
Accurate Low-Space Approximation of Metric
k-Median for Insertion-Only Streams

Vladimir Braverman1, Harry Lang2,
and Keith Levin1(B)

1 Department of Computer Science, Johns Hopkins University,
Baltimore, MD, USA

klevin@jhu.edu
2 Department of Mathematics, Johns Hopkins University,

Baltimore, MD, USA

Abstract. We present a low-constant approximation for metric k-
median on an insertion-only stream of n points using O(ε−3k log n) space.
In particular, we present a streaming (O(ε−3k log n), 2 + ε)-bicriterion
solution that reports cluster weights. It is well-known that running
an offline algorithm on this bicriterion solution yields a (17.66 + ε)-
approximation.

Previously, there have been two lines of research that trade off
between space and accuracy in the streaming k-median problem. To
date, the best-known (k, ε)-coreset construction requires O(ε−2k log4 n)
space [8], while the best-known O(k log n)-space algorithm provides only
a (O(k log n), 1063)-bicriterion [3]. Our work narrows this gap signifi-
cantly, matching the best-known space while significantly improving the
accuracy from 1063 to 2 + ε. We also provide a matching lower bound,
showing that any polylog(n)-space streaming algorithm that maintains
an (α, β)-bicriterion must have β ≥ 2.

Our technique breaks the stream into segments defined by jumps in
the optimal clustering cost, which increases monotonically as the stream
progresses. By a storing an accurate summary of recent segments and
a lower-space summary of older segments, our algorithm maintains a
(O(ε−3k log n), 2 + ε)-bicriterion solution for the entire input.

Keywords: Streaming algorithms · k-median · Clustering

1 Introduction

In metric k-median clustering over insertion-only streams, we are sequentially
given n points from a metric space and attempt to return a set of k centers that

V. Braverman—This material is based upon work supported in part by the National
Science Foundation under Grants IIS-1447639 and CCF-1650041.
H. Lang—This research is supported by the Franco-American Fulbright Commission.
The author thanks INRIA (l’Institut national de recherche en informatique et en
automatique) for hosting him during the writing of this paper.

c© Springer International Publishing AG 2017
D. Gaur and N.S. Narayanaswamy (Eds.): CALDAM 2017, LNCS 10156, pp. 72–82, 2017.
DOI: 10.1007/978-3-319-53007-9 7

Accurate Low-Space Approximation of Metric k-Median 73

approximately minimize the sum of the distances of each point to its nearest
center. We present an improved algorithm for this problem, maintaining the
best-known space bound while drastically improving the approximation-ratio.

Streaming clustering has a long history since the work of Guha, Meyerson,
Mishra, Motwani and O’Callaghan [11]. There have been two main classes of
algorithms that have polylogarithmic space complexity and solve the streaming
version of metric k-median. The first class contains facility-based algorithms,
starting with the first polylogarithmic solution for the streaming k-median by
Charikar, O’Callaghan, and Panigrahy [6]. These methods build upon the con-
nection between the k-median problem and the facility location problem, using
the online algorithm of Meyerson [14] as a subroutine. Facility-based algorithms
achieve low storage (currently O(k log n)-space due to [3]), but suffer from an
extremely large approximation ratio. The best-space algorithm in this class pro-
vides a (O(k log n), 1063)-bicriterion (see Sect. 7.2 for a calculation of this con-
stant). The second class contains coreset-based algorithms, such as the works of
[1,7,8,12,13]. By coreset-based, we refer to algorithms that can return a (k, ε)-
coreset for any ε > 0. A (k, ε)-coreset of a set A is a set B such that the cost of
clustering A and B with any set of centers differ by at most a factor of (1 ± ε).
These algorithms achieve an arbitrarily low approximation ratio, but yet require
significantly more storage, the lowest being a O(ε−2k log4 n)-space coreset due
to [8]. In this line of research, an offline coreset construction is provided, which
is then transformed into a streaming construction using the merge-and-reduce
technique of [2] from 1980. Merge-and-reduce multiplies the space-bound by a
factor of Ω(log3 n), and although other methods have been found for the Euclid-
ean case [4,9], this remains the only technique available for coresets in general
metric spaces. Without overcoming this 35-year-old barrier, coreset-based algo-
rithms cannot match the space-bounds of facility-based algorithms.

