ROYAL SOCIETY OF CHEMISTRY

Dalton Transactions

COMMUNICATION

Silylene-Assisted Hydride Transfer to CO₂ and CS₂ at a [P₂Si]Ru Pincer-Type Complex

Received 00th January 20xx, Accepted 00th January 20xx Matthew T. Whited,*a Jia Zhang,a Senjie Ma,a Binh D. Nguyen,a and Daron E. Janzenb

DOI: 10.1039/x0xx00000x

www.rsc.org/

The synthesis and characterization of base-stabilized and base-free pincer-type bis(phosphine)/silylene $[P_2Si]Ru$ complexes are reported. The base-free complex readily reduces CO_2 and CS_2 via silylene-assisted hydride transfer, affording structurally distinct products with silicon-to-ruthenium formate and dithioformate bridges.

Compared with their ubiquitous metal carbene congeners, metal silylenes (M=SiR₂) are much less common, due in part to the reactivity of the highly electrophilic sp^2 silicon center. Nevertheless, transition-metal silylene complexes have been implicated in several important catalytic processes, with the silylene either participating directly or acting as a supporting ligand.¹ Moreover, base-free metal silylenes also exhibit a number of unusual modes of reactivity that may yet find application in catalysis, including reversible migration of X-type ligands to silicon,² hydrosilylation of polar and nonpolar multiple bonds by hydride transfer from a metal,³ [2+2] and [2+4] cycloadditions across the M=Si bond,⁴ insertion into Si–H bonds of H-substituted silylenes,⁵ redistribution of silicon substituents,⁶ and halogen radical abstraction.²

The variety of distinct modes of metal silylene reactivity suggests that new, cooperative catalysis may be enabled by appropriately designed silylene complexes. As part of a research program focused on developing metal/silicon cooperative approaches to small-molecule activation,⁸ our research group has worked to develop multidentate ligand scaffolds capable of supporting silyl and silylene donors as reactive central elements in a pincer-type environment.⁹ Several examples of modification of M–Si single bonds within [P₂Si]M environments have been reported,¹⁰ and such processes are frequently

Chart 1. Complexes with base-free silylene donors incorporated into a pincer framework

The preparation and isolation of a pincer-type late-metal silylene complex would allow detailed reactivity studies, with the goal of utilizing ambiphilic $M^{\delta-}=Si^{\delta+}$ complexes as intermediates in cooperative processes. ¹² In this Communication, we report the preparation of a series of pincer-type [P₂Si] ruthenium hydride complexes, including a base-stabilized and base-free silylene. The base-free complex reduces CO_2 and CS_2 via silicon-assisted hydride transfer from ruthenium to the heteroallene..

Previous results from our laboratory^{9, 13} and others¹⁴ have shown that dihydrosilanes will react with metal halides or pseudohalides to form halosilyl metal complexes. To avoid this potential complication, ruthenium hydride precursors were targeted. Metalation of the bis(phosphine)/dihydrosilyl pincertype proligand [PhP₂Si]H₂ (1) with Ru(H)₂(CO)(PPh₃)₃ led to quantitative conversion (by ³¹P NMR spectroscopy) to the

Electronic Supplementary Information (ESI) available: Synthesis procedures and characterization data all reported compounds, computational details for complex **5(comp)**, Crystallographic data for **2**, **3**, and **7-B**₁₂Cl₁₂. CCDC 1566072–1566074. See DOI: 10.1039/x0xx00000x

reversible, suggesting that incorporating the silicon donor into a pincer environment may be beneficial for catalysis. However, a similar range of processes has not been demonstrated for pincer-type metal silylenes. In principle, chelation through strong donors should help stabilize the reactive M=Si bond, allowing possible elucidation of new reactions occurring at a $\rm M^{\delta-}\text{--}Si^{\delta+}$ façade and better integration into catalysis. However, only two pincer-type silylene complexes have been previously characterized (Chart 1). Ozerov's platinum complex was unstable, readily undergoing metal-to-silicon migration of various X-type ligands. Previous work in our laboratory also implicated pincer-type silylene intermediates at rhodium.

