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Occupancy models are necessary towards design and operation of smart buildings. Developing an
appropriate algorithm to predict occupancy presence will allow a better control and optimization of the
whole building energy consumption. However, most previous studies of development of such model only
focus on commercial buildings. The occupancy model of residential houses are usually based on Time
User Survey data. This study focuses on providing a unique data set of four residential houses collected
from occupancy sensors. A new inhomogeneous Markov model for occupancy presence prediction is
proposed and compared to commonly used models such as Probability Sampling, Artificial Neural
Network, and Support Vector Regression. Training periods for the presence prediction are optimized
based on change-point analysis of historical data. The study further explores and evaluates the predictive
capability of the models by various temporal scenarios, including 15-min ahead, 30-min ahead, 1-hour
ahead, and 24-hour ahead forecasts. The spatial-level comparison is additionally conducted by evalu-
ating the prediction accuracy at both room-level and house-level. The final results show that the pro-
posed Markov model outperforms the other methods in terms of an average 5% correctness with 11%
maximum difference in 15-min ahead forecast of the occupancy presence. However, there is not much
differences observed for 24-hour ahead forecasts.
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1. Introduction residential buildings and how to utilize such model to predict

future changes of behavior patterns. In addition, this model should

Nowadays, buildings are increasingly expected to meet higher
and potentially more complex standards on the energy efficiency,
sustainability, comfort, and yet to be maintained economically.
The latest smart building can yield substantial savings on the
energy consumptions and help maintain thermal comfort [1].
Occupancy plays a key role to provide information for smart
building controls. Occupancy in offices is less varied comparing to
homes, which has a large uncertainty in residential environment
[2,3]. Meanwhile, the occupancy states (e.g. the presence and the
number), rather than actions are more relevant to building auto-
mation system, especially when buildings are equipped with oc-
cupancy sensors [4,5]. However, occupancy detection in
residential homes is usually difficult because of privacy issues.
Hence, it is interesting to investigate occupancy models in
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be able to predict in different temporal resolutions (e.g. 15-min to
24-hour window), spatial scales (e.g. a single person room or
multiple people house), and occupant types (e.g. the occupancy
presence or the number of occupants), which is missing in current
literature.

The majority of previous models are used to generate stochastic
daily occupancy profiles as a specific estimation problem for
building energy performance simulation tools rather than real-time
optimal controls. They are considered to be “validated” if one aspect
of the interested information (e.g. mean and variance) of the oc-
cupancy is simulated in a statistically reasonable way. In other
words, the models are matching the similarities between the
simulated occupancy profiles and the monitored data in terms of
the average arrival time, the average occupied rates, and the
average departure time. They are not evaluated by an exact “one to
one” matching between the prediction and ground truth at each
time step, which is necessary in the advanced control applications
such as ventilation control of an occupied space.



278 Z. Li, B. Dong / Building and Environment 121 (2017) 277—290

This paper is organized as following: the authors review and
provide insights on the shortcomings of current studies on
modeling approaches of the occupancy in Section 2; Section 3 in-
troduces the new developed Markov chain model for predictive
control purpose, and three commonly used modeling tools, which
are probability sampling, Artificial Neural Network and Support
Vector Regression models; Section 4 provides the results of each
model on occupancy prediction of four residential houses and
temporal and spatial differences between models' predictive per-
formance are further assessed; Section 5 discusses importance and
concludes this study.

2. Current state-of-the art

The occupancy modeling is gaining more attentions in both
building design and operation related research studies. Many
modeling techniques have been developed. The most commonly
used approaches are the probability sampling and the Markov
process [6—8]. These two models are developed based on proba-
bility theories and suitable for both estimation and prediction.
Statistical learning is another approach. It utilizes the statistical
mining, such as decision tree branching [9], to cluster the occu-
pancy schedules. Machine learning is an enhanced approach that
can further be used to predict occupancy. Three basic types of
occupancy information can be modeled for the aforementioned
approaches [10,11]: 1) occupied status at a space level, which refers
to whether or not a space is occupied at a particular time; 2)
number of occupants at a space level, which refers to how many
occupants are in a space at a particular time; and 3) occupant
tracking, which refers to individual movement and behavior
tracking. In this section, we focus on the review of sampling and
Markov approaches.

Traditionally, building occupancy simulation is based on pre-
defined static schedules. With newly developed co-simulation
platform, it is possible to replicate relatively realistic occupancy
schedules by integrating energy simulation software with sto-
chastic occupancy models [12]. The probability sampling approach
is one popular model that estimates the stochastic occupancy
presence [12—15]. The presence profile is generated from a sam-
pling process of the fitted distributions from historical data. The
training data containing occupancy information is normally
collected from multiple rooms of the same space type in one
building. Then, the average occupied hour per day, the average
vacancy ratio per day, the average departure and arrival time per
day, and their standard deviations can be compared and modeled
for multiple days in a cross-sectional analysis [14,15]. In essence,
the modeling of these key information using probabilistic distri-
butions is through the cumulative distribution functions (CDFs),
describing the first arrival time and the last departure time.
Meanwhile, several probability distribution functions (PDFs) are
used to fit the intermediate departure time, intermediate absences
for morning, lunch, afternoon, and overtime period. To generate the
daily occupancy profile from the fitted CDFs and PDFs, the first
arrival time and last departure time are firstly identified using the
inverse sampling method. Then, intermediate activities can be
determined by comparing the pseudo random number against the
intermediate departure PDFs. The durations of the intermediate
activities can be obtained by the inverse sampling from the dura-
tion PDFs [13].

