Approximating Max-Cut under Graph-MSO Constraints

Martin Koutecky®', Jon Lee®?, Viswanath Nagarajan®>, Xiangkun Shen®

“Technion — Israel Institute of Technology, Faculty of IE&M, Haifa, Israel
PIOE Dept., University of Michigan, Ann Arbor, MI 48109, USA

Abstract

We consider the max-cut and max-k-cut problems under graph-based constraints. Our approach can handle any

constraint specified using monadic second-order (MSO) logic on graphs of constant treewidth. We give a

approximation algorithm for this class of problems.

1.
2

Keywords: max cut, approximation algorithm, monadic second-order logic, treewidth, dynamic program

2000 MSC: 68W25, 68W05, 68R10

1. Introduction

This paper considers the classic max-cut problem
under a class of graph-based constraints. The max-cut
problem is a fundamental combinatorial-optimization
problem which has many practical applications (see
[2L 13, 14]) as well as strong theoretical results (see
[SL16]). There have also been a number of papers on
designing approximation algorithms for constrained
max-cut problems (see [[7,[8, 9, [10} [L1]]).

In this paper, we are interested in constraints that
are specified by an auxiliary constraint graph. Our
main result is a %—approximation algorithm for max-
cut under any graph constraint that can be expressed
in monadic second order logic (MSO) (see [12]). This
is closely related to a recent result by a subset of the
authors; see [13]]. The contribution of this paper is in
generalizing the class of constraints handled in [13],
making the algorithm design more systematic, and ex-
tending the result to the max-k-cut setting with k in-
stead of just 2 parts.

In particular, [13] gave a %-approximation algo-
rithm for max-cut under any graph constraint S¢ that
has a specific type of dynamic program for optimiz-
ing linear objectives. In order to apply this result,
one also has to design such a dynamic program sep-
arately for each constraint Sg, which requires ad-
ditional constraint-specific work. Indeed, [13] also

Email addresses: koutecky@kam.mff .cuni.cz (Martin
Koutecky), jonxlee@umich.edu (Jon Lee), viswa@umich.edu
(Viswanath Nagarajan), xkshen@umich. edu (Xiangkun Shen)

'Supported by a Technion postdoc grant.

2Supported in part by ONR grant N00014-17-1-2296. Part of
this work was done while J. Lee was visiting the Simons Institute
for the Theory of Computing (which was partially supported by
the DIMACS/Simons Collaboration on Bridging Continuous and
Discrete Optimization through NSF grant CCF-1740425).

3Supported in part by NSF CAREER grant CCF-1750127.

Preprint submitted to Elsevier

gave constraint-specific dynamic programs for vari-
ous graph constraints such as independent set, ver-
tex cover, dominating set and connectivity, all on
bounded-treewidth graphs.

In this paper, we bypass the need for constraint-
specific dynamic programs by utilizing the language
and results from monadic second-order logic. We
show that any MSO constraint on a bounded-treewidth
graph (defined formally in §2)) admits a dynamic pro-
gram that satisfies the assumptions needed in [13].
Therefore, we immediately obtain %—approximation
algorithms for max-cut under any MSO graph con-
straint. We note that MSO constraints capture all the
specific graph constraints in [13]], and much more.

We also extend these results to the setting of max-
k-cut, where we seek to partition the vertices into k
parts {Ui}fle so as to maximize the weight of edges
crossing the partition. In the constrained version, we
additionally require each part U; to satisfy some MSO
graph property. We obtain a %-approximation algo-
rithm even in this setting (k is fixed). This result is
a significant generalization over [13]] even for k = 2,
which corresponds to the usual max-cut problem: we
now handle constraints on both sides of the cut.

2. Preliminaries

A k-partition of vertex set V is a function 4 : V —
[k], where the k parts are U, = {v € V : h(v) = a} for
a € [k]. Note that Us_ U, = V and Uy, -+, Uy are
disjoint. When we want to refer to the k parts directly,

we also use {U(,}’fl:l to denote the k-partition.

Definition 1 (GCMC). The input to the graph-
constrained max-cut (GCMC) problem consists of (i)
an n-vertex graph G = (V, E) with a graph property
which implicitly specifies a collection S¢ of vertex k-
partitions, and (ii) symmetric edge-weights c : (‘2/) -

November 2, 2018

R.. The GCMC problem is to find a k-partition in S¢
with the maximum weight of crossing edges:

max Z c(u, v). (1)
hES(; v

{uvye(y)

h(u)#h(v)

Tree Decomposition. Given an undirected graph G =
(V,E), a tree decomposition consists of a tree 7~ =
(I, F) and a collection of vertex subsets {X; C V}ie;
such that:

e foreachv € V, thenodes {i € I : v € X;} are
connected in 7, and

e for each edge (u,v) € E, there is some node i € [
with u,v € X;.

The width of such a tree decomposition is
max,e7(|X;| — 1), and the treewidth of G is the smallest
width of any tree decomposition for G.

We work with “rooted” tree decompositions, also
specifying a root node r € I. The depth d of such a
tree decomposition is the length of the longest root-
leaf path in 7. The depth of any node i € I is the
length of the r — i path in 7°. For any i € I, the set V;
denotes all the vertices at or below node i, that is

Vi = Urer; X,

where 7; = {k € I : k in subtree of 7~ rooted at i}.

The following result provides a convenient repre-
sentation of 7.