^a Department of Chemistry, Carleton College, Northfield, MN 55057, USA E-mail: mwhited@carleton.edu

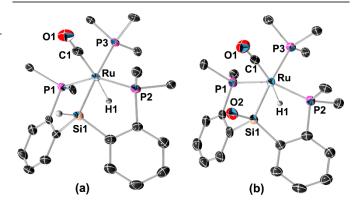
b. Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, MN 55105, USA

COMMUNICATION Journal Name

hydrosilyl ruthenium hydride complex ($^{Ph}P_2Si^H$)Ru(H)(CO)(PPh₃) (2) with loss of H₂ and 2 equiv of PPh₃ (Scheme 1). Previous work by Tilley and others has shown the utility of triflatosilyl complexes as precursors to silylenes and their reactive equivalents, $^{9a, 15}$ and it was found that 2 could be converted to its triflatosilyl derivative (3) by reaction with trityl triflate.

Scheme 1. Synthesis of [P₂Si]Ru silyl and silylene complexes

Complex **2** exhibits a number of key spectroscopic handles supportive of its formulation as shown in Scheme 1, including prominent infrared bands associated with Si–H and C=O stretching modes ($v_{SiH} = 2024 \text{ cm}^{-1}$, $v_{CO} = 1942 \text{ cm}^{-1}$), and a ²⁹Si chemical shift consistent with an sp^3 -hybridized hydrosilyl metal complex (δ 47.3 ppm). ¹⁶ Although the Si–H stretching mode is at slightly lower energy than is typical for hydrosilanes, ¹⁷ it is quite similar to those reported by Kono *et al.* for related ruthenium complexes. ¹⁸ No Si–H signal is observed for **2** by ¹H NMR spectroscopy, though the chemical shift (δ 6.65 ppm) was confirmed by a ¹H/²⁹Si HMQC experiment, showing that the signal is hidden under aromatic C–H peaks. The silicon hydride was also located in the Fourier difference map in the crystal structure of **2** and refined freely.


Table 1. Key structural and spectroscopic data for silyl and silylene complexes **2–5**

	2	3	4 ^b	5 ^b
∑∠Siª	329.0(2)°	338.9(3)°		
d _{Ru-Si} (Å)	2.379(1)	2.318(1)		
δ ²⁹ Si (ppm)	47	115	151	278
² J _{SiP(trans)} (Hz)	83	110	112	108
vco (cm ⁻¹)	1942	1965	1955	1979

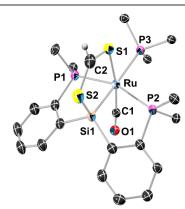
^a $\Sigma \angle Si =$ sum of bond angles around silicon, excluding H (2) or OTf (3). ^b No structural data available for complexes 4 and 5.

Though complexes **2** and **3** exhibit grossly similar spectroscopic features, there are key differences that are consistent with the different electronic properties engendered by triflate versus hydride. For instance, complex **3** exhibits a ²⁹Si chemical shift that is significantly downfield from that of **2**, and silicon shows a stronger two-bond coupling to the *trans*-PPh₃ ligand, presumably due to a stronger Ru/Si interaction (Table 1). The carbonyl ligand also shows a higher-energy stretching mode due to reduced backbonding from Ru, as expected when the

electron-withdrawing triflate is introduced. A comparison of crystal structures obtained for $\bf 2$ and $\bf 3$ shows a shorter Ru–Si bond and greater sp^2 character for silicon in $\bf 3$ (Table 1 and Figure 1).¹⁹

Fig. 1 Crystal structures of (a) **2** and (b) **3** with thermal ellipsoids at the 50% probability level. Hydrogen atoms (except for Ru and Si hydrides) and portions of the triflate and phosphine phenyl groups have been omitted for clarity. Selected bond lengths (Å) and angles (°) for **1**: Ru–Si1, 2.3787(10); Ru–P1, 2.3347(9); Ru–P2, 2.3309(10); Ru–P3, 2.4261(9); Ru–C1, 1.895(4); Ru–H1, 1.60(3); C1–O1, 1.151(4); Si1–Ru–P3, 175.69(3); P1–Ru–P2, 153.45(3); Si1–Ru–H1, 80.1(12). For **2**: Ru–Si1, 2.3175(14); Ru–P1, 2.3454(14); Ru–P2, 2.3356(14); Ru–P3, 2.4304(13); Ru–C1, 1.894(5); Ru–H1, 1.62(5); C1–O1, 1.150(6); Si1–Ru–P3, 174.14(5); P1–Ru–P2, 154.66(5); Si1–Ru–H1, 77.5(18).

