Algorithmica (2018) 80:652-667 @ CrossMark
https://doi.org/10.1007/s00453-017-0277-5

New Bounds for the CLIQUE-GAP Problem Using
Graph Decomposition Theory

Vladimir Braverman! . Zaoxing Lin'(® -
Tejasvam Singh! - N. V. Vinodchandran? -
Lin F. Yang!

Received: 25 February 2016 / Accepted: 6 January 2017 / Published online: 18 January 2017
© Springer Science+Business Media New York 2017

Abstract Halldérsson et al (ICALP proceedings of the 39th international colloquium
conference on automata, languages, and programming, vol part I, Springer, pp 449—
460, 2012) investigated the space complexity of the following problem CLIQUE-
GAP(r, s): given a graph stream G, distinguish whether (G) > r or w(G) < s,
where w(G) is the clique-number of G. In particular, they give matching upper and
lower bounds for CLIQUE-GAP(r, s) for any r and s = clog(n), for some constant
c. The space complexity of the CLIQUE-GAP problem for smaller values of s is left
as an open question. In this paper, we answer this open question. Specifically, for
any r and for s = O (log(n)), we prove that the space complexity of CLIQUE-GAP
problem is (:)(";Sz2 ). Our lower bound is based on a new connection between graph
decomposition theory (Chung et al in Studies in pure mathematics, Birkhduser, Basel,
pp 95-101, 1983; Chung in STAM J Algebr Discrete Methods 2(1):1-12, 1981) and
the multi-party set disjointness problem in communication complexity.

Vladimir Braverman: This material is based upon work supported in part by the National Science
Foundation under Grant No. 1447639, by the Google Faculty Award and by DARPA Grant
N660001-1-2-4014. Its contents are solely the responsibility of the authors and do not represent the
official view of DARPA or the Department of Defense.

Zaoxing Liu: This work is supported in part by DARPA Grant N660001-1-2-4014.

N. V. Vinodchandran: Research supported in part by National Science Foundation Grant CCF-1422668.
Lin F. Yang: This work is supported in part by NSF Grant No. 1447639.

B Zaoxing Liu
zaoxing @jhu.edu

1 Johns Hopkins University, Baltimore, MD 21218, USA
2 University of Nebraska—Lincoln, Lincoln, NE 68588, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0277-5&domain=pdf
http://orcid.org/0000-0002-9119-1679

Algorithmica (2018) 80:652-667 653

Keywords Communication complexity - Clique - Streaming algorithm - Graph
decomposition - Triangle counting

1 Introduction

Graphs are ubiquitous structures for representing real-world data in several sce-
narios. In particular, when the data involves relationships between entities it is
natural to represent it as a graph G = (V, E) where V represents entities and E
represents the relationships between entities. Examples of such entity-relationship
pairs include webpages-hyperlinks, papers-citations, IP addresses-network flows,
and people-friendships. Such graphs are usually very large in size, e.g. the people-
friendships “Facebook graph” [27] has 1 billion nodes. Because of the massive size of
such graphs, analyzing them using classical algorithmic approaches is challenging and
often infeasible. A natural way to handle such massive graphs is to process them under
the data streaming model. When dealing with graph data, algorithms in this model
have to process the input graph as a stream of edges. Such an algorithm is expected to
produce an approximation of the required output while using only a limited amount
of memory for any ordering of the edges. This streaming model has become one of
the most widely accepted models for designing algorithms over large data sets and
has found deep connections with a number of areas in theoretical computer science
including communication complexity [3,9] and compressed sensing [14].

While most of the work in the data streaming model is for processing numerical
data, processing large graphs is emerging as one of the key topics in this area. Graph
problems considered so far in this model include counting problems such as triangle
counting [4,6,12,18,19,25], MAX-CUT [20] and small graph minors [8], and classical
graph problems such as bipartite matching [15], shortest path [13], and graph sparsi-
fication [1]. We refer the reader to a recent survey by McGregor for more details on
streaming algorithms for graph problems [23]. Recently, Halldérsson, Sun, Szegedy,
Wang [16] considered the problem of approximating the size of maximum clique in a
graph stream. In particular, they introduced the CLIQUE-GAP(r, s) problem:

Definition 1 CLIQUE-GAP(r, s): given a graph stream G, integer r and s with 0 <
s < r,output “1”if G has a r-clique or “0” if G has no (s + 1)-clique. The output can
be either O or 1 if the size of the max-clique w(G) isin [s + 1, r].

In this paper we further investigate the space complexity of the CLIQUE-GAP
problem and its relation to other well studied topics including multiparty communi-
cation, graph decomposition theory, and counting triangles. We establish several new
results including a solution to an open question raised in [16].

1.1 Our Results
In this paper, we establish a new connection between graph decomposition theory [10,

11] and the multi-party set disjointness problem of the communication complexity
theory. Using this connection, we prove new lower bounds for for CLIQUE-GAP(r, s)

@ Springer



654 Algorithmica (2018) 80:652-667

when s = O(logn) and complement the results of [16]. Our main technical results
are Theorems 1, 2, 3, and 4. We summarize our results below and defer the proofs to
the later sections.

The Upper Bound : We give a one-pass streaming algorithm that solves CLIQUE-
GAP(r, 5) using O(ms?/r?) space. Note that our results do not contradict the lower
bounds in [16], since their results apply for dense graphs with m = © (n?).

Theorem 1 For any r and s where r > 100s, there is a one-pass streaming algorithm
(Algorithm 1) that, on any graph stream G with m edges and n vertices, answers
CLIQUE-GAP(r;, s) correctly with probability > 0.99, using O (ms?/r?) space in
expectation.!