Theorem 2.1 (Balanced Tree Decomposition; see
[14]). Let G = (V, E) be a graph with tree decomposi-
tion (T = (I, F),{X;li € I}) of treewidth k. Then G has
a rooted tree decomposition (7" = (I', F'),{X]|i € I'})
where T is a binary tree of depth 2|'10g%(2|V|)'| and
treewidth at most 3k + 2. Moreover, for all i € I, there
isani’ € I’ such that X; C X,. The tree decomposition
T can be found in O(|V|) time.

Definition 2 (CSP instance). A Constraint Satisfaction
Problem (CSP) instance J = (N, C) consists of:

e aset N of boolean variables, and

e a set C of constraints, where each constraint
Cy € Cis a |Ul-ary relation Cy C {0,1}Y on
some subset U C N.

For a vector x € {0, 1}V and a subset R of variables,
we denote by x|g the restriction of x to R. A vector
z € 10, 1}V satisfies constraint Cy € C if zly € Cy.
We say that z € {0, 1}V is a feasible assignment for the
CSP instance J if z satisfies every constraint C € C.
Let Feas(J) be the set of all feasible assignments of J.
Finally, |ICl| = X ¢,ec ICul denotes the length of C.
Definition 3 (Constraint graph). The constraint graph
of J, denoted G(J), is defined as G(J) = (N, F) where
F ={u,v} | ACy € Cs.t. {u,v} C U}.

Definition 4 (Treewidth of CSP). The treewidth tw(J)
of a CSP instance J is defined as the treewidth of its
constraint graph tw(G(J)).

Definition 5 (CSP extension). LetJ = (N, C) be a CSP
instance. We say that J' = (N’,C’) with N C N’ is an
extension of J if Feas(J) = {z|y | z € Feas(J")}.

Monadic Second Order Logic. We briefly introduce
MSO over graphs. In first-order logic (FO) we
have variables for individual vertices/edges (denoted
X,y,...), equality for variables, quantifiers V, 3 rang-
ing over variables, and the standard Boolean connec-
tives 1, A,V, = . MSO is the extension of FO
by quantification over sets (denoted X, Y, ...). Graph
MSO has the binary relational symbol edge(x, y) en-
coding edges, and traditionally comes in two flavours,
MSO; and MSO,, differing by the objects we are al-
lowed to quantify over: in MSO; these are the vertices
and vertex sets, while in MSO, we can additionally
quantify over edges and edge sets. For example, 3-
colorability can be expressed in MSO; as follows:

Xy, X5, X3 [Vx(xeXjVxeXoVxeX;)

A /\i:1,2,3vx’y(x gX;iVyéeX
V-edge(x,y)) |

We remark that MSO, can express properties that are
not MSO; definable. As an example, consider Hamil-
tonicity on graph G = (V, E); an equivalent descrip-
tion of a Hamiltonian cycle is that it is a connected
2-factor of a graph:

®ham = AF C E 2 @2 factor(F) A Peonnected (F)
Orfactor(F)=(VveV:de,feF: (e f)
Avee)N\e f)A=(TveV:
de,f.gecF:(etf#+g AN(veEe)

ANvefINneR)

Geomnected F) = -[AU,W CV: (UNW =0)
AUUW=V)A=(F{u,v} € F:
ueUAveW).

We use ¢ to denote an MSO formula and G = (V, E)
for the underlying graph. For a formula ¢, we denote
by |¢| the size (number of symbols) of ¢.

In order to express constraints on k-vertex-
partitions via MSO, we use MSO formulas ¢ with k
free variables {Ua}f‘y _; Where (i) the U, are enforced to
form a partition of the vertex-set V, and (ii) each U,
satisfies some individual MSO constraint ¢,. Because
k is constant, the size of the resulting MSO formula is
a constant as long as each of the MSO constraints ¢,
has constant size.

Connecting CSP and MSO. Consider an MSO for-
mula ¢ with k free variables on graph G (as above).
For a vector t € {0,1}V*% we write G,t £ ¢ if

and only if ¢ is satisfied by solution U, = {v € V :
t((v,@)) = 1} for a € [k].

Definition 6 (CS P,(G) instance). Let G be a graph
and ¢ be an MSO,-formula with & free variables. By
CS P,(G) we denote the CSP instance (N,C) with
N = {t((v,a)) | v € V(G),a € [k]} and with a sin-
gle constraint {t | G, = ¢}.

Observe that Feas(CS P,(G)) corresponds to the set
of feasible assignments of ¢ on G. Also, the treewidth
of CS P,(G) is |V]k which is unbounded. The follow-
ing result shows that there is an equivalent CSP exten-
sion that has constant treewidth.

Theorem 2.2 ([15| Theorem 25f). Let G = (V, E) be
a graph with tw(G) = 7 and ¢ be an MSO,-formula
with k free variables. Then CS P,(G) has a CSP exten-
sion J with tw(J) < f(lol, 7) and ||C;l| < f(¢l,T) - |VI.

3. Dynamic Program for CSP

In this section we demonstrate that every CSP of
bounded treewidth admits a dynamic program that sat-
isfies the assumptions required in [[13].

Consider a CSP instance J = (V,C) with a con-
straint graph G = (V, E) of bounded treewidth. Let
(7 =, F),{X;|li € I}) denote a balanced tree decom-
position of G (from Theorem . In what follows,
we denote the vertex set V = [n] = {1,2,--- ,n}. Let
A be a symbol denoting an unassigned value. For any
W C V, define the set of configurations of W as:

KW) ={(z1,....z0) € {0, 1,4}V |
YCyeC:(UCW = zly € Cy),
VigW:z=A VjeW:z;€{0,1}

Let k € K (W) be a configuration and v € V. Because
k is a vector, k(v) refers to the v-th element of k.

