
Approximating Max-Cut under Graph-MSO Constraints

Martin Kouteckýa,1, Jon Leeb,2, Viswanath Nagarajanb,3, Xiangkun Shenb

aTechnion – Israel Institute of Technology, Faculty of IE&M, Haifa, Israel
bIOE Dept., University of Michigan, Ann Arbor, MI 48109, USA

Abstract

We consider the max-cut and max-k-cut problems under graph-based constraints. Our approach can handle any
constraint specified using monadic second-order (MSO) logic on graphs of constant treewidth. We give a 1

2 -
approximation algorithm for this class of problems.

Keywords: max cut, approximation algorithm, monadic second-order logic, treewidth, dynamic program
2000 MSC: 68W25, 68W05, 68R10

1. Introduction

This paper considers the classic max-cut problem
under a class of graph-based constraints. The max-cut
problem is a fundamental combinatorial-optimization
problem which has many practical applications (see
[1, 2, 3, 4]) as well as strong theoretical results (see
[5, 6]). There have also been a number of papers on
designing approximation algorithms for constrained
max-cut problems (see [7, 8, 9, 10, 11]).

In this paper, we are interested in constraints that
are specified by an auxiliary constraint graph. Our
main result is a 1

2 -approximation algorithm for max-
cut under any graph constraint that can be expressed
in monadic second order logic (MSO) (see [12]). This
is closely related to a recent result by a subset of the
authors; see [13]. The contribution of this paper is in
generalizing the class of constraints handled in [13],
making the algorithm design more systematic, and ex-
tending the result to the max-k-cut setting with k in-
stead of just 2 parts.

In particular, [13] gave a 1
2 -approximation algo-

rithm for max-cut under any graph constraint SG that
has a specific type of dynamic program for optimiz-
ing linear objectives. In order to apply this result,
one also has to design such a dynamic program sep-
arately for each constraint SG, which requires ad-
ditional constraint-specific work. Indeed, [13] also

Email addresses: koutecky@kam.mff.cuni.cz (Martin
Koutecký), jonxlee@umich.edu (Jon Lee), viswa@umich.edu
(Viswanath Nagarajan), xkshen@umich.edu (Xiangkun Shen)

1Supported by a Technion postdoc grant.
2Supported in part by ONR grant N00014-17-1-2296. Part of

this work was done while J. Lee was visiting the Simons Institute
for the Theory of Computing (which was partially supported by
the DIMACS/Simons Collaboration on Bridging Continuous and
Discrete Optimization through NSF grant CCF-1740425).

3Supported in part by NSF CAREER grant CCF-1750127.

gave constraint-specific dynamic programs for vari-
ous graph constraints such as independent set, ver-
tex cover, dominating set and connectivity, all on
bounded-treewidth graphs.

In this paper, we bypass the need for constraint-
specific dynamic programs by utilizing the language
and results from monadic second-order logic. We
show that any MSO constraint on a bounded-treewidth
graph (defined formally in §2) admits a dynamic pro-
gram that satisfies the assumptions needed in [13].
Therefore, we immediately obtain 1

2 -approximation
algorithms for max-cut under any MSO graph con-
straint. We note that MSO constraints capture all the
specific graph constraints in [13], and much more.

We also extend these results to the setting of max-
k-cut, where we seek to partition the vertices into k
parts {Ui}

k
i=1 so as to maximize the weight of edges

crossing the partition. In the constrained version, we
additionally require each part Ui to satisfy some MSO
graph property. We obtain a 1

2 -approximation algo-
rithm even in this setting (k is fixed). This result is
a significant generalization over [13] even for k = 2,
which corresponds to the usual max-cut problem: we
now handle constraints on both sides of the cut.

2. Preliminaries

A k-partition of vertex set V is a function h : V →
[k], where the k parts are Uα = {v ∈ V : h(v) = α} for
α ∈ [k]. Note that ∪k

α=1Uα = V and U1, · · · ,Uk are
disjoint. When we want to refer to the k parts directly,
we also use {Uα}

k
α=1 to denote the k-partition.

Definition 1 (GCMC). The input to the graph-
constrained max-cut (GCMC) problem consists of (i)
an n-vertex graph G = (V, E) with a graph property
which implicitly specifies a collection SG of vertex k-
partitions, and (ii) symmetric edge-weights c :

(
V
2

)
→

Preprint submitted to Elsevier November 2, 2018



R+. The GCMC problem is to find a k-partition in SG

with the maximum weight of crossing edges:

max
h∈SG

∑
{u,v}∈(V

2)
h(u),h(v)

c(u, v). (1)

Tree Decomposition. Given an undirected graph G =

(V, E), a tree decomposition consists of a tree T =

(I, F) and a collection of vertex subsets {Xi ⊆ V}i∈I

such that:

• for each v ∈ V , the nodes {i ∈ I : v ∈ Xi} are
connected in T , and

• for each edge (u, v) ∈ E, there is some node i ∈ I
with u, v ∈ Xi.

The width of such a tree decomposition is
maxi∈I(|Xi| − 1), and the treewidth of G is the smallest
width of any tree decomposition for G.

We work with “rooted” tree decompositions, also
specifying a root node r ∈ I. The depth d of such a
tree decomposition is the length of the longest root-
leaf path in T . The depth of any node i ∈ I is the
length of the r − i path in T . For any i ∈ I, the set Vi

denotes all the vertices at or below node i, that is

Vi := ∪k∈Ti Xk,

where Ti = {k ∈ I : k in subtree of T rooted at i}.

The following result provides a convenient repre-
sentation of T .

Theorem 2.1 (Balanced Tree Decomposition; see
[14]). Let G = (V, E) be a graph with tree decomposi-
tion (T = (I, F), {Xi|i ∈ I}) of treewidth k. Then G has
a rooted tree decomposition (T ′ = (I′, F′), {X′i |i ∈ I′})
where T ′ is a binary tree of depth 2dlog 5

4
(2|V |)e and

treewidth at most 3k + 2. Moreover, for all i ∈ I, there
is an i′ ∈ I′ such that Xi ⊆ X′i′ . The tree decomposition
T ′ can be found in O(|V |) time.

