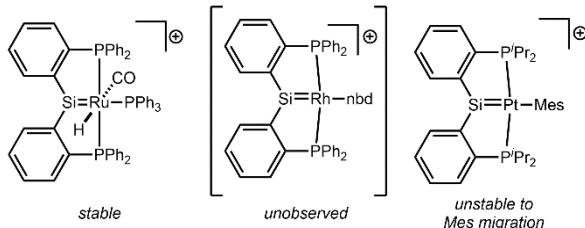


Synthesis and Reactivity of Pincer-Type Cobalt Silyl and Silylene Complexes

Jia Zhang,^{†,‡} Bryan J. Foley,[†] Nattamai Bhuvanesh,[†] Jia Zhou,[†] Daron E. Janzen,[§] Matthew T. Whited,^{*,‡} and Oleg V. Ozerov^{*,†}

[†] Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States

[‡] Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States

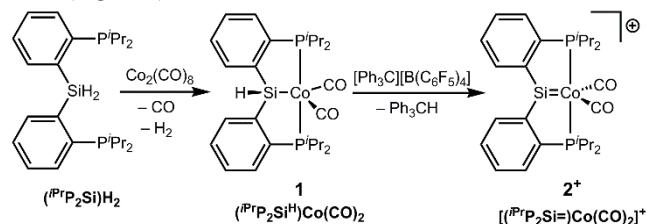

[§] School of Science, Harbin Institute of Technology, Shenzhen 518055, China

^{*} Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, Minnesota 55105, United States

Supporting Information Placeholder

ABSTRACT: Preparation and characterization of a series of pincer-type $[P_2Si]Co$ complexes are reported, including a crystal structure of the first base-free cobalt silylene complex. The cationic silylene complex is strongly Lewis-acidic and oxophilic, readily coordinating Lewis bases such as triflate and pyridine and heterolytically cleaving the O–H bonds in ethanol and water.

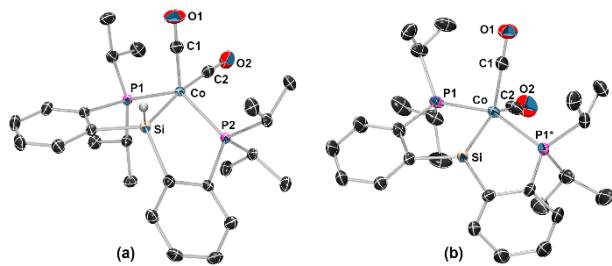
Metal silylenes ($M=SiR_2$) have been shown to exhibit a variety of modes of reactivity, often quite distinct from their metal carbene congeners.¹ Though silylenes have been implicated as important intermediates in hydrosilylation catalysis,² their utilization in general has been limited by their high reactivity. Base-free silylene complexes featuring first-row transition metals are particularly unusual. Examples have been reported for titanium,³ chromium,⁴ manganese,⁵ iron,⁶ and nickel.⁷ However, cobalt represents a notable absence from this series.


Chart 1. Previously reported silylene complexes supported by pincer-type $[P_2Si]$ ligands.

Our research groups have recently developed the coordination chemistry of a pincer-type $[P_2Si]$ ligand with an eye toward utilizing the chelate to approach silylene complexes for application in new stoichiometric and catalytic reactions (Chart 1).⁸ The chemistry of $[P_2Si]$ complexes with a central silyl donor was originally explored by the Turculet, Iwasawa, and Milstein groups.⁹ In one recent study, we showed that a cationic ruthenium(II) silylene supported by a $[P_2Si]$ ligand was quite stable, yet reactivity prospects were limited by the coordinatively saturated metal center.^{8d} When related rhodium species were examined, the intermediacy of rhodium silylene cations was implicated in the formation of triflatosilyl rhodium diene complexes.^{8b} In another study, we found that unsaturated cationic $(P_2Si=)Pt$ silylene complexes are accessible yet prone to rearrangement via X-type ligand migration to the highly Lewis-

acidic silylene unit, affording a T-shaped mesitylsilyl platinum cation from the complex shown in Chart 1.^{8a} In an effort to attenuate such reactivity and maximize prospects for metal/silylene cooperativity, we have shifted our attention to group 9 metals. We envisioned that silylene complexes of monovalent group 9 metal centers may be more robust due to stronger $M-Si$ π -backbonding and because the complex is designed not to carry X-type ligands on the metal. Here we report coordination of $[P_2Si]$ to cobalt, allowing synthesis, characterization, and preliminary reactivity studies of the first base-free cobalt silylene complex.

Cobalt Silylene Synthesis


Reaction of the $(^iPr_2Si)H_2$ proligand^{8a} with $Co_2(CO)_8$ afforded the diamagnetic hydrosilyl complex $(^iPr_2Si^H)Co(CO)_2$ (**1**) with evolution of CO and H_2 (Scheme 1).¹⁰ Complex **1** exhibits several spectroscopic features consistent with its formulation shown in Scheme 1, including prominent infrared bands for the Si–H ($\nu_{SiH} = 2048 \text{ cm}^{-1}$) and C≡O ($\nu_{CO} = 1958, 1908 \text{ cm}^{-1}$) stretching modes, with the Si–H stretch observed at similar energy to a related hydrosilyl ruthenium complex.^{8d} The 1H NMR ($\delta 6.15 \text{ ppm}$ (*s*, $^1J_{SiH} = 182 \text{ Hz}$)) and ^{29}Si NMR ($\delta 54.8 \text{ ppm}$) resonances for the Si–H moiety in **1** are consistent with the expectations for a hydrosilyl complex of this type.¹¹ Complex **1** has been further characterized by X-ray crystallography, revealing a trigonal-bipyramidal geometry (τ parameter¹² of 0.84) with the silyl and one of the CO ligands in the axial positions (Figure 1).

Scheme 1. Preparation of (*i*Pr₂Si)Co hydrosilyl (**1**) and silylene complexes (**2**).

Hydride abstraction from **1** with trityl tetrakis(pentafluorophenyl)borate ($\text{Ph}_3\text{C}\cdot\text{BAr}^{\text{F}_{20}}$) was accomplished in high yield in fluorobenzene, affording the first example of a base-free cobalt silylene complex (**2**, $[(^{\text{Pr}}\text{P}_2\text{Si}=\text{Co}(\text{CO})_2]\text{[BAr}^{\text{F}_{20}}\text{]}$) (Scheme 1). The clearest spectroscopic evidence for the formation of **2** comes from its ²⁹Si chemical shift (δ 285 ppm), a significant downfield shift from the precursor consistent with what has been observed for related base-free metal silylenes (δ 200–370 ppm).^{1b} The weaker donating nature of the formally neutral, π -accepting silylene ligand in **2** vs the anionic silyl in **1** leads to a ca. 70 cm^{-1} blue-shift in the $\text{C}\equiv\text{O}$ stretching frequencies ($\nu_{\text{CO}} = 2028, 1983 \text{ cm}^{-1}$) relative to **1**.

