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ABSTRACT: Preparation and characterization of a series of pincer-type [P,Si]Co complexes are reported, including a crystal struc-
ture of the first base-free cobalt silylene complex. The cationic silylene complex is strongly Lewis-acidic and oxophilic, readily
coordinating Lewis bases such as triflate and pyridine and heterolytically cleaving the O—H bonds in ethanol and water.

Metal silylenes (M=SiR,) have been shown to exhibit a vari-
ety of modes of reactivity, often quite distinct from their metal
carbene congeners.! Though silylenes have been implicated as
important intermediates in hydrosilylation catalysis,? their utili-
zation in general has been limited by their high reactivity. Base-
free silylene complexes featuring first-row transition metals are
particularly unusual. Examples have been reported for tita-
nium,® chromium,* manganese,’ iron,® and nickel.” However,
cobalt represents a notable absence from this series.
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Chart 1. Previously reported silylene complexes supported by
pincer-type [P,Si] ligands.

Our research groups have recently developed the coordina-
tion chemistry of a pincer-type [P,Si] ligand with an eye toward
utilizing the chelate to approach silylene complexes for appli-
cation in new stoichiometric and catalytic reactions (Chart 1).}
The chemistry of [P,Si] complexes with a central silyl donor
was originally explored by the Turculet, Iwasawa, and Milstein
groups.’ In one recent study, we showed that a cationic ruthe-
nium(II) silylene supported by a [P,Si] ligand was quite stable,
yet reactivity prospects were limited by the coordinatively sat-
urated metal center.d When related rhodium species were ex-
amined, the intermediacy of rhodium silylene cations was im-
plicated in the formation of triflatosilyl rhodium diene com-
plexes.® In another study, we found that unsaturated cationic
(P,Si=)Pt silylene complexes are accessible yet prone to rear-
rangement via X-type ligand migration to the highly Lewis-

acidic silylene unit, affording a T-shaped mesitylsilyl platinum
cation from the complex shown in Chart 1.8 In an effort to at-
tenuate such reactivity and maximize prospects for metal/si-
lylene cooperativity, we have shifted our attention to group 9
metals. We envisioned that silylene complexes of monovalent
group 9 metal centers may be more robust due to stronger
M—Si n-backbonding and because the complex is designed not
to carry X-type ligands on the metal. Here we report coordina-
tion of [P,Si] to cobalt, allowing synthesis, characterization, and
preliminary reactivity studies of the first base-free cobalt si-
lylene complex.

Cobalt Silylene Synthesis

Reaction of the (*'P,Si)H, proligand® with Co(CO)s af-
forded the diamagnetic hydrosilyl complex (*P,Si")Co(CO),
(1) with evolution of CO and H» (Scheme 1).!° Complex 1 ex-
hibits several spectroscopic features consistent with its formu-
lation shown in Scheme 1, including prominent infrared bands
for the Si—H (vsip = 2048 cm™) and C=0 (vco = 1958, 1908
cm™) stretching modes, with the Si—H stretch observed at sim-
ilar energy to a related hydrosilyl ruthenium complex.® The 'H
NMR (8 6.15 ppm (s, 'Jsim = 182 Hz)) and *’Si NMR (3 54.8
ppm) resonances for the Si—H moiety in 1 are consistent with
the expectations for a hydrosilyl complex of this type.!! Com-
plex 1 has been further characterized by X-ray crystallography,
revealing a trigonal-bipyramidal geometry (v parameter'? of
0.84) with the silyl and one of the CO ligands in the axial posi-
tions (Figure 1).
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Scheme 1. Preparation of (*"P,Si)Co hydrosilyl (1) and silylene
complexes (2).

Hydride abstraction from 1 with trityl tetrakis(pentafluoro-
phenyl)borate (Ph;C-BArF») was accomplished in high yield in
fluorobenzene, affording the first example of a base-free cobalt
silylene complex (2, [(*"P,Si=)Co(CO):][BArF]) (Scheme 1).
The clearest spectroscopic evidence for the formation of 2
comes from its °Si chemical shift (§ 285 ppm), a significant
downfield shift from the precursor consistent with what has
been observed for related base-free metal silylenes (& 200-—
370 ppm).'® The weaker donating nature of the formally neu-
tral, m-accepting silylene ligand in 2 vs the anionic silyl in 1
leads to a ca. 70 cm™! blue-shift in the C=0 stretching frequen-
cies (vco = 2028, 1983 cm ) relative to 1.

