comparing to a) of Fig. 13, withmore

rounded and smoothed closed curves. However, the total area of

the closed curves (both blue and red ones) in b), c) and d) of Fig. 13

for the other approaches are smaller compared to the proposed

Markov chain, which shows the irregular but bigger closed curve in

a) of Fig. 13. This indicates the better performances of the proposed

Markov process. However, ANN and SVR perform slightly better in

24-hour ahead cases, as shown in Fig. 13 with the triangle labels.

24-hour ahead forecasting are conducted based on two different

time step resolutions (15-min and 1-hour). The reason is that other

inputs such as weather, electricity price, and load forecasting may

have varied sampling frequency during predictive control design.

In summary, for extremely short term forecast from 15-min to 1-

hour ahead, the Markovmodel is recommended while the machine

learning approaches are suggested only for 24-hour ahead fore-

casts. The probability sampling model needs further improvement

to improve the performance. It is also noticed that the house-level

modeling is more convenient compared to the room-level

modeling since there are not much difference between the accu-

racies for all the four methods in different spatial resolution fore-

casts shown in Fig. 13. The room-level modeling not only bring

more samples (each room occupancy) to be processed, but also

contribute more stochastic patterns (as shown in Figs. 5 and 6)

need to be modeled.

5. Discussions

Currently, only a few studies in residential buildings focus on

occupancy models [31e34]. They provide estimations of occupancy

profiles using the Time Use Survey data. Individual occupancy

profile at building level can be derived from the national survey and

used for single houses [31]. However, studies based on such data

represents an averaged stochastic pattern because TUS data are

usually reported in terms of the average occupancy in a specific

social-economic group of the population [32]. In addition, most

models used in such studies solely depend on a standard Markov

modeling process that integrate with Monte Carlo technique or

Cross Validation to enhance the performances [33,34]. As discussed

in Section 2, the current state of the art for more accurate occu-

pancy modeling requires hybrid or improved model rather than

basic Markov process. In this study, the authors use real-time

measured data and develop a new method to predict occupancy

presence in residential buildings. Advantages of the proposed

model comparing to other approaches are: 1) more accurate fore-

cast for one-time step ahead (up to 1 h) of the occupancy presence,

2) competitive performances to the current-state-of-the art day-

ahead occupancy modeling, and 3) the ability to adapt to the

large variance change of the occupancy pattern in both the room

level and the house level.

As discussed in section 4, results of various prediction perfor-

mance for each residential house stem from the fact that every

presence profile of an occupant in houses is fundamentally

different. There is not a single method could be the best among all

possible cases (Fig. 13). One popular model commonly used for an

office environment, the probability sampling, presents difficulties
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Fig. 9. Presence predictions for the residential houses (30-min ahead in 30-min resolution).
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Fig. 10. Presence predictions for the residential houses (1-hour ahead in 1-hour resolution).
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Fig. 11. Presence predictions for the residential houses (24-hour ahead in 15-min resolution).
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to adapt to the diversity of the residential occupancies at the room

level (Figs. 8e12). From the literature review in Section 2, it is

noticed that themain advantage for most of the building occupancy

studies to adopt the probability sampling model is not because of

better accuracy but the easier integration with other tools for total

building performance simulation. The sampling model in the office

studies are normally developed for estimations of the first arrival

time, the last departure time and the intermediate departures. It is

unlikely to adopt the same strategy to the residential buildings

because there is no regular arrival time, departure time or inter-

mediate absence (e.g. the office breaks and meetings) in most

single-family houses.

Another issue is the expected accuracy for occupancy behavior

prediction used for different applications. The performance evalu-

ation of the occupancy models for building energy simulation is

different than ones for building controls. The model accuracies

from predictions rather than estimations are at best individually

claimed and verified for finite samples [13,35,36]. By far, there are

several potential performance matrixes to measure the predictive

power of the occupancy models for office occupants: the first

arrival error, last departure error, the occupancy state one-to-one

matching error, the number of transitions error, the duration of

the intermediate presence and the duration of the intermediate

absence [13]. However, it is unlikely to adopt those criteria for the

residential samples. Therefore, only one of the errors mentioned

above, the occupancy state one-to-one matching error, is used in

this study. One recent study reported that the 80th percentile of the

matching errors for a one year period of a single worker's office

[13]. For three tested methods, the errors are spanning from 0.45 to

0.48, equal to 45%e48%. Comparing to the same prediction horizon

(24-hour ahead in 15-min resolution) in this study, the results from

the residential tests actually have a decent higher accuracy. This can

be explainable by the success of the modification of the methods.