Lower Bounds : We give a matching lower bound of £2(ms?/r?) on the space com-
plexity of CLIQUE-GAP(r, s) when s = O (logn).

Theorem 2 For any 0 < § < 1/2 there exists a global constant ¢ > 0 such that
forany 0 < s < r,M > O, there exists graph families G| and G, that satisfy the
following:

— foreach graph G| € G, |[E(G1)| = m > M and G| has a r-clique;

— for each graph G, € G, |E(G2)| = m > M and G has no (s + 1)-clique;

— any randomized one-pass streaming algorithm A that distinguishes whether G €
G\ or G € Gy with probability at least 1 — 8 uses at least cm ] (r* logf r) memory
bits.

For s = O(logn) our lower bound matches, up to polylogarithmic factors, the
upper bound of Theorem 1. Using the terminology from graph decomposition theory
[10,11] we extend our results to a lower bound theorem for the general promise
problem GAP(P, Q), which distinguishes between any two graph properties P and
Q satisfying the following restrictions. Note that o, (Go, Q) is a parameter denotes
the minimum decomposition of G by graphs in Q, first defined in [10]. Please refer
to Equation 6 for details.

Theorem 3 Let P, Q be two graph properties such that

-PNO=y¢
— If G" € P and G" is a subgraph of G', then G' € P;
- IfG',G" € Qand V(G') N V(G") = @, then G = (V(G") U V(G"), E(G") U
E(G") € Q;
Let G be an arbitrary graph in ‘P. Given any graph G with m edges and n vertices,

if a one-pass streaming algorithm A solves GAP(P, Q) correctly with probability at
least 3/4, then A requires ‘Q(IV(HW m) space in the worst case.

We use the tools we develop for the CLIQUE-GAP problem to give a new two-pass
algorithm to distinguish between graphs with at least 7 triangles and triangle-free

! In this and following theorems, the constants we choose are only for demonstrative convenience.

@ Springer



Algorithmica (2018) 80:652-667 655

graphs. For T = n**P  the space complexity of our algorithm is o(m/~/T) for >
2/3. Cormode and Jowhari [12] give a two-pass algorithm using O (m/+/T) space.
Also, for T < n? they provide a matching lower bound. Our results demonstrate that
for some T > n?, it might be possible to refine the lower bound of Cormode and
Jowhari. We state our results in Theorem 4.

Theorem 4 Let Gi be a class of graphs of n vertices that has at least T = n**P
triangles for some B € [0, 1]. Let Gy be a class of graphs of n vertices that are
triangle-free. Given graph G = (V, E) with n nodes and m edges, there is a two-pass

streaming algorithm that distinguishes whether G € G| or G € G with constant
mn*#
T

probability using O(
o(m/ JT) space.

) space. In particular, for > 2/3, the algorithm uses

Incidence Model : We also give a new lower bound for the space complexity of
CLIQUE-GAP(r, 2) in the incidence model of graph streams (Theorem 5).

Theorem 5 If a one-pass streaming algorithm solves CLIQUE-GAP(r, 2) in the inci-
dence model for any G with m edges and n vertices with probability at least 3 /4, it
requires $2(m /r3) space in the worst case.

1.2 Related Work

Prior work that is closest to our work is the above-mentioned paper of Halldérsson
et al [16]. They show that for any € > 0, any randomized streaming algorithm for
approximating the size of the maximum clique with approximation ratio cn' =€/ logn
requires n>¢ space (for some constant ¢). To prove this result they show a lower bound
of £2(n?/r?) for CLIQUE-GAP(r, s) (using the two-party communication complexity
of the set disjointness problem) when r = n'~€ and s = 100 - 2!/ log n.

The problem related to cliques that has received the most attention in the streaming
setting is approximately counting the number of triangles in a graph. Counting the
number of triangles is usually an essential part of obtaining important statistics such
as the clustering coefficient and transitivity coefficient [5,21] of a social network.
Starting with the work of Bar-Yossef et al. [4], triangle counting in the streaming
model has received sustained attention by researchers [6,12,19,25]. Researchers have
also considered counting other substructures such as K3 3 subgraphs [7] and cycles
[5,22].

The problem of clique identification in a graph has also been considered in other
models. For example, Alon et al. [2] considered the problem of finding a large hidden
clique in a random graph.

2 Definitions and Results

2.1 Notations and Definitions

We give notations and definitions that are necessary to explain our results. For a graph
G = (V, E) with vertex set V and edge set E, we use m to denote the number of
edges, n to denote the number of vertices, T to denote the number of triangles in G,

@ Springer



656 Algorithmica (2018) 80:652-667

A to denote the maximum degree of G, and w(G) to denote the size of the maximum
clique (also known as the clique number). We use O and 2 to suppress logarithmic
factors in the asymptotics.

We consider the adjacency streaming model for processing graphs [4,6]. In this
model the graph G is presented as a stream of edges (eq, 2, ..., ;). We process
edges under the cash register model: edge deletion is not allowed. Another model we
consider in Sect. 6 is the incidence streaming model, which assumes that all the edges
incident at a vertex will arrive together, and that each edge appears twice, once for
each endpoint.

A k-pass streaming algorithm can access the stream k times and should work cor-
rectly irrespective of the order in which the edges arrive (the ordering is fixed for all
passes).

2.2 Lower Bound Techniques

To establish our lower bounds on the CLIQUE-GAP(r, s) problem for arbitrarily small
s, we use the well known approach of reducing a communication complexity problem
to CLIQUE-GAP(r, s). For the reduction, we make use of graph decomposition the-
ory [10,11]. The communication complexity problem we use is the set disjointness
problem in the one-way multi-party communication model.