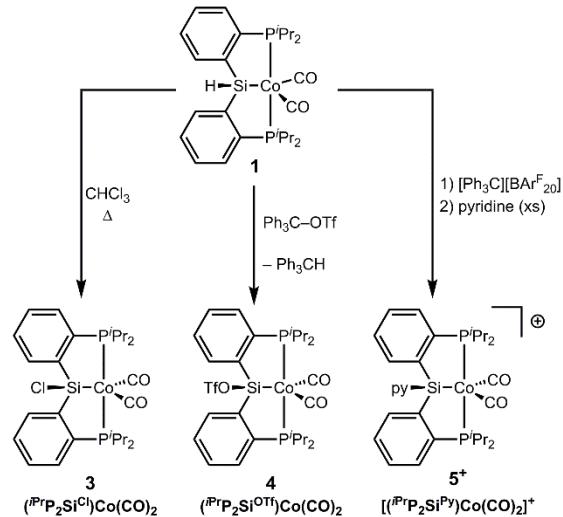

The molecular structure of **2** was determined by X-ray crystallography (Figure 1), revealing a five-coordinate geometry about Co. Although the $\tau = 0.30$ for this structure, it is nonetheless best analyzed as trigonal bipyramidal, with the axial phosphines deviating slightly from linearity ($\angle\text{PCoP} = 156^\circ$) because of the chelate constraint. The structure possesses a rigorous crystallographic C_s symmetry (in the Cmc_2 space group), which is unusual for structures of pincer complexes based on the bis(*o*-phosphinoaryl)element motif. This observed solid-state symmetry is related to the presence of a trigonal-planar silicon center with coplanar aromatic rings. The coplanarity of these rings with the central element is rare, even for sp^2 -hybridized, planar central atoms,^{13,14} and is presumably a consequence of the stabilization of the electron-deficient Si center via conjugation with the aromatic rings and the larger size of silicon versus C, N, and B. The possibility silicon conjugation with the aromatic rings in **2** is supported by a 0.05 Å shorter Si–C_{Ar} bond relative to **1**, though the sp^2 hybridization in **2** also likely plays some role in this shortening. Only rotation of isopropyl groups about the P–C bond appears to be needed to attain the time-averaged C_{2v} symmetry observed by NMR in solutions of **2**. The Co–Si bond length in **2** (2.121(2) Å) is among the shortest reported, similar to those for amidinate-supported, base-stabilized $\text{CpCo}(\text{I})$ silylene complexes reported by Stalke and co-workers (2.114 Å)¹⁵ and Driess and co-workers (2.125 Å and 2.120 Å).¹⁶ Although no direct analogy is available for cobalt, the Si–Co bond shortening (ca. 7%) upon hydride abstraction is similar to what has been observed between Cp^*Ru hydrosilyl and cationic silylene complexes.¹⁷

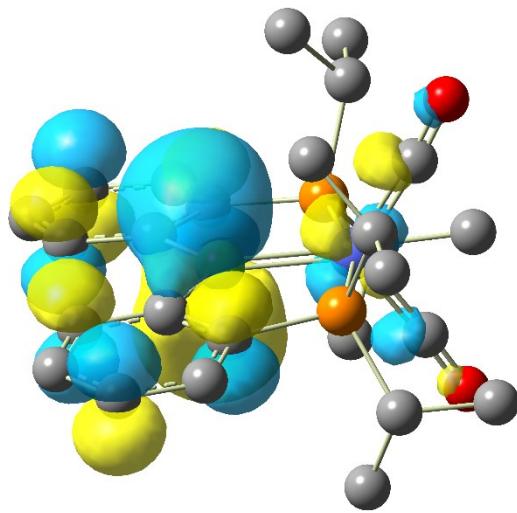
Figure 1. Solid-state structures of (a) hydrosilyl complex **1** and (b) silylene complex **2** with thermal ellipsoids at the 50% probability level. Hydrogen atoms (except for Si–H in **1**), the $\text{BAr}^{\text{F}_{20}}$ anion of **2**, and co-crystallized toluene of **2** are omitted for clarity. Selected bond lengths (Å) and angles (°) for **1**: Si–Co, 2.2671(7); Co–C1, 1.750(2); Co–C2, 1.760(2); Si–Co–C1, 85.20(7); P1–Co–P2, 128.20(3). For **2**: Si–Co, 2.1207(19); Co–C1, 1.790(8); Co–C2, 1.770(8); Si–Co–C1, 115.1(3); P1–Co–P1*, 156.19(7).

Structural and Electronic Properties of the (P₂Si)Co Series

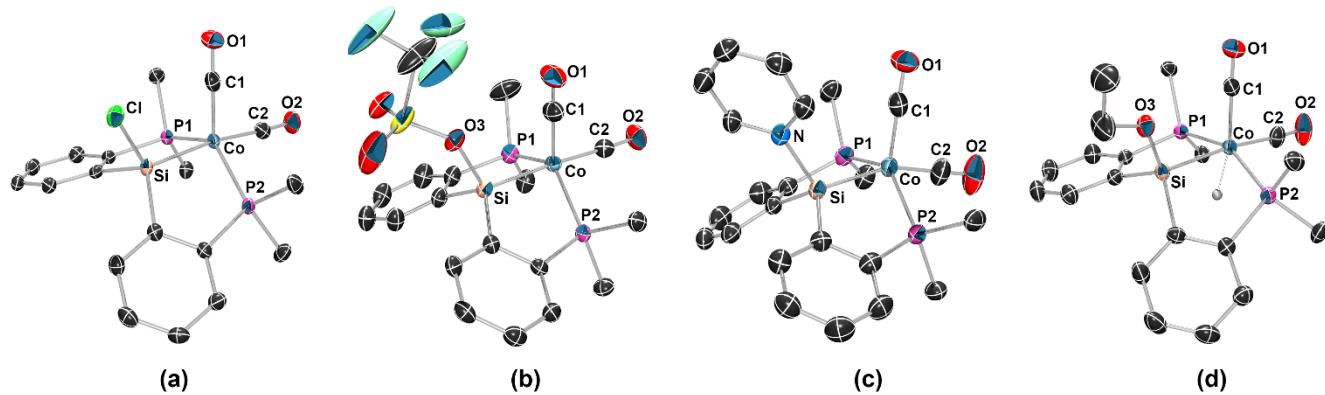
To build on our understanding of silylene complex **2**, we prepared a series of (P₂Si^X)Co(CO)₂ⁿ⁺ complexes, with X representing anionic or neutral Lewis bases. The chlorosilyl complex (ⁱPr₂SiCl)Co(CO)₂ (**3**) was synthesized by heating hydrosilyl complex **1** in chloroform at 80 °C for 20 h. The related triflatosilyl complex **4** could be prepared by hydride abstraction from **1** using trityl triflate. Finally, the cationic, pyridine-stabilized silylene complex **5** was synthesized by addition of pyridine to silylene **2** (Scheme 2). Complexes **3–5** were isolated as single crystals and analyzed by X-ray crystallography (Figure 2). The Si center in **3–5** is pyramidalized (Table 1) to a similar degree, as it is in **1**, and the Co–Si bond lengths are also similar in these four compounds, consistent with a single Co–Si bond.

Scheme 2. Synthesis of complexes **3–5**

Complexes **1–5** compositionally differ by the nature of the donor attached to the silylene center (where **2** is donor-free). The relative influence of the nature of this donor is apparent from the comparison of the ν_{CO} values (Table 1). Introduction of stronger donors (triflate, pyridine, chloride, hydride) leads to the decrease in the CO stretching frequencies over a range of ca. 70 cm^{-1} , consistent with strong Co–Si π -backbonding in **2** that is progressively attenuated with stronger donors on Si.