Definition 7 (State Operations). Let U, W C V. Let
ke K(U) and p € K(W).

o Configurations k and p are said to be consistent
if, for each v € V, either k(v) = p(v) or at least
one of k(v), p(v) is A.

e If configurations k and p are consistent, define

_ [P, if k) = &
[P UK = {k(v), otherwise.

k(v), ifveWw,

e Define [k N W](v) = .
A, otherwise.

We start by defining some useful parameters for the
dynamic program.

4To be precise, [15) Theorem 25] speaks of MSO; over o»-
structures, which is equivalent to MSO; over graphs; cf. the dis-
cussion in 15} Section 2.1].

Definition 8. For each node i € I with children nodes
{J, J'}, we associate the following:

1. state space X; = K(X;).
2. for each o € %, there is a collection of partial
solutions

Hig =tke K(V) kN X; =}

3. for each o € %, there is a collection of valid
combinations of children states

Fio ={(0j,07) €E;XZy | (0;NX;) =
(cNnXj)and (oc; NX;) =(0cNX;p)}

In words, (a) Z; is just the set of configurations for
the vertices X; in node i, (b) H;, are those configu-
rations for the vertices V; (in the subtree rooted at i)
that are consistent with o, (c) F;, are those pairs of
states at the children {j, '} that agree with o on the
intersections X; N X; and X; N X respectively.

Theorem 3.1 (Dynamic Program for CSP). Let (7 =
(I, F),{X;li € I}) be a tree decomposition of a CSP
instance (V,C) of bounded treewidth. Then X;, F;»
and ‘H; from Deﬁnition@]satisfy the conditions:

1. (bounded state space) X; and F; , are all bounded
by constant, that is, max;|Z;] = O(1) and
max; . |Fi | = O(1).

2. (required state) For each i € I and o € %, the
intersection with X; of every vector in H; , is the
same, in particular hN X; = o for all h € H; .

3. By condition 2, for any leaf € € I and o € %, we
have H;, = {0} or 0.

4. (subproblem) For each non-leaf node i € I with
children {j, j'} and o € %,

Hir ={ Uh; Uhy | hj € My,
hjp € Hy,po Wiswy) € 7‘7‘,0}-

5. (feasible subsets) At the root node r, we have
Feas(V,C) = UO'EE, 7-{r,a'-

Proof. Let g = O(1) denote the treewidth of 7. We
now prove each of the claimed properties.

Bounded state space. Because |X;| < g + 1, we have
=il = KXl < 37" = 0(1) and |Fig| < |Ej X Zj| <
3BH? = 0(1).

Required state. This holds immediately by definition
of H; - in Definition

Subproblem. We first prove the “C” inclusion of the
statement. Consider any & € H;, C K(V;). Let h; =
hNV;,w; =hnX;and analogously for j/. Observe
that for U ¢ W C V we have that k €¢ K(W) =
kN U € K(U). By this observation, h; € K(V;).
Moreover, hj N X; = h N X; = w;, which implies
hj € H;,,. Again, the same applies for j* and we have

hj/ € ﬂj’,W_,-r . Finally, note that w; NX;,=hnN Xj nNX; =
(hﬂXi)ﬂXj = o-ﬁXJ and similarly Wi ﬂX,- = UﬂXj/.
So we have (w;, wj) € Fis.

Now, we prove the “2” inclusion of the statement.
Consider any two partial solutions h; € H;, and
l’lj/ < Wj’,w_,-/ with (Wj, Wj/) € 7:,',0. Note that]’lj and
o (similarly h; and o) are consistent by definition of
Fio. We now claim that 4; and & are also consistent:
take any v € V with both h;(v),h;(v) # A, then we
musthavev e V;NV; C X;NX;NX; as X; is a vertex
separator, and so /;(v) = o(v) = h;(v) by definition
of ¥i,. Because o, h; and A are mutually consistent,
h =0 Uh;U hj is well-defined. It is clear from the
above arguments that 2 N X; = o. In order to show
h € H;, we now only need 1 € K(V;), that is, i does
not violate any constraint that is contained in V;. For
contradiction assume that that there is such a violated
constraint Cg with S C V;. Then S induces a clique
in the constraint graph G and thus there must exist a
node k among the descendants of i such that S C V.
But & cannot be in the subtree rooted in j or j’, be-
cause then Cg would have been violated already in 4;
or hjy, and also it cannot be that i = k, because then
Cs would be violated in o, a contradiction.

Feasible subsets. Clearly, the set Feas(V, C) of feasible
CSP solutions is equal to K(V). Because H,- is those
k € K(V) with k N X, = o, the claim follows. O

We note that Theorem [3.1] proves Assumption 1 in
[13]. To clarify the comparison, Assumption 1 is:

Assumption 1 (Assumption 1 in [13])). Let (T =
I, F),{X;li € I}) be any tree decomposition. Then
there exist X, Fi o, and H; , (see Deﬁnition that sat-
isfy the following conditions:

1. (bounded state space) %; and F; , are all bounded
by constant, that is, max;|¥X;] = O(1) and
max;q [Fio| = O(1).

2. (required state) For each i € I and o € ¥, the in-
tersection with X; of every set in H - is the same,
denoted X; », thatis SNX; = Xi forall S € H, .

