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Abstract
Motivated by the sophisticated geometries in origami folding and the fluidic actuation principle
in nastic plant movements, the concept of fluidic origami cellular structure was proposed for
versatile morphing and actuation. The idea is to assemble tubular Miura-ori modules into a
cellular architecture, and apply fluidic pressure to induce folding and hence actuation. Despite
the promising potentials, the actuation capabilities of fluidic origami, such as free stroke and
block force, are not elucidated. In particular, the effects of the thick facet material stiffness and
pressure-sealing end caps are not understood. These gaps in our knowledge prevent the practical
implementations of fluidic origami. Therefore, this study aims to address these issues by
incorporating realistic considerations into the design, fabrication, and analysis of fluidic origami.
We construct CAD models of the fluidic origami modules based on realistic design parameters to
ensure that they can be fabricated via commercially accessible 3D printers while remaining
pressure proof. We then use both simplified analytical methods, such as the equivalent truss
frame model, and the more comprehensive finite element methods to examine the actuation
performance. Comparing the results from these different methods can reveal the influences of
end caps and thick facet material stiffness. Based on these insights, a customized generic
algorithm is used to identify the optimal fluidic origami designs for fluidic actuation. It is found
that an optimal folding angle exists to maximize the actuation capability, while the sector angle
of Miura-ori can be tailored to effectively program the actuation performance.
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1. Introduction

Over the past several decades, the art of origami paper folding
has been transformed into a design and fabrication framework
for developing different sheet materials into sophisticated 3D
shapes [1–3]. As a result, we are witnessing the rapid emer-
gence of origami-inspired engineering applications spanning
from the large-scale deployable aerospace structures [4, 5],
kinetic architectures [6, 7], and self-reconfigurable robots
[8, 9] to the small-scale biomedical devices [10], mechanical
metamaterials [11–13], and DNA machines [14]. These
applications leverage the folding-induced shape reconfigura-
tion to achieve their target performance, which can be tailored
with an exceptionally large freedom by carefully designing

the underlying crease patterns [15, 16]. This advantage is
especially evident if the crease pattern is rigid-foldable, so
that one can analyze the shape reconfiguration by treating the
origami facets as rigid panels revolving around hinge-like
crease lines—essentially a 3D linkage mechanism.

The versatile shape reconfiguration capability of origami
is especially appealing for embedded actuation because
folding can be used to program sophisticated actuation motion
paths. Therefore, a fluidic origami cellular structure concept
(referred simply as ‘fluidic origami’ hereafter) was proposed
by the authors via combining the origami geometry and the
actuation principles of plant nastic movements [17]. Fluidic
origami is essentially an assembly of tubular modules con-
sisting of carefully designed, rigid-foldable Miura-ori sheets
(figure 1). When these modules are pressurized either pneu-
matically or hydraulically, they fold and generate effective
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actuation motion until the maximum internal volume allowed
by rigid-folding is reached. Such a distributed, pressure
activated actuation shares similar working principles to the
rapid nastic movements in plants like Mimosa pudica, which
can selectively manipulate the turgor pressure in its motor
cells to create an internal bending moment for leaf folding
[18, 19] (figure 1(a)). Compared to other plant-inspired,
pressure activated cellular structure concepts such as PACS
[20], pressure adaptive honeycombs [21], and topologically
optimized trailing edge [22, 23]; the fluidic origami has some
unique advantages. Firstly, folding is a fundamentally three-
dimensional shape reconfiguration that can enable complex
motions like a combined extension and shear [13]. Secondly,
the pressurized fluidic origami modules can be seamlessly
integrated with non-pressurized origami sheets for large-scale
and efficient motions. Finally, the morphing and actuation
capability of fluidic origami can be complemented by other
adaptive functions such as stiffness adaptation [17] and
pressure-dependent multi-stability [24]. The stiffness adapta-
tion, which can be achieved near instantaneously via simple
on/off valve control, can reduce the power requirements for
actuation without sacrificing the external load bearing capa-
city. Meanwhile, the multi-stability can significantly amplify
the actuation speed and magnitude similar to the impulsive
trap closing motions in Venus flytrap [25]. Therefore, fluidic
origami has great potentials to advance state-of-the-art of
many engineering systems that require embedded actuation
such as morphing airframe [26] and soft robots [27].