Table 1. Key structural and spectroscopic parameters for silyl and silylene complexes **1–5**

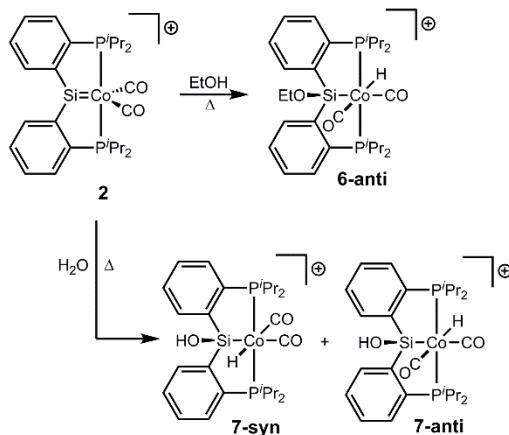
	1	2	3	4	5
$\sum\angle\text{Si}^{\text{a}}$	333.6°	360.0°	334.9°	341.7°	340.4°
$\text{d}_{\text{Co}-\text{Si}} (\text{\AA})$ [calcd]	2.2671(7) [2.276]	2.121(2) [2.114]	2.2453(6) [2.262]	2.216(1)	2.223(1)
$\delta^{29}\text{Si}$ [calcd]	54.8 [74]	284.6 [341]	93.7 [120]	108.8	114.0
$\nu_{\text{CO}} (\text{cm}^{-1})$	1958 1908	2028 1983	1970 1921	1987 1938	1990 1939


^a $\sum\angle\text{Si}$ = sum of bond angles around silicon, excluding H (**1**), Cl (**3**), OTf (**4**), or N_{pyr} (**5**).

Since **2** is the first complex of its type on cobalt and a rare example of a stable group 9 silylene, we endeavored to understand the nature of Co–Si bonding and the electronics at silicon

using computational methods (see details in the Experimental Section). The molecular structures calculated for **1**, **2** (with the counterion included), and **3** agreed reasonably well with the X-ray data. The calculated ^{29}Si NMR chemical shifts were somewhat higher than the experimental values (Table 1), but in a consistent fashion and confirming the strong downfield shift for **2**. It is common for silylene complexes obtained by abstraction of an α -X anion from a silyl precursor to be highly electrophilic at Si.^{1b} In the extreme, these structures can be viewed as metal-substituted silylium cations. Examination of the calculated LUMO of **2** (Figure 2) shows that it is indeed centered primarily on Si, with delocalization into the aromatic rings and some contribution from Co. On the other hand, the Wiberg index¹⁸ for the Co=Si bond in **2** was calculated to be 0.98, notably higher than the 0.74 value obtained for the $[(\text{P}_2\text{Si}=\text{)}\text{Pt}-\text{mesityl}]^+$ complex.^{8a} Thus our hypothesis that a monovalent Co should be more capable of π -bonding with the Si center is borne out at least to a modest extent.

Figure 2. Depiction of the LUMO (isovalue 0.03) of **2**, calculated by M06/SDD/6-31G(d). Hydrogen atoms are omitted for clarity.


Figure 3. Molecular structures of complexes **3–6-anti** (a–d) with thermal ellipsoids at 50% probability and all hydrogen atoms (except for Co–H in **6-anti**), counterions (for **5** and **6-anti**), co-crystallized solvent molecules, and portions of the phosphine isopropyl substituents omitted for clarity. Selected bond lengths (Å) and angles (°) for **3**: Co–Si, 2.2453(6); Co–C1, 1.762(2); Co–C2, 1.7715(19); Si–Cl, 2.1189(8); Si–Co–C1, 90.87(6); P1–Co–P2, 133.65(2). For **4**: Co–Si, 2.2163(11); Co–C1, 1.763(4); Co–C2, 1.777(4); Si–O3, 1.797(3); Si–Co–C1, 87.12(14); P1–Co–P2, 132.49(4). For **5**: Co–Si, 2.2229(14); Co–C1, 1.773(5); Co–C2, 1.761(5); Si–N, 1.920(4); Si–Co–C1, 99.71(15); P1–Co–P2, 138.27(5). For **6-anti**: Co–H, 1.43(4); Co–Si, 2.2885(9); Co–C1, 1.805(3); Co–C2, 1.824(3); Si–O3, 1.640(2); Si–Co–H, 72.4(15); Si–Co–C1, 91.20(10); P1–Co–P2, 156.46(4).

O–H Splitting at the Co=Si Bond

The theoretical and experimental studies presented above, combined with many studies on related metal silylene complexes, suggest that the silicon center in **2** should be very electrophilic. A side product was also frequently observed during the reactions **2**, which we attributed to reaction of the acidic silylene cation with trace water. Thus, we report here preliminary reactivity of **2** with ethanol and water in order to understand the interactions of silylene **2** with O–H bonds.

Exposure of **2** to ethanol results in a mixture of two hydride-containing products (^{31}P NMR: δ 96.9 ppm (major) and 99.0 ppm (minor); ^1H NMR δ –9.43 (t , $^3J_{\text{PH}} = 33.7$ Hz, major) and –12.38 (t , $^3J_{\text{PH}} = 38.5$ Hz, minor)). Heating the mixture at 50 °C for 1 h leads to complete conversion to the previously minor isomer, which was identified by X-ray crystallography as an ethoxysilyl cobalt hydride, $[(^6\text{P}_2\text{Si}^{\text{OE}})\text{CoH}(\text{CO})_2][\text{BAR}_2]$ (**6-anti**) with the ethoxy and hydride oriented *anti* to one another (dihedral angle of 178(2)°) (Figure 2). The silyl donor in **6-anti** is pyramidalized, in a manner similar to hydrosilyl complex **1**. The cobalt hydride, which was located in the difference map, bends significantly toward silicon ($\angle\text{Si–Co–H} = 72.3(15)$ °, $d_{\text{SiH}} = 2.30(4)$ Å), consistent with the expected high Lewis acidity of the silyl donor and indicating a weak Si/Co–H interaction (SISHA).¹⁹

Based on the observations described above, the reaction of **2** with ethanol appears first to afford a complex with ethoxy and hydride oriented *syn* (**6-syn**) as a kinetic product, which isomerizes to the fully characterized *anti* isomer **6-anti** upon heating. Such a reaction course is consistent with the fact that the Lewis-acidic silylene would be expected to react first by coordination of ethanol to silicon, followed by fast proton transfer from ethanol to the cobalt center. Isomerization to **6-anti** occurs readily with only one equivalent of ethanol and thus does not require exogenous ethanol. The expected high acidity of the Co(III) hydride cation with π -accepting carbonyl co-ligands²⁰ suggests that isomerization may occur by proton transfer, perhaps mediated by solvent, though we cannot rule out Si/H reductive elimination followed by oxidative addition to give the *anti* isomer.

Scheme 3. Formation of ethoxy- and hydroxysilyl complexes from silylene **2**

Reaction of silylene **2** with water (≥ 1 equiv) proceeds with more complexity, initially forming a mixture of three as-yet unidentified hydride-containing intermediates and converging upon heating to a mixture represented by a single, broad ^{31}P NMR signal (δ 99.8 ppm). Further examination by ^1H NMR showed the presence of two overlapping Co-*H* signals in a 3:1 ratio. These signals are associated with two singlets (δ 2.86 (major) and 2.34 (minor) ppm) assigned as Si-OH, and the presence of silanol functionality is supported by a broad infrared peak at 3618 cm^{-1} .²¹ Taking all the spectroscopic data into account, we assign the ultimate products from reacting **2** with water as *syn* and *anti* hydroxysilyl cobalt hydride complexes (Scheme 3). It is not clear at this time whether the *syn* or *anti* isomer is formed as the major product, though analogy with the corresponding ethanol reaction suggests that the *anti* isomer may be favored. The initial course of the reaction of silylene **2** with water is not clear at this point. It is somewhat surprising, based on findings with platinum,^{8a} that a silanol (Si-OH) forms rather than a disiloxane (Si-O-Si). Although siloxane intermediates may be present in the reaction, the evidence suggests that under our conditions they are not the thermodynamic products, and they cannot be favored by utilizing less than 1 equiv of water.