Initial attempts to prepare a base-free silylene complex focused on triflate abstraction from 3 using Li[BArF]·(Et₂O)_x (BArF = B(C_6F_5)₄-).^{15b} However, the product **4-BArF** exhibited a ²⁹Si chemical shift (δ 150.7 ppm) more consistent with a basestabilized than base-free silylene, and ¹H NMR revealed the presence of diethyl ether (1 equiv) bonded to silicon (see ESI). Alternatively, the base-free silylene complex, [PhP2Si=]Ru(H)(CO)(PPh3) (5), could be prepared as a bright yellow solid via hydride abstraction with trityl BArF in nondonor solvents such as dichloromethane, bromobenzene, and fluorobenzene. The reaction was found to proceed most cleanly in fluorobenzene and 5 was unstable over extended periods in dichloromethane, suggesting possible chlorine radical abstraction by the silylene.7 ²⁹Si NMR spectroscopy confirmed the base-free silylene formulation presented in Scheme 1 (δ 278 ppm).1b Also consistent with this formulation, it was found that 4 could be cleanly prepared by addition of Et2O to a solution of 5.


Thus far, we have been unable to obtain crystals of **5** suitable for X-ray crystallographic analysis. However, the structure of **5** was probed with density functional theory (DFT), revealing an acute Si–Ru–H bond angle (50°) and close Si···H contact (1.78 Å) as expected for a highly electrophilic cationic silylene hydride, ^{5c} as well as a short Ru–Si bond (2.243 Å). The Ru–H signal observed in the 1H NMR spectrum of **5** reveals parameters similar to those of **2–4** (δ –7.89 (t, $^2J_{HP}$ = 15.3 Hz)), though no coupling to the bound PPh₃ was resolved. No 29 Si satellites were observed and 29 Si-filtered 1H NMR experiment, suggesting that J_{SiH} is less than ca. 20 Hz. The coordination environment of **5** is unusual in that most ruthenium silylene complexes lacking heteroatom stabilization of the silylene utilize Cp* ligands. The

Journal Name COMMUNICATION

closest geometric analogues to **5** are Peters's neutral, six-coordinate Ru(II) silylenes supported by tripodal tris(phosphino)silyl ligands.²⁰ Ongoing structural and computational studies are aimed at determining the precise structure and bonding description of **5**.

Exposure of 5 to CO₂ (1 atm) results in a lightening of the solution, loss of the ruthenium hydride resonance observed by ¹H NMR spectroscopy, and appearance of a new singlet at 6.42 ppm, indicating the possible presence of a formate. The carbonyl stretching frequency red-shifts by $24~{\rm cm}^{-1}$ to 1955 cm⁻¹, indicative of increased backbonding from ruthenium, and a new intense infrared signal is observed at 1577 cm⁻¹. Additionally, the ²⁹Si NMR resonance moves to 118 ppm, similar to that of the silicon nucleus in triflatosilyl complex 3. Together, these findings suggest a net cooperative insertion of CO₂, with transfer of hydride from ruthenium to CO₂ and formation of an O-(CH)-O bridge from silicon to ruthenium (Eq 1). Such a formulation is confirmed by reaction of 2 with ¹³CO₂, causing the formate C-H NMR signal to split into a doublet (${}^{1}J_{HC}$ = 232 Hz) and the symmetric OCO stretch of the bridging formate to shift to 1538 cm⁻¹. Use of ¹³CO₂ also allows observation of the formate carbon by $^{13}C\{^{1}H\}$ NMR (δ 171.6 (d, $^{3}J_{CP}$ = 8 Hz)). The observation of three-bond coupling to PPh₃ but not the phosphines of the [P₂Si] ligand appears be an unusual manifestation of Karplus's rule by an inorganic system,²¹ since the C-O-Ru-P dihedral angle should be ca. 180° (maximum coupling) for to PPh₃ ligand but 90° (minimum coupling) to the phosphines of the [P₂Si] ligand.

