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The synthesis and characterization of base-stabilized and base-free
pincer-type bis(phosphine)/silylene [P,Si]Ru are
reported. The base-free complex readily reduces CO, and CS; via

complexes

silylene-assisted hydride transfer, affording structurally distinct
products with silicon-to-ruthenium formate and dithioformate
bridges.

Compared with their ubiquitous metal carbene congeners,
metal silylenes (M=SiR;) are much less common, due in part to
the reactivity of the highly electrophilic sp? silicon center.
Nevertheless, transition-metal silylene complexes have been
implicated in several important catalytic processes, with the
silylene either participating directly or acting as a supporting
ligand.! Moreover, base-free metal silylenes also exhibit a
number of unusual modes of reactivity that may yet find
application in catalysis, including reversible migration of X-type
ligands to silicon,2 hydrosilylation of polar and nonpolar
multiple bonds by hydride transfer from a metal,? [2+2] and
[2+4] cycloadditions across the M=Si bond,* insertion into Si—H
bonds of H-substituted silylenes,> redistribution of silicon
substituents,® and halogen radical abstraction.”

The variety of distinct modes of metal silylene reactivity
suggests that new, cooperative catalysis may be enabled by
appropriately designed silylene complexes. As part of a research
program focused on developing metal/silicon cooperative
approaches to small-molecule activation,® our research group
has worked to develop multidentate ligand scaffolds capable of
supporting silyl and silylene donors as reactive central elements
in a pincer-type environment.® Several examples of
modification of M—Si single bonds within [P,Si]M environments
have been reported,’® and such processes are frequently
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reversible, suggesting that incorporating the silicon donor into
a pincer environment may be beneficial for catalysis. However,
a similar range of processes has not been demonstrated for
pincer-type metal silylenes. In principle, chelation through
strong donors should help stabilize the reactive M=Si bond,
allowing possible elucidation of new reactions occurring at a
M?®-=Si®* facade and better integration into catalysis. However,
only two pincer-type silylene complexes have been previously
characterized (Chart 1).1! Ozerov's platinum complex was
unstable, readily undergoing metal-to-silicon migration of
various X-type ligands. Previous work in our laboratory also
implicated pincer-type silylene intermediates at rhodium.®
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Chart 1. Complexes with base-free silylene donors incorporated into a pincer framework

The preparation and isolation of a pincer-type late-metal
silylene complex would allow detailed reactivity studies, with
the goal of utilizing ambiphilic M%=Si®* complexes as
intermediates in cooperative processes.12 In  this
Communication, we report the preparation of a series of pincer-
type [P2Si] ruthenium hydride complexes, including a base-
stabilized and base-free silylene. The base-free complex
reduces CO; and CS; via silicon-assisted hydride transfer from
ruthenium to the heteroallene..

Previous results from our laboratory?® 13 and others# have
shown that dihydrosilanes will react with metal halides or
pseudohalides to form halosilyl metal complexes. To avoid this
potential complication, ruthenium hydride precursors were
targeted. Metalation of the bis(phosphine)/dihydrosilyl pincer-
type proligand [P"P,Si]H> (1) with Ru(H)2(CO)(PPhs)s led to
guantitative conversion (by 3!P NMR spectroscopy) to the
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hydrosilyl ruthenium hydride complex (PPP,Si")Ru(H)(CO)(PPhs)
(2) with loss of H, and 2 equiv of PPhs (Scheme 1). Previous work
by Tilley and others has shown the utility of triflatosilyl
complexes as precursors to silylenes and their
equivalents,® 15 and it was found that 2 could be converted to
its triflatosilyl derivative (3) by reaction with trityl triflate.
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Scheme 1. Synthesis of [P,Si]Ru silyl and silylene complexes

Complex 2 exhibits a number of key spectroscopic handles
supportive of its formulation as shown in Scheme 1, including
prominent infrared bands associated with Si-H and C=0
stretching modes (vsiy = 2024 cm™, veo = 1942 cm™1), and a 2°Si
chemical shift consistent with an sp3-hybridized hydrosilyl metal
complex (& 47.3 ppm).t6 Although the Si—H stretching mode is
at slightly lower energy than is typical for hydrosilanes,!’ it is
quite similar to those reported by Kono et al. for related
ruthenium complexes.® No Si—H signal is observed for 2 by H
NMR spectroscopy, though the chemical shift (6 6.65 ppm) was
confirmed by a H/2°Si HMQC experiment, showing that the
signal is hidden under aromatic C—H peaks. The silicon hydride
was also located in the Fourier difference map in the crystal
structure of 2 and refined freely.

Table 1. Key structural and spectroscopic data for silyl and silylene complexes 2-5

2 3 a» 5b

5Si 329.0(2)° 338.9(3)° - -

dru-si (A) 2.379(1) 2.318(1) - -
& 29Si (ppm) 47 115 151 278
2Jsip(trans) (HZ) 83 110 112 108
veo (cm™) 1942 1965 1955 1979

a 5/Si = sum of bond angles around silicon, excluding H (2) or OTf (3). b No
structural data available for complexes 4 and 5.