Conclusions

In conclusion, we have presented syntheses of a series of pincer-type (P₂Si)Co silyl and silylene complexes. The cationic base-free silylene **2** is the first of its type on cobalt. It is isolable and crystallizable, and it reacts readily with pyridine, ethanol, and water. Reaction with ethanol and water leads to heterolytic cleavage of the O-H bond to form a cationic Co(III) hydride complex with alkoxy- or hydroxy-substituted silyl donor. These reactions suggest that further Co/Si cooperative reactivity may be realized for **2** and related pincer-supported silylenes. Such reactivity will be the subject of future studies.

Experimental Section

General Considerations. All manipulations were carried out in an argon- or nitrogen-filled glove box. Routine solvents were purchased from Sigma-Aldrich and were deoxygenated and dried using a Glass Contour Solvent Purification System or PureSolv MD-5 Solvent Purification System and were stored over 4 Å molecular sieves in an inert-atmosphere glove box.

Ethanol was purchased in dry and degassed form from Sigma-Aldrich and used as received. Fluorobenzene was dried via reflux over CaH₂, vacuum-transferred, and stored over 4 Å molecular sieves. NMR solvents (Cambridge Isotope Labs) were degassed and vacuum-transferred from sodium/benzophenone (benzene-*d*₆ and toluene-*d*₈) or refluxed over and vacuum-transferred from CaH₂ (dichloromethane-*d*₂ and bromobenzene-*d*₅), then stored in an argon-filled glove box over 4 Å molecular sieves prior to use. All other chemicals were used as received from commercial vendors. The (*i*PrP₂Si)H₂ ligand,^{8a} Ph₃C-BAr^F₂₀,²² and Ph₃C-OTf²³ were prepared according to literature procedures. Other reagents were purchased from commercial vendors and used without further purification.

Characterization Methods. NMR spectra were recorded at ambient temperature on a Bruker Avance III HD 400 (^1H , 400.13 MHz; ^{13}C , 100.61 MHz; ^{19}F , 376.50 MHz; ^{29}Si , 79.50 MHz; ^{31}P , 161.98 MHz) or Varian Inova 500 (^1H , 499.68 MHz; ^{13}C , 125.47 MHz; ^{19}F , 470.11 MHz; ^{29}Si , 99.32 MHz; ^{31}P , 202.29 MHz) NMR spectrometer. ^1H and ^{13}C NMR chemical shifts were referenced to residual solvent; ^{19}F , ^{29}Si , and ^{31}P NMR chemical shifts are reported relative to external standards of neat trifluoroacetic acid (δ 78.55 ppm), tetramethylsilane (0 ppm), and 85% H₃PO₄ (0 ppm), respectively. All chemical shifts are reported in δ (ppm). Infrared spectra were obtained on an Agilent CARY 630 ATR-FTIR, Mattson 4020 Galaxy Series, or Thermo Scientific Nicolet iS5 FTIR spectrometer. Elemental analyses were performed by CALI Labs, Inc. (Highland Park, NJ) or Midwest Microlab, LLC.

Computational Details. All computations were carried out with the Gaussian09 program.²⁴ All of the geometries were fully optimized by M06²⁵ functional. The Stuttgart basis set and the associated effective core potential (ECP) was used for Co atoms, and an all-electron 6-31G(d) basis set was used for the other atoms. Based on the optimized structures, B3LYP/SDD/6-311+G(2d,p) level of theory was then used for the NMR calculation using the GIAO method relative to TMS.

(*i*PrP₂SiH)Co(CO)₂ (1). A 20 mL scintillation vial was charged with Co₂(CO)₈ (50 mg, 0.15 mmol) and 8 mL toluene. To this was added a solution of the (*i*PrP₂Si)H₂ ligand (0.81 mL, 0.36 M in toluene, 0.29 mmol) with stirring, causing a color change from dark brown to bright yellow with bubbling as CO and H₂ were evolved. The reaction was allowed to proceed with stirring for 1 h and the volatiles were removed *in vacuo*. The orange residue was dissolved in minimal pentane, filtered, and crystallized at $-35\text{ }^\circ\text{C}$ to give pure **1** as a crop of yellow/orange crystals suitable for X-ray diffraction. Yield: 92 mg (59%). ^1H NMR (C₆D₆, 500 MHz): δ 7.91 (d, J = 7.2 Hz, 2H), 7.23 (dd, J ₁ = 7.7 Hz, J ₂ = 3.0 Hz), 7.18 (td, J ₁ = 7.2 Hz, J ₂ = 2.0 Hz, 2H), 7.07 (t, J = 7.5 Hz, 2H), 6.15 (s, $^1J_{\text{SiH}} = 182$ Hz, 1H, Si-H), 2.24 (m, 4H), 1.26 (dvt, J ₁ = 8.8 Hz, J ₂ = 7.0 Hz, 6H), 0.92 (dvt, J ₁ = 8.1 Hz, J ₂ = 6.8 Hz, 6H), 0.87–0.80 (overlapping dvt, 12H). $^{13}\text{C}\{^1\text{H}\}$ NMR (C₆D₆, 120 MHz): δ 220.4 (br s, Co-CO), 207.2 (br s, Co-CO), 154.1 (quin, J = 30 Hz), 145.2 (dd, J ₁ = 22 Hz, J ₂ = 20 Hz), 133.3 (t, J = 11 Hz), 129.7, 128.4 (br s, overlap with C₆D₆), 128.0 (overlap with C₆D₆), 31.7 (t, J = 15 Hz, P-CH-(CH₃)₂), 29.6 (t, J = 8.6 Hz, P-CH-(CH₃)₂), 19.0 (t, J = 2.4 Hz, CH₃), 18.84 (s, overlapping), 18.82 (t, J = 2.2 Hz, overlapping), 18.53 (t, J = 1.3 Hz). $^{31}\text{P}\{^1\text{H}\}$ NMR (C₆D₆, 202 MHz): δ 93.8 (br s). $^{29}\text{Si}\{^1\text{H}\}$ (C₆H₅F, 79 MHz): δ 54.8 (t, $J_{\text{SiH}} = 22$ Hz). IR (ATR, cm^{-1}): 2048 (SiH), 1958 (CO), 1908 (CO). Anal. calcd. for C₂₆H₃₇CoO₂P₂Si: C, 58.86; H, 7.03. Found: C, 59.16; H, 7.25.

[(ⁱPrP₂Si=)Co(CO)₂][BAr^F₂₀] (2). (ⁱPrP₂Si^H)Co(CO)₂ (**1**) (31 mg, 0.058 mmol) and trityl tetrakis(pentafluorophenyl)borate (Ph₃C•BAr^F₂₀) (55 mg, 0.060 mmol) were separately dissolved in fluorobenzene (2 mL each), and the Ph₃C•BAr^F₂₀ solution was added dropwise to the solution of **1** with stirring, causing an immediate color change from yellow to red. Pentane (10 mL) was added to precipitate the desired product. The supernatant was removed and the resulting red/orange powder was washed with pentane (3 × 3 mL). Residual pentane was removed *in vacuo* to afford [ⁱPrP₂Si=)Co(CO)₂][BAr^F₂₀] (**2**). Crude yield: 68 mg (94%). The solid could be further purified by crystallization from a toluene:fluorobenzene (3:1) solution at -35 °C. Recrystallized yield (as toluene solvate): 37 mg (49%). ¹H NMR (C₆D₅Br, 500 MHz): δ 7.96 (m, 2H), 7.47 (m, 4H), 2.46 (m, 4H), 0.88-0.75 (m, 24H). ¹³C{¹H} NMR (C₆H₅F, 120 MHz): For cation portion only. δ 202.0 (br s, Co–CO), 149.0 (t, *J* = 22 Hz), 148.0 (t, *J* = 25 Hz), 132.9 (t, *J* = 9 Hz), 132.5 (s), 132.3 (s), 130.4 (s), 28.0 (t, *J* = 12.9 Hz, P–CH–(CH₃)₂), 17.2 (s, CH₃), 16.3 (s, CH₃). ¹⁹F NMR (C₆D₅Br, 470 MHz): δ -133.1 (br s, 2F), -163.5 (t, *J* = 21 Hz, 1F), -167.3 (br s, 2F). ²⁹Si{¹H} NMR (C₆H₅F, 99 MHz): δ 284.6 (br s). ³¹P{¹H} NMR (C₆D₅Br, 202 MHz): δ 105.1. IR (ATR, cm⁻¹): 2028 (CO), 1983 (CO). Anal. calcd. for C₂₇H₃₆CoF₂₀O₂P₂Si: C, 49.69; H, 3.00. Found: C, 51.00; H, 2.99. NOTE: Microanalysis showed high values for C due to the presence of co-crystallized toluene evident in NMR spectra and the crystal structure of **2**.