3. By condition 2, for any leaf € € I and o € Z,, we
have H; oy = {X¢ s} or 0.

4. (subproblem) For each non-leaf node i € I with
children {j, j'} and o € Z,,

7‘{5,0. = {X,'!(T U Sj U Sj' : Sj € Wj,w_,v’

Sy €Hjw,, Wj,wy) € 7‘7‘,0}

5. (feasible subsets) At the root node r, we have
S = Uu-eE, 7‘{r,o'-

Assumption 1 is used in the main result of [13]],
which is restated below.

Theorem 3.2 (Theorem 4 in [13]]). Consider any in-
stance of the GCMC problem on a bounded-treewidth
graph G. If the graph constraint Sg satisfies Assump-

tion then we obtain a %—approximation algorithm.

We will use this result in Section @} but we will
modify its proof slightly in Section [5]for max-k-cut.

4. The Max-Cut Setting

Here, we consider the GCMC problem when k =
2 and there is a constraint S for only one side of
the cut. We show that the above dynamic-program
structure can be combined with [13]] to obtain a %-
approximation algorithm.

Formally, there is an MSO formula ¢ with one free
variable defined on graph G = (V,E) of bounded
treewidth. The feasible vertex subsets Sg are those
S C V that satisfy . There is also a symmetric weight

function ¢ : (‘2/) — R,. We are interested in the fol-

lowing problem (GCMC;).
max c(u,v). 2
max MZ@ (1, v) o)

We note that this is precisely the setting of [13]].

Theorem 4.1. There is a %-approximation algorithm
for GCMC; when the constraint S¢ is given by any
MSO formula on a bounded-treewidth graph.

Proof. The proof uses Theorem @] from [13] as a
black-box. Note that the constraint S corresponds to
feasible assignments to CS P,(G) as in Definition @
Consider the CSP extension ¢} obtained after apply-
ing Theorem to CS P,(G). Then ¢ has variables
V' 2 V and bounded treewidth. We obtain an ex-
tended weight function c : (‘;) — R, from c by set-
ting ¢’(u,v) = c(u,v) if u,v € V and ¢’(u,v) = 0 oth-
erwise. We now consider a new instance of GCMC;
on vertices V' and constraint ¢%. Due to the bounded-
treewidth property of ¢}, we can apply Theorem
which proves that Assumption [I]is satisfied by the dy-
namic program in Definition[§] Combined with Theo-
rem[3.2] we obtain the claimed result. O

5. The Max-k-Cut Setting

In this section, we generalize the setting to any con-
stant k, i.e. problem (I)). Recall the formal definition
from Here the graph property Sg is expressed as
an MSO formula with k free variables on graph G.
Our main result is the following:

Theorem 5.1. There is a %—approximation algorithm
for any GCMC instance with constant k when the
constraint S¢ is given by any MSO formula on a
bounded-treewidth graph.

Omitted proofs in this section are in

Remark 1. The complexity of Theorem [5.1]in terms
of the treewidth 7, length |p| of ¢, depth d of a tree
decomposition of G, and maximum degree r of a tree

decomposition of G, is 59 where s is the number of
states of the dynamic program, namely f(|¢|, 7) for f
from Theorem From the perspective of parame-
terized complexity [[16] our algorithm is an XP algo-
rithm parameterized by 7, i.e., it has runtime n8@ for
some computable function g.

Let G = (V, E) be the input graph (assumed to have
bounded treewidth) and ¢ be any MSO formula with
k free variables. Recall the CSP instance CS P,(G) on
variables {y(v,a) : v € V,a € [k]} from Deﬁnition@
Feasible solutions to CS P,(G) correspond to feasible
k-partitions in Sg. Now consider the CSP extension
¥ obtained after applying Theorem to CS Py, (G).
Note that ¢} is defined on variables V' 2 {(v,a) : v €
V,a € [k]} and has bounded treewidth. Let 7~ denote
the tree decomposition for . Below we utilize the
dynamic program from Definition |8 applied to @ re-
call the quantities %;, 7;, etc. We will also refer to
the variables in V' as vertices, especially when refer-
ring to the tree decomposition 7; note that these are
different from the vertices V in the original graph G.

Claim 1. Let {Ua}f;:1 be a k-partition satisfying Sg.
There is a collection of states {b[i] € Z;}ie; such that:

e for each node i € I with children j and j,
bLjLbLJ'D) € Fippits
o for each leaf € we have Hy pje) # 0, and

e U, ={veV:br(v,a) =1} forall a € [k],
where by = | J;; DLi].

Moreover, for any vertex (v,a) € V', if va € I denotes
the highest node in T~ containing (v, @) then we have:
v e U, if and only if b[va]((v,@)) = 1.

Proof. By definition of CSP ¢, we know that it has
some feasible solution ¢ € {0, 1}"" where U, = {v €
V 1 ((v,a)) = 1} for all @ € [k]. Now, using The-
orem 5) we have t € Uyex, Hyo. The rest of the
proof is identical to Claim 1 in [[13]]. See the full proof

in[Appendix A 0

LP relaxation for Max-k-Cut. We start with some ad-
ditional notation related to the tree decomposition 7~
(from Theorem[2.T]) and the dynamic program for CSP
(from Theorem [3.1).

e For any node i € I, T; is the set consisting of (1)
all nodes N on the r—i path in 7, and (2) children
of all nodes in N \ {i}.

e P is the collection of all node subsets J such that
J € Ty, U Ty, for some pair of leaf-nodes ¢, £5.

e s[i] € X; denotes a state at node i. Moreover, for
any subset of nodes N C I, we use the shorthand
S[N] := {s[k] : k € N}.

e a[i] € %; denotes a state at node i chosen by the
algorithm. Similar to s[N], for any subset N C I
of nodes, a[N] := {alk] : k € N}.

e va € [denotes the highest tree-decomposition
node containing vertex (v,a) € V.