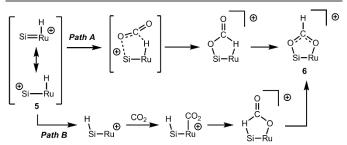

An analogous reaction of 5 with CS2 to affords the bridging dithioformate 7, which exhibits a carbonyl stretch ($v_{CO} = 1973$ cm⁻¹) slightly blue-shifted from that of 6, presumably due to weaker $S \rightarrow Ru$ (versus $O \rightarrow Ru$) π donation and resultantly weaker backbonding into the CO ligand. The dithioformate C-H resonance observed by ¹H NMR spectroscopy is also shifted significantly downfield from the analogous proton in $\bf 6$ (δ 9.61 ppm), but the ²⁹Si NMR resonance of **7** is nearly identical to that of 6. Crystals of 7 suitable for X-ray diffraction were ultimately obtained by replacement of BArF with the highly crystalline dodecachlorododecaborate dianion (B₁₂Cl₁₂²⁻) (Figure 2).²² Consistent with the ²⁹Si NMR data, the silicon center in **7** is pyramidalized to about the same extent as that in 3 ($\sum \angle Si =$ 335.6(2)°). The bridging formate and dithioformate modes found in ${\bf 6}$ and ${\bf 7}$ represent unusual structural motifs. Tobita has reported a similar structure resulting from the hydrosilylation of arylisocyanates at a neutral ruthenium silylene hydride complex.3a Roper has also reported a related bridging acetate complex that was obtained by reaction of a chlorosilyl ruthenium complex with thallium acetate.23

Fig. 2. Crystal structure of cation portion of **7-B**₁₂Cl₁₂ with thermal ellipsoids at the 50% probability level. Hydrogen atoms (except for dithioformate C–H) and portions of the phosphine phenyl groups have been omitted for clarity. Selected bond lengths (Å): Ru–Si1, 2.3285(11); Ru–P1, 2.3749(10); Ru–P2, 2.4250(10); Ru–P3, 2.5080(10); Ru–C1, 1.876(4); Ru–S1, 2.3939(10); Si1–S2, 2.2310(13); C1–O1, 1.145(4).

The simplest mechanistic option for formation of **6** and **7** would involve cooperative hydride transfer to carbon with concomitant O–Si or S–Si bond formation (Scheme 2, Path A). Alternatively, **1**,2-hydrogen migration to silicon could precede CO₂ or CS₂ binding, followed by hydride transfer directly from silicon (Scheme 2, Path B). At this point, we favour Path A because CO₂ is a weak ligand that typically binds in a stable fashion only to electron-rich metal complexes.²⁴ Path A is also analogous to Hazari's NH-assisted CO₂ insertion into an iridium hydride.²⁵ The analogy to Hazari's acid-assisted pathway is reinforced by the fact that ether-stabilized complex **4**, with its less electrophilic silicon center, does not react with CO₂ and CS₂, even at elevated temperature.

We considered an alternative mechanism involving direct CO_2/CS_2 insertion into Ru–H, but such an option requires prior dissociation of PPh3 from the 18-electron complex to allow coordination of the heteroallene. For hydrosilyl complex **2**, phosphine exchange does not occur at ambient temperature and is sluggish at 80 °C (see ESI). Although analogous studies could not be conducted on **5** due to its instability toward Lewis bases, it is expected by analogy that the facile reaction of **5** with CO_2/CS_2 (the CS_2 reaction is instantaneous at ambient temperature) does not require PPh3 dissociation.

Scheme 2. Possible pathways for CO₂ reduction at silylene 5 (n.b., only the Si/Ru/H core of complex 5 is depicted).

Comparison of the observed reactivity of **5** with the ArNCO and ArNCS reactions of Tobita's neutral silylene hydride^{3a} introduces several further points of interest. Firstly, although Tobita's complex performs hydrosilylation of ArNCO, it has not

COMMUNICATION Journal Name

been reported to react with CO_2 or CS_2 . Thus, the observed reactivity of $\bf 5$ may derive partly from the high electrophilicity of the cationic complex. Secondly, Tobita's complex cleaves the C=S bond in mesityl isothiocyanate, whereas $\bf 5$ simply hydrosilylates CS_2 . At this point, the origins of such divergent reactivity are unclear.