(ⁱPrP₂Si^{Cl})Co(CO)₂ (3). A 20 mL scintillation vial was charged with (ⁱPrP₂Si^H)Co(CO)₂ (**1**) (65 mg, 0.12 mmol), 5 mL C₆D₆, and CDCl₃ (ca. 300 μL). The mixture was heated in the sealed vial at 85 °C for 20 h, leading to a gradual change in solution color from yellow to green. Volatiles were removed *in vacuo* and the resulting pale-green powder was washed with cold pentane (3 × 3 mL). The solid was then dried *in vacuo* to afford pure **3**. Yield: 62 mg (90%). Single crystals suitable for X-ray diffraction were grown from a 3:1 pentane:toluene solution at -35 °C. ¹H NMR (C₆D₆, 500 MHz): δ 8.16 (d, *J* = 7.3 Hz, 2H), 7.22 (m, 4H), 7.08 (t, *J* = 7.3 Hz, 2H), 2.29 (m, 4H), 1.26 (dvt, *J*₁ = 8.6 Hz, *J*₂ = 6.8 Hz, 6H), 0.96 (dvt, *J*₁ = 8.2 Hz, *J*₂ = 6.9 Hz, 6H), 0.88-0.74 (overlapping dvt, 12H). ¹³C{¹H} NMR (C₆D₆, 120 MHz): δ 219.4 (Co–CO), 205.9 (Co–CO), 156.0 (m), 144.2 (m), 133.1 (t, *J* = 11 Hz), 130.5 (s), 128.9 (t, *J* = 2 Hz), 32.0 (t, *J* = 15 Hz, P–CH–(CH₃)₂), 29.8 (t, *J* = 10 Hz, P–CH–(CH₃)₂), 19.4 (t, *J* = 2 Hz, CH₃), 19.0 (s, CH₃), 18.97 (t, *J* = 2 Hz, CH₃), 18.8 (br s, CH₃). ²⁹Si{¹H} (C₆D₆, 99 MHz): δ 93.7 (t, *J*_{SiP} = 30 Hz). ³¹P{¹H} NMR (C₆D₆, 202 MHz): δ 95.2 (br s). IR (ATR, cm⁻¹): 1970 (CO), 1921 (CO). Anal. calcd. for C₃₆H₃₆ClCoO₂P₂Si: C, 55.27; H, 6.42. Found: C, 55.74; H, 6.45.

(ⁱPrP₂Si^{OTf})Co(CO)₂ (4). (ⁱPrP₂Si^H)Co(CO)₂ (**1**) (50 mg, 0.094 mmol) and trityl trifluoromethanesulfonate (Ph₃C•OTf, 37 mg, 0.094 mmol) were separately dissolved in dichloromethane (2 mL each), and the Ph₃C•OTf solution was added dropwise to the stirring solution of **1**. The reaction mixture was stirred for 5 min and all volatiles were removed *in vacuo*. The resulting oil was washed with cold pentane (3 mL) to remove most of the triphenylmethane byproduct (desired product **4** also has some pentane solubility, so some **4** was lost in this step). The resulting powder was dissolved in minimal pentane and crystallized at -35 °C, affording yellow crystals of analytically pure **4**. Recrystallized yield: 24 mg (38%). ¹H NMR (C₆D₆, 400 MHz): δ 8.55 (dt, *J*₁ = 7.5 Hz, *J*₂ = 1.1 Hz, 2H), 7.26 (tdd, *J*₁ = 7.4 Hz, *J*₂ = 2.5 Hz, *J*₃ = 1.0 Hz, 2H), 7.20 (m, 2H), 7.07 (m, 2H), 2.25 (m, 4H), 1.24 (dvt, *J*₁ = 9.5 Hz, *J*₂ = 6.9 Hz, 6H), 0.93 (dvt, *J*₁ = 9.1 Hz, *J*₂ = 6.9 Hz, 6H), 0.83 – 0.66 (m, 12H). ¹³C{¹H} NMR

(C₆D₆, 100.6 MHz): δ 218.1 (br s, Co–CO), 204.3, (br s, Co–CO), 151.4 (t, *J* = 27 Hz), 145.6 (t, *J* = 22 Hz), 133.6 (t, *J* = 11 Hz), 131.0, 129.8 (t, *J* = 2.7 Hz), 119.4 (q, *J* = 318 Hz, –CF₃), 31.5 (t, *J* = 15 Hz), 30.3 (t, *J* = 10 Hz), 19.33, 18.91, 18.79, 18.23. ¹⁹F{¹H} NMR (C₆D₆, 376.3 MHz): δ -77.3. ²⁹Si{¹H} NMR (C₆D₆, 79.5 MHz): δ 108.8 (t, *J* = 34 Hz). ³¹P{¹H} NMR (C₆D₆, 161.9 MHz): δ 96.0. IR (CH₂Cl₂, cm⁻¹): 1987 (CO), 1938 (CO). Anal. calcd. for C₂₇H₃₆CoF₃O₅P₂SSi: C, 47.79; H, 5.35. Found: C, 47.73; H, 5.20.

[(ⁱPrP₂Si^{Py})Co(CO)₂][BAr^F₂₀] (5). (ⁱPrP₂Si^H)Co(CO)₂ (**1**) (60 mg, 0.11 mmol) and trityl tetrakis(pentafluorophenyl)borate (Ph₃C•BAr^F₂₀; 104 mg, 0.11 mmol) were separately dissolved in fluorobenzene (2 mL each), and the Ph₃C•BAr^F₂₀ solution was added dropwise to the stirring fluorobenzene solution of **1**, causing an immediate color change from yellow to red. After 5 min, excess pyridine (ca. 15 μL) was added to the reaction mixture via pipette, causing a color change from red to yellow. Pentane (10 mL) was added with stirring to precipitate the desired product, which was isolated by filtration and washed with pentane (3 × 3 mL) and dried *in vacuo*, affording pure **5**. Yield: 131 mg (89%). ¹H NMR (CD₂Cl₂, 400 MHz): δ 8.23 (tt, *J*₁ = 7.7 Hz, *J*₂ = 1.5 Hz, 1H, pyr *para* C–H), 7.99–7.89 (m, 4H), 7.86–7.77 (m, 2H), 7.74–7.61 (m, 6H), 2.91 (m, 2H), 2.59 (m, 2H), 1.38 (dvt, *J*₁ = 9.9 Hz, *J*₂ = 6.8 Hz, 6H), 1.15 (dvt, *J*₁ = 7.4 Hz, *J*₂ = 6.3 Hz, 6H), 0.91 (overlapping dvt, 12H). ¹³C{¹H} NMR (CD₂Cl₂, 100.6 MHz): For cation portion only. δ 215.7 (Co–CO), 204.8 (Co–CO), 148.9–147.7 (m), 146.7, 145.4, 133.2 (t, *J* = 10 Hz), 132.6, 132.0, 130.6, 127.6, 31.8 (t, *J* = 11 Hz), 31.4 (t, *J* = 15 Hz), 19.8, 19.3, 19.2, 19.0. ¹⁹F{¹H} NMR (CD₂Cl₂, 376.3 MHz): δ -133.0 (br), -163.5 (t, *J* = 20.4 Hz), -167.4 (t, *J* = 19.6 Hz). ²⁹Si{¹H} NMR (CD₂Cl₂, 79.5 MHz): δ 114.0 (t, *J*_{SiP} = 34 Hz). ³¹P{¹H} NMR (CD₂Cl₂, 161.9 MHz): δ 97.5. IR (CH₂Cl₂, cm⁻¹): 1990 (CO), 1939 (CO). Anal. calcd. for C₅₅H₄₁BCoF₂₀NO₂P₂Si: C, 51.30; H, 3.21. Found: C, 51.09; H, 3.21.