The set disjointness problem in the one-way k-party communication model, denoted
by DISJ?, is the following promise problem. The input to the problem is a collection
of k sets Sp, ..., Sk over a universe [n], with the promise that either all the sets are
pairwise disjoint or there is a unique intersection (that is there is a unique a € [n]
sothata € S; forall 1 <i < n). There are k players with unlimited computational
power and with access to randomness. Player i has the input S; and Player i can only
send information to Player (i + 1). After all the communication between players, the
last player (Player k) outputs “0” if the k sets are pairwise disjoint or outputs “1” if the
sets uniquely intersect. For instances that do not meet the promise the last player can
output “0” or “1” arbitrarily. The communication complexity of such a protocol is the
total number of bits communicated by all players. This problem was first introduced
by [3] to prove lower bounds on the space complexity of approximating the frequency
moments. In [9], it is shown that the communication complexity of DISJ} is £ (n/k).

We review basics of graph decomposition [10,11]. An H-decomposition of graph
G is a family of subgraphs {G, G2, ..., G} such that each edge of G is exactly
in one of the G;s and each G; belongs to a specified class of graphs H. Let f be a
nonnegative cost function on graphs. The cost of a decomposition with respect to f
is defined as o s (G, H) = minp Y ;_, f(G;), where D = {G}, G2,...,G,} is an
‘H-decomposition of G. Two functions that have received attention are fo(G) = 1
and f1(G) = |V(G)|. The former one minimizes the number of subgraphs among
all decompositions; and the later one counts the total number of nodes in the mini-
mum decomposition. Many interesting problems in graph theory are related to this
framework. For example oy, (G, P) is the thickness of G, for P the set of planar
graphs; o s, (G, B), where B is the set of complete bipartite graphs, arises in the study
of network contacts realizing certain symmetric monotone Boolean functions. Refer
to [10,11] for more details on graph decomposition.

@ Springer



Algorithmica (2018) 80:652-667 657

We are interested in the cost function fy. af (G, H) is typically denoted as
a4(G, 'H) which is what we use in this paper. For the class 5, the class of complete
bipartite graphs, it is known that o, (K, B) = [log, n] [10].

To illustrate the reduction, consider CLIQUE-GAP(r, 2). Let k = [log, r]. Let
{Hi, Ha, ..., Hy} be a decomposition of G so that H;’s are bipartite and UH; is
K. We will reduce an instance Si, ..., S; of DISJZ/ "toa graph G on n vertices as
follows. The graph G has n/r groups of r vertices each. The players collectively and
independently build the graph G as follows. Consider Playeri and herinput S; < [n/r].
For an a € S;, Player i puts the graph H; on r vertices of group a into the stream.
It is clear that if S;s are disjoint then the graph G is a collection of disjoint bipartite
graphs and if there is a unique intersection a, the group a forms UH; = K,. Using
standard arguments, we can show that the space complexity of CLIQUE-GAP(r, 2) is
n/r log% r). Details are given in Sect. 4.

This proof can be generalized. In particular, we prove Theorem 2 by choosing H
as set of s-partite graphs and prove Theorem 5 by choosing H as set of k-star graphs.

3 An Upper Bound

In this section we give an algorithm for CLIQUE-GAP(r, s) that uses O (ms? /r?)
space. Note that for s = £2(r), the trivial algorithm that stores the entire graph has the
required space complexity. Hence we will assume s = o(r).

Algorithm 1 Algorithm for CLIQUE-GAP(r, s)
1: Input:
Edge stream (e, ep, ..., e ) of graph G = (V, E), positive integers r, s.
2: Output:
“1if a clique of order r is detected in G; “0” if G is (s + 1)-clique free.
3: Initialize:
Set p =40(s+1)/r.
Set memory buffer M empty.
Compute n pairwise independent bits {Qy|v € V} using O (logn) space such that
foreachv € V, Pr[Qy = 1] = p.

4: while not the end of the stream do

5:  Read an edge e = (a, b).

6: Inserteinto M if Q, = l and Qp = 1.

7:  If thereis an (s + 1)-clique in M, then output “1”.
8: output “0”.

Theorem 1 For any r and s where r > 100s, there is a one-pass streaming algorithm
(Algorithm 1) that, on any graph stream G with m edges and n vertices, answers
CLIQUE-GAP(, s) correctly with probability > 0.99, using O(ms2/r%) space in
expectation.!

Proof If s < 2, it is trivial to detect an edge. So let us assume s > 2. If the input
graph G has no (s + 1)-clique, the algorithm always outputs “0” since the algorithm
outputs “1” only if there is an (s + 1)-clique on a sampled subgraph of G. Consider
the case where G has a r-clique. Let K, = (Vk, Ex) be such a clique. Let the random

@ Springer



658 Algorithmica (2018) 80:652-667

variable Z denote the number of nodes ‘sampled” from Vg. Thatis, Z = 3 .y Qv-
The probability that Q, = 1is p and Var(Q,) = p(l — p). Hence E (Z) = rp and
since each Q, is pairwise independent, Var(Z) = rp(l — p). Thus for s > 2, by
Chebyshev’s bound, we have

Pr(Z<s)=Pr(Z—E(Z)<s+1—E(2))
= Pr(Z—-E@)|=Is+1—-EZ))
- Var(Z)
T (s+1-E©2))?
_ rpl—p) 406+ D)
s+ 1L—rp)? T 3925+ 1)2

< 1/100. (1

The probability of sampling an edge (1, v) is p?, given by the probability of sampling
both u and v. Thus the expected memory used by the above algorithm is O (ms?/r?).
O

4 Lower Bounds

In this section we present our lower bounds on the space complexity of the CLIQUE-
GAP problem. Our main theorem is the following.