Though complexes 2 and 3 exhibit grossly similar
spectroscopic features, there are key differences that are
consistent with the different electronic properties engendered
by triflate versus hydride. For instance, complex 3 exhibits a 2°Si
chemical shift that is significantly downfield from that of 2, and
silicon shows a stronger two-bond coupling to the trans-PPh;
ligand, presumably due to a stronger Ru/Si interaction (Table 1).
The carbonyl ligand also shows a higher-energy stretching mode
due to reduced backbonding from Ru, as expected when the
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electron-withdrawing triflate is introduced. A comparison of
crystal structures obtained for 2 and 3 shows a shorter Ru-Si
bond and greater sp? character for silicon in 3 (Table 1 and
Figure 1).1°
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Fig. 1 Crystal structures of (a) 2 and (b) 3 with thermal ellipsoids at the 50% probability
level. Hydrogen atoms (except for Ru and Si hydrides) and portions of the triflate and
phosphine phenyl groups have been omitted for clarity. Selected bond lengths (A) and
angles (°) for 1: Ru-Sil, 2.3787(10); Ru—P1, 2.3347(9); Ru—P2, 2.3309(10); Ru—P3,
2.4261(9); Ru—C1, 1.895(4); Ru-H1, 1.60(3); C1-01, 1.151(4); Sil-Ru—-P3, 175.69(3); P1—
Ru-P2, 153.45(3); Sil-Ru-H1, 80.1(12). For 2: Ru-Si1, 2.3175(14); Ru-P1, 2.3454(14);
Ru-P2, 2.3356(14); Ru-P3, 2.4304(13); Ru-C1, 1.894(5); Ru-H1, 1.62(5); C1-01,
1.150(6); Sil-Ru—P3, 174.14(5); P1-Ru—P2, 154.66(5); Sil-Ru-H1, 77.5(18).

Initial attempts to prepare a base-free silylene complex
focused on triflate abstraction from 3 using Li[BArF]-(Et,0)x
(BArF = B(CeFs)47).1° However, the product 4-BArF exhibited a
29Sj chemical shift (6 150.7 ppm) more consistent with a base-
stabilized than base-free silylene, and 'H NMR revealed the
presence of diethyl ether (1 equiv) bonded to silicon (see ESI).
Alternatively, the base-free silylene complex,
[PhP,Si=]Ru(H)(CO)(PPh3) (5), could be prepared as a bright
yvellow solid via hydride abstraction with trityl BArF in non-
donor solvents such as dichloromethane, bromobenzene, and
fluorobenzene. The reaction was found to proceed most cleanly
in fluorobenzene and 5 was unstable over extended periods in
dichloromethane, suggesting possible chlorine radical
abstraction by the silylene.” 2°Si NMR spectroscopy confirmed
the base-free silylene formulation presented in Scheme 1 (o
278 ppm).tt Also consistent with this formulation, it was found
that 4 could be cleanly prepared by addition of Et,O to a
solution of 5.

Thus far, we have been unable to obtain crystals of 5 suitable
for X-ray crystallographic analysis. However, the structure of 5
was probed with density functional theory (DFT), revealing an
acute Si—-Ru—H bond angle (50°) and close Si--H contact (1.78 A)
as expected for a highly electrophilic cationic silylene hydride,>¢
as well as a short Ru=Si bond (2.243 A). The Ru-H signal
observed in the 'H NMR spectrum of 5 reveals parameters
similar to those of 2-4 (6 —7.89 (t, e = 15.3 Hz)), though no
coupling to the bound PPh3 was resolved. No 2°Si satellites were
observed and 29Si/*H coupling was not resolved for the hydride
signal by a 2°Si-filtered 'H NMR experiment, suggesting that Jsin
is less than ca. 20 Hz. The coordination environment of 5 is
unusual in that most ruthenium silylene complexes lacking
heteroatom stabilization of the silylene utilize Cp* ligands. The
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closest geometric analogues to 5 are Peters's neutral, six-
coordinate  Ru(ll) silylenes supported by tripodal
tris(phosphino)silyl  ligands.2® Ongoing  structural and
computational studies are aimed at determining the precise
structure and bonding description of 5.
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Exposure of 5 to CO; (1 atm) results in a lightening of the
solution, loss of the ruthenium hydride resonance observed by
IH NMR spectroscopy, and appearance of a new singlet at
6.42 ppm, indicating the possible presence of a formate. The
carbonyl stretching frequency red-shifts by 24 cm™ to
1955 cm™!, indicative of increased backbonding from
ruthenium, and a new intense infrared signal is observed at
1577 cm~l. Additionally, the 2°Si NMR resonance moves to
118 ppm, similar to that of the silicon nucleus in triflatosilyl
complex 3. Together, these findings suggest a net cooperative
insertion of CO,, with transfer of hydride from ruthenium to CO,
and formation of an O—(CH)—-0 bridge from silicon to ruthenium
(Eq 1). Such a formulation is confirmed by reaction of 2 with
13C0O,, causing the formate C—H NMR signal to split into a
doublet (Uuc = 232 Hz) and the symmetric OCO stretch of the
bridging formate to shift to 1538 cm~1. Use of 13CO, also allows
observation of the formate carbon by 3C{IH} NMR (6 171.6 (d,
3Jcp = 8 Hz)). The observation of three-bond coupling to PPhs but
not the phosphines of the [P,Si] ligand appears be an unusual
manifestation of Karplus’s rule by an inorganic system,?! since
the C—O—-Ru-P dihedral angle should be ca. 180° (maximum
coupling) for to PPhs ligand but 90° (minimum coupling) to the
phosphines of the [P,Si] ligand.