The LP that we use here is a generalization of that
in [[13]]. The variables are y(s[N]) for all {s[k] € Z; }ren
and N € P. Variable y(s[N]) corresponds to the prob-
ability of the joint event that the solution (in Sg) “in-
duces” state s[k] at each node k € N. Variable z,,,
corresponds to the probability that edge (u,v) € E is
cut by part « of the k-partition.

In constraint (6), we use j and j’ to denote the two
children of node i € I. We note that constraints (4)-
(8) which utilize the dynamic-program structure, are
identical to the constraints (4)-(8) in the LP from [[13].
This allows us to essentially reuse many of the claims
proved in [13]], which are stated below.

k
1

maximize 3 Z CMZZWQ (LP)
{u",]e(g) a=1

Zwa = Z

slua|eXuy, sivaleXy

slual(wa)#sval((v.2))

y(s[{ua, va}),

Yi{u,v} € (‘2/), Ya € [k]; 3)
YGIND = > YIN Ui,
s[ie;
Vslkle Xy, YVke N, VNeP,Yi¢ N : NU{i} e P,
4)

PIRCEESE 5)
s[rlex,
yGslii, j, j'3) = 0,
Viel, Vsli] € Z;, Y(s[j1, s[j'D € Fistars (6)
y(s[€D) = 0,
Vieaf (€I, Vs[l] € Z; : 74[,&[[] =0 @)
0 < y(s[N]) < 1,
VN € P, Vs[k] € X for k € N. (8)

Claim 2. Let y be feasible to (LP). For any node i € 1
with children j, j' and s(k] € Xy forall k € T;,

YOITD = D > Y6ITiu (1D,

s[jlex; slj'lexy

Proof. This follows directly from Claim 2 in [[13]. See
the full proof in O

Lemma 1. (CP) has a polynomial number of vari-
ables and constraints.

Proof. The proof is identical to Lemma 2 in [13]]. See

the full proof in O
Lemma 2. (CP) is a valid relaxation of GCMC.

Proof. Let k-partition {U(,}f‘y=l be any feasible solu-

tion to Sg. Let {b[i]};c; denote the states given by

oo+ For any subset
N € P of nodes, and for all {s[i] € Z;};en, set

Claim (1| corresponding to { U,)¢

_ | 1, if s[i] = b[i] for all i € N;
YGIND) = { 0, otherwise.

Clearly constraints @) and (§) are satisfied. By the
first property in Claim [T} constraint (6) is satisfied.
And by the second property in Claim [T} constraint
is also satisfied. The last property in Claim [T]implies
that v € U, < b[va]((v,a)) = 1 for any ver-
tex v € V. So any edge {u,v} is cut by U, exactly
when blua]((u, @)) # b[va]((v,@)). Using the setting
of variable z,,, in (@) it follows that z,,, is exactly
the indicator of edge {u, v} being cut by U,. Finally,
the objective value is exactly the total weight of edges
cut by the k-partition {U,}¢_, where the coefficient
comes from the fact that that summation counts each
cut-edge twice. Thus (CP) is a valid relaxation. O

Rounding Algorithm. This is a top-down procedure,
exactly as in [13]. We start with the root node r € I.
Here {y(s[r]) : s[r] € Z,} defines a probability distri-
bution over the states of r. We sample a state a[r] € Z,
from this distribution. Then we continue top-down:
for any node i € I, given the chosen states a[k] at each
k € T;, we sample states for both children of i simul-
taneously from their joint distribution given at node i.
Our algorithm is formally described in Algorithm [T}

Input : Optimal solution of [LP}
Output: A vertex partition of V in Sg.
1 Sample a state a[r] at the root node by
distribution y(s[r]).
2 Do process all nodes i in T in order of increasing
depth :
3 Sample states a[j], a[j'] for the children of
node i by joint distribution

Prlalj] = s[jl and a[j'] = s[j']]
YGIT: U L), j3D
U S0 9
y(s[TiD) ©

where s[T;] = a[T;].

4 end

5 Do process all nodes i in T in order of
decreasing depth :

6 h; = ali]U h; U h; where j, j’ are the children

of i.

7 end

8 SetU, ={veV:h(v,a))=1}forall a € [k].

9 return k-partition {U,}*_,.

Algorithm 1: Rounding Algorithm for[LP|

k

Lemma 3. The algorithm’s solution {U,},_, is al-

ways feasible.

Proof. Note that the distributions used in Step [I] and
Step [3] are well-defined due to Claim 2} so the states
alils are well-defined. Moreover, by the choice of
these distributions, for each node i, y(a[T;]) > O.

We now show that for any node i € I with children
J»j- we have (aljl,alj’]) € Fiqi- Indeed, at the it-
eration for node i (when a[j] and a[j’] are set), using
the conditional probability distribution (@) and con-
straint (6), we have (a[j],al;j’]) € Fiqn with proba-
bility one.