Despite these promising potentials, the actuation cap-
abilities of fluidic origami such as free stroke and block force
are not yet fully elucidated. Especially, previous studies by
the authors relied on idealistic models assuming that (1) the
origami facets have zero thickness, (2) the crease lines act like
simple hinges, and (3) the tubular modules are sealed by ideal
end caps that can perfectly accommodate the shape changes
of their end openings. Indeed, similar assumptions have been
made by many other studies on origami-inspired structures

and materials. These idealistic models can reveal the working
principles without unnecessary complexities, but they inevi-
tably neglected many important factors in practical imple-
mentations. In particular, additive manufacturing or 3D
printing is considered as one of the most viable approaches to
fabricate the complex geometries of multi-cellular fluidic
origami while maintaining internal pressure sealing. Thus the
finite thickness and compliance of the 3D printed facet and
crease materials must be considered in order to examine the
realistic actuation performance of fluidic origami. Further-
more, a realistic pressure-sealing end cap at the end openings
of fluidic origami module can be incompatible with the
folding-induced shape changes (figure 1). Therefore, end caps
can reduce the actuation performance and such negative
effects must be analyzed carefully.

Therefore, the objective of this study is to conduct a
holistic investigation of the actuation performance of the
fluidic origami by incorporating realistic considerations in its
design and fabrication. This study is conducted based on the
CAD models of fluidic origami modules featuring finite facet
material thickness and flat end caps. Various design variables,
such as the material thinning along the crease lines, are
carefully chosen to ensure that the fluidic origami modules
can be fabricated via commercially accessible 3D printing
machines. Two types of modules are designed based on their
initial folding configurations, one contracts along longitudinal
L direction under pressurization, and the other extends. Based
on these CAD designs, we examine the free stroke and block
force of fluidic origami module using two different approa-
ches. The first approach relies on the simplified models used
in authors’ previous publication [17] and many other studies
on origami-inspired engineering applications; and the second
approach uses the more comprehensive finite element simu-
lations. Comparing the results from these two different
approaches can reveal the correlations between the fluidic
origami actuation performance and many practical design
considerations including Miura-ori geometry, facet thickness,

Figure 1. The concept of plant-inspired fluidic origami cellular structure. The nastic movements in plants (a) and fluidic origami (b) share the
similar working principle: That is, the embedded and distributed pressurization in the cellular structure can enable versatile actuation motion.
In the mimosa plant shown in (a), increase or decrease the turgor pressure can expand or shrink motor cells to bend the leaves. (Image
adopted from [28] with permissions) In the fluidic origami shown in (b), an increasing internal fluidic pressure can induce large amplitude
folding and generate actuation motion in both L and W directions. Note that the folding kinematics shown in this figure is based on idealistic
model assuming rigid-folding, and the opening at the two ends of the fluidic origami modules changes their shapes significantly.
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material stiffness, and end caps. And understanding these
correlations will eventually enable us to identify the optimal
fluidic origami design. Therefore, this study can provide the
practical guidelines for implementing fluidic origami as an
active and adaptive structure.

The rest of this paper is organized as follows. Section 2
discusses the design, kinematics, and fabrication of the fluidic
origami module. Sections 3 and 4 contains the in-depth
analysis of its free stroke and block force performance,
respectively. These two sections also include parametric
analyses revealing the correlation between the actuation per-
formance and the underlying Miura-ori design. Section 5
discusses an optimization of the fluidic origami design for a
balanced actuation capability. Section 6 concludes this paper
with summaries and discussions.