Definition 2 (CSP instance). A Constraint Satisfaction
Problem (CSP) instance J = (N,C) consists of:

• a set N of boolean variables, and

• a set C of constraints, where each constraint
CU ∈ C is a |U |-ary relation CU ⊆ {0, 1}U on
some subset U ⊆ N.

For a vector x ∈ {0, 1}N and a subset R of variables,
we denote by x|R the restriction of x to R. A vector
z ∈ {0, 1}N satisfies constraint CU ∈ C if z|U ∈ CU .
We say that z ∈ {0, 1}N is a feasible assignment for the
CSP instance J if z satisfies every constraint C ∈ C.
Let Feas(J) be the set of all feasible assignments of J.
Finally, ‖C‖ =

∑
CU∈C

|CU | denotes the length of C.

Definition 3 (Constraint graph). The constraint graph
of J, denoted G(J), is defined as G(J) = (N, F) where
F = {{u, v} | ∃CU ∈ C s.t. {u, v} ⊆ U}.

Definition 4 (Treewidth of CSP). The treewidth tw(J)
of a CSP instance J is defined as the treewidth of its
constraint graph tw(G(J)).

Definition 5 (CSP extension). Let J = (N,C) be a CSP
instance. We say that J′ = (N′,C′) with N ⊆ N′ is an
extension of J if Feas(J) =

{
z|N

∣∣∣ z ∈ Feas(J′)
}
.

Monadic Second Order Logic. We briefly introduce
MSO over graphs. In first-order logic (FO) we
have variables for individual vertices/edges (denoted
x, y, . . .), equality for variables, quantifiers ∀,∃ rang-
ing over variables, and the standard Boolean connec-
tives ¬,∧,∨, =⇒ . MSO is the extension of FO
by quantification over sets (denoted X,Y, . . . ). Graph
MSO has the binary relational symbol edge(x, y) en-
coding edges, and traditionally comes in two flavours,
MSO1 and MSO2, differing by the objects we are al-
lowed to quantify over: in MSO1 these are the vertices
and vertex sets, while in MSO2 we can additionally
quantify over edges and edge sets. For example, 3-
colorability can be expressed in MSO1 as follows:

∃X1, X2, X3 [∀x (x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3)

∧
∧

i=1,2,3
∀x, y (x < Xi ∨ y < Xi

∨¬ edge(x, y)
) ]

We remark that MSO2 can express properties that are
not MSO1 definable. As an example, consider Hamil-
tonicity on graph G = (V, E); an equivalent descrip-
tion of a Hamiltonian cycle is that it is a connected
2-factor of a graph:

ϕham ≡ ∃F ⊆ E : ϕ2-factor(F) ∧ ϕconnected(F)
ϕ2-factor(F) ≡ (∀v ∈ V : ∃e, f ∈ F : (e , f )

∧ (v ∈ e) ∧ (v ∈ f )) ∧ ¬(∃v ∈ V :
∃e, f , g ∈ F : (e , f , g) ∧ (v ∈ e)
∧ (v ∈ f ) ∧ (v ∈ g))

ϕconnected(F) ≡ ¬
[
∃U,W ⊆ V : (U ∩W = ∅)

∧ (U ∪W = V) ∧ ¬
(
∃{u, v} ∈ F :

u ∈ U ∧ v ∈ W
)]
.

We use ϕ to denote an MSO formula and G = (V, E)
for the underlying graph. For a formula ϕ, we denote
by |ϕ| the size (number of symbols) of ϕ.

In order to express constraints on k-vertex-
partitions via MSO, we use MSO formulas ϕ with k
free variables {Uα}

k
α=1 where (i) the Uα are enforced to

form a partition of the vertex-set V , and (ii) each Uα

satisfies some individual MSO constraint ϕα. Because
k is constant, the size of the resulting MSO formula is
a constant as long as each of the MSO constraints ϕα
has constant size.

Connecting CSP and MSO. Consider an MSO for-
mula ϕ with k free variables on graph G (as above).
For a vector t ∈ {0, 1}V×[k], we write G, t |= ϕ if

2



and only if ϕ is satisfied by solution Uα = {v ∈ V :
t((v, α)) = 1} for α ∈ [k].

Definition 6 (CS Pϕ(G) instance). Let G be a graph
and ϕ be an MSO2-formula with k free variables. By
CS Pϕ(G) we denote the CSP instance (N,C) with
N = {t((v, α)) | v ∈ V(G), α ∈ [k]} and with a sin-
gle constraint {t | G, t |= ϕ}.

Observe that Feas(CS Pϕ(G)) corresponds to the set
of feasible assignments of ϕ on G. Also, the treewidth
of CS Pϕ(G) is |V |k which is unbounded. The follow-
ing result shows that there is an equivalent CSP exten-
sion that has constant treewidth.

Theorem 2.2 ([15, Theorem 25]4). Let G = (V, E) be
a graph with tw(G) = τ and ϕ be an MSO2-formula
with k free variables. Then CS Pϕ(G) has a CSP exten-
sion J with tw(J) ≤ f (|ϕ|, τ) and ‖CJ‖ ≤ f (|ϕ|, τ) · |V |.

3. Dynamic Program for CSP

In this section we demonstrate that every CSP of
bounded treewidth admits a dynamic program that sat-
isfies the assumptions required in [13].

Consider a CSP instance J = (V,C) with a con-
straint graph G = (V, E) of bounded treewidth. Let
(T = (I, F), {Xi|i ∈ I}) denote a balanced tree decom-
position of G (from Theorem 2.1). In what follows,
we denote the vertex set V = [n] = {1, 2, · · · , n}. Let
λ be a symbol denoting an unassigned value. For any
W ⊆ V , define the set of configurations of W as:

K(W) =
{
(z1, . . . , zn) ∈ {0, 1, λ}V |
∀CU ∈ C : (U ⊆ W =⇒ z|U ∈ CU),
∀i < W : zi = λ, ∀ j ∈ W : z j ∈ {0, 1}

}
Let k ∈ K(W) be a configuration and v ∈ V . Because
k is a vector, k(v) refers to the v-th element of k.

Definition 7 (State Operations). Let U,W ⊆ V . Let
k ∈ K(U) and p ∈ K(W).

• Configurations k and p are said to be consistent
if, for each v ∈ V , either k(v) = p(v) or at least
one of k(v), p(v) is λ.