Markov chain is another stochastic process that has been
applied in the occupancy presence modeling. Different algorithms
have been explored using both homogeneous and inhomoge-
neous Markov chains. Those studies include reproducing the
Time-User Survey data through integrated Markov Montel Carlo

technique [16], modeling the inhomogeneous Markov chain by
utilizing the inverse function method [17], and developing a hi-
erarchical approach that combines homogeneous model with the
occupants' movement at different locations of offices [18]. There
are also several efforts to extend the basic structures of Markov
models by integrating more sophisticated statistical techniques
such as logistic transformation to a generalized linear model [19],
defining the closest distance between two states [20] or blending
the transition matrixes linearly using the approximated co-
efficients by a slot function [20]. For all first-order Markov chain
models, the key assumption is that only previous time-step state
influences current time-step state. However, in an occupancy
prediction scenario, there may be also a habitual sequence that
connecting several previous occupancy states together. The
studies carried out by Wkike [21], using a higher-order Markov
model, provided a preliminary research results on habitual
sequence problems. The transitional matrixes were calculated by
an integration of the several previous occupancy states that are
assumed to contribute to the current transition probabilities. A
similar study was conducted to generate the presence distribu-
tion in residential buildings based on an integration of the
discrete histogram from the presence duration [22]. As previous
research studies show that a Markov chain of higher order has
more complex calculations and non-bimodal characters than the
first-order model.

In summary, the successful implementation of the aforemen-
tioned models to accurately capture the occupancy patterns de-
pends on model inputs and level of complexity. Endogenous inputs
(e.g. CO,) other than the occupancy information required by certain
type of models could be a solution for commercial buildings (data
could be from building automation system) but almost impossible
for residential buildings. A complex model could have a limitation
on computation time, such as a high order Markov chain model. It
normally takes tremendous time and efforts to develop the model
for one specific scenario. In this study, authors avoid using a com-
plex model. Instead, authors propose a hybrid approach that in-
tegrates basic Markov process with a optimal moving-window for
occupancy presence prediction.

3. Methodology

Given the current-state-of-the-art, authors have developed a
new approach of short-term predictions of the occupancy profile
of residential buildings for specific advanced control purpose. The
overall approach is described in Fig. 1. Here, “short-term” means
within 24-hrs ahead prediction. Specifically, a new Markov pro-
cess model has been developed. It is compared to a modified
probability sampling method and two machine learning methods,
Artificial Neural Network (ANN) and Support Vector Regression
(SVR). Occupancy presence data from different residential houses
are collected in 5-min interval. The data log for motion sensors
entails a sequence of time stamped from the presence (value of 1)
to the absence (values of 0). A low pass filter is utilized to generate
a time series data in 15-min, 30-min and 1-hour intervals for
different prediction window. The occupancy model, developed
based on these data, is designed to deliver the necessary inputs for
the predictive control design. In the following sections, the
formulation of the inhomogeneous chain is described in Section
3.1. The development of new Markov process model is
discussed in Section 3.2. Section 3.3 demonstrates a probability
sampling model adopted for the residential house case and sec-
tion 3.4 presents two commonly used machine learning
approaches.
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3.1. Traditional inhomogeneous Markov chain model

The Markov process, developed for building energy simulation
tools or other building applications, is usually in a discrete form
with fixed time steps. The states of the Markov chain are not
necessarily correlated with environmental variables of the building
(e.g. indoor air temperature). The endogenous information
collected from the occupancy sensors will be enough as the training
inputs. The key assumption to model the first-order Markov chain is
that only the instant previous state has the influence on the present
state of the occupant (called Markovian property).

Let a Markov chain X at time step k be a sequence containing
variables x1, X2, ..., X, and the observed set of occupancy statesis S =
{s1,52,...,5n} where n < k. The chance of the chain to move from
the state s; to the state s; at time step k+ 1 is decided by the
transitional probability defined as:

P,i(j:p(xkﬂ = Sj|X = 5;) (N

where p(xy 1 = Sj|X1, %2, -, X)) = P(Xpey1 = SjlXp)-

Usually, time inhomogeneity implies changes in the underlying
probability of the transition between the same pair of the states as
time goes on:

P(Xkr1 = Sjlxk = Si) =D (X = Sj[Xk_1 = Si) (2)

The transition probabilities between states for more than one
step is more easily to be calculated by a transition matrix. Let
P = (py);j denote the matrix where each element at index (i, })
represents the probability defined in Equation (1). Suppose that the
probabilities are fixed when they are not influenced by any other
factors in the current time step, the transitional matrix is defined
as:

Poo Po1 - Pon
pP— (pij>n><n _ Pglo p?1 P?n (3)
Pno Pn1 - Pnn

where 31 p; = 1forany 0 <i<n.

The transition matrix trained for the Markov chain in this study
uses the maximum likelihood estimation (MLE) with a moving
window optimization. In essence, the moving window is a trimmed
window covering the sequence W = {x;, X1, ...,Xs} in the Markov
chain X where 0 < t<s < k for the prediction of state x;,;. Given
one moving window where there are n; pairs of the states'

UTSA Markov Model,

o
Machine Learning

Fig. 1. The overview of the methods and approaches in this study.

sequence {s;,s;} in the all pairs of the sequences {s;,s;} fort <1 <s,
the transition probability estimated by MLE is:

ﬁ n,‘j +
i~ =k L
S (i + a)

where « is a smooth factor (0 <« <0.1). Owing to the limitation of
the window size, the occupancy may enter a “sink” state with an
extremely small probability of transition. The smooth factor is used
to avoid the “sink” state to appear in the stages of estimations.