The molecular structure of 2 was determined by X-ray crys-
tallography (Figure 1), revealing a five-coordinate geometry
about Co. Although the T = 0.30 for this structure, it is nonethe-
less best analyzed as trigonal bipyramidal, with the axial phos-
phines deviating slightly from linearity (£ZPCoP = 156°) be-
cause of the chelate constraint. The structure possesses a rigor-
ous crystallographic C, symmetry (in the Cmc2, space group),
which is unusual for structures of pincer complexes based on
the bis(o-phosphinoaryl)element motif. This observed solid-
state symmetry is related to the presence of a trigonal-planar
silicon center with coplanar aromatic rings. The coplanarity of
these rings with the central element is rare, even for sp>-hybrid-
ized, planar central atoms,'>!* and is presumably a consequence
of the stabilization of the electron-deficient Si center via conju-
gation with the aromatic rings and the larger size of silicon ver-
sus C, N, and B. The possibility silicon conjugation with the
aromatic rings in 2 is supported by a 0.05 A shorter Si—Ca, bond
relative to 1, though the sp? hybridization in 2 also likely plays
some role in this shortening. Only rotation of isopropyl groups
about the P-C bond appears to be needed to attain the time-av-
eraged C,, symmetry observed by NMR in solutions of 2. The
Co-Si bond length in 2 (2.121(2) A) is among the shortest re-
ported, similar to those for amidinate-supported, base-stabilized
CpCo(]) silylene complexes reported by Stalke and co-workers
(2.114 A)"® and Driess and co-workers (2.125 A and 2.120 A).'°
Although no direct analogy is available for cobalt, the Si—Co
bond shortening (ca. 7%) upon hydride abstraction is similar to
what has been observed between Cp*Ru hydrosilyl and cationic
silylene complexes.'”
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Figure 1. Solid-state structures of (a) hydrosilyl complex 1 and (b)
silylene complex 2 with thermal ellipsoids at the 50% probability
level. Hydrogen atoms (except for Si—H in 1), the BArF20 anion of
2, and co-crystallized toluene of 2 are omitted for clarity. Selected
bond lengths (A) and angles (°) for 1: Si—Co, 2.2671(7); Co—Cl,
1.750(2); Co—C2, 1.760(2); Si—Co—C1, 85.20(7); P1-Co-P2,
128.20(3). For 2: Si—Co, 2.1207(19); Co—Cl, 1.790(8); Co—C2,
1.770(8); Si—Co—Cl1, 115.1(3); P1-Co—-P1%*, 156.19(7).

Structural and Electronic Properties of the (P,Si)Co
Series

To build on our understanding of silylene complex 2, we pre-
pared a series of (P,Si¥)Co(CO),™ complexes, with X repre-
senting anionic or neutral Lewis bases. The chlorosilyl complex
(PP,Si®)Co(CO), (3) was synthesized by heating hydrosilyl
complex 1 in chloroform at 80 °C for 20 h. The related triflatosi-
lyl complex 4 could be prepared by hydride abstraction from 1
using trityl triflate. Finally, the cationic, pyridine-stabilized si-
lylene complex 5 was synthesized by addition of pyridine to si-
lylene 2 (Scheme 2). Complexes 3—5 were isolated as single
crystals and analyzed by X-ray crystallography (Figure 2). The
Si center in 3-5 is pyramidalized (Table 1) to a similar degree,
as itis in 1, and the Co—Si bond lengths are also similar in these
four compounds, consistent with a single Co—Si bond.
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Scheme 2. Synthesis of complexes 3-5

Complexes 1-5 compositionally differ by the nature of the
donor attached to the silylene center (where 2 is donor-free).
The relative influence of the nature of this donor is apparent
from the comparison of the vco values (Table 1). Introduction
of stronger donors (triflate, pyridine, chloride, hydride) leads to
the decrease in the CO stretching frequencies over a range of
ca. 70 cm’!, consistent with strong Co—Si n-backbonding in 2
that is progressively attenuated with stronger donors on Si.

Table 1. Key structural and spectroscopic parameters for silyl
and silylene complexes 1-5

1 2 3 4 5
>LSi? 333.6° 360.0° 334.9° 341.7° 340.4°
deosi (A) | 2.2671(7) 2.121(2) 2.2453(6) 2.216(1)  2.223(1)
[calcd] [2.276] [2.114] [2.262]
6 2Si 54.8 284.6 93.7 108.8 114.0
[calcd] [74] [341] [120]
1958 2028 1970 1987 1990
veo (cm™)
1908 1983 1921 1938 1939

2% «Si = sum of bond angles around silicon, excluding H (1),
Cl1(3), OTf (4), or Npyr (5).