The two classes of algorithms suggest a possible trade-off between the favor-
able space-bounds of facility-based methods and the favorable approximation
ratio of coreset-based methods. A natural question is if it is possible to design an
algorithm that performs well in both space and approximation ratio. For Euclid-
ean space, this question was answered in the affirmative by [15]. We now answer
this in the affirmative for general metric spaces, using a technique entirely dif-
ferent from that of [15]. Our algorithm achieves a low-approximation ratio using
O(ε−3k log n)-space and maintaining a (O(ε−3k log n), 2 + ε)-bicriterion.

In 2009, an important result by Guha [10] was a facility-based (34 + ε)-
approximation using O(ε−3 log 1

ε k log2 n)-space. This straddles the above-
mentioned space-accuracy trade-off by offering a low-constant (although not as
low as offered by coreset-based algorithms) as well as low-space (although not
as low as the O(k log n) offered by facility-based algorithms). In comparison, our
algorithm offers both lower space and a lower approximation ratio than [10]. It
is a well-known result [3,6,10,11] that running an offline γ-approximation on
a (α, β)-bicriterion solution yields a (β + 2γ(1 + β))-approximation. With our
(O(ε−3k log n), 2 + ε)-bicriterion, running the offline 2.61-approximation of [5]
yields a (17.66 + ε)-approximation. In relation to [10], this is a 48% reduction in

74 V. Braverman et al.

the approximation factor and the space requirement is improved from O(k log2 n)
to O(k log n). Additionally, we show in the Appendix (see Sect. 7.1) that no
polylog(n)-space algorithm can improve upon our approximation ratio.

2 Our Contribution

We present an algorithm that maintains a (k, 2 + ε)-bicriterion and uses
O(ε−3k log n) space. Our algorithm works in three layers. The first layer is a
black-box O(1)-approximation; a single instance simply runs in the background
while the higher layers save information from it. The second layer (in Sect. 4)
maintains a prefix A that contributes at most an ε-small portion to OPT of the
stream; this layer only requires the space needed to store the output of the first
layer at two previous moments. The third layer (in Sect. 5) runs the facility loca-
tion algorithm of [14], and at any moment only four instances of facility location
are required to run in order to maintain the 1 − 1

n probability guarantee.
Our techniques differ from previous facility-based algorithms in crucial ways.

Like the previous works of [3,6], our algorithm operates in phases. However, the
techniques used in these algorithms cause additional costs to be compounded
during each phase. In contrast, our algorithm manages the stream so that we
only incur cost during the two most recent phases. We avoid additional costs by
maintaining a prefix A of the stream S such that OPT(A, k) ≤ εOPT(S) and
such that we have an O(1)-approximate estimate of OPT(S) before processing
the suffix S \ A.

Of course, it is impossible to have an O(1)-approximate estimate of OPT(S)
before processing the suffix. However, Algorithm 1 allows to pretend that we
have such an estimate. The fundamental idea is to always maintain the “next
prefix” A′. If we ever detect that OPT(S) may have surpassed the upper bound
of our estimate, then we replace the prefix A with A′ and update the estimate
accordingly.

Given an O(1)-approximate estimate of OPT(S), we can contruct a good
approximation of S \ A (see Sect. 3). Because OPT(A, k) ≤ εOPT(S), even a
poor approximation on the prefix is sufficient. Combining both these pieces, we
are able to maintain a low-constant solution over the stream.

3 Definitions

Our algorithm works for weighted sets of integral weight. For the bounds, let n
be the total weight of the stream (the sum of the weights of each point in the
stream). In fact, if n is not known in advance, a polynomial upper-bound will
suffice. Note that n is assumed to be known in [3,6,15], so this does not add any
additional restrictions. Let (X , d) be a metric space.

Definition 1 (Cost Function). Given sets A,C ⊂ X , the function Cost(A,C)
gives the cost of clustering A with center set C. Explicitly, Cost(A,C) =∑

a∈A minc∈C d(a, c).

Accurate Low-Space Approximation of Metric k-Median 75

Definition 2 (Optimum Cost). The value OPT(A,B, k) is the lowest pos-
sible cost of clustering A with k centers from B. Explicitly, OPT(A,B, k) =
minC∈Bk Cost(A,C). As shorthand, OPT(A, k) = OPT(A,X , k) where X is the
entire metric space.