Theorem 2 For any 0 < § < 1/2 there exists a global constant ¢ > 0 such that for any
0 <s <r, M > 0, there exists graph families G| and G, that satisfy the following:

— for each graph G| € Gy, |E(G1)| = m > M and G| has a r-clique;

— for each graph G, € Go, |E(G2)| = m > M and G, has no (s + 1)-clique;

— any randomized one-pass streaming algorithm A that distinguishes whether G €
Gy or G € G» with probability at least 1 — 8 uses at least cm /(r? logf r) memory
bits.

Fors = O (logn), this matches our O (ms?/r?) upper bound up to poly-logarithmic
factors and solves the open question of obtaining lower bounds for CLIQUE-GAP(r, s)
for small values of s (from [16]). Our main technical contribution is a reduction from
the multi-party set disjointness problem (DISJ}) in communication complexity to the
CLIQUE-GAP problem. The reduction employs efficient graph decompositions.

We use the following optimal bound on the communication complexity of DISJ}
proved in [9].

Theorem 6 ([9]) Any randomized one-way communication protocol that solves DISJZ
correctly with probability > 3 /4 requires §2(n/ k) bits of communication.

Before we prove Theorem 2 in detail, we will give the construction for CLIQUE-
GAP(4, 2). The reduction is from DISJ"/ *to CLIQUE-GAP(4, 2) (for the general case
it will be from DISJ”/ rg ;7 to CLIQUE-GAP(r, )). For any instance of DISJ/ 5 * where
Player 1 holds a set S) C [n /4] and Player 2 holds a set S» C [n/4], we construct
an instance G with n vertices of CLIQUE-GAP(4,2) as follows. The n vertices are
denoted by {v; jli = 1,2,3,...,n/4,j = 0,1,2,3}. This notation partitions the

@ Springer



Algorithmica (2018) 80:652-667 659

|

3

== | | ==

‘ i3 i 3 i 17 i2 i3 i6 i7
! ! i i6 i7

Player 1 Player 2 Player 1 Player 2 Player 3

(a) (b)

Fig.1 aThe decomposition of K4 to log, 4 = 2 bipartite graphs. b The decomposition of Kg tolog, 8 = 3
bipartite graphs

vertex set into n/4 groups, each of size 4, denoted as V; = {v; 0, v 1, vi 2, vi 3} for
i =1,2,3,...,n/4. We partition V; = V; o U V; 1, where V; o = {vi0,vi 1} and
Vi1 = {vi2, v 3}. Further partition V; o = Vio0U Vio,1and Vi1 = V10U V1,1,
where Vi 0,0 = {vi,0}, Vi,o,1 = {vi.1}, Vir,0 = {vi2} and Vi 11 = {v; 3}

Player 1 places all edges of the complete bipartite graphs between V; o and V;  if
ieds.

Player 2 places all edges between V; o o and V; o 1 and edges between V; 1 9, Vi 1.1
ifi € 5.

The edges and partitions are shown in Fig. la.

If §1 NS> = {i}, then there is a clique on vertex set V; (which is of size 4). If
S1 N Sy = @, since both Player 1 and Player 2 have only bipartite graph edges on
disjoint vertex sets, the output graph is triangle free.

If there is a one-pass streaming algorithm A for CLIQUE-GAP(4, 2) that distin-
guishes whether the input graph G has clique of size 4 or triangle-free, the players can
use this algorithm to solve DISJ;/ + as follows: Player 1 runs A on his edge set and
communicates the content of the working memory at the end of his computation to
Player 2. Player 2 continues to run the algorithm on his edge set and outputs the result
of the algorithm as the answer of the DISJ problem. Hence if A uses space M, then
total communication between players < M (in general if there are k players we have
the inequality: total communication < (k — 1)M). This leads to the required lower
bound.

The edge decomposition for the reduction from DISJg/ 10 CLIQUE-GAP(8, 2) is
shown in Fig. 1b.

For obtaining a lower bound on the space complexity of CLIQUE-GAP(r, s), we
will reduce DISJ%/O; +1 to CLIQUE-GAP(r, 5) and use the lower bound stated in The-
orem 6. For the reduction, we give an extension of the bipartite graph decomposition
result. In particular, we show (implicitly) that o (K, H) < [log, r] where H is the
class of all s-partite graphs.

Proof of Theorem 2 We will reduce DISJf/ " to CLIQUE-GAP(r, s) where t =
[logr/logs]. Consider an instance of DISJ;W, where Player [ holds aset S; C [n/r]
forl = 1,2, ...,t. To construct an instance G on n vertices of CLIQUE-GAP(r, s),

forl =1,...,t,Player places an edge set E; as described below.

The Construction of E;: The construction follows the same pattern as in the figures
above. To explain it precisely we need to structure the vertex set of the graph in
a certain way. W.l.o.g set r = s’ and n = 0 mod r. We will denote an integer

@ Springer



660 Algorithmica (2018) 80:652-667

in [r] by its s-ary representation using a t-tuple. We denote the n vertices by V =
Wit jo il = 1,2,3,..0,0n/r, j1, jo, ..o Jr € [sI}(J1, j2, - - ., Ji] Tepresents an
integer in [r] uniquely). This notation partitions the set V into n/r subsets, each of size
r. We denote them as Vi, Va, ..., V. Thatis, foreach fixedi = 1,2, ...,n/r, V; =
{Vi.lj1.j2sen jillJ1s J25 -« Ji € [s]}. Next we define a series of s partitions of each V;
where ["" partition is a refinement of the (I — 1)”* partition.