(4)

3.2. New Markov chain model

In this study, the authors propose to integrate the moving-
window strategy to estimate the transitional probability matrix
and utilize the model for prediction with a change-point analysis.
The authors try to answer two questions: 1) at which time step
should be the horizon of the moving window change; and 2) how
long should the historical data be chosen in one horizon of the
window. Let D = {dy, ...,d24.,} represents the all selectable his-
torical data before the state that need to be predicted. Here, if the
occupancy presence state to be predicted is in a working day, the
selection of D only contains the available profiles of z working days.
Regardless of the occupancy level, D is processed into a data set
containing only the presence and absence as 1 and 0. A discrete
profile of the presence probability in daily scale is generated by:

_ P (Azfj'd(j—1)x24+m)
z

m (5)
where 1 < m < 24 if the occupancy data is in hourly scale and 1 is
an exponential forgetting factor, which is below 1. Without
forgetting effect, the data of all periods are treated equally with
regards to the information that such data contains and to generate
the distribution of presence. An exponential forgetting could
maximize the penalty on the older information of the data and
allow the presence probability to retain the most recent informa-
tion only.

Change point detection is implemented to check at which time
step in a daily profile of the set D that an occupancy presence
distribution is changed. The assumption is that a change of the
moving window should happen based on the change of presence
distribution on a daily scale. The detection algorithm in this study
used relative density-ration estimation with the Pearson diver-
gence as a divergence measure to score the possible change points.
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For a subsample m selected from the distribution n, the symme-
trized divergence score is defined as follows [23]:

[ pm 20 am + [P @

where p,(m) = ap(n) + (1 — a)p(m), p is the probability density
function of the corresponding variables, and the factor « is a
smooth factor to the plain density ration.

Four main patterns can by basically extracted and recognized
from occupancy presence data: long absence, low presence rate,
high presence rate and long presence. They can be attributed to
each of the classified windows. During prediction, each of the state
in the next day after the set D is assumed to have the same changing
points that are estimated from the presence distribution of the set
D. The tuning of the training data, as an answer to the second
question, in a moving window depends on the prediction horizon.
In an extremely short-term forecast case, models are commonly
trained with within one moving window (e.g. 15-min, 30-min, and
1-hour ahead cases). The size of the window is determined by a
contingency table with a leave-one-out validation. The validation is
performed on two sub sets of data in five most recent working days.
Commonly used 10-folder validation is not suitable in this case due
to the limited length of window size. Each tuning length within the
horizon is assigned a score that added the true positive value and
true negative value from the contingency table. The highest score
represents a suitable candidate of the tuning length of one moving
horizon. In 24-hour ahead prediction, it is impossible to access the
intraday information to calibrate the inhomogeneity. Hence the
assumption is that two consecutive days have a similar pattern. The
predictions thus are simulated in a daily scale where the full ho-
rizon of each moving window classified by Eq. (6) is used as the
tuning length in that moving window. A more detailed algorithm to
predict the occupancy is shown in Fig. 2.

3.3. Probability sampling model

This approach applies the random sampling process on the data
by assuming that it does not have the Markov properties. Currently,
the probability sampling method has been validated in certain level
to predict the states of the presence [24,25]. However, these studies
are limited to the office buildings. In this study, the authors will
adopt the popular methodologies designed for office environments
to predict the occupancy presence in the residential samples.

The model is developed mainly based on the probability profile
of the historical presence. The prediction is made by inverse sam-
pling during the presence periods. The simulation algorithm only
depends on the profile of the presence probabilities generated by
Eq. (5). For each time step of the day to be predicted, the occupancy
state is decided by comparing the presence probability at that time
step from the profile with a random number drawn from the uni-
form distribution. The room is considered to be occupied only if the
number is smaller than the presence probability. The algorithm to
predict the presence using the random sampling is shown in Fig. 3.

3.4. Machine learning approaches

Machine learning is a black box approach. It is usually compared
to the “white” model, such as the stochastic model, where each
probability can be interpreted by the occupancy presence rate. It
utilizes advanced computational learning algorithms as the “arti-
ficial intelligence” to learn patterns from the data set. Various
empirical and theoretical studies have proven the capability of this
approach for different kinds of applications [26,27].

Prediction set S < {0....,0} in a length of the day duration
Predict step t<— 1
Historian Training Set A in a length of » historical days
for day i do
P « the presence profile calculated by Eq.(5) from H
Score < calculated score from Eq.(6) by looping P in fixed length
change points < the local maximum points in Score
windows < the classified windows decide by change points

for t in one moving window fromwindows do
if Predwindow=1 then
validation set < most recent five working days before day i
contingency table < perform leave-one-out validation of 2
folders in each day of the validation set
[ < the length of the trained set with best prediction score
calculated by the contingency table for the leave-out set.
m < the transitional matrix calculated by MLE of Eq.(4)
from #-/to -1 steps
else if Predwindow>1 then
[ < the length of the current moving window.
m < the transitional matrix by MLE of Eq.(4) from t-1-24 to t-
24 steps (same period from yesterday)
end

r1 < random sampling form a uniform distribution
if Predwindow=1 then
s < the occupancy state from z-1
S(#) < comparing r/ with the corresponding probability that
describe the transition from s to other state in m
else if Predwindow>1 then
if =1 then
s < the occupancy state from #-1
S(7) < comparing r/ with the corresponding probability that
describe the transition from s to other state in m
else if £~1 then
s < the occupancy state from S(z-1)
S(#) < comparing r1 with the corresponding probability that
describe the transition from s to other state in m
end
end

Fig. 2. The simulation diagram of the first-order inhomogeneous Markov chain.