• If configurations k and p are consistent, define

[p ∪ k](v) =

p(v), if k(v) = λ;
k(v), otherwise.

• Define [k ∩W](v) =

k(v), if v ∈ W;
λ, otherwise.

We start by defining some useful parameters for the
dynamic program.

4To be precise, [15, Theorem 25] speaks of MSO1 over σ2-
structures, which is equivalent to MSO2 over graphs; cf. the dis-
cussion in [15, Section 2.1].

Definition 8. For each node i ∈ I with children nodes
{ j, j′}, we associate the following:

1. state space Σi = K(Xi).
2. for each σ ∈ Σi, there is a collection of partial

solutions

Hi,σ := {k ∈ K(Vi) | k ∩ Xi = σ}.

3. for each σ ∈ Σi, there is a collection of valid
combinations of children states

Fi,σ ={(σ j, σ j′ ) ∈ Σ j × Σ j′ | (σ j ∩ Xi) =

(σ ∩ X j) and (σ j′ ∩ Xi) = (σ ∩ X j′ )}.

In words, (a) Σi is just the set of configurations for
the vertices Xi in node i, (b) Hi,σ are those configu-
rations for the vertices Vi (in the subtree rooted at i)
that are consistent with σ, (c) Fi,σ are those pairs of
states at the children { j, j′} that agree with σ on the
intersections Xi ∩ X j and Xi ∩ X j′ respectively.

Theorem 3.1 (Dynamic Program for CSP). Let (T =

(I, F), {Xi|i ∈ I}) be a tree decomposition of a CSP
instance (V,C) of bounded treewidth. Then Σi, Fi,σ

andHi,σ from Definition 8 satisfy the conditions:

1. (bounded state space) Σi andFi,σ are all bounded
by constant, that is, maxi |Σi| = O(1) and
maxi,σ |Fi,σ| = O(1).

2. (required state) For each i ∈ I and σ ∈ Σi, the
intersection with Xi of every vector inHi,σ is the
same, in particular h ∩ Xi = σ for all h ∈ Hi,σ.

3. By condition 2, for any leaf ` ∈ I and σ ∈ Σ`, we
haveH`,σ = {σ} or ∅.

4. (subproblem) For each non-leaf node i ∈ I with
children { j, j′} and σ ∈ Σi,

Hi,σ =
{
σ ∪ h j ∪ h j′ | h j ∈ H j,w j ,

h j′ ∈ H j′,w j′ , (w j,w j′ ) ∈ Fi,σ

}
.

5. (feasible subsets) At the root node r, we have
Feas(V,C) =

⋃
σ∈Σr
Hr,σ.

Proof. Let q = O(1) denote the treewidth of T . We
now prove each of the claimed properties.
Bounded state space. Because |Xi| ≤ q + 1, we have
|Σi| = |K(Xi)| ≤ 3q+1 = O(1) and |Fi,σ| ≤ |Σ j × Σ j′ | ≤

(3q+1)2 = O(1).
Required state. This holds immediately by definition
ofHi,σ in Definition 8.
Subproblem. We first prove the “⊆” inclusion of the
statement. Consider any h ∈ Hi,σ ⊆ K(Vi). Let h j =

h ∩ V j, w j = h ∩ X j and analogously for j′. Observe
that for U ⊂ W ⊆ V we have that k ∈ K(W) =⇒

k ∩ U ∈ K(U). By this observation, h j ∈ K(V j).
Moreover, h j ∩ X j = h ∩ X j = w j, which implies
h j ∈ H j,w j . Again, the same applies for j′ and we have

3



h j′ ∈ H j′,w j′ . Finally, note that w j ∩Xi = h∩X j ∩Xi =

(h∩Xi)∩X j = σ∩X j and similarly w j′ ∩Xi = σ∩X j′ .
So we have (w j,w j′ ) ∈ Fi,σ.

Now, we prove the “⊇” inclusion of the statement.
Consider any two partial solutions h j ∈ H j,w j and
h j′ ∈ H j′,w j′ with (w j,w j′ ) ∈ Fi,σ. Note that h j and
σ (similarly h j′ and σ) are consistent by definition of
Fi,σ. We now claim that h j and h j′ are also consistent:
take any v ∈ V with both h j′ (v), h j′ (v) , λ, then we
must have v ∈ V j∩V j′ ⊆ Xi∩X j∩X j′ as Xi is a vertex
separator, and so h j(v) = σ(v) = h j′ (v) by definition
of Fi,σ. Because σ, h j and h j′ are mutually consistent,
h = σ ∪ h j ∪ h j′ is well-defined. It is clear from the
above arguments that h ∩ Xi = σ. In order to show
h ∈ Hi,σ we now only need h ∈ K(Vi), that is, h does
not violate any constraint that is contained in Vi. For
contradiction assume that that there is such a violated
constraint CS with S ⊆ Vi. Then S induces a clique
in the constraint graph G and thus there must exist a
node k among the descendants of i such that S ⊆ Vk.
But k cannot be in the subtree rooted in j or j′, be-
cause then CS would have been violated already in h j

or h j′ , and also it cannot be that i = k, because then
CS would be violated in σ, a contradiction.
Feasible subsets. Clearly, the set Feas(V,C) of feasible
CSP solutions is equal toK(V). BecauseHr,σ is those
k ∈ K(V) with k ∩ Xr = σ, the claim follows.

We note that Theorem 3.1 proves Assumption 1 in
[13]. To clarify the comparison, Assumption 1 is:

Assumption 1 (Assumption 1 in [13]). Let (T =

(I, F), {Xi|i ∈ I}) be any tree decomposition. Then
there exist Σi, Fi,σ andHi,σ (see Definition 8) that sat-
isfy the following conditions:

1. (bounded state space) Σi andFi,σ are all bounded
by constant, that is, maxi |Σi| = O(1) and
maxi,σ |Fi,σ| = O(1).

2. (required state) For each i ∈ I and σ ∈ Σi, the in-
tersection with Xi of every set inHi,σ is the same,
denoted Xi,σ, that is S∩Xi = Xi,σ for all S ∈ Hi,σ.