[(ⁱPrP₂Si^{OEt})Co(H)(CO)₂][BAr^F₂₀] (6). (ⁱPrP₂Si^H)Co(CO)₂ (**1**) (40 mg, 0.075 mmol) and trityl tetrakis(pentafluorophenyl)borate (Ph₃C•BAr^F₂₀; 69.6 mg, 0.075 mmol) were separately dissolved in fluorobenzene (2 mL each), and the Ph₃C•BAr^F₂₀ solution was added dropwise to the stirring fluorobenzene solution of **1**. After 5 min, excess ethanol (ca. 15 μL) was added to the reaction mixture via pipette and the mixture was heated at 55 °C for 1 h. Pentane (10 mL) was added to precipitate the desired product, which was isolated by filtration as a pale yellow powder, washed with pentane (3 × 3 mL), and dried *in vacuo* to give pure **6**. Yield: 87 mg (92%). Single crystals suitable for X-ray diffraction were grown from a 3:1 diethyl ether:fluorobenzene solution at -35 °C. ¹H NMR (CD₂Cl₂, 400 MHz): δ 8.14 (d, *J* = 7.4 Hz, 2H), 7.79 (m, 2H), 7.73 (t, *J* = 7.3 Hz, 2H), 7.66 (t, *J* = 6.7 Hz, 2H), 3.56 (q, *J* = 7.0 Hz, 2H, –OCH₂CH₃), 2.91 (m, 2H), 2.79 (m, 2H), 1.44 (dvt, *J*₁ = 10.6 Hz, *J*₂ = 7.4 Hz, 6H), 1.25 (dvt, *J*₁ = 8.8 Hz, *J*₂ = 7.4 Hz, 6H), 1.16 (dvt, *J*₁ = 10.4 Hz, *J*₂ = 7.0 Hz, 6H), 1.09 (dvt, *J*₁ = 10.4 Hz, *J*₂ = 7.1 Hz, 6H), 1.05 (t, *J* = 6.9 Hz, 3H, –OCH₂CH₃), -12.25 (t, *J* = 38.6 Hz, 1H, Co–H). ¹³C{¹H} NMR (CD₂Cl₂, 100.6 MHz): For cation portion only (NOTE: Co–CO not visible). δ 150.5 (t, *J* = 20 Hz), 139.86 (t, *J* = 27 Hz), 133.4 (t, *J* = 10 Hz), 132.7, 131.5 (t, *J* = 3.9 Hz), 130.0 (t, *J* = 2.9 Hz), 61.5, 31.6 (t, *J* = 16 Hz), 30.8 (t, *J* = 11 Hz), 19.2, 18.8, 18.7, 18.2, 18.1. ²⁹Si{¹H} NMR (CD₂Cl₂, 79.5 MHz): δ 62.4 (t, *J*_{SiP} = 9.1 Hz). ³¹P{¹H} NMR (CD₂Cl₂, 161.9 MHz): δ 99.2. IR (CH₂Cl₂, cm⁻¹): 2067 (CO), 2041 (CO). Note:

Samples of **6** routinely failed microanalysis, even after recrystallization. However, multinuclear NMR spectroscopy indicates high purity (>97%) for this material.

[ⁱP₂SiOH]Co(H)(CO)₂[BAr^F₂₀] (7-syn and 7-anti, mixture of isomers). (ⁱP₂Si^H)Co(CO)₂ (**1**) (40 mg, 0.075 mmol) and trityl tetrakis(pentafluorophenyl)borate (Ph₃C•BAr^F₂₀; 69.6 mg, 0.075 mmol) were separately dissolved in fluorobenzene (2 mL each), and the Ph₃C•BAr^F₂₀ solution was added dropwise to the stirring fluorobenzene solution of **1**. After 5 min, excess water (ca. 15 μ L) was added via pipette and the mixture was heated at 80 °C overnight. Pentane (10 mL) was added to precipitate the desired product, which was isolated by filtration, washed with pentane (3 \times 3 mL), and dried *in vacuo* to afford **7** as a pale yellow powder consisting of an approximately 3:1 mixture of two isomers. Analysis of the mixture by ¹H NMR (see Figure S30) showed mostly overlapping peaks for the major and minor isomers, so only diagnostic peaks are reported for the minor isomer. ¹H NMR of major isomer (CD₂Cl₂, 400 MHz): δ 8.17 (d, *J* = 7.4 Hz, 2H), 7.83–7.57 (m, 6H), 2.97–2.84 (m, 2H, PCH(CH₃)₂), 2.86 (s, 1H, Si–OH), 2.88–2.76 (m, 2H, PCH(CH₃)₂), 1.42 (m, 6H, PCH(CH₃)₂), 1.28 (m, 6H, PCH(CH₃)₂), 1.19 (m, 6H, PCH(CH₃)₂), 1.06 (m, 6H, PCH(CH₃)₂), –12.16 (t, ²*J*_{PH} = 38.7 Hz, 1H, Co–H). Distinct ¹H NMR peaks for minor isomer: 2.80–2.68 (m, PCH(CH₃)₂), 2.55–2.42 (m, PCH(CH₃)₂), 2.34 (s, 1H, Si–OH), –12.11 (t, ²*J*_{PH} = 35.8 Hz, 1H, Co–H). ²⁹Si{¹H} NMR for mixture of isomers (CD₂Cl₂, 161.9 MHz): δ 62.4 (t, ³*J*_{SiP} = 9.6 Hz). ³¹P{¹H} NMR for mixture of isomers (CD₂Cl₂, 161.9 MHz): δ 99.8 (br). IR for mixture of isomers (CH₂Cl₂, cm^{–1}): 3618 (br, OH of silanol), 2068 (CO), 2038 (CO).