Partition 1: V; = V; o U V; 1 ... U V; sy, where for each fixed j; € [s]

Vioji =it jjasejitlizs J3s - oo Ji € [s1) )

Partition /: For each set V; j, j, .. j_, in Partition (/ — 1), partition V; j, j, .. j_, =
Viiitiizseji—1,09Vi it oo izt - U Vi il oo jiog,s—1 @s s subsets, each of which is of
size s'~!. Here, foreach fixedi = 1,2, ..., n/r and for each fixed ji, j2, ..., ji € [s],
we have

Viijvijzeoit = ViUt ojajoejidist gl 11 Ji425 <« o5 Jr € [s1} (3)

With this structuring of vertices, we can now define E; for each Player /. If an
element i is in the set S, then for all ji, jo, ..., ji—1 € [s], Player [ has all the s-
partite graph edges between the s partitions of the vertex set V; j, j, .. j_,, namely,
Viijt.jaeeii10s Vit jpreion s Vicjijein 25 - a0d Vi gy o iy s—1. Formally,

Ep =VUies Uj jo,jimrels) EG J1s j2s ooy Ji-1), 4

where

E(l, j], j2, ey j[_]) = U].I’j[/elslsjl#jll{(a’ b)l fOr all
a € Vijijpejioriiis be Vi,j],jz,...,jl,l,j,’}~ (5)

Note that each edge appears exactly in one of the edge set. End of Construction of
E;.

Correctness of the Reduction: On a negative instance, players’ input sets Sy, S> ... S;
are pairwise disjoint. The above construction builds all the s-partite graphs on disjoint
sets of vertices, hence the output graph is s-partite and hence (s + 1)-clique free.

On a positive instance, players’ input sets have a unique intersection, S NSy ... N
S; = {i}. For each Player /, the edge set E; includes all the s-partite graph edges on
each vertex set Vi j, ... ji_i»1.€.Uj o iiels1E@, Jis j2s - -+, Ji—1). We claim that
there is a r-clique on vertex set V;. Consider any two distinct vertices u, v € V;, where
U= Vi1 joei]s V= Vifjl b ) Since u # v, (J1, j2, ..., Ji) 7 (]i, ]é, e, ]t/)
Let g be first integer such that j, # j(;. By the definition of the partitions, u €
Viijtinejo_1.jo and v € Vi i 5 i _..i- Therefore, there is an edge (u, v) in the
edéé ]szet oﬁtﬁdf by Player q.J et ¢

Proof of the Bound: Suppose there is a one-pass streaming algorithm A that solves
CLIQUE-GAP(r, s) in M (n, r, s) space. Then consider the following one-way pro-
tocol for DISJ:l/ " Foreach1 <1 < 1, Player / simulates .4 on his edge set E; and

@ Springer



Algorithmica (2018) 80:652-667 661

communicates the memory content to Player (I + 1). Finally Player 7 simulates .A on
E; and outputs the result of A. The total communication < (t+ — 1)M (n, r, s). Hence
from the known lower bound on DISJ;W, we have that M(n,r,s) = 2(n/rt?) =
n/r logf r). Now consider the hard instance of DISJ?/ ", any player holds a non-
empty set (otherwise this is an easy instance). From the construction, for each hard
instance we know m = (> x n/r) = $2(nr). Hence any one-pass streaming
algorithm that solves CLIQUE-GAP(r, s) requires £2 (m /1> logf r) space. We further
justify this argument by the following modification of the reduction.

Exchange Quantifier n to m : The above construction of a lower bound is based on
the quantifier n. Suppose we are given m, r, s, we can construct a reduction graph for
DISJ :"/ 2" as follows. We construct a graph on m/r vertices. Without loss of generality,
assume r = o(»/m), otherwise the bound is trivially §2(1). The construction is the
same for the first n = m/2r vertices. For each player, in addition to sending the
memory content of algorithm, the player also sends the number of edges in the current
graph. By the above analysis, for the last player, the graph will have m’ < m /2 edges.
The last player adds (m —m’) = O (m) edges to the last n vertices without creating an
s-clique. This can be done since by Turan’s theorem [26], an (m/2r)-vertices graph
can have up to (1 — 1/s)m?/8r> = w(m) edges without creating an s-clique. The
lower bound is the same with the previous analysis. By picking up graphs constructed
for the hard instance for DISJ problem, we construct the graph classes as required in
the theorem. O

4.1 A Lower Bound to The General GAP Problem

Using the terminology from graph decomposition theory we prove a general lower
bound theorem for the promise problem GAP(P, Q) which is defined as follows.

Definition 2 Let P and Q be two graph properties (equivalently, P and Q are two sets
of graphs) such that PN Q = #. Given an input graph G, an algorithm for GAP(P, Q)
should output “1” if G € P and “0” if G € Q. For G ¢ P U Q, the algorithm can
output “1” or “0”.

We first recall the necessary definitions. Let H be a specified class of graphs. An H-
decomposition” of a graph G is the decomposition of G into subgraphs G1, Ga, ..., G,
such that any edge in G is an edge of exactly one of the G;’s and all G;s belong to H.
Define o, (G, H) as:

ax(G,'H) = mgn |D] (6)
where D = {G, G2, ..., G,} is an 'H-decomposition of G. For convenience, we

define o, (G, H) = oo if the H-decomposition of G is not defined.

Theorem 3 Let P, Q be two graph properties such that
-PNO=y;

2 Note that some papers define the decomposition on connected graph. We here use a more general statement.

@ Springer



662 Algorithmica (2018) 80:652-667

— If G" € P and G" is a subgraph of G', then G’ € P;
-IfG',G" € Qand V(G'"YNV(G") = @, then G = (V(G') UV(G"), E(G") U
E(G")) € Q;

Let G be an arbitrary graph in P. Given any graph G with m edges and n vertices,
if a one-pass streaming algorithm A solves GAP(P, Q) correctly with probability at
least 3/4, then A requires 2 (i IV(Go)\ aZ(GO Q)) space in the worst case.