Definition 3 (Connect Function). Let A,B be multisets of equal weight.
Connect(A,B) is the minimum connection cost over all possible bijective maps
t from A to B, where the connection cost of t is defined as

∑
a∈A d(a, t(a)).

Definition 4 (Bicriterion). An (α, β)-bicriterion approximation of the k-
median clustering of A is a set B such that COST(A,B) ≤ α OPT(A, k) and
|B| ≤ βk.

We will make use of the following observation in Sect. 4.

Observation 1. For any set C and equally weighted multisets A and B,
Cost(A,C) ≤ Connect(A,B) + Cost(B,C).

Proof. Let g be the optimal map from B to C. Let t be the optimal bijec-
tive map from A to B. Then by the triangle inequality, for every a ∈ A,
d(a, g(t(a))) ≤ d(a, t(a)) + d(t(a), g(t(a))). Let h be the optimal map from A
to C. The result followed by summing over all a ∈ A and then noting that
d(a, h(a)) ≤ d(a, g(t(a))).

The following observation is used in Sect. 6.

Observation 2. If Connect(A1, B1) ≤ v1 and Connect(A2, B2) ≤ v2, then
Connect(A1 ∪ A2, B1 ∪ B2) ≤ v1 + v2.

Proof. Let ti be the optimal bijective map from Ai to Bi. Then consider g(a) =
ti(a) if a ∈ Ai. Although g may not be the optimal bijective map from A1 ∪ A2

to B1 ∪ B2, it yields an upper bound.

4 Phase Manager

Over an insertion-only stream S, the algorithm of [3] maintains a multiset Q such
that Connect(S,Q) ≤ α OPT(S,X , k) from some constant α. We refer to this
algorithm as PLS (which is the name of the algorithm in [6] that provides a sim-
ilar guarantee). It constructs Q through a technique that connects points in S to
other points in S and weights them accordingly. Therefore, we can make a simple
modification to additionally maintain a value q such that Connect(S,Q) ≤ q.
For a section P of the stream, we denote the multiset Q by PLS(P) and we
denote the value q by q(P).

By running an offline γ-approximation for k-median on Q, we obtain a θ-
approximation on the original stream where θ = 2γ(1 + α). This is a standard
result, and the reader is referred to [6] for details.

We denote the first N points of the stream by [1, N]. Our algorithm requires
a monotonically increasing function f([1, N]) such that OPT([1, N],X , k) ≤

76 V. Braverman et al.

f([1, N]) ≤ θ OPT([1, N],X , k). We compute this function as follows. We define
f ′ to be the sum of q([1, N]) and the cost of clustering PLS([1, N]) with its
γ-approximation. By Observation 1, f ′ satisfies the desired inequalities, but f ′

may not be monotonically increasing because the γ-approximation may decrease
at times. We define f recursively as f([1, N]) = max{f ′([1, N], f([1, N − 1])}.
Updating f requires O(1) time and space because it is computed by taking the
maximum of two already stored values. Now f is guaranteed to be monotoni-
cally increasing, and moreover is still satisfies the desired inequalities because
OPT([1, N],X , k) is monotonically increasing.

Our algorithm relies on maintaining a partition of the stream into three
segments. After processing SN (the first N points from the stream), we write the
elements of the filtration as AN and BN such that we have ∅ ⊂ AN ⊂ BN ⊂ SN .
Here both AN and BN are prefixes of the stream, meaning that they are equal to
[1,m] for some 1 ≤ m ≤ N . The following two loop invariants will be maintained,
where β = αθ/ε.

1. f(AN) ≤ β−1f(BN)
2. f(BN) > β−1f(SN)

At the beginning of the stream, it will be necessary to establish the two loop
invariants. We do this by letting Bm be the first k +1 distinct points and letting
Am be empty. Even if k +1 distinct points do not arrive until m is much greater
than k + 1, it is not difficult to see that this initialization procedure can be
performed in O(k log n) memory.

Having established the loop invariants, Algorithm1 maintains these invari-
ants with a single instance of PLS. When a point arrives, it simply updates
PLS and (if necessary) redefines the filtration to satisfy the invariants. Note
that Algorithm 1 does not store any information besides the state of PLS for
each element of the current filtration, resulting in memory requirement equal to
that of PLS.