Since 2 is the first complex of its type on cobalt and a rare
example of a stable group 9 silylene, we endeavored to under-
stand the nature of Co—Si bonding and the electronics at silicon



using computational methods (see details in the Experimental
Section). The molecular structures calculated for 1, 2 (with the
counterion included), and 3 agreed reasonably well with the X-
ray data. The calculated ?Si NMR chemical shifts were some-
what higher than the experimental values (Table 1), but in a
consistent fashion and confirming the strong downfield shift for
2. It is common for silylene complexes obtained by abstraction
of an a-X anion from a silyl precursor to be highly electrophilic
at Si.'* In the extreme, these structures can be viewed as metal-
substituted silylium cations. Examination of the calculated
LUMO of 2 (Figure 2) shows that it is indeed centered primarily
on Si, with delocalization into the aromatic rings and some con-
tribution from Co. On the other hand, the Wiberg index® for the
Co=Si bond in 2 was calculated to be 0.98, notably higher than
the 0.74 value obtained for the [(P2Si=)Pt-mesityl]” complex.®
Thus our hypothesis that a monovalent Co should be more ca-
pable of m-bonding with the Si center is borne out at least to a
modest extent.

Figure 2. Depiction of the LUMO (isovalue 0.03) of 2, calculated
by M06/SDD/6-31G(d). Hydrogen atoms are omitted for clarity.
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O-H Splitting at the Co=Si Bond

The theoretical and experimental studies presented above,
combined with many studies on related metal silylene com-
plexes, suggest that the silicon center in 2 should be very elec-
trophilic. A side product was also frequently observed during
the reactions 2, which we attributed to reaction of the acidic si-
lylene cation with trace water. Thus, we report here preliminary
reactivity of 2 with ethanol and water in order to understand the
interactions of silylene 2 with O—H bonds.

Exposure of 2 to ethanol results in a mixture of two hydride-
containing products (*'P NMR: § 96.9 ppm (major) and 99.0
ppm (minor); 'H NMR & —9.43 (t, 3Jen = 33.7 Hz, major) and
—12.38 (t, *Jpu = 38.5 Hz, minor)). Heating the mixture at 50 °C
for 1 h leads to complete conversion to the previously minor
isomer, which was identified by X-ray crystallography as an
ethoxysilyl cobalt hydride,
[(PP,Si%EYCoH(CO),][BAr ;0] (6-anti) with the ethoxy and hy-
dride oriented anti to one another (dihedral angle of 178(2)°)
(Figure 2). The silyl donor in 6-anti is pyramidalized, in a man-
ner similar to hydrosilyl complex 1. The cobalt hydride, which
was located in the difference map, bends significantly toward
silicon (£Si—-Co-H = 72.3(15)°, dsix = 2.30(4) A), consistent
with the expected high Lewis acidity of the silyl donor and in-
dicating a weak Si/Co—H interaction (SISHA)."

Based on the observations described above, the reaction of 2
with ethanol appears first to afford a complex with ethoxy and
hydride oriented syn (6-syn) as a kinetic product, which isom-
erizes to the fully characterized anti isomer 6-anti upon heating.
Such a reaction course is consistent with the fact that the Lewis-
acidic silylene would be expected to react first by coordination
of ethanol to silicon, followed by fast proton transfer from eth-
anol to the cobalt center. Isomerization to 6-anti occurs readily
with only one equivalent of ethanol and thus does not require
exogenous ethanol. The expected high acidity of the Co(III) hy-
dride cation with m-accepting carbonyl co-ligands®® suggests
that isomerization may occur by proton transfer, perhaps medi-
ated by solvent, though we cannot rule out Si/H reductive elim-
ination followed by oxidative addition to give the anti isomer.
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Figure 3. Molecular structures of complexes 3—6-anti (a—d) with thermal ellipsoids at 50% probability and all hydrogen atoms (except for
Co—H in 6-anti), counterions (for 5 and 6-anti), co-crystallized solvent molecules, and portions of the phosphine isopropyl substituents
omitted for clarity. Selected bond lengths (A) and angles (°) for 3: Co-Si, 2.2453(6); Co—C1, 1.762(2); Co—C2, 1.7715(19); Si—Cl, 2.1189(8);
Si—Co—C1, 90.87(6); P1-Co-P2, 133.65(2). For 4: Co-Si, 2.2163(11); Co—C1, 1.763(4); Co—C2, 1.777(4); Si—-03, 1.797(3); Si—-Co—Cl1,
87.12(14); P1-Co-P2, 132.49(4). For 5: Co-Si, 2.2229(14); Co—C1, 1.773(5); Co—C2, 1.761(5); Si—N, 1.920(4); Si-Co—Cl1, 99.71(15); P1-
Co-P2, 138.27(5). For 6-anti: Co—H, 1.43(4); Co-Si, 2.2885(9); Co—C1, 1.805(3); Co—C2, 1.824(3); Si—03, 1.640(2); Si—-Co-H, 72.4(15);

Si-Co-C1, 91.20(10); P1-Co-P2, 156.46(4).
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Scheme 3. Formation of ethoxy- and hydroxysilyl complexes
from silylene 2