Remark 1 We note that in the above statement Gy is an arbitrary graph. To get the
optimal bound, we can select a G such that the denominator |V(Go)|af(Go, Q) of
the bound is minimized. We also note that this theorem is indeed a generalization of
Theorem 2. Let P = {G | G has a r-clique } and Q = {G | G has no (s + 1)-clique
}. In the proof of Theorem 2 we use Go = K, and shows that o, (K, Q) < log, r (in
this case m = O(nr)).

Proof of Theorem 3 Denote Vo = V(Go) and Eg = E(Gy). Suppose a streaming
algorithm A solves GAP(P, Q) with probability at least 3/4 using M bits of memory.

Vi
/IVol where

We can use A to construct a communication protocol that solves DISJ,
1 = a.(Go, Q).

The protocol works the same way as Theorem 2, except now each Player / is given
aset S; C [n/|Vo]]. We construct the input edge set E; to the GAP problem of Player
[ as follows. Label the n vertices as V = {v; j|i € [n/|Voll, j € Vo}. This notation
partitions the vertices as n/|Vy| subsets, V. = Vi U Vo... UV, 1y, each of which is
of size |Vp|. For a fixedi = 1,2, ...,n/|Vy|, denote V; = {v; j|j € Vo}. Let D =
{GY, GY, ..., G%) be the optimal Q-decomposition of G such that | D| = (G, Q).
Denote each G? as (VO, Elo).

For Player /, if i is in her input set .S;, then she has the following edge set:

E(i) = U(a’b)EE/O{(Ui,as vip)}, (7
which is a copy of E? on vertices V;. Let the set of all edges that Player / has be
E; = Ujes Ei(i). (®)

Clearly {E| (i), E2(i), ..., E;(i)} is a @-decomposition of the copy of G on vertices
Vi.

On a positive instance, Players’ input sets uniquely intersect, Sy NS> N... S, = {i}.
Each Player [’s edge set contains Ej(i). The final stream contains a sub graph Gj
induced by UJ_ E; (i) on vertices V; such that G, is a copy of Gy, hence G|, € P. By
definition, the constructed graph G € P.

On a negative instance, Players’ input sets S1, S2 ... S, are pairwise disjoint, let
S =81USy...US,. Foreach i € §, there exists an unique / such that i € Sj.
Therefore, only Player / outputs the edge sets E;(i), which induces a graph from Q.
The final graph is given by {U;cs' Vi, U;cs E;(i)}. The sub-graphs induced by the V;s
are vertex disjoint, and therefore the constructed graph G € Q.

If A can decide whether G € P or G € Q with probability at least 3/4, as
in the the proof of Theorem 2, players can simulate .4 to solve any given instance

@ Springer



Algorithmica (2018) 80:652-667 663

of DISJ?/ ol with probability at least 3/4, using the above reduction. If M is the
memory used by A, then by Theorem 6, (t — 1)M > §£2(n/(¢|Vp|)). Hence we have
M = 2(n/(|Volaz(Go, Q). o

5 Relation to Triangle Counting

For triangle counting problem, given a graph G with at least T triangles, Cormode and
Jowhari [12] give a two-pass algorithm using O (m/+/T) space 3. Also, for T < n?
they provide a matching lower bound. Pavan et al. [25] provide a one-pass streaming
algorithm for triangle counting with space complexity of O(mA/T), where A is
the max-degree of the graph G. We use the tools we develop for the CLIQUE-GAP
problem to give a new two-pass algorithm to distinguish between graphs with at least
T triangles and triangle-free graphs. For T = n”*#, the space complexity of our
algorithm is o(m/+/T) for B > 2/3. Our results demonstrate that for some T > n?,
it might be possible to refine the lower bound of Cormode and Jowhari.

Algorithm 2 DETECT(G, p1, p2, s1): Procedure of Detecting Triangles
1: Input:
Graph edge stream (eq, €3, ..., e) of graph G = (V, E). Real number
p1. p2 € [0, 1], integer s1.
2: Output:
“1” if a triangle detected in G; “0” if not.
3: Initialize:
Set memory buffer M; fori = 1,2, ..., s empty.
Computes s1 independent random binary size-n vectors Q; = {Q;y|forall v € V}
fori =1,2,...s1 using O(s1 logn) space such that for a fixed i, each Q;, is
pairwise independent and Pr[Q;, = 1] = py.
4: while not the end of the stream do
5 Read an edge e = (u, v).
6: fori=1,2,...,s51 do
7
8
9

Draw a bit ¢, from {0, 1} independently, such that Prc, = 1] = p;.

If ¢, = 1 and either Q;, = 1 or Q;,, = |, then insert e to M;.

If e completes a triangle with 2 other edges in M;, then output “1”.
10: Output “0”.

Theorem 4 Let Gy be a class of graphs of n vertices that has at least T = n*tP
triangles for some B € [0, 1]. Let Gy be a class of graphs of n vertices that are
triangle-free. Given graph G = (V, E) with n nodes and m edges, there is a two-pass
streaming algorithm that distinguishes whether G € Gy or G € G, with constant

L;_ﬁ) space. In particular, for § > 2/3, the algorithm uses

probability using O
o(m/NT) space.
To show our bound, we need the following notation.
Let G = (V, E) be a graph with T}riangles. For each u € V, t(u) is the number

of triangles that have u as anode. Let V C V be the set of vertices that are nodes of at

3 After the preliminary version on MFCS 2015 [17], McGregor et al. [24] give a two-pass algorithm of
om3/? /T) memory on the incident model.