We show by induction that for each node i € I, h; €
H, a1i- The base case is when i is a leaf. In this case,
due to constraint (7) and the fact that y(a[T;]) > 0
we know that H,;; # 0. So h; = alil € Hiqpy
by Theorem [3.1|3). For the inductive step, consider
node i € I with children j, j/ where h; € H,;; and
hy € Hjy 4. Moreover, from the property above,
(aljl,alj']) € Fiqn- Now using Theorem [3.1J{4) we
have h; = a[il U hj U hy € H;gqy. Finally, using
hy € Hyqpn at the root node and Theorem [3.1){5), it
follows that h, € Feas(:#). Now let i’ denote the re-
striction of A, to the variables {(v,a) : v € V,a € [k]}.
Then, using the CSP extension result (Theorem [2.2)
we obtain that &’ is feasible for CS P,(G). In other
words, the k-partition {U(,}’;:1 satisfies Sg. L]

Claim 3. For any node i and states s[k] € X for all
k € T;, the rounding algorithm satisfies Prla[T;] =
s[Ti1] = y(s[T:D).

Proof. The proof is identical to Claim 4 in [13];
see[Appendix A O]

Lemma 4. Consider any u,v € V and a € [k] such
that ua € Tyg. Then the probability that edge (u,V) is
cutby U, ={veV:h(v,a)=1}is Zya-

Proof. This follows directly from Lemma 4 in [13]] by
considering U, as the solution. See[Appendix A] [

Lemma 5. Consider any u,v € V and a € [k] such
that ua ¢ Ty and va ¢ Tyg. Then the probability that
edge u,v)iscutbyU, ={veV:h(v,a)=1}isat
least 2,0 /2.

Proof. This follows directly from Lemma 5 in [13] by
considering U, as the solution. See[Appendix A] [

Lemma 6. For any u,v € V, the probability that
edge (u,v) is cut by the k-partition {U(,}i:1 is at least

1 vk
1 Z(y: 1 Zuva-

Proof. Edge (u,v) is cut by {U(,}’C‘l:1 if and only if u €
U, and v € Ug for some o # (. Enumerating all
partition parts and applying Lemmas [4 and 5] we get
that the probability is at least }1 Zf(y:l Zuwa- The extra
factor of % is because any cut edge (u, v) is cut by the

partition twice: by the parts containing « and v. O

From Lemmas and[6] we obtain Theorem

6. Applications

We claim that MSO, is powerful enough to model
various graph properties; to that end, consider the fol-
lowing formulae, meant to model that a set S is a ver-
tex cover, an independent set, a dominating set, and a
connected set, respectively:

e S)=Y{u,v}eE: ueS)vyes)
vis(S)=Y{u,vie E: ~(ueS)A(ves))
es(S)=VveV:JueS: (ves)
= {u,v} e E
Ceomn(S)==[AU,VCS : UNV=0AUUV
=SA-(FHu,v}eE:ucUAveV)

We argue as follows: ¢, is true if every edge has at
least one endpoint in S; ¢j is true if every edge does
not have both endpoints in §; ¢qs is true if for each
vertex v not in S there is a neighbor u in S; finally,
©conn 18 true if there does not exist a partition U, V of
S with an edge going between U and V.

We also show how to handle the precedence con-
straint. Let G be a directed graph; we require S to
satisfy that, for each arc (u,v) € E, either v ¢ S,
or u,v € S. This can be handled directly with CSP
constraints: we have a binary variable for each vertex
with the value 1 indicating that a vertex is selected for
S'; then, for each arc (u,v) € E, we have a constraint
Clum = 1(1,0),(0,0), (1, 1)}.

It is known [12] that many other properties are ex-
pressible in MSO,, such as that S is k-colorable, -
connected (both for fixed k € N), planar, Hamilto-
nian, chordal, a tree, not containing a list of graphs
as minors, etc. It is also known how to encode di-
rected graphs into undirected graphs in an “MSO-
friendly” way [12], which allows the expression of
various properties of directed graphs. Our results also
extend to so-called counting MSO, where we addi-
tionally have a predicate of the form |X| = p mod ¢
for a fixed integer g € N.

7. Conclusions

In this paper we obtained %—approximation algo-
rithms for graph-MSO-constrained max-k-cut prob-
lems, where the constraint graph has bounded
treewidth. This work generalizes the class of con-
straints handled in [13]] and extends the result to the
setting of max-k-cut. Getting an approximation ratio
better than % for any of these problems is an interest-
ing question, even for a specific MSO-constraint. Re-
garding Remark [I] could our algorithm be improved
to an FPT algorithm (runtime g(7)n®" for some func-
tion g)? If not, is there an FPT algorithm parameter-
ized by the (more restrictive) tree-depth of G?

Acknowledgments

We thank Samuel Fiorini for raising the possibil-
ity of a systematic extension of our prior work [13]],
which eventually lead to this paper.

References

[1] K. C. Chang, D. H. Du, Efficient algorithms for layer assign-
ment problem, IEEE Trans. on CAD of Integrated Circuits
and Systems 6 (1) (1987) 67-78.

[2] F. Barahona, M. Grotschel, M. Jiinger, G. Reinelt, An appli-
cation of combinatorial optimization to statistical physics and
circuit layout, Oper. Res. 36 (1988) 493-513.

[3] A. Jalali, N. Srebro, Clustering using max-norm constrained
optimization, in: ICML, 2012.

[4] J.D. Lee, B. Recht, R. Salakhutdinov, N. Srebro, J. A. Tropp,
Practical large-scale optimization for max-norm regulariza-
tion, in: NIPS, 2010, pp. 1297-1305.