3. By condition 2, for any leaf ` ∈ I and σ ∈ Σ`, we
haveH`,σ = {X`,σ} or ∅.

4. (subproblem) For each non-leaf node i ∈ I with
children { j, j′} and σ ∈ Σi,

Hi,σ =
{
Xi,σ ∪ S j ∪ S j′ : S j ∈ H j,w j ,

S j′ ∈ H j′,w j′ , (w j,w j′ ) ∈ Fi,σ

}
.

5. (feasible subsets) At the root node r, we have
SG =

⋃
σ∈Σr
Hr,σ.

Assumption 1 is used in the main result of [13],
which is restated below.

Theorem 3.2 (Theorem 4 in [13]). Consider any in-
stance of the GCMC problem on a bounded-treewidth
graph G. If the graph constraint SG satisfies Assump-
tion 1 then we obtain a 1

2 -approximation algorithm.

We will use this result in Section 4, but we will
modify its proof slightly in Section 5 for max-k-cut.

4. The Max-Cut Setting

Here, we consider the GCMC problem when k =

2 and there is a constraint SG for only one side of
the cut. We show that the above dynamic-program
structure can be combined with [13] to obtain a 1

2 -
approximation algorithm.

Formally, there is an MSO formula ϕ with one free
variable defined on graph G = (V, E) of bounded
treewidth. The feasible vertex subsets SG are those
S ⊆ V that satisfy ϕ. There is also a symmetric weight
function c :

(
V
2

)
→ R+. We are interested in the fol-

lowing problem (GCMCI).

max
S∈SG

∑
u∈S , v<S

c(u, v). (2)

We note that this is precisely the setting of [13].

Theorem 4.1. There is a 1
2 -approximation algorithm

for GCMCI when the constraint SG is given by any
MSO formula on a bounded-treewidth graph.

Proof. The proof uses Theorem 3.2 from [13] as a
black-box. Note that the constraint SG corresponds to
feasible assignments to CS Pϕ(G) as in Definition 6.
Consider the CSP extension ϑ obtained after apply-
ing Theorem 2.2 to CS Pϕ(G). Then ϑ has variables
V ′ ⊇ V and bounded treewidth. We obtain an ex-
tended weight function c :

(
V ′
2

)
→ R+ from c by set-

ting c′(u, v) = c(u, v) if u, v ∈ V and c′(u, v) = 0 oth-
erwise. We now consider a new instance of GCMCI

on vertices V ′ and constraint ϑ. Due to the bounded-
treewidth property of ϑ, we can apply Theorem 3.1
which proves that Assumption 1 is satisfied by the dy-
namic program in Definition 8. Combined with Theo-
rem 3.2, we obtain the claimed result.

5. The Max-k-Cut Setting

In this section, we generalize the setting to any con-
stant k, i.e. problem (1). Recall the formal definition
from §2. Here the graph property SG is expressed as
an MSO formula with k free variables on graph G.
Our main result is the following:

Theorem 5.1. There is a 1
2 -approximation algorithm

for any GCMC instance with constant k when the
constraint SG is given by any MSO formula on a
bounded-treewidth graph.

Omitted proofs in this section are in Appendix A.

Remark 1. The complexity of Theorem 5.1 in terms
of the treewidth τ, length |ϕ| of ϕ, depth d of a tree
decomposition of G, and maximum degree r of a tree

4



decomposition of G, is sdr, where s is the number of
states of the dynamic program, namely f (|ϕ|, τ) for f
from Theorem 2.2. From the perspective of parame-
terized complexity [16] our algorithm is an XP algo-
rithm parameterized by τ, i.e., it has runtime ng(τ) for
some computable function g.

Let G = (V, E) be the input graph (assumed to have
bounded treewidth) and ϕ be any MSO formula with
k free variables. Recall the CSP instance CS Pϕ(G) on
variables {y(v, α) : v ∈ V, α ∈ [k]} from Definition 6.
Feasible solutions to CS Pϕ(G) correspond to feasible
k-partitions in SG. Now consider the CSP extension
ϑ obtained after applying Theorem 2.2 to CS Pϕ(G).
Note that ϑ is defined on variables V ′ ⊇ {(v, α) : v ∈
V, α ∈ [k]} and has bounded treewidth. Let T denote
the tree decomposition for ϑ. Below we utilize the
dynamic program from Definition 8 applied to ϑ: re-
call the quantities Σi, Fi,σ etc. We will also refer to
the variables in V ′ as vertices, especially when refer-
ring to the tree decomposition T ; note that these are
different from the vertices V in the original graph G.

Claim 1. Let {Uα}
k
α=1 be a k-partition satisfying SG.

There is a collection of states {b[i] ∈ Σi}i∈I such that:

• for each node i ∈ I with children j and j′,
(b[ j], b[ j′]) ∈ Fi,b[i],

• for each leaf ` we haveH`,b[`] , ∅, and

• Uα = {v ∈ V : bT ((v, α)) = 1} for all α ∈ [k],
where bT =

⋃
i∈I b[i].

Moreover, for any vertex (v, α) ∈ V ′, if vα ∈ I denotes
the highest node in T containing (v, α) then we have:
v ∈ Uα if and only if b[vα]((v, α)) = 1.

Proof. By definition of CSP ϑ, we know that it has
some feasible solution t ∈ {0, 1}V

′

where Uα = {v ∈
V : t((v, α)) = 1} for all α ∈ [k]. Now, using The-
orem 3.1(5) we have t ∈

⋃
σ∈Σr
Hr,σ. The rest of the

proof is identical to Claim 1 in [13]. See the full proof
in Appendix A.

LP relaxation for Max-k-Cut. We start with some ad-
ditional notation related to the tree decomposition T
(from Theorem 2.1) and the dynamic program for CSP
(from Theorem 3.1).

• For any node i ∈ I, Ti is the set consisting of (1)
all nodes N on the r−i path in T , and (2) children
of all nodes in N \ {i}.

• P is the collection of all node subsets J such that
J ⊆ T`1 ∪ T`2 for some pair of leaf-nodes `1, `2.

• s[i] ∈ Σi denotes a state at node i. Moreover, for
any subset of nodes N ⊆ I, we use the shorthand
s[N] := {s[k] : k ∈ N}.