@ Springer



664 Algorithmica (2018) 80:652-667

least one triangle. Partition. Vinto 1 = Q(log |‘7|) setsas V = SoUSiUS,...US;
where each S; = {a € V|2! < 1(a) < 2/*1}.

T

Claim There exists an i such that |S;| - 2/*! > Togn

Proof This follows from the following observation,
t .
37 < Y |Si|- 2 <67 9)
i=1
since each triangle is counted 3 times. O

Definition 3 Define i (G) = min{i : |S; |2/t > 1§ng}’ the significant index of graph
G.

Lemma 1 Let Gy be aclass of graphs of n vertices that has at least T = n**P triangles
for some B € [0, 1] and there is an integer ig < 2logn — 1 such that i(G) < iy for
all G € Gy. Let Gy be a class of graphs of n vertices that are triangle-free. Then
there exists a two-pass streaming algorithm, on input a graph stream G = (V, E)
with n nodes and m edges, distinguishes whether G € Gy or G € Gy with constant

29ip+1 .
mn T22 ) space in the worst case.

probability, using O(

Proof Let f‘(G) be the number of triangles in G and suppose G € Gj. Denote n® =

o onn for some o > 0. By definition of significant index, we have

3G i1 < it — g2, (10)
logn - |Si6)|
Hence
3f"(G) 3f(G) o
n =18l = 3G Togn > 30 ogn = 3n“. (11)
Also notice that
37T(G) (T o
T T logn = fo) (ﬁ) = Qn"). (12)
We have 8 < a < 1. On the other hand for any u € S; (),
. - (TG ~
n

We now construct an algorithm that distinguishes whether G € Gj or G € G
using Algorithm 2 as follows. Let p; = ®(1/n%), p» = ©(1/nP), and s; be some

@ Springer



Algorithmica (2018) 80:652-667 665

sufficiently large positive integer. Make the first pass over the stream using Algorithm
2 and keep the memory. If a triangle is detected, halt the algorithm, output “1”. If not
we make another pass to check if any edge can complete a triangle with the edges we
have already stored in the memory.

If G € G, the algorithm will be guaranteed output “0”, since no triangle will be
sampled. It is now suffice to show the correctness of the algorithm for the case G € G,.
In the sequel, we will assume G € .

In the node sampling step of the algorithm, with constant probability, we sample a
node u from S;G);

In the edge sampling step of the algorithm, we claim the algorithm samples a 2
edges of a triangle sharing the same node u from G with constant probability by the
following. Let T (u) be the set of triangles that have u as a node. Let X C E be
the minimum edge set that any triangle ¢+ € T (1) touches an edge in X. We claim
|X| = £2(nf) by (12), (13) and by

2ew) < Y |Tw,v)| <nlX|, (14)

(u,v)eX

where T (u, v) is the set of triangles that have nodes u, v, hence of size at most n. We
now partition X = Xo U X1 ...U X; as/ sets where [ = ®(logn), such that each X,
is defined as {(u, v) : 2¢ < |T(u, v)| < 29*'}. Since T(G) < Z(u,v)eX IT (u,v)| <

3T(G), by similar argument, there exists an ap such that | X, |200+1 > %. Since

nz 20z IO X, | = 20 and 7w, 0] = 00 = 29 =

2(n?) for each (u,v) € X4, where we use [X,| < (5). Therefore, with p, =
2(1/nP),

Pr [Ele € Xag sampled] = £2(1).
Let e € X, that is sampled. Let N, C E be the set of neighbor edges of e. Then
Pr[3¢’ € N | e € X4 sampled] = 2(1).

Conditioning on e, ¢’ being sampled, with constant probability a triangle will be
detected.
The probability sampling an edge is

1 n2701
pip2 =0 <W> =0 (T) . (15)

The expected space used in this algorithm is O (m”;ﬂ) = é(%).

Proof of Theorem 4 The theorem follows from using the algorithm in Lemma 1 and
seta = B.

@ Springer



666 Algorithmica (2018) 80:652-667

Fora+8/2 > 1(e.g. B > 2/3), we have 2~ = o(n'T#/2) = o(/T), the algorithm
provided by Theorem 4 obtains a space bound 0(%) for the triangle distinguish
problem.

6 Incidence Model

In designing algorithms for graph streams, researchers have also considered the inci-
dence model. This model assumes that the graph G = (V, E) is presented as a stream
of incidence lists {(v, E})}yecv Where E,, is the set of edges incident on the vertex v.
This is a valid assumption since in many situations it is natural to store a graph as an
array of incidence lists.

Since the incidence model is a restriction of the adjacency stream model, our upper
bound of O (ms? / r2) for CLIQUE-GAP(r, s) holds in this model also. Here we prove
a lower bound for CLIQUE-GAP(r, 2) in the incidence model.

Theorem 5 If a one-pass streaming algorithm solves CLIQUE-GAP(r, 2) in the inci-
dence model for any G with m edges and n vertices with probability at least 3 /4, it
requires §2(m/r3) space in the worst case.

Proof We will reduce DISJ”” to CLIQUE-GAP(r, 2). Given an instance of DISJ"/",
construct an instance G = (V, E) of CLIQUE-GAP(r, 2) as follows. We label the
vertices in V as v; ; with each i € [n/r],j € [r]. Assuming each Player j =
1,2,...,risgivenaset S; C [n/r],Player j has the setofedges E; = {(v; j, vi))|i €
Si,l elr],s.t.l # j}(asetof (r —1)-stars). Note that each edge only appears in one
of these sets. Since for each vertex, all edges incident to that vertex is known by the
players, the players can output the edges in a incidence list form.