X-ray Crystallography. Single-crystal X-ray diffraction data for compounds **1–3** were collected on a Bruker APEX 2 diffractometer using Mo K α radiation (λ = 0.71073 Å), cooled to 110 K using a cold nitrogen stream (Oxford). Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2.²⁶ The integration method employed a three-dimensional profiling algorithm and all data were corrected for *Lp* and decay. Finally, the data were merged and scaled to produce a suitable data set. The absorption correction program SADABS²⁷ was employed to correct the data for absorption effects. Absence of additional symmetry and voids were confirmed using PLATON (ADDSYM).²⁸

Single-crystal X-ray diffraction data for compounds **4–6** were collected on a Rigaku XtaLAB mini diffractometer using Mo K α radiation (λ = 0.71073 Å), cooled to 173 K using a cold air stream provided by an Oxford Cryosystems desktop cooler (Oxford Cryosystems Ltd, Oxford). The crystals were mounted on a MiTeGen micromount (MiTeGen, LLC, Ithaca, NY) using STP oil. The frames were integrated using CrystalClear-SM Expert 3.1 b27²⁹ to give the *hkl* files corrected for *Lp* and decay. Data were corrected for absorption effects using a multiscan method (REQAB).²⁹ Absence of additional symmetry and voids were confirmed using PLATON (ADDSYM).²⁸

All structures were solved using SHELXS-2013 and refined using SHELXL-2013 with the Olex2 software package.³⁰ All non-hydrogen atoms were refined with anisotropic thermal parameters. Cobalt and silicon hydrides were located in the Fourier difference maps and refined isotropically; all other hydrogen atoms were inferred geometrically from neighboring sites and refined with riding thermal parameters. Crystallographic parameters of all complexes are summarized in Table S1.

ORTEP drawings were prepared using ORTEP-3 for Windows V2013.1³¹ and POV-Ray for Windows v3.6.³² Crystallographic data for the complexes have been deposited at the Cambridge Crystallographic Data Centre (Nos. 1845823–1845828) and can be obtained free of charge via www.ccdc.cam.ac.uk.

Special Crystallographic Refinement Details. Triflatosilyl complex **4** contained two approximately equivalent molecules in the asymmetric unit, one of which exhibited a triflate that was disordered over two positions. In order to allow suitable refinement, the two triflates were subjected to EADP restraints.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Tabulated X-ray parameters, NMR and IR spectra (PDF)
Computed structures for all compounds studied (ZIP)
Crystallographic information (CIF)

AUTHOR INFORMATION

Corresponding Authors

* Email for M.T.W.: mwhited@carleton.edu

* Email for O.V.O.: ozero@chem.tamu.edu

ORCID

Bryan J. Foley: 0000-0003-0570-769X

Daron E. Janzen: 0000-0002-5584-1961

Matthew T. Whited: 0000-0002-1193-9078

Oleg V. Ozerov: 0000-0002-5267-1120

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We gratefully acknowledge funding from the National Science Foundation (CHE-1552591 to M.T.W., CHE-1428752 in support of an NMR spectrometer at Carleton College, and CHE-1125975 in support of an X-ray diffractometer to St. Catherine University) and from the Welch Foundation (grant A-1717 to O.V.O.) in support of this research. M.T.W. also thanks Boulder Scientific for a generous gift of Li[BAr^F₂₀].

REFERENCES

- (a) Okazaki, M.; Tobita, H.; Ogino, H. "Reactivity of Silylene Complexes" *Dalton Trans.* **2003**, 493–506. (b) Waterman, R.; Hayes, P. G.; Tilley, T. D. "Synthetic Development and Chemical Reactivity of Transition-Metal Silylene Complexes" *Acc. Chem. Res.* **2007**, 40, 712–719.
- (2) Glaser, P. B.; Tilley, T. D. "Catalytic Hydrosilylation of Alkenes by a Ruthenium Silylene Complex. Evidence for a New Hydrosilylation Mechanism" *J. Am. Chem. Soc.* **2003**, 125, 13640–13641.
- (3) Lee, V. Y.; Aoki, S.; Yokoyama, T.; Horiguchi, S.; Sekiguchi, A.; Gornitzka, H.; Guo, J. D.; Nagase, S. "Toward a Silicon Version of Metathesis: From Schrock-Type Titanium Silylenes to Silatitanacyclobutenes" *J. Am. Chem. Soc.* **2013**, 135, 2987–2990.
- (4) Handwerker, H.; Leis, C.; Probst, R.; Bissinger, P.; Grohmann, A.; Kiprof, P.; Herdtweck, E.; Blumel, J.; Auner, N.; Zybill, C. "Reversible Intramolecular Base Stabilization in Silylene (Silanediyl) Complexes - Surprising Reactivity for Silylene Coordination Complexes with a Dynamic N...Si...N Bond" *Organometallics* **1993**, 12, 2162–2176.

(5) Price, J. S.; Emslie, D. J. H.; Britten, J. F. "Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to Afford Silene Hydride Complexes" *Angew. Chem., Int. Ed.* **2017**, *56*, 6223-6227.

(6) (a) Smith, P. W.; Tilley, T. D. "Base-Free Iron Hydrosilylene Complexes via an α -Hydride Migration that Induces Spin Pairing" *J. Am. Chem. Soc.* **2018**, *140*, 3880-3883. (b) Tobita, H.; Matsuda, A.; Hashimoto, H.; Ueno, K.; Ogino, H. "Direct Evidence for Extremely Facile 1,2-and 1,3-Group Migrations in an FeSi_2 System" *Angew. Chem., Int. Ed.* **2004**, *43*, 221-224.

(7) Iluc, V. M.; Hillhouse, G. L. "Arrested 1,2-Hydrogen Migration from Silicon to Nickel upon Oxidation of a Three-Coordinate $\text{Ni}(\text{I})\text{Silyl Complex}$ " *J. Am. Chem. Soc.* **2010**, *132*, 11890-11892.

(8) (a) DeMott, J. C.; Gu, W. X.; McCulloch, B. J.; Herbert, D. E.; Goshert, M. D.; Walensky, J. R.; Zhou, J.; Ozerov, O. V. "Silyl-Silylene Interplay in Cationic PSiP Pincer Complexes of Platinum" *Organometallics* **2015**, *34*, 3930-3933. (b) Whited, M. T.; Deetz, A. M.; Boerma, J. W.; DeRosa, D. E.; Janzen, D. E. "Formation of Chlorosilyl Pincer-Type Rhodium Complexes by Multiple Si-H Activations of Bis(phosphine)/Dihydrosilyl Ligands" *Organometallics* **2014**, *33*, 5070-5073. (c) Whited, M. T.; Deetz, A. M.; Donnell, T. M.; Janzen, D. E. "Examining the Role of Rh/Si Cooperation in Alkene Hydrogenation by a Pincer-Type $[\text{P}_2\text{Si}]\text{Rh}$ Complex" *Dalton Trans.* **2016**, *45*, 9758-9761. (d) Whited, M. T.; Zhang, J.; Ma, S.; Nguyen, B. D.; Janzen, D. E. "Silylene-Assisted Hydride Transfer to CO_2 and CS_2 at a $[\text{P}_2\text{Si}]\text{Ru}$ Pincer-Type Complex" *Dalton Trans.* **2017**, *46*, 14757-14761.

(9) (a) Korshin, E. E.; Leitus, G.; Shimon, L. J. W.; Konstantinovski, L.; Milstein, D. "Silanol-Based Pincer $\text{Pt}(\text{II})$ Complexes: Synthesis, Structure, and Unusual Reactivity" *Inorg. Chem.* **2008**, *47*, 7177-7189. (b) Mitton, S. J.; McDonald, R.; Turculet, L. "Synthesis and Characterization of Neutral and Cationic Platinum(II) Complexes Featuring Pincer-like Bis(phosphino)silyl Ligands: Si-H and Si-Cl Bond Activation Chemistry" *Organometallics* **2009**, *28*, 5122-5136. (c) Takaya, J.; Iwasawa, N. "Hydrocarboxylation of Allenes with CO_2 Catalyzed by Silyl Pincer-Type Palladium Complex" *J. Am. Chem. Soc.* **2008**, *130*, 15254-15255.