Reaction of silylene 2 with water (>1 equiv) proceeds with
more complexity, initially forming a mixture of three as-yet un-
identified hydride-containing intermediates and converging
upon heating to a mixture represented by a single, broad *'P
NMR signal (8 99.8 ppm). Further examination by 'H NMR
showed the presence of two overlapping Co—H signals in a 3:1
ratio. These signals are associated with two singlets (6 2.86 (ma-
jor) and 2.34 (minor) ppm) assigned as Si—OH, and the presence
of silanol functionality is supported by a broad infrared peak at
3618 cm™'.2! Taking all the spectroscopic data into account, we
assign the ultimate products from reacting 2 with water as syn
and anti hydroxysilyl cobalt hydride complexes (Scheme 3). It
is not clear at this time whether the syn or anti isomer is formed
as the major product, though analogy with the corresponding
ethanol reaction suggests that the anti isomer may be favored.
The initial course of the reaction of silylene 2 with water is not
clear at this point. It is somewhat surprising, based on findings
with platinum,® that a silanol (Si-OH) forms rather than a dis-
iloxane (Si—O-Si). Although siloxane intermediates may be
present in the reaction, the evidence suggests that under our
conditions they are not the thermodynamic products, and they
cannot be favored by utilizing less than 1 equiv of water.

Conclusions

In conclusion, we have presented syntheses of a series of pin-
cer-type (P»Si)Co silyl and silylene complexes. The cationic
base-free silylene 2 is the first of its type on cobalt. It is isolable
and crystallizable, and it reacts readily with pyridine, ethanol,
and water. Reaction with ethanol and water leads to heterolytic
cleavage of the O—H bond to form a cationic Co(IIl) hydride
complex with alkoxy- or hydroxy-substituted silyl donor. These
reactions suggest that further Co/Si cooperative reactivity may
be realized for 2 and related pincer-supported silylenes. Such
reactivity will be the subject of future studies.

Experimental Section

General Considerations. All manipulations were carried out
in an argon- or nitrogen-filled glove box. Routine solvents were
purchased from Sigma-Aldrich and were deoxygenated and
dried using a Glass Contour Solvent Purification System or
PureSolv MD-5 Solvent Purification System and were stored
over 4A molecular sieves in an inert-atmosphere glove box.

Ethanol was purchased in dry and degassed form from Sigma-
Aldrich and used as received. Fluorobenzene was dried via re-
flux over CaH,, vacuum-transferred, and stored over 4A molec-
ular sieves. NMR solvents (Cambridge Isotope Labs) were de-
gassed and vacuum-transferred from sodium/benzophenone
(benzene-ds and toluene-ds) or refluxed over and vacuum-trans-
ferred from CaH, (dichloromethane-d, and bromobenzene-ds),
then stored in an argon-filled glove box over 4A molecular
sieves prior to use. All other chemicals were used as received
from commercial vendors. The (™P,Si)H, ligand,®
Ph3;C-BArf,2? and Ph;C-OTf* were prepared according to lit-
erature procedures. Other reagents were purchased from com-
mercial vendors and used without further purification.

Characterization Methods. NMR spectra were recorded at
ambient temperature on a Bruker Avance III HD 400 (‘H,
400.13 MHz; *C, 100.61 MHz; °F, 376.50 MHz; *Si, 79.50
MHz; 3P, 161.98 MHz) or Varian Inova 500 (*H, 499.68 MHz;
13C, 125.47 MHz; "F, 470.11 MHz; #Si, 99.32 MHz; *'P,
202.29 MHz) NMR spectrometer. 'H and *C NMR chemical
shifts were referenced to residual solvent; '°F, ?°Si, and 3'P
NMR chemical shifts are reported relative to external standards
of neat trifluoroacetic acid (—78.55 ppm), tetramethylsilane (0
ppm), and 85% H3;PO, (0 ppm), respectively. All chemical
shifts are reported in & (ppm). Infrared spectra were obtained on
an Agilent CARY 630 ATR-FTIR, Mattson 4020 Galaxy Se-
ries, or Thermo Scientific Nicolet iS5 FTIR spectrometer. Ele-
mental analyses were performed by CALI Labs, Inc. (Highland
Park, NJ) or Midwest Microlab, LLC.

Computational Details. All computations were carried out
with the Gaussian09 program.** All of the geometries were fully
optimized by M06% functional. The Stuttgart basis set and the
associated effective core potential (ECP) was used for Co at-
oms, and an all-electron 6-31G(d) basis set was used for the
other atoms. Based on the optimized structures,
B3LYP/SDD/6-311+G(2d,p) level of theory was then used for
the NMR calculation using the GIAO method relative to TMS.