Let G be the graph induced by E{UE> ...UE,. On anegative instance, S1, S2 ... S
are pairwise disjoint, and hence G contains only (r — 1)-stars. On a positive instance,
S1NS2N...NS, = {i}, and hence G contains a r-clique on vertices v; 1, V; 2, ..., Vi r-
Therefore, using arguments similar to our other lower bound arguments, if there an
algorithm for CLIQUE-GAP(r, 2) that uses M space, by Theorem 6, M = 2 (n/r?).
In the cases of positive and negative instances, the number of edges m = O(n) and
m = O((r — n/r 4 r?/2), respectively. Therefore any one-pass algorithm in the
incidence model for CLIQUE-GAP(r, 2) requires £2 (m/ r3) space. O

References

1. Ahn, K.J., Guha, S.: Graph sparsification in the semi-streaming model. In: Proceedings of the 36th
International Colloquium on Automata. Languages and Programming: Part II, pp. 328-338. Springer,
ICALP (2009)

2. Alon,N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in arandom graph. In: Proceedings
of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 594-598. ACM/SIAM
(1998)

3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 20-29.
ACM (1996)

@ Springer



Algorithmica (2018) 80:652-667 667

10.
. Chung, F,, Erdés, P., Spencer, J.: On the decomposition of graphs into complete bipartite subgraphs.

12.
13.
14.
15.

16.

17.

18.
19.
20.

21.

22.
23.
24.
25.

26.
27.

. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to

counting triangles in graphs. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 623-632. SODA, Society for Industrial and Applied Mathematics (2002)

. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Computing clustering

coefficients in data streams. In: European Conference on Complex Systems (ECCS) (2006)

. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting triangles in

data streams. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pp. 253-262. PODS, ACM (2006)

. Buriol, L.S., Frahling, G., Leonardi, S., Sohler, C.: Estimating clustering indexes in data streams. In:

ESA. Lecture Notes in Computer Science, vol. 4698, pp. 618-632. Springer (2007)

. Buriol, L.S., Frahling, G., Leonardi, S., Spaccamela, A.M., Sohler, C.: Counting graph minors in data

streams. Tech. rep, DELIS—Dynamically Evolving, Large-Scale Information Systems (2005)

. Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party communication

complexity of set disjointness. In: IEEE Conference on Computational Complexity, pp. 107-117.
IEEE Computer Society (2003)
Chung, F.: On the decomposition of graphs. SIAM J. Algebr. Discrete Methods 2(1), 1-12 (1981)

In: Studies in Pure Mathematics, pp. 95-101. Birkhduser Basel (1983)

Cormode, G., Jowhari, H.: A second look at counting triangles in graph streams. Theor. Comput. Sci.
552,44-51 (2014)

Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming problems.
In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 714-723. ACM (2006)
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289-1306 (2006)

Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming complexity of maximum
bipartite matching. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 468-485. SODA, SIAM (2012)

Halldérsson, M.M., Sun, X., Szegedy, M., Wang, C.: Streaming and communication complexity of
clique approximation. In: ICALP Proceedings of the 39th International Colloquium Conference on
Automata, Languages, and Programming, vol. Part I, pp. 449-460. Springer (2012)

Italiano, G.F., Pighizzini, G., Sannella, D. (eds.): Mathematical Foundations of Computer Science
2015—40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings,
Part II, Lecture Notes in Computer Science, vol. 9235. Springer (2015). doi:10.1007/978-3-662-
48054-0

Jha, M., Seshadhri, C., Pinar, A.: When a graph is not so simple: counting triangles in multigraph
streams. CoRR. arXiv:1310.7665

Jowhari, H., Ghodsi, M.: New streaming algorithms for counting triangles in graphs. In: COCOON.
Lecture Notes in Computer Science, vol. 3595, pp. 710-716. Springer (2005)

Kapralov, M., Khanna, S., Sudan, M.: Streaming lower bounds for approximating MAX-CUT. CoRR
(2014). arXiv:1409.2138

Kutzkov, K., Pagh, R.: On the streaming complexity of computing local clustering coefficients. In:
Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 677—
686. WSDM, ACM (2013)

Manjunath, M., Mehlhorn, K., Panagiotou, K., Sun, H.: Approximate counting of cycles in streams.
In: Proceedings of the 19th European Conference on Algorithms, pp. 677-688. ESA, Springer (2011)
McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9-20 (2014)

McGregor, A., Vorotnikova, S., Vu, H.T.: Better algorithms for counting triangles in data streams.
In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pp. 401-411. PODS *16, ACM, New York (2016). doi:10.1145/2902251.2902283

Pavan, A., Tangwongsan, K., Tirthapura, S., Wu, K.L.: Counting and sampling triangles from a graph
stream. Proc. VLDB Endow. 6(14), 1870-1881 (2013)

Turdn, P.: On an extremal problem in graph theory. Matematikai ¢ s Fizikai Lapok (1941)

Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. CoRR.
arXiv:1111.4503

@ Springer


http://dx.doi.org/10.1007/978-3-662-48054-0
http://dx.doi.org/10.1007/978-3-662-48054-0
http://arxiv.org/abs/1310.7665
http://arxiv.org/abs/1409.2138
http://dx.doi.org/10.1145/2902251.2902283
http://arxiv.org/abs/1111.4503

	New Bounds for the CLIQUE-GAP Problem Using Graph Decomposition Theory
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Definitions and Results
	2.1 Notations and Definitions
	2.2 Lower Bound Techniques

	3 An Upper Bound
	4 Lower Bounds
	4.1 A Lower Bound to The General GAP  Problem

	5 Relation to Triangle Counting
	6 Incidence Model
	References