• a[i] ∈ Σi denotes a state at node i chosen by the
algorithm. Similar to s[N], for any subset N ⊆ I
of nodes, a[N] := {a[k] : k ∈ N}.

• vα ∈ I denotes the highest tree-decomposition
node containing vertex (v, α) ∈ V ′.

The LP that we use here is a generalization of that
in [13]. The variables are y(s[N]) for all {s[k] ∈ Σk}k∈N

and N ∈ P. Variable y(s[N]) corresponds to the prob-
ability of the joint event that the solution (in SG) “in-
duces” state s[k] at each node k ∈ N. Variable zuvα

corresponds to the probability that edge (u, v) ∈ E is
cut by part α of the k-partition.

In constraint (6), we use j and j′ to denote the two
children of node i ∈ I. We note that constraints (4)-
(8) which utilize the dynamic-program structure, are
identical to the constraints (4)-(8) in the LP from [13].
This allows us to essentially reuse many of the claims
proved in [13], which are stated below.

maximize
1
2

∑
{u,v}∈(V

2)
cuv

k∑
α=1

zuvα (LP)

zuvα =
∑

s[uα]∈Σuα, s[vα]∈Σvα
s[uα]((u,α)),s[vα]((v,α))

y(s[{uα, vα}]),

∀{u, v} ∈
(
V
2

)
,∀α ∈ [k]; (3)

y(s[N]) =
∑

s[i]∈Σi

y(s[N ∪ {i}]),

∀s[k] ∈ Σk, ∀k ∈ N, ∀N ∈ P, ∀i < N : N ∪ {i} ∈ P;
(4)∑

s[r]∈Σr

y(s[r]) = 1; (5)

y(s[{i, j, j′}]) = 0,
∀i ∈ I, ∀s[i] ∈ Σi, ∀(s[ j], s[ j′]) < Fi,s[i]; (6)
y(s[`]) = 0,
∀ leaf ` ∈ I, ∀s[`] ∈ Σ` : H`,s[`] = ∅; (7)
0 ≤ y(s[N]) ≤ 1,
∀N ∈ P, ∀s[k] ∈ Σk for k ∈ N. (8)

Claim 2. Let y be feasible to (LP). For any node i ∈ I
with children j, j′ and s[k] ∈ Σk for all k ∈ Ti,

y(s[Ti]) =
∑

s[ j]∈Σ j

∑
s[ j′]∈Σ j′

y(s[Ti ∪ { j, j′}]).

Proof. This follows directly from Claim 2 in [13]. See
the full proof in Appendix A.

Lemma 1. (LP) has a polynomial number of vari-
ables and constraints.

Proof. The proof is identical to Lemma 2 in [13]. See
the full proof in Appendix A.

Lemma 2. (LP) is a valid relaxation of GCMC.

Proof. Let k-partition {Uα}
k
α=1 be any feasible solu-

tion to SG. Let {b[i]}i∈I denote the states given by

5



Claim 1 corresponding to {Uα}
k
α=1. For any subset

N ∈ P of nodes, and for all {s[i] ∈ Σi}i∈N , set

y(s[N]) =

{
1, if s[i] = b[i] for all i ∈ N;
0, otherwise.

Clearly constraints (4) and (8) are satisfied. By the
first property in Claim 1, constraint (6) is satisfied.
And by the second property in Claim 1, constraint (7)
is also satisfied. The last property in Claim 1 implies
that v ∈ Uα ⇐⇒ b[vα]((v, α)) = 1 for any ver-
tex v ∈ V . So any edge {u, v} is cut by Uα exactly
when b[uα]((u, α)) , b[vα]((v, α)). Using the setting
of variable zuvα in (3) it follows that zuvα is exactly
the indicator of edge {u, v} being cut by Uα. Finally,
the objective value is exactly the total weight of edges
cut by the k-partition {Uα}

k
α=1 where the coefficient 1

2
comes from the fact that that summation counts each
cut-edge twice. Thus (LP) is a valid relaxation.

Rounding Algorithm. This is a top-down procedure,
exactly as in [13]. We start with the root node r ∈ I.
Here {y(s[r]) : s[r] ∈ Σr} defines a probability distri-
bution over the states of r. We sample a state a[r] ∈ Σr

from this distribution. Then we continue top-down:
for any node i ∈ I, given the chosen states a[k] at each
k ∈ Ti, we sample states for both children of i simul-
taneously from their joint distribution given at node i.
Our algorithm is formally described in Algorithm 1.

Input : Optimal solution of LP.
Output: A vertex partition of V in SG.

1 Sample a state a[r] at the root node by
distribution y(s[r]).

2 Do process all nodes i in T in order of increasing
depth :

3 Sample states a[ j], a[ j′] for the children of
node i by joint distribution

Pr[a[ j] = s[ j] and a[ j′] = s[ j′]]

=
y(s[Ti ∪ { j, j′}])

y(s[Ti])
, (9)

where s[Ti] = a[Ti].
4 end
5 Do process all nodes i in T in order of

decreasing depth :
6 hi = a[i] ∪ h j ∪ h j′ where j, j′ are the children

of i.
7 end
8 Set Uα = {v ∈ V : hr((v, α)) = 1} for all α ∈ [k].
9 return k-partition {Uα}

k
α=1.

Algorithm 1: Rounding Algorithm for LP

Lemma 3. The algorithm’s solution {Uα}
k
α=1 is al-

ways feasible.

Proof. Note that the distributions used in Step 1 and
Step 3 are well-defined due to Claim 2; so the states
a[i]s are well-defined. Moreover, by the choice of
these distributions, for each node i, y(a[Ti]) > 0.

We now show that for any node i ∈ I with children
j, j′ we have (a[ j], a[ j′]) ∈ Fi,a[i]. Indeed, at the it-
eration for node i (when a[ j] and a[ j′] are set), using
the conditional probability distribution (9) and con-
straint (6), we have (a[ j], a[ j′]) ∈ Fi,a[i] with proba-
bility one.