In conclusion, we have presented the synthesis of a series of pincer-type $[P_2Si]Ru$ complexes with varying substitution at silicon, including diethyl-ether-stabilized and base-free silylene complexes. The complexes provide unusual examples of pincer ligands incorporating silylene donors, and the base-free silylene participates in stoichiometric hydrosilylation of CO_2 and CS_2 . These findings show how the reactivity of a metal hydride can be modulated by a proximal Lewis acid, a feature we intend to exploit as we explore silicon/metal cooperative reactivity with an eye toward catalysis.

This material is based upon work supported by a CAREER award from the National Science Foundation (CHE-1552591). and the American Chemical Society Petroleum Research Fund (50980-UNI3). NMR spectroscopy and X-ray crystallography were enabled through NSF-MRI grants 1428752 and 1125975, respectively. The structure of **7-B₁₂Cl₁₂** was obtained at the U. Minnesota X-ray Crystallographic Laboratory with support from NSF-MRI grant 1229400 as well as an RIIP and Grant in Aid from U. Minnesota. The authors thank A. Kosanovich and O. Ozerov (Texas A&M U.) for a generous gift of Cs₂[B₁₂Cl₁₂]. J. Moore (U. Minnesota) assisted with crystallographic analysis of **7-B₁₂Cl₁₂**. There are no conflicts of interest to declare.

Notes and references

- (a) M. Okazaki, H. Tobita and H. Ogino, *Dalton Trans.*, 2003, 493-506;
 (b) R. Waterman, P. G. Hayes and T. D. Tilley, *Acc. Chem. Res.*, 2007, 40, 712-719;
 (c) B. Blom, M. Stoelzel and M. Driess, *Chem. Eur. J.*, 2013, 19, 40-62.
- 2 G. P. Mitchell and T. D. Tilley, J. Am. Chem. Soc., 1998, 120, 7635-7636.
- (a) M. Ochiai, H. Hashimoto and H. Tobita, Organometallics, 2012, 31, 527-530; (b) T. Watanabe, H. Hashimoto and H. Tobita, J. Am. Chem. Soc., 2006, 128, 2176-2177; (c) S. R. Klei, T. D. Tilley and R. G. Bergman, Organometallics, 2002, 21, 4648-4661.
- 4 (a) G. P. Mitchell and T. D. Tilley, J. Am. Chem. Soc., 1997, 119, 11236-11243; (b) V. Y. Lee, S. Aoki, T. Yokoyama, S. Horiguchi, A. Sekiguchi, H. Gornitzka, J. D. Guo and S. Nagase, J. Am. Chem. Soc., 2013, 135, 2987-2990; (c) T. Watanabe, H. Hashimoto and H. Tobita, J. Am. Chem. Soc., 2007, 129, 11338-11339.
- 5 (a) M. E. Fasulo and T. D. Tilley, *Organometallics*, 2012, 31, 5049-5057; (b) P. B. Glaser and T. D. Tilley, *J. Am. Chem. Soc.*, 2003, 125, 13640-13641; (c) M. E. Fasulo, M. C. Lipke and T. D. Tilley, *Chem. Sci.*, 2013, 4, 3882-3887.
- 6 S. K. Grumbine and T. D. Tilley, J. Am. Chem. Soc., 1994, 116, 6951-6952.
- 7 P. W. Wanandi, P. B. Glaser and T. D. Tilley, J. Am. Chem. Soc., 2000, 122, 972-973.
- M. T. Whited, L. Qiu, A. J. Kosanovich and D. E. Janzen, *Inorg. Chem.*, 2015, **54**, 3670-3679; (b) M. T. Whited, A. J. Kosanovich and D. E. Janzen, *Organometallics*, 2014, **33**, 1416-1422.