Algorithm 1. Update Process, upon arrival of point pN

1: Update PLS with pN and compute f(SN)
2: if f(SN) ≥ βf(BN−1) then
3: AN ← BN−1

4: BN ← SN

5: else
6: AN ← AN−1

7: BN ← BN−1

Theorem 1. Using O(k log n) memory, Algorithm1 maintains a filtration ∅ ⊂
AN ⊂ BN ⊂ SN such that f(AN) ≤ β−1f(BN) and f(BN) > β−1f(SN).

Proof. If the condition on Line 2 is not satisfied, then this implies that both
invariants continue to hold. If the condition on Line 2 is satisfied, then the

Accurate Low-Space Approximation of Metric k-Median 77

second invariant has been violated and must be re-established on Lines 3–4.
We recursively assume that both invariants held for the filtration of SN−1. The
first invariant reads f(AN) ≤ β−1f(BN) which is equivalent to f(BN−1) ≤
β−1f(SN−1); this is guaranteed to hold since the second invariant was violated.
The second invariant reads f(BN) > β−1f(SN). Since on Line 4 we have BN =
SN , this clearly holds for β > 1.

Algorithm 1 guarantees that when a phase change occurs, OPT(S, k) will
remain within a constant multiplicative range before the next phase change. We
now prove that this is the case.

Lemma 1. Algorithm1 guarantees that f(BN)/θ ≤ OPT(SN , k) < βf(BN).

Proof. The second inequality follows from the second loop invariant of Algo-
rithm1 and noting that OPT(SN , k) ≤ f(SN). The first inequality follows from
the approximation guarantee of f and monotonicity.

In the next two sections, we will use the guarantees of Algorithm1 to con-
struct a (O(ε−3k log n), 2 + ε)-bicriterion. Other subroutines will observe (but
not influence) Algorithm1 and store two sets: PLS(AN) and PLS(BN).

5 Facility Manager

In this section, we present Algorithm 3 that will run in parallel with Algo-
rithm1. We will use a modified version of the online facility location algorithm
of [14] as a subroutine. The main result of this section is Theorem 3 stating that
Algorithm 3 maintains a weighted set QN such that Connect(SN \ AN , QN) ≤
(3 + ε) OPT(SN , k) with high probability.

We recall the OFL Algorithm 2 with facility cost κ as used in [6]. We maintain
a weighted set of facilities Φ, and denote d(p, Φ) = minφ∈Φ d(p, φ), with d(p, ∅) =
∞ by convention. Upon receiving a point p, we open a weight w(p) facility there
with probability w(p)d(p, Φ)/κ; otherwise we connect it to the nearest facility,
incrementing that facilities weight by w(p) and paying service cost w(p)d(p, Φ).

Algorithm 2. OFL(facility cost κ)
1: ServiceCost ← 0
2: FacilityCount ← 0
3: Φ ← ∅

Update Process, upon receiving point pN :
4: if a probability min(1, w(pN)d(pN , Φ)/κ) event occurs then
5: Open a facility at pN with weight w(pN)
6: FacilityCount ← FacilityCount + 1
7: else
8: Increment weight of a nearest facility to pN by w(pN)
9: ServiceCost ← ServiceCost + w(pN)d(pN , Φ)

78 V. Braverman et al.

The following theorem follows from a tuning of parameters based on Theo-
rem3.1 of [3]. The original statement was for ε = 1, so we include a sketch of
how we modify their proof.

Theorem 2. If OFL is run on a weighted set A of weight at most n using
facility cost L

k(1+log n) where L ≤ εOPT(A, k), then with probability at least
1 − 1

n the service cost is at most (2 + 7ε) OPT(A, k) and at most 7ε−1k(1 +
log n)OPT(A,k)

L facilities are opened.

Proof (Proof Sketch). Consider an optimal center c that services the set S ⊂ A.
Let Σ be the total service cost of assigning S to c. For j ≥ 0, define regions Sj

such that |Sj | = ε|S|/(1 + ε)j and each point in Sj is not farther from c than
any point point in Sj+1. Then ∪j>j′Sj consists of at most a single point for
j′ = log1+ε(n/2) ≤ 2ε−1 log n (whenever ε ≤ 1/2). As in the proof of [3], the
service cost of all points after a facility is opened in a region is deterministically
at most (ε

1−ε + (1 + ε))Σ. This follows by applying Markov’s inequality to show
the cost of connecting the nearest ε|S| points is at most ε

1−εΣ.
As for before a facility opens, it is shown in [3] that the probability of having

total service cost over x regions of at least y before a facility opens is at most
ex−y e−1

e . Here we now set x = 2ε−1k(1 + log n) and y = 2 e
e−1ε−1k(1 + log n) to

yield the result.