Two common methods are applied and tested here: Artificial
Neural Network (ANN) and Support Vector Regression (SVR). For
ANN, feed forward neural network (FFNN) of a single layer and a
double layer configuration are explored. However, due to the over-
fitting problem, good forecasts are not found from the double
hidden layer structure [26,28]. Neurons calculate the weights sum
of the inputs and produce the output by transfer functions as
follows:

N M
fx) =Y wje; [Zwijxi + Wig | 4+ Wjo (7)

j=1 i=1

where w is the weights for input, hidden, and output layers, x is the
training input, N represents the total number of hidden neurons, M
represents the total number of inputs, and M represents the
transfer function for each hidden neuron. In this paper, FFNN is
modeled as 1 hidden layer with 20 neurons, 1 output neuron (the
prediction of presence state), and multiple input neurons (several
time lagged values of historical occupancy states depending on the
forecasting window). The transfer functions are the hyperbolic
tangent sigmoid functions for the input layer, and the linear
transfer function for the output layer. Hidden layer weights in
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Fig. 3. Predictions of the occupancy using the probabilistic model.

Equation (7) are learned from Levenberg-Marquardt back-propa-
gation algorithm [29]. Model validation is performed on a holdout
set of the data using the criteria of the mean squared error, where
the training set contains at most 70% of the input set.

For support vector regression (SVR), the SVR approximates the
inputs and outputs using the following form.
f(x) =we(x) +b (8)
where ¢(x) represents the transfer function and parameters w and
b are estimated by minimizing the regularized risk function:

- 1 T n *
min 5w -W+C;<Ei +£,~)

styi—wle(x)—b<e+§ (9)

wig(x) —b-yj<e+§

where n represents the total number of training samples, & is the
error slacks guaranteeing the solutions, C is the regularized penalty,
and ¢ defines the desired error tolerance. LibSVM [30] is used in our
study. A radial basis function of 3° with weighting factor v is used.
The authors find the SVR model is relatively insensitive to the value
of ¢ smaller than 0.01 whereas both C and y necessitate indepen-
dent tuning. These parameters are determined by 10 fold cross-
validation based on mean square error. The grid search scale for C
and v is maintained among the range from 10> to 103,

The training process of the two methods is facilitated by testing
different configurations of the inputs from the historical presence
information. The input set for the 15-min, 30-min and 1-hour
ahead windows, defined as H1, is a Markov order 4 sequence:
H1 3f(Ot,1,0t,2,...,Ot,4) (10)
where O represents the occupancy presence from the previous
one time step back, ..., and O;_4 represents the occupancy presence
from the previous four time steps back.

Input set H2 is used to forecast the next 24-hour ahead occu-
pancy presence of the current time step O¢:

H2 : f(Or_24,0¢_48,0¢_72, .., Or_168) (11)

For one time step ahead forecast (the 15-min, the 30-min and
1 h ahead forecast), inputs include the historical occupancy pres-
ence from 1 to 4 time steps back. By comparison, 24-hour ahead
case needs the historical occupancy at the same time from
yesterday, the day before yesterday, ..., and the day before one
week. These features are selected based on an exhaustive search by
minimizing the coefficient of determination.

4. Results
4.1. Description of testbeds

The occupancy data in this research are collected from four
houses in west side of San Antonio, as shown in Fig. 4. The four
samples are single-family dwellings around 110 m? each. Houses
are named according to construction materials: SIP (Structure
Insulated Panel), ACC (Autoclaved Aerated Concrete), Container
(Steel Container), and Stick (Wood). They are leased and operated
mostly by part-time workers and low-income people. The pres-
ences of occupancy are detected at 5 min intervals from over 30
sensors for all the rooms including kitchen, bathroom, living and
bedroom areas during the year of 2014. The occupancy detection
sensors are passive infrared sensors. Sensors are attached under
ceiling in the middle of each room. Monitoring data are stored in
the on-board memories. All the collected data are further exported
to SQL database. To pre-process 5-minute data to other time in-
tervals, presence counts are processed using moving average filters
of Savitzky-Golay algorithm. To retain a realistic pattern, only 0.95
factor is used in each time interval. The following testing periods
are selected for occupancy modeling and prediction: ACC was
modeled from Sep 17th to Oct 31st. Container was modeled from
May 21st to July 31st. SIP was modeled from Jan.1st to Apr.30th.
Stick was modeled from Jan.1st to March.31st. All periods are in
Year 2014 and only include weekdays.

Stick
ACC
Container

SIP

Fig. 4. Four test houses.

The average rate of the presence was plotted for the monitored
rooms of the four samples, as shown in the upper part of each figure
in Fig. 5. All four houses demonstrate significant differences of the
presence pattern at the room level. However, the similarity is
revealed in a cross-sectional comparison. Master bedrooms are
mostly occupied during the night. Living rooms or kitchens are
occupied mostly around afternoons and evenings. The variances
from all rooms' presence rate of the individual house are presented
in the lower part of each figure in Fig. 5 using 1.5 interquartile range
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Fig. 5. The presence rate of the rooms in the four houses.

(99% confidence interval) in box-and-whisker plots. Large variances
are observed in first three houses while the fourth one has a less
varied pattern. More details can be referred to the study of those
samples [8].

Further analyses reveal the consistent patterns at the house
level, as shown in Fig. 6. It shows that until 10 a.m., most of the
residents in the houses (except SIP) have the presence probabilities
close to 100% of sleeping, where there are large variances of oc-
cupancy presence during the daytime. The ACC's occupant has a
probability of 70% to leave the house between 10 a.m. and 4 p.m.
and back after 5 p.m. A more gradual ramp-up and ramp-down is
observed in the Container house between 10 a.m. and 6 p.m. SIP's
resident is a part-time worker who works or leaves during the night
explaining the lack of presence during the night while Stick's family
has dependents at home all day, explaining the high occupancy
during the daytime. It is also clear that the variances of the presence
rate at the house level in Fig. 6 is significantly smaller compared to
those at the room level in Fig. 5. Based on these analyses, two as-
sumptions are made for modeling this specific data set: 1) for each
day of working days in Fig. 6, less variance (mostly below 20%) is
observed and thus training does not need to differentiate individual
day types such as Monday or Friday; 2) the modeling from the
house level rather than the room level will be acceptable for oc-
cupancy presence forecast if they maintain a similar prediction
accuracy.