2. Design and fabrication of the fluidic origami
module

2.1. Miura-ori design and folding kinematics

The backbone of a fluidic origami module consists of two
identical Miura-ori strips connected along their zig-zag crease
lines (figure 2(a)). The design, stacking, and folding kine-
matics of the Miura-ori sheets have been extensively dis-
cussed in previous studies [11, 13, 29]. Here we only provide
a brief overview for clarity. Miura-ori design is determined by
three variables that remain unchanged regardless of folding:
they are the crease length a, b and the sector angle g between
them. To describe the amount of folding, a folding angle q is
introduced as half of the dihedral angle between adjacent
facets of the two connected Miura-ori strips (figure 2(a)).
According to rigid-folding kinematics that assumes rigid
facets, hinge-like crease lines, and ideal end caps, the folding
angle can take any values from 0° to 90° (figure 2(b)). 0q = 
indicates that the Miura-ori is flat, and 90q =  means it is
fully-folded. The correlations among the external length L,
width W, enclosed internal volume V, and the folding angle q
are strongly nonlinear as follows [30],

L
nb2 cos sin

1 sin sin
, 1

2 2

q g

g q
=

-
( )

W a2 sin sin , 2q g= ( )

V na b sin sin 2 , 32 2 g q= ( ) ( )

where n is the number of Miura-ori unit cells—the most
elementary geometric identity—along the length of a tubular
fluidic origami module. For example, the module shown in
figure 2 has three unit cells so n 3.= Clearly, the maximum
volume always occurs when 45q =  regardless of the Miura-
ori design; and this is the critical, locking configuration at
which further pressurization could not induce more actuation
motion. Therefore, we can define two types of fluidic origami
modules based on their initial resting folding angle .q The
first type, which features a resting folding angle less than 45°,
slightly contracts in length L but significantly expands in
width W under internal pressurization until the maximum

volume configuration is reached (figure 1(b)). For clarity, it
will be referred as the ‘contraction type’ hereafter. The second
type of fluidic origami module has a resting folding angle
bigger than 45°, so it extends significantly in length L but
slightly contracts in width W (figure 1(b)). We will refer it as
the ‘extension type’.

2.2. Additional design variables for fabrication by 3D printing

Practical implementation of the fluidic origami requires
additional design parameters, and the facet thickness is one of
the most important ones to consider. Several methods of
customizing the crease pattern for thick facets have been
proposed [7, 31], but they are not intended for 3D printing. In
this study, we introduce the facet thickness tF by inward
offsetting from the Miura-ori backbone geometry defined in
equations (1)–(3) (figure 3(b)). In this way, pressure-proof
fluidic origami modules can be 3D printed and seamlessly
integrated into a multi-cellular structure. However, such off-
setting method would also generate excess amount of

Figure 2. Design and ideal rigid-folding kinematics of a fluidic
origami module. (a) A module consists of two identical Miura-ori
strips connected along their crease lines. The most elementary unit
cell and its important design parameters are highlighted. This
particular module has three unit cells. The inserted figure at the top
right illustrates the definition of folding angle θ. (b) The relationships
among the folding angle, normalized length, width, and the internal
enclosed volume according to the rigid-folding kinematics. In this
figure γ=60°. (c) Folded fluidic origami modules corresponding to
θ=5°, 25°, 65°, and 85° from left to right. Notice that the end
opening of the fluidic origami exhibits significant shape changes.
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materials along the crease lines and hinder proper folding,
because the material bending stiffness along the creases needs
to be significantly smaller than that of the facets. To address
this issue, the material thickness along the crease lines is
reduced by introducing v-grooves. Dimensions of these
v-grooves are defined differently for different creases. Along
the longitudinal creases that are labeled as C1, C2 in figure 3,
the v-grooves are defined by the width at the opening w ,C1 wC2
and the minimum crease thickness t ,C1 tC2 (figure 3(c)). Here
the v-groove geometries need to be designed differently
because C1 and C2 creases have different dihedral opening
angles. The thinning of the circumferential creases C3 is
achieved by offsetting from the Miura-ori backbone by a
thickness of tC3 and then applying a tapered cut at the depth of
dC3 (figure 3(d)). Such design variable setup is chosen to
minimize the geometric incompatibilities in the optimization
discussed later in section 5. Moreover, the crease cannot be
too thin otherwise it would be impractical for 3D printing and
pressure proofing. A minimum of 1 mm of crease thickness is
found to be reasonable after repeated trials and errors. Two
fluidic origami prototypes are fabricated to validate the
manufacturability, and their design values are summarized in
table 1. One prototype is of extension type, and it is made of
an elastoplastic material called polyether block amide (PEBA)
on a selective laser sintering printer (SLS, fabricated by
Shapeways Inc., figure 3(f)). The other prototype is of con-
traction type, made of a thermoplastic polyurethane (TPU)
material on a fused deposition modeling (FDM) printer
(LulzBot TAZ 5, figure 3(g)). Both materials feature superior
flexibility with more than 100% of elongation at break. The
SLS procedure based on the PEBA material can produce more
accurate fluidic origami geometries without the need of sup-
port materials, which can be very challenging to be removed
after printing. The FDM based on TPU material, on the other
hand, is significantly cheaper and more accessible but careful
CAD designs are necessary to reduce the use of support