- 9 (a) M. T. Whited, A. M. Deetz, T. M. Donnell and D. E. Janzen, Dalton Trans., 2016, 45, 9758-9761; (b) M. T. Whited, A. M. Deetz, J. W. Boerma, D. E. DeRosha and D. E. Janzen, Organometallics, 2014, 33, 5070-5073.
- (a) S. J. Mitton, R. McDonald and L. Turculet, *Angew. Chem., Int. Ed.*, 2009, **48**, 8568-8571; (b) H. W. Suh, L. M. Guard and N. Hazari, *Chem. Sci.*, 2014, **5**, 3859-3872; (c) J. Takaya and N. Iwasawa, *J. Am. Chem. Soc.*, 2008, **130**, 15254-15255; (d) M. J. Bernal, O. Torres, M. Martin and E. Sola, *J. Am. Chem. Soc.*, 2013, **135**, 19008-19015.
- (a) J. C. DeMott, W. X. Gu, B. J. McCulloch, D. E. Herbert, M. D. Goshert, J. R. Walensky, J. Zhou and O. V. Ozerov, Organometallics, 2015, 34, 3930-3933; (b) W. Gu. Ph.D. Thesis, Texas A&M University, 2011; (c) H. Handwerker, M. Paul, J. Blumel and C. Zybill, Angew. Chem., Int. Ed., 1993, 32, 1313-1315.
- 12 M. T. Whited, Beilstein J. Org. Chem., 2012, 8, 1554-1563.
- 13 B. D. Nguyen and M. T. Whited, in *249th ACS National Meeting*, American Chemical Society, Denver, CO, 2015, pp. INOR-679.
- 14 (a) K. Osakada, S. Sarai, T. Koizumi and T. Yamamoto, Organometallics, 1997, 16, 3973-3980; (b) M. A. Esteruelas, M. Olivan and A. Velez, Inorg. Chem., 2013, 52, 12108-12119; (c) H. Hashimoto, T. Suzuki and H. Tobita, Dalton Trans., 2010, 39, 9386-9400.
- 15 (a) M. E. Fasulo, P. B. Glaser and T. D. Tilley, Organometallics,
 2011, 30, 5524-5531; (b) P. B. Glaser, P. W. Wanandi and T. D. Tilley, Organometallics, 2004, 23, 693-704; (c) S. K. Grumbine,
 G. P. Mitchell, D. A. Straus, T. D. Tilley and A. L. Rheingold,
 Organometallics, 1998, 17, 5607-5619.
- J. Y. Corey and J. Braddock-Wilking, Chem. Rev., 1999, 99, 175-292.
- 17 R. M. Silverstein, F. X. Webster, D. J. Kiemle and D. L. Bryce, Spectrometric Identification of Organic Compounds, Wiley, Hoboken, NJ, 2015.
- (a) H. Kono and Y. Nagai, Chem. Lett., 1974, 931-932; (b) H. Kono, N. Wakao, K. Ito and Y. Nagai, J. Organomet. Chem., 1977, 132, 53-67.
- 19 (a) Comparison of silicon hybridization across a series may be accomplished by examining the sum of angles about silicon (Σ Si), excluding X (here, X = H (2) or OTf (3)). Values for Σ Si closer to 360° suggest greater sp^2 character; (b) S. K. Grumbine, D. A. Straus, T. D. Tilley and A. L. Rheingold, *Polyhedron*, 1995, **14**, 127-148.
- 20 A. Takaoka, A. Mendiratta and J. C. Peters, *Organometallics*, 2009, **28**, 3744-3753.
- 21 M. Karplus, J. Am. Chem. Soc., 1963, 85, 2870-2871.
- (a) W. X. Gu and O. V. Ozerov, *Inorg. Chem.*, 2011, **50**, 2726-2728;
 (b) W. H. Knoth, E. L. Muetterties, H. C. Miller, Y. T. Chia, J. C. Sauer and J. H. Balthis, *Inorg. Chem.*, 1964, **3**, 159-&;
 (c) V. Geis, K. Guttsche, C. Knapp, H. Scherer and R. Uzun, *Dalton Trans.*, 2009, 2687-2694.
- 23 W. H. Kwok, G. L. Lu, C. E. F. Rickard, W. R. Roper and L. J. Wright, *J. Organomet. Chem.*, 2004, **689**, 2979-2987.
- 24 (a) D. H. Gibson, Chem. Rev., 1996, 96, 2063-2095; (b) A. Paparo and J. Okuda, Coord. Chem. Rev., 2017, 334, 136-149.
- 25 T. J. Schmeier, G. E. Dobereiner, R. H. Crabtree and N. Hazari, J. Am. Chem. Soc., 2011, 133, 9274-9277.