(®rP.Si)Co(CO)2 (1). A 20 mL scintillation vial was
charged with Co,(CO)s (50 mg, 0.15 mmol) and 8 mL toluene.
To this was added a solution of the (**P,Si)H, ligand (0.81 mL,
0.36 M in toluene, 0.29 mmol) with stirring, causing a color
change from dark brown to bright yellow with bubbling as CO
and H, were evolved. The reaction was allowed to proceed with
stirring for 1 h and the volatiles were removed in vacuo. The
orange residue was dissolved in minimal pentane, filtered, and
crystallized at —35 °C to give pure 1 as a crop of yellow/orange
crystals suitable for X-ray diffraction. Yield: 92 mg (59%). 'H
NMR (C¢Ds, 500 MHz): 6 7.91 (d, J=7.2 Hz, 2H), 7.23 (dd, J;
=7.7Hz, ), =3.0 Hz), 7.18 (td, J1 = 7.2 Hz, J, = 2.0 Hz, 2H),
7.07 (t,J=7.5 Hz, 2H), 6.15 (s, 'Jsin = 182 Hz, 1H, Si-H), 2.24
(m, 4H), 1.26 (dvt, J = 8.8 Hz, J,=7.0 Hz, 6H), 0.92 (dvt, J; =
8.1 Hz, J, = 6.8 Hz, 6H), 0.87-0.80 (overlapping dvt, 12H).
BC{'H} NMR (C¢Ds, 120 MHz): § 220.4 (br s, Co—CO), 207.2
(br s, Co—CO), 154.1 (quin, J = 30 Hz), 145.2 (dd, J; = 22 Hz,
J» =20 Hz), 133.3 (t, J= 11 Hz), 129.7, 128.4 (br s, overlap
with Ce¢Ds), 128.0 (overlap with C¢Dg), 31.7 (t, J = 15 Hz, P—
CH—(CHjs)»), 29.6 (t, J= 8.6 Hz, P-CH—(CHs),), 19.0 (t, /=2.4
Hz, CH3), 18.84 (s, overlapping), 18.82 (t, J= 2.2 Hz, overlap-
ping), 18.53 (t, J= 1.3 Hz). *'P{'"H} NMR (C¢Ds, 202 MHz): &
93.8 (brs). ¥Si{'H} (CsHsF, 79 MHz): § 54.8 (t, Jsip = 22 Hz).
IR (ATR, cm™): 2048 (SiH), 1958 (CO), 1908 (CO). Anal.
calcd. for C,6H37C0oO,P,Si: C, 58.86; H, 7.03. Found: C, 59.16;
H, 7.25.



[(PP2Si=)Co(CO):][BArF] (2). (PP,Si")Co(CO), (1) (31
mg, 0.058 mmol) and trityl tetrakis(pentafluorophenyl)borate
(Ph;C*BArTy) (55 mg, 0.060 mmol) were separately dissolved
in fluorobenzene (2 mL each), and the Ph;C*BArfs solution
was added dropwise to the solution of 1 with stirring, causing
an immediate color change from yellow to red. Pentane (10 mL)
was added to precipitate the desired product. The supernatant
was removed and the resulting red/orange powder was washed
with pentane (3 X 3 mL). Residual pentane was removed in
vacuo to afford [(F'P,Si=)Co(CO),][BArF] (2). Crude yield:
68 mg (94%). The solid could be further purified by crystalliza-
tion from a toluene:fluorobenzene (3:1) solution at —35 °C. Re-
crystallized yield (as toluene solvate): 37 mg (49%). 'H NMR
(CsDsBr, 500 MHz): 6 7.96 (m, 2H), 7.47 (m, 4H), 2.46 (m,
4H), 0.88-0.75 (m, 24H). *C{'H} NMR (CsHsF, 120 MHz):
For cation portion only. 6 202.0 (br s, Co—CO), 149.0 (t, J =22
Hz), 148.0 (t, J = 25 Hz), 132.9 (t, J= 9 Hz), 132.5 (s), 132.3
(s), 130.4 (s), 28.0 (t, J=12.9 Hz, P-CH—(CH3),), 17.2 (s, CH3),
16.3 (s, CH;). 'F NMR (C¢DsBr, 470 MHz): § —133.1 (br s,
2F), -163.5 (t, J=21 Hz, 1F), -167.3 (br s, 2F). *Si{!H} NMR
(C6HsF, 99 MHz): § 284.6 (br s). *'P{'"H} NMR (C¢DsBr, 202
MHz): § 105.1. IR (ATR, cm™'): 2028 (CO), 1983 (CO). Anal.
calcd. for CsoH3sBCoF200,P,Si: C, 49.69; H, 3.00. Found: C,
51.00; H, 2.99. NOTE: Microanalysis showed high values for C
due to the presence of co-crystallized toluene evident in NMR
spectra and the crystal structure of 2.