4.2. Model performance at the room level

The key to utilize the stochastic models depends on the opti-
mization of the moving window as mentioned in Section 3.2. One
example of the changing points between the windows is shown in
Fig. 7 for the prediction of occupancy presence at ACC's master
room on Oct 15th. The normalized score is calculated based on a
forgetting factor of 0.8 with a span of all the historical records
before the date. Based on the analysis of historical data, there
should be five windows for prediction of that specific day. The first
one starts from 12 a.m. until 7 a.m., the next one ends around 10
a.m., the third one ends around 6 p.m., the fourth one ends around
8 p.m., and the last one lasts till the end of the day (12 a.m.). The
predictive performance of the models is evaluated based on the
correctness of the occupancy predictions in terms of the occupied
and unoccupied states. The correctness is used in previous studies
[13,19]. In summary, there are two predicted classes: presence and
absence. Of the total [ predictions, if there are m predicted presence
when the observations of the rooms are occupied and n predicted
absence when the observations of the rooms are not occupied, the
overall accuracy is thus calculated as a percentage: 100 x (m + n)/L
All results of the stochastic models' predictions for the individual
rooms are presented in Figs. 8—12 for 15-min ahead, 30-min ahead,
1-hour ahead and 24-hour ahead respectively.

Comparing the plots with Fig. 5, the presence can be more
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accurately predicted (>75%) in the extremely short-term forecast
(e.g.15-min till 1-hour) for the Markov model if the presence rate is
smooth enough. For example, the presence rate of Container
compared to other samples does not have the small spikes
observed consistently. The predictive power of the model is also

Fig. 7. Change points detection for the moving windows.
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correlated with the variances. The examples are the living room of
ACC (blue line) in (Fig. 5a) and the guest bed 2 of Stick (red line) in
Fig. 5d). The living room may be a special case owing to the
extremely low presence rate (<20%) which represents an absence
dominated pattern. In contrast, the guest bedroom 2 with a
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Fig. 8. Presence predictions for the residential houses (15-min ahead in 15-min resolution).

persistent presence (between 40% and 60%) can be interpreted as a
stationary type, where the resident leaves or enters their room with
aregular schedule. Another case that is a combination of reasonable
smoothness and variance is the guest room of SIP (red line) in
Fig. 5c) that still can reach 80% of accuracy. The only variance is
observed between 6 a.m. and 9 a.m. which is up to 50%. Although
the similar findings can be claimed for the probability sampling
models, the average accuracy of prediction for each room is much
lower than the Markov model. In contrast, ANN and SVR tend to
provide comparable performances and even better in some cases
(e.g. one guest room of ACC). For 24-hour ahead predictions, there
are no significant differences in terms of accuracy among all four
models. It is mainly because all models are based on the assump-
tion that each day's presence pattern should be similar. This kind of
assumption actually could be a drawback for a more stochastic
sample. Only a few exceptions existed in Fig. 11 and Fig. 12 where
they have more than 75% correct predations. This is one of the
limitations of this study which is discussed in the conclusion part.

4.3. Model performance at the house level

The model performance at the house level is more important for
applications such as smart control on thermostats. In this case,
occupancy presence can be predicted and derived in two ways: 1)
aggregates the room-level predictions to generate the prediction
for the house-level, and 2) processes the data to a house-level first
and then directly predict the occupancy status. The results of both
ways are presented in Fig. 13 for all samples. Regardless of models,
forecasts for the individual house have not much differences from
the room level. The blue lines (the house level) and the red lines
(the room level) are very similar. However, individual house does

have different predictive potentials, although they are bounded
within 60—80% correctness (two circles bounded the blue and red
lines in Fig. 13). Another error criteria is called receiver operating
characteristic (ROC) scores which is based on the true positive rate
against the false positive rage. It is further presented in the
Appendix.

The probability sampling model is improved in this case. This
could be explained by fewer noises in datasets at the house level
compared to the room level. Meanwhile, the Markov model is still
expected to have a promising performance from 15-min to 1-hour
forecast (the square, the round and the diamond shape labels in
Fig. 13). Fig. 6 shows that the samples can be categorized as four
different types: the single-square shape (ACC), the single-valley
shape (Container), the twin-valley shape (SIP) and the flat shape
(Stick). By ranking the overall accuracy of the individual house's
predictions from Fig. 13 (the red and blue dashed lines), it can be
concluded that the shape of the presence rate (Fig. 6) does not
necessarily correlated to the predictive capabilities of the models
(Fig. 13). The best case is Stick house, where most predictions are
more than 80% of accuracy (the blue and red dashed curves at all
the lower right quarters of each error polar plot in (Fig. 13). The next
case with a similar mean and variance (50%—90% in Fig. 6) is SIP.
The Container house has more variety, which is from 20% to 100% as
shown in Fig. 6. In general, results from a Markov process model are
similar to the probability sampling. However, Container house has
the worst performance by comparing the accuracy curves (the blue
and red dashed lines) in the left-upper quarter of the polar plots of
Fig. 13a) and b). As shown in Fig. 13a), the prediction accuracy can
achieve near 80% (meaning correctness of 80%), which demon-
strates the accurate predictions made by the proposed Markov
model.
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Fig. 9. Presence predictions for the residential houses (30-min ahead in 30-min resolution).