We show by induction that for each node i ∈ I, hi ∈

Hi,a[i]. The base case is when i is a leaf. In this case,
due to constraint (7) and the fact that y(a[Ti]) > 0
we know that Hi,a[i] , ∅. So hi = a[i] ∈ Hi,a[i]
by Theorem 3.1(3). For the inductive step, consider
node i ∈ I with children j, j′ where h j ∈ H j,a[ j] and
h j′ ∈ H j′,a[ j′]. Moreover, from the property above,
(a[ j], a[ j′]) ∈ Fi,a[i]. Now using Theorem 3.1(4) we
have hi = a[i] ∪ h j ∪ h j′ ∈ Hi,a[i]. Finally, using
hr ∈ Hr,a[r] at the root node and Theorem 3.1(5), it
follows that hr ∈ Feas(ϑ). Now let h′ denote the re-
striction of hr to the variables {(v, α) : v ∈ V, α ∈ [k]}.
Then, using the CSP extension result (Theorem 2.2)
we obtain that h′ is feasible for CS Pϕ(G). In other
words, the k-partition {Uα}

k
α=1 satisfies SG.

Claim 3. For any node i and states s[k] ∈ Σk for all
k ∈ Ti, the rounding algorithm satisfies Pr[a[Ti] =

s[Ti]] = y(s[Ti]).

Proof. The proof is identical to Claim 4 in [13];
see Appendix A.

Lemma 4. Consider any u, v ∈ V and α ∈ [k] such
that uα ∈ Tvα. Then the probability that edge (u, v) is
cut by Uα = {v ∈ V : hr((v, α)) = 1} is zuvα.

Proof. This follows directly from Lemma 4 in [13] by
considering Uα as the solution. See Appendix A.

Lemma 5. Consider any u, v ∈ V and α ∈ [k] such
that uα < Tvα and vα < Tuα. Then the probability that
edge (u, v) is cut by Uα = {v ∈ V : hr((v, α)) = 1} is at
least zuvα/2.

Proof. This follows directly from Lemma 5 in [13] by
considering Uα as the solution. See Appendix A.

Lemma 6. For any u, v ∈ V, the probability that
edge (u, v) is cut by the k-partition {Uα}

k
α=1 is at least

1
4
∑k
α=1 zuvα.

Proof. Edge (u, v) is cut by {Uα}
k
α=1 if and only if u ∈

Uα and v ∈ Uβ for some α , β. Enumerating all
partition parts and applying Lemmas 4 and 5, we get
that the probability is at least 1

4
∑k
α=1 zuvα. The extra

factor of 1
2 is because any cut edge (u, v) is cut by the

partition twice: by the parts containing u and v.

From Lemmas 2, 3 and 6, we obtain Theorem 5.1.

6



6. Applications

We claim that MSO2 is powerful enough to model
various graph properties; to that end, consider the fol-
lowing formulae, meant to model that a set S is a ver-
tex cover, an independent set, a dominating set, and a
connected set, respectively:

ϕvc(S ) ≡ ∀{u, v} ∈ E : (u ∈ S ) ∨ (v ∈ S )
ϕis(S ) ≡ ∀{u, v} ∈ E : ¬ ((u ∈ S ) ∧ (v ∈ S ))

ϕds(S ) ≡ ∀v ∈ V : ∃u ∈ S : (v < S )
=⇒ {u, v} ∈ E

ϕconn(S ) ≡ ¬
[
∃U,V ⊆ S : U ∩ V = ∅ ∧ U ∪ V

= S ∧ ¬
(
∃{u, v} ∈ E : u ∈ U ∧ v ∈ V

)]
We argue as follows: ϕvc is true if every edge has at
least one endpoint in S ; ϕis is true if every edge does
not have both endpoints in S ; ϕds is true if for each
vertex v not in S there is a neighbor u in S ; finally,
ϕconn is true if there does not exist a partition U,V of
S with an edge going between U and V .

We also show how to handle the precedence con-
straint. Let G be a directed graph; we require S to
satisfy that, for each arc (u, v) ∈ E, either v < S ,
or u, v ∈ S . This can be handled directly with CSP
constraints: we have a binary variable for each vertex
with the value 1 indicating that a vertex is selected for
S ; then, for each arc (u, v) ∈ E, we have a constraint
C(u,v) = {(1, 0), (0, 0), (1, 1)}.

It is known [12] that many other properties are ex-
pressible in MSO2, such as that S is k-colorable, k-
connected (both for fixed k ∈ N), planar, Hamilto-
nian, chordal, a tree, not containing a list of graphs
as minors, etc. It is also known how to encode di-
rected graphs into undirected graphs in an “MSO-
friendly” way [12], which allows the expression of
various properties of directed graphs. Our results also
extend to so-called counting MSO, where we addi-
tionally have a predicate of the form |X| = p mod q
for a fixed integer q ∈ N.

7. Conclusions

In this paper we obtained 1
2 -approximation algo-

rithms for graph-MSO-constrained max-k-cut prob-
lems, where the constraint graph has bounded
treewidth. This work generalizes the class of con-
straints handled in [13] and extends the result to the
setting of max-k-cut. Getting an approximation ratio
better than 1

2 for any of these problems is an interest-
ing question, even for a specific MSO-constraint. Re-
garding Remark 1, could our algorithm be improved
to an FPT algorithm (runtime g(τ)nO(1) for some func-
tion g)? If not, is there an FPT algorithm parameter-
ized by the (more restrictive) tree-depth of G?

Acknowledgments
We thank Samuel Fiorini for raising the possibil-

ity of a systematic extension of our prior work [13],
which eventually lead to this paper.

References

[1] K. C. Chang, D. H. Du, Efficient algorithms for layer assign-
ment problem, IEEE Trans. on CAD of Integrated Circuits
and Systems 6 (1) (1987) 67–78.

[2] F. Barahona, M. Grötschel, M. Jünger, G. Reinelt, An appli-
cation of combinatorial optimization to statistical physics and
circuit layout, Oper. Res. 36 (1988) 493–513.

[3] A. Jalali, N. Srebro, Clustering using max-norm constrained
optimization, in: ICML, 2012.

[4] J. D. Lee, B. Recht, R. Salakhutdinov, N. Srebro, J. A. Tropp,
Practical large-scale optimization for max-norm regulariza-
tion, in: NIPS, 2010, pp. 1297–1305.

[5] M. X. Goemans, D. P. Williamson, Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming, J.ACM 42 (1995) 1115–45.