materials as much as possible. In addition, the printing spe-
cifications of FDM must be setup appropriately to minimize
pressure leakage through the interface between adjacent
material layers. After repeated trials and errors, we found
0.1 mm of layer height, 100% of fill density, 15 mm s−1 of
print speed, 220 °C of nozzle temperature and 85 °C of bed
temperature can produce high quality TPU fluidic origami.
End caps are separately 3D printed and glued to the module.
They are designed to be flat and fit the end openings at initial
resting configuration. Therefore, the shapes of end caps are
different for different origami designs.

2.3. Testing the hyperelastic property of the 3D printed PEBA
and TPU materials

Mechanical properties of the 3D printed PEBA and TPU
material are quite sensitive to the aforementioned printing
specifications. Thus it is necessary to accurately measure their

Figure 3. CAD design and 3D printing of the fluidic origami modules. (a, b) The facet thickness is modelled by an inward offsetting from the
Miura-ori backbone geometry. (c, d) V-grooves are added along the crease lines to facilitate proper folding. (e) A finished CAD model for the
fluidic origami module that includes the facet thickness and all crease thinning. This model was then sent directly to the 3D printers. (f) SLS
printed, extension type of fluidic origami module using PEBA materials. (g) FDM printed contraction type of fluidic origami using TPU
materials. Flat end caps are printed separately and glued to provide proper pressure sealing.

Table 1. Design parameters of the two fluidic origami prototypes
shown in figure 3.

Design Parameter Extension Contraction

Miura-ori backbone geometry a 62.5 mm 46.9 mm
b 50 mm 37.5 mm
γ 60° 60°
θ° 70.5° 16.1°
n 3 3

Additional design variables tF 4 mm 3 mm
tC1 2 mm 1.5 mm
tC2 1 mm 4.5 mm
wC1 8 mm 7.5 mm
wC2 8 mm 1.5 mm
tC3 2 mm 2.3 mm
dC3 3 mm 2.6 mm
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hyperelastic properties for the subsequent finite element
analyses and design optimization. Dog bone specimens were
fabricated based on the same printing specifications as the
fluidic origami prototypes (figure 4(a)). They are made
referring to the ASTM D638 standards, and have the
dimensions of 3 mm in thickness, 4.3 mm in width, and
30 mm in length. Displacement controlled tensile tests are
conducted on these dog bone specimens (Modular under
Microscope Mechanical Test System-μTS, Psylotech;
300 μm s−1 displacement rate for TPU samples and
50 μm s−1 for PEBA samples; approximately 250% of strain).
The averaged test results shown in figure 4 exhibit a typical
nonlinear and hyperelastic material behavior. The mooney-
Rivlin five parameter material model in ANSYS™ is used to
curve fit the experiment results over the entire tested dis-
placement range, and the fitted material parameters are listed
in table 2.

3. Free stroke performance of the fluidic origami

Free stroke and block force are the two most commonly used
performance metrics for actuators. In this study, the free
stroke S of the fluidic origami module is defined as the ratio of
its averaged extension or contraction due to internal pressure
over its initial dimensions, while no external loads are
applied. For effective actuation, we examine the longitudinal
deformation of the extension type of fluidic origami and
transverse deformation of the contraction type. That is,
S X X 1,final initial= - where X L= for the extension type
and X W= for the contraction type. The free stroke of fluidic
origami is a function of internal pressure, and its magnitude
increases monotonically with increasing pressure until the

maximum volume configuration is reached. Moreover, since
the free stroke is associated to folding, its magnitude is dic-
tated by the torsional stiffness of creases. We investigate the
free stoke of fluidic origami based on two different approa-
ches. The first approach in section 3.1 is more simplistic,
assuming rigid facets and ideal end caps, similar approaches
have been used extensively for other rigid-foldable origami
research. The second approach in section 3.2 is based on finite
element simulation using practical design considerations such
as the facet thickness and realistic end caps. Comparing the
results from these two approaches can offer us a compre-
hensive understanding of the free stroke performance. In
section 3.3, we further conduct a parametric study to reveal
the correlation between free stoke and underlying Miura-ori
designs.