A further comparison among all accuracy curves (blue and red
dashed lines) of Fig. 13b—d) can conclude the similar performances
for all samples forecasted by the probability sampling, Artificial
Neural Network and Support Vector Regression. The probability
sampling and the machine learning approaches have stable fore-
casting performance regardless of the forecasting windows, as
shown in b), ¢) and d) of Fig. 13 comparing to a) of Fig. 13, with more
rounded and smoothed closed curves. However, the total area of
the closed curves (both blue and red ones) in b), ¢) and d) of Fig. 13
for the other approaches are smaller compared to the proposed
Markov chain, which shows the irregular but bigger closed curve in
a) of Fig. 13. This indicates the better performances of the proposed
Markov process. However, ANN and SVR perform slightly better in
24-hour ahead cases, as shown in Fig. 13 with the triangle labels.
24-hour ahead forecasting are conducted based on two different
time step resolutions (15-min and 1-hour). The reason is that other
inputs such as weather, electricity price, and load forecasting may
have varied sampling frequency during predictive control design.

In summary, for extremely short term forecast from 15-min to 1-
hour ahead, the Markov model is recommended while the machine
learning approaches are suggested only for 24-hour ahead fore-
casts. The probability sampling model needs further improvement
to improve the performance. It is also noticed that the house-level
modeling is more convenient compared to the room-level
modeling since there are not much difference between the accu-
racies for all the four methods in different spatial resolution fore-
casts shown in Fig. 13. The room-level modeling not only bring
more samples (each room occupancy) to be processed, but also
contribute more stochastic patterns (as shown in Figs. 5 and 6)
need to be modeled.

5. Discussions

Currently, only a few studies in residential buildings focus on
occupancy models [31—34]. They provide estimations of occupancy
profiles using the Time Use Survey data. Individual occupancy
profile at building level can be derived from the national survey and
used for single houses [31]. However, studies based on such data
represents an averaged stochastic pattern because TUS data are
usually reported in terms of the average occupancy in a specific
social-economic group of the population [32]. In addition, most
models used in such studies solely depend on a standard Markov
modeling process that integrate with Monte Carlo technique or
Cross Validation to enhance the performances [33,34]. As discussed
in Section 2, the current state of the art for more accurate occu-
pancy modeling requires hybrid or improved model rather than
basic Markov process. In this study, the authors use real-time
measured data and develop a new method to predict occupancy
presence in residential buildings. Advantages of the proposed
model comparing to other approaches are: 1) more accurate fore-
cast for one-time step ahead (up to 1 h) of the occupancy presence,
2) competitive performances to the current-state-of-the art day-
ahead occupancy modeling, and 3) the ability to adapt to the
large variance change of the occupancy pattern in both the room
level and the house level.

As discussed in section 4, results of various prediction perfor-
mance for each residential house stem from the fact that every
presence profile of an occupant in houses is fundamentally
different. There is not a single method could be the best among all
possible cases (Fig. 13). One popular model commonly used for an
office environment, the probability sampling, presents difficulties
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to adapt to the diversity of the residential occupancies at the room
level (Figs. 8—12). From the literature review in Section 2, it is
noticed that the main advantage for most of the building occupancy
studies to adopt the probability sampling model is not because of
better accuracy but the easier integration with other tools for total
building performance simulation. The sampling model in the office
studies are normally developed for estimations of the first arrival
time, the last departure time and the intermediate departures. It is
unlikely to adopt the same strategy to the residential buildings
because there is no regular arrival time, departure time or inter-
mediate absence (e.g. the office breaks and meetings) in most
single-family houses.

Another issue is the expected accuracy for occupancy behavior
prediction used for different applications. The performance evalu-
ation of the occupancy models for building energy simulation is
different than ones for building controls. The model accuracies
from predictions rather than estimations are at best individually
claimed and verified for finite samples [13,35,36]. By far, there are
several potential performance matrixes to measure the predictive
power of the occupancy models for office occupants: the first
arrival error, last departure error, the occupancy state one-to-one
matching error, the number of transitions error, the duration of
the intermediate presence and the duration of the intermediate
absence [13]. However, it is unlikely to adopt those criteria for the
residential samples. Therefore, only one of the errors mentioned
above, the occupancy state one-to-one matching error, is used in
this study. One recent study reported that the 80™ percentile of the
matching errors for a one year period of a single worker's office
[13]. For three tested methods, the errors are spanning from 0.45 to

0.48, equal to 45%—48%. Comparing to the same prediction horizon
(24-hour ahead in 15-min resolution) in this study, the results from
the residential tests actually have a decent higher accuracy. This can
be explainable by the success of the modification of the methods.
Further studies can be investigated in a longer and general data set.

The last important aspect needs to be considered is the temporal
difference of the forecast window for the occupancy presence in
various applications. In other research domains, the accuracy of the
models' predictions could be improved by changing the window of
the forecast [26]. A more recent study to predict the occupancy
level of the office workers draw a similar conclusion [36]. However,
in this study, no significant changes of prediction accuracies are
observed for most samples when the prediction horizon increases
from 15-min to 24-hour ahead. For the smart buildings, the tem-
poral changes of the occupancy models actually have less influence
on the smart controller like Nest [37]. Those advanced interfaces
not only record occupancy presence and the human building in-
teractions from sensors, but also analyze the preference of occu-
pants. This advanced control strategy diminishes the stochasticity
of users' overrides and increase the predictive power of the occu-
pancy models. Although an even higher resolution of the occu-
pancy monitoring, such as one minute interval, could be used to
improve model performance. The control algorithms will instead
have a more frequent track to the occupancy model. Such frequent
responses from occupancy-based controller can highly violate the
operations of the systems. Unless the occupants are extremely
insensitive to the comfort changes, the predictive performances
and control difficulties should be equally addressed in a relaxed
forecast window, namely 15-min, or even hourly scale.



288 Z. Li, B. Dong / Building and Environment 121 (2017) 277—290

a) Markov Chain

Contain

SIP

Containe

Containg

o

?@% #3%6%

Sampling

----- House Level
----- Room Level
B 15-min Prediction
@ 30-min Prediction
# 1-hour Prediction
¥ 24-hour Prediciton(15-min)
4 24-hour Prediciton(1-hour)

Fig. 13. Comparison between models based on the modeling level.