[5] M. X. Goemans, D. P. Williamson, Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming, J.ACM 42 (1995) 1115-45.

[6] S. Khot, G. Kindler, E. Mossel, R. O’Donnell, Optimal in-
approximability results for MAX-CUT and other 2-variable
CSPs?, SIAM J. Comp. 37 (1) (2007) 319-357.

[71 A. A. Ageev, R. Hassin, M. Sviridenko, A 0.5-approximation
algorithm for MAX DICUT with given sizes of parts, SIAM
J. Discrete Math. 14 (2) (2001) 246-255.

[8] A. A. Ageev, M. Sviridenko, Approximation algorithms for
maximum coverage and max cut with given sizes of parts, in:
IPCO, Vol. 1610, 1999, pp. 17-30.

[9] C. Chekuri, J. Vondrik, R. Zenklusen, Submodular function
maximization via the multilinear relaxation and contention
resolution schemes, SIAM J. Comp. 43 (2014) 1831-79.

[10] M. Feldman, J. Naor, R. Schwartz, A unified continuous
greedy algorithm for submodular maximization, in: FOCS,
2011, pp. 570-579.

[11] M. T. Hajiaghayi, G. Kortsarz, R. MacDavid, M. Purohit,
K. K. Sarpatwar, Approximation algorithms for connected
maximum cut and related problems, in: ESA, Vol. 9294,
2015, pp. 693-704.

[12] B. Courcelle, On the expression of graph properties in some
fragments of monadic second-order logic., Descriptive com-
plexity and finite models 31 (1996) 33-62.

[13] X. Shen, J. Lee, V. Nagarajan, Approximating graph-
constrained max-cut, Math. Prog., Ser. B, online 2017.

[14] H. L. Bodlaender, NC-algorithms for graphs with small
treewidth, in: Graph-Theoretic Concepts in Computer Sci-
ence, WG 1988, Amsterdam, The Netherlands, June 15-17,
1988, Vol. 344 of Lec. Notes in Comp. Sci., 1988, pp. 1-10.

[15] D. Knop, M. Koutecky, T. Masarik, T. Toufar, Simplified al-
gorithmic metatheorems beyond MSO: Treewidth and neigh-
borhood diversity, in: WG, Vol. 10520, 2017, pp. 344-357.

[16] R. G. Downey, M. R. Fellows, Parameterized complexity,
Springer Science & Business Media, 2012.

Appendix A. Omitted Proofs

Remain Proof of Claim[I] We define the states b[i] in
a top-down manner. We will also define an associ-
ated vector 1; € H;p; at each node i. At the root,
we set b[r] = o such that r € H,,: this is well-
defined because # € Jycs, H, . We also set t, = .
Having set b[i] and #; € H,; for any node i € [
with children {j, '}, we use Theorem to write
h; = b[i] U hj U]’lj/ where]’lj (S ?{j,w,'a hj/ € Wj/vwi’ and
(Wj, Wj/) € Ti,b[i} Then we set b[j] = Wi, tj =]’lj and

blj'] = wj, t; = hj for the children of node i. The
first condition in the claim is immediate from the defi-
nition of states b[i]. By induction on the depth of node
i, we obtain #; € H ;) for each node i. This implies
that Hy e # O for each leaf £, which proves the sec-
ond condition; moreover, by Theorem [3.T)(3) we have
t; = b[£]. Now, by definition of the vectors ¢;, we ob-
tain t = t, = (J;e; bli] = by which, combined with
Uy, ={veV:ta) =1} forall a € [k], proves the
third condition in the claim.

Because r = |Jigbli], it is clear that if
bval((v,a)) = 1 then v € U,. In the other direc-
tion, suppose b[va]((v,@)) # 1: we will show v ¢ U,.
Since va is the highest node containing (v, @), it suf-
fices to show that ((v,@)) # 1. But this follows
directly from Theorem [3.1[[2) because trz € Hig pva,
(v, @) € X3z and b[va]((v, @)) # 1. O]

Proof of Claim[2} Note that T; U {j, j/} € T, for any
leaf node ¢ in the subtree below i. So T; U {j, j'} € P
and the variables y(s[T;U{j, j'}]) are well-defined. The
claim follows by two applications of). O

Proof of Lemmall] There are (;)k = O(kn?) variables
Zuve- Because the tree is binary, we have |T;| < 2d for
any node i, where d = O(logn) is the depth of the
tree decomposition. Moreover there are only O(n?)
pairs of leaves as there are O(n) leaf nodes. For each
pair ¢y, ¢, of leaves, we have [Ty, U T,,| < 4d. Thus
|P] < O(m?) - 2* = poly(n). By Theorem 3.1] we have
max |H; | = O(1), so the number of y-variables is at
most |P| - (max I'Hi,(,|)4d = poly(n). This shows that
(CP) has polynomial size and can be solved optimally
in polynomial time. Finally, it is clear that the round-
ing algorithm runs in polynomial time. O

Proof of Claim[3] We proceed by induction on the
depth of node i. It is clearly true when i = r, i.e.
T; = {r}. Assuming the statement is true for node i,
we will prove it for i’s children. Let j, j be the chil-
dren nodes of i; note that T; = T = T; U {j, j'}. Then
using (@), we have

T,' , j’
Prla[T;] = s[T;1 | a[Ti] = s[T]] = YOIV 71D

Y(IT:D
Combined with Pr[a[T;] = s[T;]] = y(s[T;]) we ob-
tain Prla[T;] = s[T;]] = y(s[T]) as desired. O