(10) A similar synthetic approach was recently used by Guan and co-workers in the synthesis of $(\text{POCOP})\text{Co}(\text{CO})_n$ from $(\text{POCOP})\text{H}$ and $\text{Co}_2(\text{CO})_8$: Li, Y.; Krause, J. A.; Guan, H. "Cobalt POCOP Pincer Complexes via Ligand C-H Bond Activation with $\text{Co}_2(\text{CO})_8$: Catalytic Activity for Hydrosilylation of Aldehydes in an Open vs a Closed System" *Organometallics* **2018**, *37*, 2147-2158.

(11) Corey, J. Y.; Braddock-Wilking, J. "Reactions of Hydrosilanes with Transition-Metal Complexes: Formation of Stable Transition-Metal Silyl Compounds" *Chem. Rev.* **1999**, *99*, 175-292.

(12) Addison, A. W.; Rao, T. N.; Reedijk, J.; Vanrijn, J.; Verschoor, G. C. "Synthesis, Structure, and Spectroscopic Properties of Copper(II) Compounds Containing Nitrogen-Sulphur Donor Ligands; the Crystal and Molecular Structure of Aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) Perchlorate" *J. Chem. Soc. Dalton* **1984**, 1349-1356.

(13) Complexes of otherwise analogous pincers with a planar central B, C, or N atom in place of Si do not show coplanarity of the six-membered rings: (a) Shih, W. C.; Ozerov, O. V. "Synthesis and Characterization of PBP Pincer Iridium Complexes and Their Application in Alkane Transfer Dehydrogenation" *Organometallics* **2017**, *36*, 228-233. (b) Cui, P.; Iluc, V. M. "Redox-Induced Umpolung of Transition Metal Carbenes" *Chem. Sci.* **2015**, *6*, 7343-7354. (c) Davidson, J. J.; DeMott, J. C.; Douvris, C.; Fafard, C. M.; Bhuvanesh, N.; Chen, C. H.; Herbert, D. E.; Lee, C. I.; McCulloch, B. J.; Foxman, B. M.; Ozerov, O. V. "Comparison of the Electronic Properties of Diarylarnido-Based PNZ Pincer Ligands: Redox Activity at the Ligand and Donor Ability Toward the Metal" *Inorg. Chem.* **2015**, *54*, 2916-2935.

(14) On the other hand, coplanarity of the aromatic rings was observed in a pincer complex containing an electrophilic carbene connected to two *pyrrolyl* rings: Weng, W.; Chen, C. H.; Foxman, B. M.; Ozerov, O. V. "Palladium Complexes of a $\text{P}_2\text{C}=\text{Ligand}$ Containing a Central Carbene Moiety" *Organometallics* **2007**, *26*, 3315-3320.

(15) Azhakar, R.; Ghadwal, R. S.; Roesky, H. W.; Hey, J.; Stalke, D. "Facile Access to Transition-Metal-Carbonyl Complexes with an Amidinate-Stabilized Chlorosilylene Ligand" *Chem. Asian J.* **2012**, *7*, 528-533.

(16) Wang, W. Y.; Inoue, S.; Enthaler, S.; Driess, M. "Bis(silylenyl)- and Bis(germylenyl)-Substituted Ferrocenes: Synthesis, Structure, and Catalytic Applications of Bidentate Silicon(II)-Cobalt Complexes" *Angew. Chem., Int. Ed.* **2012**, *51*, 6167-6171.

(17) (a) Straus, D. A.; Zhang, C.; Quimbita, G. E.; Grumbine, S. D.; Heyn, R. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. "Silyl and Diphenylsilylene Derivatives of $(\eta^5\text{-CsMe}_5)(\text{PMe}_3)_2\text{Ru}$. Evidence for the Base-Free Silylene Complex $[(\eta^5\text{-CsMe}_5)(\text{PMe}_3)_2\text{Ru}=\text{SiPh}_2]^{+}$ " *J. Am. Chem. Soc.* **1990**, *112*, 2673-2681. (b) Grumbine, S. K.; Tilley, T. D.; Arnold, F. P.; Rheingold, A. L. "Base-Free Silylene Complexes without π -Donor Stabilization. Molecular Structure of $[\text{Cp}^*(\text{PMe}_3)_2\text{Ru}=\text{SiMe}_2][\text{B}(\text{C}_6\text{F}_5)_4]$ " *J. Am. Chem. Soc.* **1994**, *116*, 5495-5496.

(18) Wiberg, K. B. "Application of the Pople-Santry-Segal CNDO Method to Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane" *Tetrahedron* **1968**, *24*, 1083-1096.

(19) Corey, J. Y. "Reactions of Hydrosilanes with Transition Metal Complexes" *Chem. Rev.* **2016**, *116*, 11291-11435.

(20) Morris, R. H. "Estimating the Acidity of Transition Metal Hydride and Dihydrogen Complexes by Adding Ligand Acidity Constants" *J. Am. Chem. Soc.* **2014**, *136*, 1948-1959.

(21) (a) Moller, S.; Fey, O.; Malisch, W.; Seelbach, W. "Metallosilanes and Metallosiloxanes VII. Oxofunctionalization of Rutheniohydridosilanes with Dimethylidioxirane - Synthesis of the First Rutheniosilanes" *J. Organomet. Chem.* **1996**, *507*, 239-244. (b) Esteruelas, M. A.; Olivan, M.; Velez, A. "POP-Pincer Silyl Complexes of Group 9: Rhodium versus Iridium" *Inorg. Chem.* **2013**, *52*, 12108-12119.

(22) Chien, J. C. W.; Tsai, W. M.; Rausch, M. D. "Isospecific Polymerization of Propylene Catalyzed by *rac*-Ethylenebis(indenyl)methylzirconium "Cation"" *J. Am. Chem. Soc.* **1991**, *113*, 8570-8571.

(23) Straus, D. A.; Zhang, C.; Tilley, T. D. "Trityl Tetraphenylborate as a Reagent in Organometallic Chemistry" *J. Organomet. Chem.* **1989**, *369*, C13-C17.

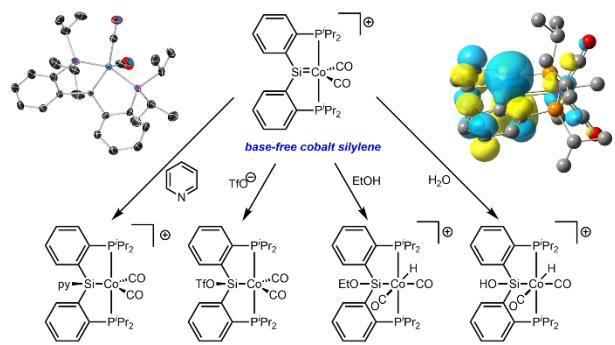
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Gaussian, Inc.: Wallingford, CT, USA, 2009.

(25) Zhao, Y.; Truhlar, D. G. "The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals" *Theor. Chem. Acc.* **2008**, *120*, 215-241.

(26) Bruker *APEX2*, Bruker AXS Inc.: Madison, WI, USA, 2012.

(27) Bruker *SADABS*, Bruker AXS, Inc.: Madison, WI, USA, 2001.

(28) Spek, A. L. "Single-Crystal Structure Validation with the Program PLATON" *J. Appl. Cryst.* **2003**, *36*, 7-13.


(29) *CrystalClear*, Rigaku Americas and Rigaku: The Woodlands, TX, 2011.

(30) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. "OLEX2: a complete structure solution, refinement and analysis program" *J. Appl. Cryst.* **2009**, *42*, 339-341.

(31) Farrugia, L. J. "WinGX and ORTEP for Windows: an update"

J. Appl. Cryst. **2012**, *45*, 849-854.

(32) *Persistence of Vision Raytracer (Version 3.6)*, Persistence of Vision Pty. Ltd.: 2004.