6. Conclusion

This paper aims to develop and demonstrate an innovate
approach for residential occupancy presence forecasting. By pre-
dicting future occupancy presence of different time scale (15-min
to 24-hour ahead), the proposed Markov model demonstrates its
predictive power specifically for the purpose of building control
applications. The results are validated through measured data from
the field tests of the residential houses and compared to other
commonly used methods and models for occupancy presence
predictions such as the probability sampling, Artificial Neural
Network and Support Vector Regression. The final results show that
the proposed Markov model outperforms the other methods in
terms of an average 5% correctness. Maximum difference of 11% in
one time step ahead forecast (15-min ahead) is observed for the
occupancy prediction of samples with large variances. In 24-hour
ahead prediction, not much differences could be found among
the models. Implementing such kind of occupancy model will be a
solution for characterizing the large dynamics existing in residen-
tial occupancy patterns and help buildings to optimally control the
energy devices. This study observes a relatively lower performance
in 24-hour ahead prediction cases compared to the other prediction
windows (e.g. 15-min to 1-hour ahead). It is challenging to improve

the forecast accuracy in this case even with the changes of temporal
resolution (sampling rate) from 15-min to 1-hour. However, the
results show competitive performances compared to recent studies
[13].

The limitations of this study includes: 1) Potential high
computational cost. The proposed method integrates a change
point analysis looping all the data in the moving window. The
optimization could become slower if the data pattern becomes
more stochastic. The situation may become worse if longer period
of training data is used. However, if the prediction horizon window
of the predictive control design is around 15-min, the model
developed in this study could have a great potential in imple-
menting online through increasing forgetting factor during training
process. 2) Limited data to investigate seasonal factors. Due to
privacy issues, data collection becomes extremely difficult. Often,
we do not have a continuous data set across a whole year. Hence the
seasonal or other time-related factors cannot be identified. 3) The
generality of the developed model. Through this study, we cannot
conclude the generality of the developed model again due to
limited data. The purpose of this study is to propose and test a new
model with limited data and vent its prediction capability. In the
future, we will test our models when more data is available.
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Appendix

The result in the appendix shows the model performance based
on receiver operating characteristic (ROC) curve based on data from
one house (ACC). The ROC scores are plotted base on the true
positive rate against the false positive rage. The ROC score is
calculated as follows:

ROC:% (12)

where TP represents the true positive and FP represents the false
positive. Since the study predicts binary data, single ROC score
point is plotted. Lines are added indicating the deviation of the
score pints for each methods from the diagonal (which is the 50%
line). The further the RCO scores line deviate from this diagonal line
to the upper left space, the better the predictions are. Fig. 14 il-
lustrates the prediction made at house level is 15-minute ahead
with 15-minute sampling resolution. Fig. 15 illustrates the predic-
tion made at house level is 24-hour ahead with 15-minute sam-
pling resolution. Both results consistently show that the proposed
Markov model has better performance in short term prediction,
while machine learning method has better performance in the 24-
hour ahead prediction.

References

[1] Energy Efficiency Strategic Plan, The government of California, Accessed at,
http://www.energy.ca.gov/ab758/documents/CAEnergyEfficiencyStrategicPlan_
Jan2011.pdf, 2011.

[2] B. Dong, Z. Li, G. Mcfadden, An investigation on energy-related occupancy
behavior for low-income residential buildings, Sci. Technol. Built Environ. 21
(6) (2015) 892—901.

H.B. Gunay, W. O'Brien, 1. Beausoleil-Morrison, A critical review of observation

studies, modeling, and simulation of adaptive occupant behaviors in offices,

Build. Environ. 70 (2013) 31—47.

[4] A.L Dounis, C. Caraiscos, Advanced control systems engineering for energy and
comfort management in a building environment—a review, Renew. Sustain.
Energy Rev. 13 (6) (2009) 1246—1261.

[5] M.A. ul Haq, M.Y. Hassan, H. Abdullah, H.A. Rahman, M.P. Abdullah, F. Hussin,
D.M. Said, A review on lighting control technologies in commercial buildings,
their performance and affecting factors, Renew. Sustain. Energy Rev. 33 (2014)
268-279.

[6] T. Hong, H. Sun, Y. Chen, S.C. Taylor-Lange, D. Yan, An occupant behavior

modeling tool for co-simulation, Energy Build. 117 (2016) 272—281.

X. Feng, D. Yan, C. Wang, On the simulation repetition and temporal dis-

cretization of stochastic occupant behaviour models in building performance

simulation, J. Build. Perform. Simul. (2016) 1-13.

[8] C. Wang, D. Yan, H. Sun, Y. Jiang, A generalized probabilistic formula relating
occupant behavior to environmental conditions, Build. Environ. 95 (2016)
53—62.

[9] S. D'Oca, T. Hong, Occupancy schedules learning process through a data
mining framework, Energy Build. 88 (2015) 395—408.

[10] X. Feng, D. Yan, T. Hong, Simulation of occupancy in buildings, Energy Build.
87 (2015) 348—359.

[11] T. Hong, D. Yan, S. D'Oca, CF. Chen, Ten questions concerning occupant
behavior in buildings: the big picture, Build. Environ. 114 (2017) 518—530.

[12] D. Yan, W. O'Brien, T. Hong, X. Feng, H.B. Gunay, F. Tahmasebi, A. Mahdavi,
Occupant behavior modeling for building performance simulation: current
state and future challenges, Energy Build. 107 (2015) 264—278.

[13] A. Mahdavi, F. Tahmasebi, Predicting people's presence in buildings: an
empirically based model performance analysis, Energy Build. 86 (2015)
349-355.