(PrP2SiYCo(CO)2 (3). A 20 mL scintillation vial was
charged with (PP,Si")Co(CO), (1) (65 mg, 0.12 mmol), 5 mL
CsDs, and CDCl; (ca. 300 pL). The mixture was heated in the
sealed vial at 85 °C for 20 h, leading to a gradual change in
solution color from yellow to green. Volatiles were removed in
vacuo and the resulting pale-green powder was washed with
cold pentane (3 x 3 mL). The solid was then dried in vacuo to
afford pure 3. Yield: 62 mg (90%). Single crystals suitable for
X-ray diffraction were grown from a 3:1 pentane:toluene solu-
tion at —35 °C. '"H NMR (C¢Ds, 500 MHz): § 8.16 (d, J = 7.3
Hz, 2H), 7.22 (m, 4H), 7.08 (t, J = 7.3 Hz, 2H), 2.29 (m, 4H),
1.26 (dvt, J, = 8.6 Hz, J, = 6.8 Hz, 6H), 0.96 (dvt, J; = 8.2 Hz,
J» = 6.9 Hz, 6H), 0.88-0.74 (overlapping dvt, 12H). *C{'H}
NMR (C¢Dg, 120 MHz): $ 219.4 (Co—CO), 205.9 (Co—CO),
156.0 (m), 144.2 (m), 133.1 (t, J=11 Hz), 130.5 (s), 128.9 (t,J
=2 Hz), 32.0 (t, J= 15 Hz, P-CH—(CHs),), 29.8 (t, /= 10 Hz,
P-CH—(CHa),), 19.4 (t, J= 2 Hz, CH3), 19.0 (s, CH3), 18.97 (t,
J =2 Hz, CH3), 18.8 (br s, CH3). ¥Si{'H} (CsDs, 99 MHz):
893.7 (t, Jsip = 30 Hz). *'P{'H} NMR (C¢Ds, 202 MHz): § 95.2
(brs). IR (ATR, cm™): 1970 (CO), 1921 (CO). Anal. calcd. for
C36H36C1C00,P,Si: C, 55.27; H, 6.42. Found: C, 55.74; H, 6.45.

(PP1Si%™Co(CO): (4). (*P»Si")Co(CO), (1) (50 mg, 0.094
mmol) and trityl trifluoromethanesulfonate (Ph3;C*OTf; 37 mg,
0.094 mmol) were separately dissolved in dichloromethane (2
mL each), and the Ph3C*OTf solution was added dropwise to
the stirring solution of 1. The reaction mixture was stirred for
5 min and all volatiles were removed in vacuo. The resulting oil
was washed with cold pentane (3 mL) to remove most of the
triphenylmethane byproduct (desired product 4 also has some
pentane solubility, so some 4 was lost in this step). The resulting
powder was dissolved in minimal pentane and crystallized at
—35 °C, affording yellow crystals of analytically pure 4. Recrys-
tallized yield: 24 mg (38%). '"H NMR (C¢Ds, 400 MHz): § 8.55
(dt, Jy = 7.5 Hz, J> = 1.1 Hz, 2H), 7.26 (tdd, J, = 7.4 Hz, J, =
2.5 Hz, Js= 1.0 Hz, 2H), 7.20 (m, 2H), 7.07 (m, 2H), 2.25 (m,
4H), 1.24 (dvt, J1 =9.5 Hz, J, = 6.9 Hz, 6H), 0.93 (dvt, J1 =9.1
Hz, J» = 6.9 Hz, 6H), 0.83 — 0.66 (m, 12H). *C{'H} NMR

(CsDs, 100.6 MHz): & 218.1 (br s, Co—CO), 204.3, (br s, Co—
CO), 151.4 (t, J= 27 Hz), 145.6 (t, J = 22 Hz), 133.6 (t, J =
11 Hz), 131.0, 129.8 (t, J = 2.7 Hz), 119.4 (q, J = 318 Hz, —
CF),31.5(t,J=15Hz),30.3(t,J=10Hz), 19.33,18.91, 18.79,
18.23. PF{'H} NMR (C¢Ds, 376.3 MHz): & —77.3. ¥Si{'H}
NMR (C¢Ds, 79.5 MHz): § 108.8 (t, J = 34 Hz). 3'P{'H} NMR
(CsDs, 161.9 MHz): § 96.0. IR (CH,Cl,, cm™): 1987 (CO), 1938
(CO). Anal. calcd. for Cy7H3sCoF30sP,SSi: C, 47.79; H, 5.35.
Found: C, 47.73; H, 5.20.