[6] S. Khot, G. Kindler, E. Mossel, R. O’Donnell, Optimal in-
approximability results for MAX-CUT and other 2-variable
CSPs?, SIAM J. Comp. 37 (1) (2007) 319–357.

[7] A. A. Ageev, R. Hassin, M. Sviridenko, A 0.5-approximation
algorithm for MAX DICUT with given sizes of parts, SIAM
J. Discrete Math. 14 (2) (2001) 246–255.

[8] A. A. Ageev, M. Sviridenko, Approximation algorithms for
maximum coverage and max cut with given sizes of parts, in:
IPCO, Vol. 1610, 1999, pp. 17–30.

[9] C. Chekuri, J. Vondrák, R. Zenklusen, Submodular function
maximization via the multilinear relaxation and contention
resolution schemes, SIAM J. Comp. 43 (2014) 1831–79.

[10] M. Feldman, J. Naor, R. Schwartz, A unified continuous
greedy algorithm for submodular maximization, in: FOCS,
2011, pp. 570–579.

[11] M. T. Hajiaghayi, G. Kortsarz, R. MacDavid, M. Purohit,
K. K. Sarpatwar, Approximation algorithms for connected
maximum cut and related problems, in: ESA, Vol. 9294,
2015, pp. 693–704.

[12] B. Courcelle, On the expression of graph properties in some
fragments of monadic second-order logic., Descriptive com-
plexity and finite models 31 (1996) 33–62.

[13] X. Shen, J. Lee, V. Nagarajan, Approximating graph-
constrained max-cut, Math. Prog., Ser. B, online 2017.

[14] H. L. Bodlaender, NC-algorithms for graphs with small
treewidth, in: Graph-Theoretic Concepts in Computer Sci-
ence, WG 1988, Amsterdam, The Netherlands, June 15-17,
1988, Vol. 344 of Lec. Notes in Comp. Sci., 1988, pp. 1–10.

[15] D. Knop, M. Koutecký, T. Masařı́k, T. Toufar, Simplified al-
gorithmic metatheorems beyond MSO: Treewidth and neigh-
borhood diversity, in: WG, Vol. 10520, 2017, pp. 344–357.

[16] R. G. Downey, M. R. Fellows, Parameterized complexity,
Springer Science & Business Media, 2012.

Appendix A. Omitted Proofs

Remain Proof of Claim 1. We define the states b[i] in
a top-down manner. We will also define an associ-
ated vector ti ∈ Hi,b[i] at each node i. At the root,
we set b[r] = σ such that t ∈ Hr,σ: this is well-
defined because t ∈

⋃
σ∈Σr
Hr,σ. We also set tr = t.

Having set b[i] and ti ∈ Hi,b[i] for any node i ∈ I
with children { j, j′}, we use Theorem 3.1(4) to write
hi = b[i] ∪ h j ∪ h j′ where h j ∈ H j,w j , h j′ ∈ H j′,w j′ and
(w j,w j′ ) ∈ Fi,b[i]. Then we set b[ j] = w j, t j = h j and

7



b[ j′] = w j′ , t j′ = h j′ for the children of node i. The
first condition in the claim is immediate from the defi-
nition of states b[i]. By induction on the depth of node
i, we obtain ti ∈ Hi,b[i] for each node i. This implies
that H`,b[`] , ∅ for each leaf `, which proves the sec-
ond condition; moreover, by Theorem 3.1(3) we have
t` = b[`]. Now, by definition of the vectors ti, we ob-
tain t = tr =

⋃
i∈I b[i] = bT which, combined with

Uα = {v ∈ V : t((v, α)) = 1} for all α ∈ [k], proves the
third condition in the claim.

Because t =
⋃

i∈I b[i], it is clear that if
b[vα]((v, α)) = 1 then v ∈ Uα. In the other direc-
tion, suppose b[vα]((v, α)) , 1: we will show v < Uα.
Since vα is the highest node containing (v, α), it suf-
fices to show that tvα((v, α)) , 1. But this follows
directly from Theorem 3.1(2) because tvα ∈ Hvα,b[vα],
(v, α) ∈ Xvα and b[vα]((v, α)) , 1.

Proof of Claim 2. Note that Ti ∪ { j, j′} ⊆ T` for any
leaf node ` in the subtree below i. So Ti ∪ { j, j′} ∈ P
and the variables y(s[Ti∪{ j, j′}]) are well-defined. The
claim follows by two applications of (4).

Proof of Lemma 1. There are
(

n
2

)
·k = O(kn2) variables

zuvα. Because the tree is binary, we have |Ti| ≤ 2d for
any node i, where d = O(log n) is the depth of the
tree decomposition. Moreover there are only O(n2)
pairs of leaves as there are O(n) leaf nodes. For each
pair `1, `2 of leaves, we have |T`1 ∪ T`2 | ≤ 4d. Thus
|P| ≤ O(n2) · 24d = poly(n). By Theorem 3.1, we have
max |Hi,σ| = O(1), so the number of y-variables is at
most |P| · (max |Hi,σ|)4d = poly(n). This shows that
(LP) has polynomial size and can be solved optimally
in polynomial time. Finally, it is clear that the round-
ing algorithm runs in polynomial time.

Proof of Claim 3. We proceed by induction on the
depth of node i. It is clearly true when i = r, i.e.
Ti = {r}. Assuming the statement is true for node i,
we will prove it for i’s children. Let j, j′ be the chil-
dren nodes of i; note that T j = T j′ = Ti ∪ { j, j′}. Then
using (9), we have

Pr[a[T j] = s[T j] | a[Ti] = s[Ti]] =
y(s[Ti ∪ { j, j′}])

y(s[Ti])
.

Combined with Pr[a[Ti] = s[Ti]] = y(s[Ti]) we ob-
tain Pr[a[T j] = s[T j]] = y(s[T j]) as desired.

Proof of Lemma 4. Applying Claim 3 with node i =
vα, for any {s[k] ∈ Σk : k ∈ Tvα}, we have
Pr[a[Tvα] = s[Tvα]] = y(s[Tvα]). Let Duα = {s[uα] ∈
Σ[uα] | s[uα]((u, α)) = 1} and similarly Dvα = {s[vα] ∈
Σ[vα] | s[vα]((v, α)) = 1}. Because uα ∈ Tvα,

Pr[u ∈ Uα, v < Uα] =
∑

s[uα]∈Duα

∑
s[vα]<Dvα

∑
s[k]∈Σk

k∈T[vα]\{uα}\{vα}

y(s[vα])

=
∑

s[uα]∈Duα

∑
s[vα]<Dvα

y(s[{uα, vα}]).