Further studies can be investigated in a longer and general data set.

The last important aspect needs to be considered is the temporal

difference of the forecast window for the occupancy presence in

various applications. In other research domains, the accuracy of the

models' predictions could be improved by changing the window of

the forecast [26]. A more recent study to predict the occupancy

level of the office workers draw a similar conclusion [36]. However,

in this study, no significant changes of prediction accuracies are

observed for most samples when the prediction horizon increases

from 15-min to 24-hour ahead. For the smart buildings, the tem-

poral changes of the occupancy models actually have less influence

on the smart controller like Nest [37]. Those advanced interfaces

not only record occupancy presence and the human building in-

teractions from sensors, but also analyze the preference of occu-

pants. This advanced control strategy diminishes the stochasticity

of users' overrides and increase the predictive power of the occu-

pancy models. Although an even higher resolution of the occu-

pancy monitoring, such as one minute interval, could be used to

improve model performance. The control algorithms will instead

have a more frequent track to the occupancy model. Such frequent

responses from occupancy-based controller can highly violate the

operations of the systems. Unless the occupants are extremely

insensitive to the comfort changes, the predictive performances

and control difficulties should be equally addressed in a relaxed

forecast window, namely 15-min, or even hourly scale.
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Fig. 12. Presence predictions for the residential houses (24-hour ahead in 1-hour resolution).

Z. Li, B. Dong / Building and Environment 121 (2017) 277e290 287



6. Conclusion

This paper aims to develop and demonstrate an innovate

approach for residential occupancy presence forecasting. By pre-

dicting future occupancy presence of different time scale (15-min

to 24-hour ahead), the proposed Markov model demonstrates its

predictive power specifically for the purpose of building control

applications. The results are validated through measured data from

the field tests of the residential houses and compared to other

commonly used methods and models for occupancy presence

predictions such as the probability sampling, Artificial Neural

Network and Support Vector Regression. The final results show that

the proposed Markov model outperforms the other methods in

terms of an average 5% correctness. Maximum difference of 11% in

one time step ahead forecast (15-min ahead) is observed for the

occupancy prediction of samples with large variances. In 24-hour

ahead prediction, not much differences could be found among

the models. Implementing such kind of occupancy model will be a

solution for characterizing the large dynamics existing in residen-

tial occupancy patterns and help buildings to optimally control the

energy devices. This study observes a relatively lower performance

in 24-hour ahead prediction cases compared to the other prediction

windows (e.g. 15-min to 1-hour ahead). It is challenging to improve

the forecast accuracy in this case evenwith the changes of temporal

resolution (sampling rate) from 15-min to 1-hour. However, the

results show competitive performances compared to recent studies

[13].

The limitations of this study includes: 1) Potential high

computational cost. The proposed method integrates a change

point analysis looping all the data in the moving window. The

optimization could become slower if the data pattern becomes

more stochastic. The situation may become worse if longer period

of training data is used. However, if the prediction horizonwindow

of the predictive control design is around 15-min, the model

developed in this study could have a great potential in imple-

menting online through increasing forgetting factor during training

process. 2) Limited data to investigate seasonal factors. Due to

privacy issues, data collection becomes extremely difficult. Often,

we do not have a continuous data set across awhole year. Hence the

seasonal or other time-related factors cannot be identified. 3) The

generality of the developed model. Through this study, we cannot

conclude the generality of the developed model again due to

limited data. The purpose of this study is to propose and test a new

model with limited data and vent its prediction capability. In the

future, we will test our models when more data is available.

Fig. 13. Comparison between models based on the modeling level.
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Appendix

The result in the appendix shows the model performance based

on receiver operating characteristic (ROC) curve based on data from

one house (ACC). The ROC scores are plotted base on the true

positive rate against the false positive rage. The ROC score is

calculated as follows:

ROC ¼

P
TPP
FP

(12)

where TP represents the true positive and FP represents the false

positive. Since the study predicts binary data, single ROC score

point is plotted. Lines are added indicating the deviation of the

score pints for each methods from the diagonal (which is the 50%

line). The further the RCO scores line deviate from this diagonal line

to the upper left space, the better the predictions are. Fig. 14 il-

lustrates the prediction made at house level is 15-minute ahead

with 15-minute sampling resolution. Fig. 15 illustrates the predic-

tion made at house level is 24-hour ahead with 15-minute sam-

pling resolution. Both results consistently show that the proposed

Markov model has better performance in short term prediction,

while machine learning method has better performance in the 24-

hour ahead prediction.
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