[(PP2SiP)Co(CO)2] [BArFa] (5). (PP,SiT)Co(CO) (1) (60
mg, 0.11 mmol) and trityl tetrakis(pentafluorophenyl)borate
(Ph3;C*BArfy; 104 mg, 0.11 mmol) were separately dissolved
in fluorobenzene (2 mL each), and the Ph;C*BArfy solution
was added dropwise to the stirring fluorobenzene solution of 1,
causing an immediate color change form yellow to red. After
5 min, excess pyridine (ca. 15 puL) was added to the reaction
mixture via pipette, causing a color change from red to yellow.
Pentane (10 mL) was added with stirring to precipitate the de-
sired product, which was isolated by filtration and washed with
pentane (3 x 3 mL) and dried in vacuo, affording pure 5. Yield:
131 mg (89%). 'H NMR (CD,Cl,, 400 MHz): & 8.23 (tt, J1 = 7.7
Hz, J, = 1.5 Hz, 1H, pyr para C-H), 7.99-7.89 (m, 4H), 7.86—
7.77 (m, 2H), 7.74-7.61 (m, 6H), 2.91 (m, 2H), 2.59 (m, 2H),
1.38 (dvt, J1 = 9.9 Hz, J, = 6.8 Hz, 6H), 1.15 (dvt, J; = 7.4 Hz,
J>» = 6.3 Hz, 6H), 0.91 (overlapping dvt, 12H). *C{'H} NMR
(CDyCl,, 100.6 MHz): For cation portion only. 6 215.7 (Co—
CO), 204.8 (Co—CO), 148.9-147.7 (m), 146.7, 145.4, 133.2 (t,
J=10Hz), 132.6, 132.0, 130.6, 127.6,31.8 (t, /=11 Hz), 31.4
(t, J = 15 Hz), 19.8, 19.3, 19.2, 19.0. “F{'H} NMR (CD,ClL,
376.3 MHz): 6 —133.0 (br), —163.5 (t, J=20.4 Hz), -167.4 (t, J
=19.6 Hz). ®Si{'H} NMR (CD,Cl,, 79.5 MHz): 5 114.0 (t, *Jsi
= 34 Hz). 3'P{'"H} NMR (CD:Cl, 161.9 MHz): & 97.5. IR
(CHClp, ecm™): 1990 (CO), 1939 (CO). Anal. calcd. for
CssHaBCoF,0NO,P5Si: C, 51.30; H, 3.21. Found: C, 51.09; H,
3.21.

[(®P2Si%E)Co(H)(CO)2] [BArF2] (6). (F'P,SiH)Co(CO), (1)
(40 mg, 0.075 mmol) and trityl tetrakis(pentafluorophenyl)bo-
rate (Ph3;C*BAry; 69.6 mg, 0.075 mmol) were separately dis-
solved in fluorobenzene (2 mL each), and the Ph;C*BArT so-
lution was added dropwise to the stirring fluorobenzene solu-
tion of 1. After 5 min, excess ethanol (ca. 15 pL) was added to
the reaction mixture via pipette and the mixture was heated at
55 °C for 1 h. Pentane (10 mL) was added to precipitate the de-
sired product, which was isolated by filtration as a pale yellow
powder, washed with pentane (3 x 3 mL), and dried in vacuo to
give pure 6. Yield: 87 mg (92%). Single crystals suitable for X-
ray diffraction were grown from a 3:1 diethyl ether:fluoroben-
zene solution at —35 °C. 'H NMR (CD,Cl,, 400 MHz): § 8.14
(d, J=17.4 Hz, 2H), 7.79 (m, 2H), 7.73 (t, J= 7.3 Hz, 2H), 7.66
(t, J=6.7 Hz, 2H), 3.56 (q, J = 7.0 Hz, 2H, —-OCH,CH3), 2.91
(m, 2H), 2.79 (m, 2H), 1.44 (dvt, J; = 10.6 Hz, J> = 7.4 Hz, 6H),
1.25 (dvt, J1 = 8.8 Hz, J, = 7.4 Hz, 6H), 1.16 (dvt, J, = 10.4 Hz,
J>=7.0 Hz, 6H), 1.09 (dvt, J; = 10.4 Hz, J, = 7.1 Hz, 6H), 1.05
(t,J=6.9 Hz, 3H, -OCH,CH;), —12.25 (t, J=38.6 Hz, 1H, Co—
H). BC{'H} NMR (CD,Cl,, 100.6 MHz): For cation portion
only (NOTE: Co—CO not visible). & 150.5 (t, /=20 Hz), 139.86
(t,J=27Hz), 133.4 (t, /=10 Hz), 132.7, 131.5 (t, /= 3.9 Hz),
130.0 (t, /= 2.9 Hz), 61.5, 31.6 (t, J= 16 Hz), 30.8 (t, /=11
Hz), 19.2, 18.8, 18.7, 18.2, 18.1. ¥Si{'H} NMR (CD-Cl,, 79.5
MHz): § 62.4 (t, *Jsp = 9.1 Hz). 3'P{'"H} NMR (CD:Cl,, 161.9
MHz): § 99.2. IR (CH,Cl,, cm™): 2067 (CO), 2041 (CO). Note:




Samples of 6 routinely failed microanalysis, even after recrys-
tallization. However, multinuclear NMR spectroscopy indicates
high purity (>97%) for this material.