Algorithm 3 maintains a set of OFL instances, where n is the weight of the
stream. After each phase change, it begins running d+1 instances of OFL with
facility cost set to εf(BN)/θ. Run this instance until the end of the phase, and
then increase the service cost and duplicate the instance d + 1 times. At any
moment, provide QN as the weighted set of facilities of the instance running in
the bucket of the current phase with minimal service cost.

We will refer to an instance running in “bucket t”. This is to avoid confusion
because there will be instances running during phase t in buckets t and t + 1.
We discard buckets t − 1 and earlier.

We now present the main theorem of this section.

Theorem 3. With probability at least 1 − n−d, where d is a chosen parameter,
Algorithm3 maintains a weighted set QN such that Connect(SN \ AN , QN) ≤
(2 + 7ε)(1 + ε)OPT(SN , k). The storage requirement is O(dε−3k log n).

Proof. The space bound is deterministic and follows easily from Algorithm3.
This is because Line 9 guarantees that we have at most 7αθ2ε−3k(1 + log n)
facilities per instance. We store at most d + 1 instances in bucket t + 1 and
at most d + 1 instances in bucket t, resulting in an overall storage of at most
14(d + 1)αθ2ε−3k(1 + log n) facilities.

We now prove that at least one instance in bucket t remained active through-
out phase t − 1 (by not opening too many facilities and thus terminating on
line 9). Consider the instances in bucket t, which were first begun as a batch
of d + 1 instances at the beginning of phase t − 1. Since Algorithm 1 shifts
AN ← BN−1 at a phase change, these instances were started with facility cost

Accurate Low-Space Approximation of Metric k-Median 79

Algorithm 3. Update Process, upon receiving point pN

1: if pN causes phase t to begin then
2: Terminate all instances in bucket t − 1
3: Force all instances in bucket t to open pN as a facility
4: Φ1 ← facilities of a bucket t instance with minimal service cost
5: κ ← εf(BN)/θk(1 + log n)
6: Initialize d + 1 instances of OFL(κ) in bucket t + 1
7: else
8: Update all running instances of OFL with point pN

9: Terminate instances with facility-count above 7αθ2ε−3k(1 + log n)
10: if bucket t contains a running instance then
11: QN ← facilities of a bucket t instance with minimal service cost
12: else
13: Φ2 ← facilities of a bucket t + 1 instance with minimal service cost
14: QN ← Φ1 ∪ Φ2

εf(AN)/(θk(1 + log n)) and ran on the segment BN \ AN . We let B′
N denote

BN without the final point that caused the transition to phase t, and we apply
Theorem 2 to B′

N . By Theorem 1 we have OPT(B′
N , k)/(εf(AN)/θ) < βθε−1 =

αθ2ε−2. With this bound, Theorem2 guarantees with probability 1−n−d−1 that
at least one of the d+1 instances will run on B′

N with at most 7αθ2ε−2k(1+log n)
facilities. Since the number of facilities is monotonically increasing during run-
time, this implies the same bound on the number of facilities when running
OFL on the segment B′

N \ AN . Therefore with probability 1 − n−d−1 at least
one instance survives to the beginning of phase t by not being terminated on
Line 9. At the beginning of phase t, we apply the same analysis to SN \ BN

(without the need to remove the final point, since the phase has not ended) and
arrive at the same probabilistic bound on the number of facilities for instances
in bucket t + 1.

Let c = 3 + 7ε, let Lt (and similarly Lt−1) be k(1 + log n)κ where κ is the
facility cost used for instances in bucket t. We break into two cases and ana-
lyze each seperately. In the first case, suppose OPT(B′

N , k) ≥ εOPT(SN , k).
We repeat the previous analysis with Theorem 2 of running OFL on the
segment SN \ AN instead of B′

N \ AN . Since OPT(SN , k)/(εf(AN)/θ) ≤
ε−2 OPT(B′

N , k)/(f(AN)/θ) < αθ2ε−3 and Lt = εf(AN)/θ ≤ εOPT(AN , k) <
εOPT(SN , k), Theorem 2 gives a high-probability guarantee that an instance
in bucket t has opened at most 7αθ2ε−3k(1 + log n) facilities with service
cost at most cOPT(SN , k), and we are done. In the second case, suppose
OPT(B′