3.1. Simplified approach for free stroke analysis

In this approach, we assume ideal end caps that can seal the
internal pressure without hindering the shape changes of the
end opening. In this way, the pressure-induced deformations
of fluidic origami follow the rigid-folding kinematics defined
in equations (1)–(3), and the corresponding total energy can
be approximated as the summation of crease strain energies
and the work done by pressure:

U W k P V V
1

2
, 4t c P

i
i
c

i i
o o2å j j= P + = - - -( ) ( ) ( )

where ij and ki
c are the dihedral opening angles and torsional

stiffness of the crease lines, respectively (figure 2(a)).
2 ,1j p q= - 2 ,2j q= and

2 sin cos 1 sin sin .3
1 2 2 1 2j q q g= -- -[ ( ) ]/

i
oj and Vo are

initial crease angles and enclosed volume corresponding to
the resting folding angle .q The folding angle at a given
internal pressure can be calculated by solving the following
equation based on virtual work principle,

k P
Vd

d

d

d
0. 5

i
i
c

i i
o iå j j

j
q q

- - =( ) ( )

Figure 4. Testing the hyperelastic properties of the 3D printed TPU
(a) and PEBA materials (b). The solid curve is the averaged results
based on six dog bone samples, and shaded bands are the standard
deviation.

Table 2. Fitted mooney-Rivlin 5 parameters. They are used in finite
element simulations hereafter, and the units are all in MPa.

TPU PEBA

C10 −37.75 −56.45
C01 51.89 71.47
C20 0.79 1.50
C11 −4.59 −10.34
C02 17.79 32.59
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The solution of q can be inserted into equations (1) or (2)
to calculate the free stroke. It is evident from equations (4)
and (5) that the free stroke performance is directly related to
the crease torsional stiffness ki

c in that stiffer crease lines will
reduce the free stroke at a given pressure level. The crease
torsional stiffness estimation for the 3D printed extension and
contraction fluidic origami prototypes are detailed in
appendix A.1. The calculated free stroke magnitude with
respect to pressure are shown as the dashed curves in
figures 5(a) and 6(a).

3.2. Finite element approach and experimental validation

For considering the effects of facet material thickness and
realistic end caps, the simple mechanics model based on rigid-
folding kinematics is no longer sufficient and finite element
method (FEA) is necessary. We conduct finite element ana-
lyses directly on the same CAD models used for prototype
3D-printing and the results are shown in figures 5(a), (b) and
6(a), (b) (ANSYS™, SOLID 186 and SOLID187 element).
For the extension type of fluidic origami module, the flat end
caps are incompatible with the folding-induced shape changes
of its end openings, as a result, the single unit-cell at each

ends of the fluidic origami module exhibits a complex
bending deformation so that the endcaps rotate with respect to
their original positions. The free stroke, defined based on the
averaged displacement between the end caps, is reduced
significantly compared to the results from the simplified
approach (figure 5(a)). The end caps in the contraction type of
fluidic origami module also constrain the folding motion and
reduce the corresponding averaged free stroke (figure 6(a)).

To validate the end cap effects predicted by the finite
element analyses, free stroke responses of the two 3D-printed
fluidic origami prototypes are experimentally tested. Digitally
controlled DC voltage-pressure converter (OMEGA™ E/
P510 converter with TENMA 72-2690 power supply) is used
to supply pneumatic pressure to the fluidic origami prototype,
while its deformations at different pressure levels are captured
by high-resolution camera (CANON EOS Rebel T5i). The
free stroke magnitudes are measured by using the MATLAB
image processing toolbox (figures 5(c) and 6(c)). The
experimentally measured deformation pattern and averaged
free stroke agree well with the FEM predictions. Therefore,
we can use the finite element methods to conduct further
parametric investigations.