[14] J. Tanimoto, A. Hagishima, H. Sagara, A methodology for peak energy
requirement considering actual variation of occupants' behavior schedules,
Build. Environ. 43 (4) (2008) 610—619.

[15] D. Wang, C.C. Federspiel, F. Rubinstein, Modeling occupancy in single person
offices, Energy Build. 37 (2) (2005) 121—126.

[16] I Richardson, M. Thomson, D. Infield, A high-resolution domestic building
occupancy model for energy demand simulations, Energy Build. 40 (8) (2008)
1560—1566.

[17] J. Page, D. Robinson, N. Morel, ].L. Scartezzini, A generalised stochastic model
for the simulation of occupant presence, Energy Build. 40 (2) (2008) 83—98.

[18] C.Wang, D. Yan, Y. Jiang, A novel approach for building occupancy simulation
(Vol. 4, No. 2, pp. 149—167), in: Building Simulation, Tsinghua University
Press, co-published with Springer-Verlag GmbH, 2011, June.

[19] P.D. Andersen, A. Iversen, H. Madsen, C. Rode, Dynamic modeling of presence
of occupants using inhomogeneous Markov chains, Energy Build. 69 (2014)
213-223.

[20] V.L. Erickson, A.E. Cerpa, November. Occupancy based demand response HVAC
control strategy, in: Proceedings of the 2nd ACM Workshop on Embedded
Sensing Systems for Energy-efficiency in Building, ACM, 2010, pp. 7—12.

[21] U. Wilke, Probabilistic Bottom-up Modelling of Occupancy and Activities to
Predict Electricity Demand in Residential Buildings (Doctoral dissertation,
Ecole Polytechnique Fédérale de Lausanne), 2013.

[22] C. Manna, D. Fay, K.N. Brown, N. Wilson, November. Learning occupancy in
single person offices with mixtures of multi-lag Markov chains, in: Tools with
Artificial Intelligence (ICTAI), 2013 IEEE 25th International Conference on,
IEEE, 2013, pp. 151—-158.

[23] S. Liu, M. Yamada, N. Collier, M. Sugiyama, Change-point detection in time-
series data by relative density-ratio estimation, Neural Netw. 43 (2013)
72—-83.

[24] V. Tabak, B. de Vries, Methods for the prediction of intermediate activities by
office occupants, Build. Environ. 45 (6) (2010) 1366—1372.

[25] D. Aerts, J. Minnen, L. Glorieux, I. Wouters, F. Descamps, A method for the
identification and modelling of realistic domestic occupancy sequences for
building energy demand simulations and peer comparison, Build. Environ. 75
(2014) 67-78.

[26] B. Dong, Z. Li, S.M. Rahman, R. Vega, A hybrid model approach for forecasting
future residential electricity consumption, Energy Build. 117 (2016) 341—-351.

[27] Z.Li, S.M. Rahman, R. Vega, B. Dong, A hierarchical approach using machine
learning methods in solar photovoltaic energy production forecasting, En-
ergies 9 (1) (2016) 55.

[28] S.M. Rahman, Rolando Vega PhD, P.E, Machine learning approach applied in
electricity load forecasting: within residential houses context, ASHRAE Trans.
121 (2015) 1V.

[29] K. Levenberg, A method for the solution of certain non-linear problems in
least squares, Q. Appl. Math. 2 (2) (1944) 164—168.

[30] C.C.Chang, CJ. Lin, LIBSVM: a library for support vector machines, ACM Trans.
Intelligent Syst. Technol. (TIST) 2 (3) (2011) 27.

[31] ]. Torriti, Demand side management for the european supergrid: occupancy
variances of european single-person households, Energy Policy 44 (2012)
199-206.

[32] J. Widén, A. Molin, K. Ellegard, Models of domestic occupancy, activities and
energy use based on time-use data: deterministic and stochastic approaches

[E]

[7



290

[33]

[34]

[35]

Z. Li, B. Dong / Building and Environment 121 (2017) 277—290

with application to various building-related simulations, ]. Build. Perform.
Simul. 5 (1) (2012) 27—-44.

M.A. Lépez-Rodriguez, 1. Santiago, D. Trillo-Montero, ]. Torriti, A. Moreno-
Munoz, Analysis and modeling of active occupancy of the residential sector in
Spain: an indicator of residential electricity consumption, Energy Policy 62
(2013) 742—751.

U. Wilke, F. Haldi, ].L. Scartezzini, D. Robinson, A bottom-up stochastic model
to predict building occupants' time-dependent activities, Build. Environ. 60
(2013) 254—264.

B. Dong, K.P. Lam, A real-time model predictive control for building heating

and cooling systems based on the occupancy behavior pattern detection and
local weather forecasting, Vol. 7, No. 1, pp. 89—106, in: Building Simulation,
Springer Berlin Heidelberg, 2014, February.

[36] Z. Chen, Y.C. Soh, Comparing occupancy models and data mining approaches

for regular occupancy prediction in commercial buildings, J. Build. Perform.
Simul. (2016) 1-9.

[37] A. Meier, How People Actually Use Thermostats. ACEEE Summer Study on

Energy Efficiency in Buildings, American Council for an Energy Efficient
Economy, Pacific Grove, Calif, 2012.



	A new modeling approach for short-term prediction of occupancy in residential buildings
	1. Introduction
	2. Current state-of-the art
	3. Methodology
	3.1. Traditional inhomogeneous Markov chain model
	3.2. New Markov chain model
	3.3. Probability sampling model
	3.4. Machine learning approaches

	4. Results
	4.1. Description of testbeds
	4.2. Model performance at the room level
	4.3. Model performance at the house level

	5. Discussions
	6. Conclusion
	Appendix
	References