Proof of Lemmad] Applying Claim [3] with node i =
va, for any {s[k] € % k € Ty}, we have
Prla[T] = slTw]] = y(s[Tw)). Let Dyo = {s[ua] €
Za) | slua]((u, @)) = 1} and similarly D, = {s[ve] €
Zia) | sval((v, @)) = 1}. Because ua € Trg,

Prlu € U,,v ¢ U,] = Z Z Z

slu@l€Duq s[val¢Dye s[klexy
keT (g \(ua}\{va)
= > D vl va.
s[ua@leDyq s[val¢Dya

y(s[va])

The last equality above is by repeated application
of LP constraint () where we use Tz € P. Similarly,

Prlug UpveUd= Y > Msl{ua,va),

s[u@]¢Dyq s[valeDya

which combined with constraint (@) implies
Prll{u, v} N Uql = 1] = Zuye- O

Proof of Lemma 5] We first state a useful observation.

Observation 1 (Observation 1 in [13]]). Let X,Y be
two jointly distributed {0, 1} random variables. Then
Pr(X =)Pr(Y = 0) +Pr(X = 0O)Pr(Y = 1) >
3[Pr(X =0,Y =)+ Pr(X = 1,Y = 0)].

Now we start to prove Lemma [5] In order to sim-
plify notation, we define:

+ —
Zyya = Z

sy, sVl

slual((u.a)=1,s[val((v.a))=0

G = 2

s, SVl

s ((1.0))=0.5[F@(v.0))=1
Note that z,, = 2\, + Zive-

Let Dy, = {slua] € Zyg | slual((u,a)) = 1} and
Dy = {s[va] € Zpg | slval((v, @)) = 1}. Let i denote
the least common ancestor of nodes ua and va, and
{/, /'} the two children of i. Note that T; = T, =
T; U{j,j'} and Tyg, T3z 2 T;. Because ua ¢ Tz and
va ¢ Tyg, both ua and va are strictly below j and j’
(respectively) in the tree decomposition.

For any choice of states {s[k] € S heer, define:

y(sl{ua, val)),

y(s[{ua, val]).

’

Z YG[T; U {ua, val])

SRCINIENDY YGIT,D

s[ualeDya s[val¢Dya

and similarly z,,,(s[T;]).

In the rest of the proof, we fix states {s[k] € Zy}er;
and condition on the event & that a[T;] = s[T;]. We
will show Pr[[{u,v}in U,| = 1|E&]

1, B
> 5 (ehaGITD + 5 GIT)D) (A1)

By taking expectation over the conditioning &, this
would imply Lemma [5]

We now define the following indicator random vari-
ables (conditioned on &).
and [,, = {O
1

Observe that I, and I,,, (conditioned on &) are inde-
pendent because ua, va ¢ T, and ua and va appear in
distinct subtrees under node i. So,

if a[va] ¢ Dy,

, o ifam@l D,
s if a[va] € D,

1 if a[t@] € Duo

Pr[{u,vin U, = 1|&]
=Pr[l,, = 1]-Pr[l,, = 0] + Pr[l,, = 0] -Pr[],, = 1] (A.2)

For any s[k] € Xy for k € Tz \T;, we have by Claim

Bland T C T that
Y(s[Tww])

Prla[Tw] = s[TalalT)] = s[T}]] = GIT,D)

Therefore Pr[l,, = 1] equals
Y(SIT; U {ual])

Vsl Twl) _
22 = 2 o YGITD

YOI)~ A

slialeDuq keTig\T;\(u@)
s[kleZy

The last equality follows by repeatedly using LP con-
straint @) and the fact that Tzz € P. Furthermore,
note that 7'; U {ua, va} € P; again by constraint (E[)

YIT; U (i)
Pl =11=), (D

slualeDya
y(s[T; U {ua, va}])

Z Z Y(s[T;1)

slu@leDyq slvaleyy
yGs[T; U {ue, var}])
- oL 1)

=) 2 YoIT,) C

s[u@leDyq s[va@leDyqy

Similarly,
YGIT; U @)
Pr(l,, = 1] =
ho=1=), YGIT, D)

s[valeDyq
y(sIT; U {ma, va)])
Z y(s[T;]) + Zue SIT5])

s[ualeDyy s[valeDyy
YGIT; U {@)])
Pr[l, =0] =
e =01=) YGIT/D)

s[i@1¢Dya

yGsIT; U (ua, va)])

= T .
Z y(s[TJ]) Zuva(s[]])

S{7@1€ Dy sI7E1EDve
Now define {0, 1} random variables X and Y jointly

distributed as:

Y=0 Y=1
=0 | Prllua = 0] — 2,0 (5[T}]) Zuwa ST
=1 22 GIT)]) Prllye = 1] = z3,, ([T 1)

Note that Pr[X = 1] = Pr[/,, = 1] and Pr[Y = 1] =
Prlluo = 11 = 2,0 (SIT}]) + 24, (SIT;]) = Prllye = 1].
So, applying Observation [T] and using (A-2) we have
Pr[[{fu,v}n U,| = 1| &] is at least

l(Pr[X=0,Y=l]+Pr[X=l,Y=0]),

which implies (A).

	Introduction
	Preliminaries
	Dynamic Program for CSP
	The Max-Cut Setting
	The Max-k-Cut Setting
	Applications
	Conclusions
	Omitted Proofs