N , k) < εOPT(SN , k). If there is an active instance in bucket t, then
the connection cost is at most cOPT(SN , k). If there are no active instances
in bucket t, we return Φ1 ∪ Φ2. We apply Theorem 2 to B′

N \ AN to show
Connect(B′

N \AN , Φ1) ≤ cOPT(B′
N , k). Line 3 implies Connect(B′

N \AN , Φ1) =
Connect(BN \ AN , Φ1), and therefore Connect(BN \ AN , Φ1) < cOPT(B′

N , k).
Lt+1 = εf(BN)/θ ≤ εOPT(BN , k) ≤ εOPT(SN , k), and we apply the theo-
rem again to SN \ BN to show Connect(SN \ BN , Φ2) ≤ cOPT(SN , k). Then

80 V. Braverman et al.

by Observation 2, we bound connection costs as Connect(SN \ AN , Φ1 ∪ Φ2) ≤
cOPT(B′

N , k) + cOPT(SN , k) < c(1 + ε)OPT(SN , k).
The above proof holds for a single phase. There is at least one point per

phase, implying that there are at most n phases. Thus the 1−n−d−1 probability
guarantee for each phase becomes a 1 − n−d probability guarantee over the
stream.

From now on, we refer to the result of Theorem 3 as guaranteeing connection
cost (2 + ε)OPT(SN , k) instead of (2 + 7ε)(1 + ε)OPT(SN , k). This follows by
selecting ε′ = ε/7.

6 Combining Both Algorithms

Algorithm 1 provides a weighted set PLS(AN) such that Connect(AN ,PLS
(AN)) ≤ α OPT(AN , k). Moreover, the algorithm guarantees that f(AN) ≤
β−1f(SN), where β = αθ/ε, and therefore OPT(AN , k) ≤ f(AN) ≤
β−1f(SN) ≤ β−1θ OPT(SN , k) ≤ εα−1 OPT(SN , k). Together, this implies
that Connect(AN ,PLS(AN)) ≤ εOPT(SN , k). Algorithm 3 provides us with
a weighted set QN such that Connect(SN \ AN , QN) ≤ (2 + ε) OPT(SN , k).
Define ΣN as the union PLS(AN) ∪ QN . This is the desired bicriterion since,
by Observation 2, Connect(SN , ΣN) ≤ (2 + 2ε)OPT(SN , k).

Our algorithm maintains ΣN using O(ε−3k log n) space. Moreover, as shown
above, ΣN is a (O(ε−3k log n), 2 + ε)-bicriterion for the stream SN .

7 Appendix

7.1 Lower Bound

The following lower bound relies on the fact that the algorithm, if it uses sub-
linear space, must forget most of the input points. Missing a critical input point
can prevent anything better than a 2-approximation existing among the points
remaining in storage.

Theorem 4. For the metric k-median problem, no polylog(n)-space streaming
algorithm can (with constant probability) maintain a (α, β)-bicriterion for β < 2.

Proof. Consider a specific algorithm. Let S(n) be the space-complexity of this
algorithm, measured in the number of points able to be stored. Suppose that
S(n) ∈ o(n). Fix a value of n. Define R(n) =
√nS(n)� and note that R(n) ∈
o(n) We will construct an input for the 1-median case, and then show it can be
modified for k-median. Let the input begin with (p1, . . . , pR(n)) where d(pi, pj) =
1∀i
= j where j ∈ {1, . . . , R(n)}. Thus the first R(n) points are indistinguishable,
so even for a non-deterministic algorithm there must exist a deterministic c ∈
{1, . . . , R(n)} such that after the algorithm passes the first R(n) points, c is
stored in memory with probability at most S(n)/R(n) ≤ √

S(n)/n ∈ o(1).
The entire input is then (p1, . . . , pR(n), qR(n)+1, . . . , qn) where d(pc, qi) = 1∀i ∈

Accurate Low-Space Approximation of Metric k-Median 81

{R(n)+1, . . . , n} and all other distances are given by the shortest path. Without
pc stored as a potential center, the next best clustering (using one of the first
R(n) points as the center) yields a cost of R(n) − α + 2(n − R(n)) while the
optimum (with pc as the center) is n−1. Since α is a lower-bound on the storage
requirement of the algorithm (it must at least store the bicriterion is provides),
in the limit n → ∞ this input has a cost-ratio approaching 2 with probability
approaching 1. To extend to k-median, use the above input with size n/k and
duplicate it k times (where each duplicate is at least distance 2 from any other).
The value of c may be different for each of the k pieces, but there must exist a
deterministic (c1, . . . , ck) such that the above argument extends.