The last equality above is by repeated application
of LP constraint (4) where we use Tvα ∈ P. Similarly,

Pr[u < Uα, v ∈ Uα] =
∑

s[uα]<Duα

∑
s[vα]∈Dvα

y(s[{uα, vα}]),

which combined with constraint (3) implies
Pr[|{u, v} ∩ Uα| = 1] = zuvα.

Proof of Lemma 5. We first state a useful observation.

Observation 1 (Observation 1 in [13]). Let X,Y be
two jointly distributed {0, 1} random variables. Then
Pr(X = 1) Pr(Y = 0) + Pr(X = 0) Pr(Y = 1) ≥
1
2 [Pr(X = 0,Y = 1) + Pr(X = 1,Y = 0)].

Now we start to prove Lemma 5. In order to sim-
plify notation, we define:

z+
uvα =

∑
s[uα]∈Σuα , s[vα]∈Σvα

s[uα]((u,α))=1,s[vα]((v,α))=0

y(s[{uα, vα}]),

z−uvα =
∑

s[uα]∈Σuα , s[vα]∈Σvα
s[uα]((u,α))=0,s[vα]((v,α))=1

y(s[{uα, vα}]).

Note that zuv = z+
uvα + z−uvα.

Let Duα = {s[uα] ∈ Σ[uα] | s[uα]((u, α)) = 1} and
Dvα = {s[vα] ∈ Σ[vα] | s[vα]((v, α)) = 1}. Let i denote
the least common ancestor of nodes uα and vα, and
{ j, j′} the two children of i. Note that T j = T j′ =

Ti ∪ { j, j′} and Tuα,Tvα ⊇ T j. Because uα < Tvα and
vα < Tuα, both uα and vα are strictly below j and j′

(respectively) in the tree decomposition.
For any choice of states {s[k] ∈ Σk}k∈T j define:

z+
uvα(s[T j]) =

∑
s[uα]∈Duα

∑
s[vα]<Dvα

y(s[T j ∪ {uα, vα}])
y(s[T j])

,

and similarly z−uvα(s[T j]).
In the rest of the proof, we fix states {s[k] ∈ Σk}k∈T j

and condition on the event E that a[T j] = s[T j]. We
will show Pr[|{u, v} ∩ Uα| = 1 | E]

≥
1
2

(
z+

uvα(s[T j]) + z−uvα(s[T j])
)
. (A.1)

By taking expectation over the conditioning E, this
would imply Lemma 5.

We now define the following indicator random vari-
ables (conditioned on E).

Iuα =

0 if a[uα] < Duα

1 if a[uα] ∈ Duα
and Ivα =

0 if a[vα] < Dvα

1 if a[vα] ∈ Dvα

Observe that Iuα and Ivα (conditioned on E) are inde-
pendent because uα, vα < T j, and uα and vα appear in
distinct subtrees under node i. So,

Pr[|{u, v} ∩ Uα| = 1 | E]

= Pr[Iuα = 1] · Pr[Ivα = 0] + Pr[Iuα = 0] · Pr[Ivα = 1] (A.2)

8



For any s[k] ∈ Σk for k ∈ Tuα\T j, we have by Claim
3 and T j ⊆ Tuα that

Pr[a[Tuα] = s[Tuα] | a[T j] = s[T j]] =
y(s[Tuα])
y(s[T j])

.

Therefore Pr[Iuα = 1] equals∑
s[uα]∈Duα

∑
k∈Tuα\T j\{uα}

s[k]∈Σk

y(s[Tuα])
y(s[T j])

=
∑

s[uα]∈Duα

y(s[T j ∪ {uα}])
y(s[T j])

.

The last equality follows by repeatedly using LP con-
straint (4) and the fact that Tuα ∈ P. Furthermore,
note that T j ∪ {uα, vα} ∈ P; again by constraint (4),

Pr[Iuα = 1] =
∑

s[uα]∈Duα

y(s[T j ∪ {uα}])
y(s[T j])

=
∑

s[uα]∈Duα

∑
s[vα]∈Σvα

y(s[T j ∪ {uα, vα}])
y(s[T j])

=
∑

s[uα]∈Duα

∑
s[vα]∈Dvα

y(s[T j ∪ {uα, vα}])
y(s[T j])

+ z+
uvα(s[T j])

Similarly,

Pr[Ivα = 1] =
∑

s[vα]∈Dvα

y(s[T j ∪ {vα}])
y(s[T j])

=
∑

s[uα]∈Duα

∑
s[vα]∈Dvα

y(s[T j ∪ {uα, vα}])
y(s[T j])

+ z−uvα(s[T j]).

Pr[Iuα = 0] =
∑

s[uα]<Duα

y(s[T j ∪ {uα}])
y(s[T j])

=
∑

s[uα]<Duα

∑
s[vα]<Dvα

y(s[T j ∪ {uα, vα}])
y(s[T j])

+ z−uvα(s[T j]).

Now define {0, 1} random variables X and Y jointly
distributed as:

Y = 0 Y = 1
X = 0 Pr[Iuα = 0] − z−uvα(s[T j]) z−uvα(s[T j])
X = 1 z+

uvα(s[T j]) Pr[Iuα = 1] − z+
uvα(s[T j])

Note that Pr[X = 1] = Pr[Iuα = 1] and Pr[Y = 1] =
Pr[Iuα = 1] − z+

uvα(s[T j]) + z−uvα(s[T j]) = Pr[Ivα = 1].
So, applying Observation 1 and using (A.2) we have
Pr[|{u, v} ∩ Uα| = 1 | E] is at least

1
2

(Pr[X = 0,Y = 1] + Pr[X = 1,Y = 0]) ,

which implies (A.1).

9


	Introduction
	Preliminaries
	Dynamic Program for CSP
	The Max-Cut Setting
	The Max-k-Cut Setting
	Applications
	Conclusions
	Omitted Proofs