An analogous reaction of 5 with CS; to affords the bridging
dithioformate 7, which exhibits a carbonyl stretch (vco = 1973
cm™1) slightly blue-shifted from that of 6, presumably due to
weaker S—>Ru (versus O->Ru) m donation and resultantly
weaker backbonding into the CO ligand. The dithioformate C—H
resonance observed by 'H NMR spectroscopy is also shifted
significantly downfield from the analogous proton in 6 (3 9.61
ppm), but the 2°Si NMR resonance of 7 is nearly identical to that
of 6. Crystals of 7 suitable for X-ray diffraction were ultimately
obtained by replacement of BArF with the highly crystalline
dodecachlorododecaborate dianion (B32Cl1,2) (Figure 2).22
Consistent with the 2°Si NMR data, the silicon center in 7 is
pyramidalized to about the same extent as that in 3 (54Si =
335.6(2)°). The bridging formate and dithioformate modes
found in 6 and 7 represent unusual structural motifs. Tobita has
reported a similar structure resulting from the hydrosilylation
of arylisocyanates at a neutral ruthenium silylene hydride
complex.32 Roper has also reported a related bridging acetate
complex that was obtained by reaction of a chlorosilyl
ruthenium complex with thallium acetate.23
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Fig. 2. Crystal structure of cation portion of 7-B;,Cl;, with thermal ellipsoids at the 50%
probability level. Hydrogen atoms (except for dithioformate C—H) and portions of the
phosphine phenyl groups have been omitted for clarity. Selected bond lengths (A): Ru—
Si1, 2.3285(11); Ru-P1, 2.3749(10); Ru-P2, 2.4250(10); Ru-P3, 2.5080(10); Ru—C1,
1.876(4); Ru-S1, 2.3939(10); Si1-S2, 2.2310(13); C1-01, 1.145(4).

The simplest mechanistic option for formation of 6 and 7
would involve cooperative hydride transfer to carbon with
concomitant O-Si or S—Si bond formation (Scheme 2, Path A).
Alternatively, 1,2-hydrogen migration to silicon could precede
CO; or CS; binding, followed by hydride transfer directly from
silicon (Scheme 2, Path B). At this point, we favour Path A
because CO; is a weak ligand that typically binds in a stable
fashion only to electron-rich metal complexes.2* Path A is also
analogous to Hazari's NH-assisted CO, insertion into an iridium
hydride.2> The analogy to Hazari’s acid-assisted pathway is
reinforced by the fact that ether-stabilized complex 4, with its
less electrophilic silicon center, does not react with CO; and CS,,
even at elevated temperature.

We considered an alternative mechanism involving direct
CO,/CS; insertion into Ru—H, but such an option requires prior
dissociation of PPh; from the 18-electron complex to allow
coordination of the heteroallene. For hydrosilyl complex 2,
phosphine exchange does not occur at ambient temperature
and is sluggish at 80 °C (see ESI). Although analogous studies
could not be conducted on 5 due to its instability toward Lewis
bases, it is expected by analogy that the facile reaction of 5 with
CO,/CS, (the CS, reaction is instantaneous at ambient
temperature) does not require PPhs dissociation.
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Scheme 2. Possible pathways for CO, reduction at silylene 5 (n.b., only the Si/Ru/H core
of complex 5 is depicted).

Comparison of the observed reactivity of 5 with the ArNCO
and ArNCS reactions of Tobita's neutral silylene hydride3
introduces several further points of interest. Firstly, although
Tobita's complex performs hydrosilylation of ArNCO, it has not
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been reported to react with CO, or CS;. Thus, the observed
reactivity of 5 may derive partly from the high electrophilicity of
the cationic complex. Secondly, Tobita's complex cleaves the
C=S bond in mesityl isothiocyanate, 5 simply
hydrosilylates CS,. At this point, the origins of such divergent
reactivity are unclear.

In conclusion, we have presented the synthesis of a series of
pincer-type [P,Si]Ru complexes with varying substitution at
silicon, including diethyl-ether-stabilized and base-free silylene
complexes. The complexes provide unusual examples of pincer
ligands incorporating silylene donors, and the base-free silylene
participates in stoichiometric hydrosilylation of CO, and CS..
These findings show how the reactivity of a metal hydride can
be modulated by a proximal Lewis acid, a feature we intend to
exploit as we explore silicon/metal cooperative reactivity with

whereas

an eye toward catalysis.
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