[(*P2Si®®)Co(H)(CO):][BArF2] (7-syn and 7-anti, mix-
ture of isomers). (TP,Si*)Co(CO), (1) (40 mg, 0.075 mmol)
and trityl tetrakis(pentafluorophenyl)borate (Ph3C*BAr 2; 69.6
mg, 0.075 mmol) were separately dissolved in fluorobenzene (2
mL each), and the Ph;C*BArTy solution was added dropwise to
the stirring fluorobenzene solution of 1. After 5 min, excess wa-
ter (ca. 15 uL) was added via pipette and the mixture was heated
at 80 °C overnight. Pentane (10 mL) was added to precipitate
the desired product, which was isolated by filtration, washed
with pentane (3 x 3 mL), and dried in vacuo to afford 7 as a pale
yellow powder consisting of an approximately 3:1 mixture of
two isomers. Analysis of the mixture by 'H NMR (see Figure
S30) showed mostly overlapping peaks for the major and minor
isomers, so only diagnostic peaks are reported for the minor iso-
mer. 'H NMR of major isomer (CD,Cl,, 400 MHz): § 8.17 (d, J
= 74 Hz, 2H), 7.83-7.57 (m, 6H), 2.97-2.84 (m, 2H,
PCH(CH3),), 2.86 (s, 1H, Si-OH), 2.88-2.76 (m, 2H,
PCH(CH;3),), 142 (m, 6H, PCH(CHs),), 1.28 (m, 6H,
PCH(CH;),), 1.19 (m, 6H, PCH(CHs),), 1.06 (m, 6H,
PCH(CHs),), —12.16 (t, 2Jpu = 38.7 Hz, 1H, Co—H). Distinct 'H
NMR peaks for minor isomer: 2.80-2.68 (m, PCH(CH3),),
2.55-2.42 (m, PCH(CHs),), 2.34 (s, 1H, Si-OH), —12.11 (t, *Jen
= 35.8 Hz, 1H, Co—H). ®Si{'H} NMR for mixture of isomers
(CD1Cly, 161.9 MHz): & 62.4 (t, *Jsip = 9.6 Hz). *'P{'H} NMR
for mixture of isomers (CD,Cl,, 161.9 MHz): § 99.8 (br). IR for
mixture of isomers (CH2Cly, cm™): 3618 (br, OH of silanol),
2068 (CO), 2038 (CO).

X-ray Crystallography. Single-crystal X-ray diffraction
data for compounds 1-3 were collected on a Bruker APEX 2
diffractometer using Mo Ka radiation (A = 0.71073 A), cooled
to 110 K using a cold nitrogen stream (Oxford). Integrated in-
tensity information for each reflection was obtained by reduc-
tion of the data frames with the program APEX2.%® The integra-
tion method employed a three-dimensional profiling algorithm
and all data were corrected for Lp and decay. Finally, the data
were merged and scaled to produce a suitable data set. The ab-
sorption correction program SADABS?’ was employed to cor-
rect the data for absorption effects. Absence of additional sym-
metry and voids were confirmed using PLATON
(ADDSYM).2

Single-crystal X-ray diffraction data for compounds 4—6
were collected on a Rigaku XtaLAB mini diffractometer using
Mo Ka radiation (A = 0.71073 A), cooled to 173 K using a cold
air stream provided by an Oxford Cryosystems desktop cooler
(Oxford Cryosystems Ltd, Oxford). The crystals were mounted
on a MiTeGen micromount (MiTeGen, LLC, Ithaca, NY) using
STP oil. The frames were integrated using CrystalClear-SM Ex-
pert 3.1 b27% to give the hkl files corrected for Lp and decay.
Data were corrected for absorption effects using a multiscan
method (REQAB).?’ Absence of additional symmetry and voids
were confirmed using PLATON (ADDSYM).

All structures were solved using SHELXS-2013 and refined
using SHELXL-2013 with the Olex2 software package.*® All
non-hydrogen atoms were refined with anisotropic thermal pa-
rameters. Cobalt and silicon hydrides were located in the Fou-
rier difference maps and refined isotropically; all other hydro-
gen atoms were inferred geometrically from neighboring sites
and refined with riding thermal parameters. Crystallographic
parameters of all complexes are summarized in Table S1.

ORTEP drawings were prepared using ORTEP-3 for Windows
V2013.13! and POV-Ray for Windows v3.6.32 Crystallographic
data for the complexes have been deposited at the Cambridge
Crystallographic Data Centre (Nos. 1845823—1845828) and can
be obtained free of charge via www.ccdc.cam.ac.uk.

Special Crystallographic Refinement Details. Triflatosilyl
complex 4 contained two approximately equivalent molecules
in the asymmetric unit, one of which exhibited a triflate that was
disordered over two positions. In order to allow suitable refine-
ment, the two triflates were subjected to EADP restraints.
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