7.2 Computing the Constant of Previous Algorithms

In this section, we compute the constant of the approximation-algorithm in [6]
which the authors leave unspecified. The lower-space algorithm of [3] has an even
larger constant due to the high-probability guarantee on the facility location
lemma of a (3 + 2e

e−1)-approximation instead of a 4-approximation.
In Sect. 2 of [6], the connection cost of the maintained PLS set is seen to be

α = 4(1 + 4(γ + β)). The constants γ and β are freely selected subject to the
restraint that γ+4(1+4(γ+β)) ≤ γβ. By minimizing the function α(γ, β) subject
to this constraint, we obtain a lower bound on the approximation-ratio of these
algorithms. Since the function α(γ, β) has no critical points, its minimum must
occur on the boundary of the constraint equation. Using Lagrange multipliers
to minimize γ + β subject to γ + 4(1 + 4(γ + β)) = γβ, we find γ = 16 +

√
276

and β = γ + 1, setting the final approximation ratio to over 1063.5.

References

1. Bādoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Pro-
ceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing,
STOC 2002, pp. 250–257. ACM, New York (2002)

2. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. Static-to-dynamic
transformation. J. Algorithms 1(4), 301–358 (1980)

3. Braverman, V., Meyerson, A., Ostrovsky, R., Roytman, A., Shindler, M., Tagiku,
B.: Streaming k-means on well-clusterable data. In: Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp.
26–40. SIAM (2011)

4. Bury, M., Schwiegelshohn, C.: Random projections for k-means: maintaining core-
sets beyond merge & reduce. CoRR, abs/1504.01584 (2015)

5. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median, and positive correlation in budgeted optimization. In: Pro-
ceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2015, pp. 737–756. SIAM (2015)

6. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for
clustering problems. In: Proceedings of the Thirty-Fifth Annual ACM Symposium
on Theory of Computing, STOC 2003, pp. 30–39. ACM, New York (2003)

82 V. Braverman et al.

7. Chen, K.: On coresets for k-median and k-means clustering in metric and euclidean
spaces and their applications. SIAM J. Comput. 39(3), 923–947 (2009)

8. Feldman, D., Langberg, M.: A unified framework for approximating and clustering
data. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing, STOC 2011, pp. 569–578. ACM, New York (2011)

9. Fichtenberger, H., Gillé, M., Schmidt, M., Schwiegelshohn, C., Sohler, C.: BICO:
BIRCH meets coresets for k -means clustering. In: Bodlaender, H.L., Italiano, G.F.
(eds.) ESA 2013. LNCS, vol. 8125, pp. 481–492. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40450-4 41

10. Guha, S.: Tight results for clustering and summarizing data streams. In: Proceed-
ings of the 12th International Conference on Database Theory, ICDT 2009, pp.
268–275. ACM, New York (2009)

11. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528
(2003)

12. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering.
Discrete Comput. Geom. 37(1), 3–19 (2007)

13. Har-Peled, S., Mazumdar, S.: Coresets for k-means and k-median clustering and
their applications. In: STOC 2004, pp. 291–300 (2004)

14. Meyerson, A.: Online facility location. In: Proceedings of the 42nd IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2001, p. 426. IEEE Computer
Society, Washington, DC (2001)

15. Shindler, M., Wong, A., Meyerson, A.W.: Fast and accurate k-means for large
datasets. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.
(eds.) Advances in Neural Information Processing Systems 24, pp. 2375–2383. Cur-
ran Associates Inc., Red Hook (2011)

http://dx.doi.org/10.1007/978-3-642-40450-4_41
http://dx.doi.org/10.1007/978-3-642-40450-4_41

	Accurate Low-Space Approximation of Metric k-Median for Insertion-Only Streams
	1 Introduction
	2 Our Contribution
	3 Definitions
	4 Phase Manager
	5 Facility Manager
	6 Combining Both Algorithms
	7 Appendix
	7.1 Lower Bound
	7.2 Computing the Constant of Previous Algorithms

	References