Figure 5. Free stroke analysis of the extension type of fluidic origami prototype along the length direction. (a) Free stroke performance based
on the simplified approach, FEA, and experimental measurements. (b) FEA results showing the deformation pattern of the whole module.
The ‘bending’ at the two ends of the module is the result of kinematic incompatibility between the flat end cap and shape change due to
folding. The effective stroke is measured as the averaged extension between the nodal points Ai and Bi, (i=1, 2, and 3). (c) 3D printed
fluidic origami prototypes under pressurization. There are good agreements between FEA and experiments in terms of deformation pattern
and the averaged free stroke. In this paper, the color map in the FEA results represents the nodal displacements.

Figure 6. Free stroke analysis of the contraction type of fluidic origami prototype along its width direction. (a) Free stroke performance based
on the simplified approach, FEA, and experimental measurements. (b) FEA results of the whole module, and (c) the experiments. In this case,
the free stroke is measured as the averaged displacement between nodal points Ai and Bi (i=1, 2 K 5).
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Another important observation from the FEA is that,
regardless of the underlying Miura-ori designs, the end cap
effects seem to be confined only to the single unit cell at each
ends of the fluidic origami modules, and the deformation of
the unit cells in the middle is consistent with the rigid-folding
kinematics. To verify this, we conduct further finite element
analysis on the extension type of fluidic origami consisting of
different number of unit cells using TPU material properties.
The simulation results, shown in figure 7, confirm this
observation because the normalized free stroke converges as
the number of unit cells exceeds three. It is worth noting here
that if the end caps are designed to be non-flat, their defor-
mation would be different. Indeed, a different study suggests
that carefully designed non-flat end caps can better accom-
modate the deformation of pressurized cellular structures like
the fluidic origami [32]. Nonetheless, optimizing the shape of
end cap is beyond the scope of this study.

3.3. Correlation between free stroke and underlying Miura-ori
design

A unique advantage regarding fluidic origami is the possibi-
lity to program its actuation performance by tailoring the
underling Miura-ori design variables. According to the rigid-
folding kinematics, the normalized free stroke is only related
to the sector angle g and folding angle ,q therefore, we con-
ducted parametric analyses to examine the correlations
between the free stroke in length direction and these two
crucial design parameters using TPU material properties.
Both the simplified rigid-folding approach and the finite
element approach are used, and their results are compared in
figure 8. In this parametric analysis, other design parameters
such as the crease line lengths and thinning parameters are
chosen from a set of baseline designs listed in table 3, and the
internal pressure P is set at 34.5 kPa.

By carefully examining the results from this parametric
study and the experiment results discussed in previous two
subsections, we can come to the following conclusions
regarding free stroke performance. (1) The extension type of

fluidic origami actuators generate significantly more free
stoke along the length direction than the contraction type. The
simplified model and finite element simulations predict close
to 100% of free stroke magnitude from the extension type, but
less than 10% from contraction type. (2) Among the extension
types of actuators based on different Miura-ori designs, those

Figure 7. Free stroke performance vs. the number of unit cells in a
fluidic origami module. (i) The single unit cell at each end of the
fluidic origami module exhibits complex bending due to end caps;
and (ii) the unit cells in the middle deform according to the
kinematics of rigid-folding described in equations (1) and (2).

Figure 8. Parametric analyses illustrating the correlation between
free stroke performance, the sector angle γ, and resting folding angle
θ o of the underlying Miura-ori. (a) Results from the finite element
analysis, where each maker is a simulation result. (b) Results based
on the rigid-folding kinematics model. In both (a) and (b), the main
figures show the free stroke of the extension type of fluidic origami
with θ°>45°, and the small insert figures show those of contraction
type. Note that the vertical axes are in logarithmic scale in the main
figures and linear scale in the inserted small figures.

Table 3. Baseline designs used in the parametric analyses in
sections 3.3 & 4.3 and the optimization in section 5.

Miura-ori backbone Crease thinning

a 31 mm tC1 1 mm
b 25 mm tC2 1 mm
γ 60° wC1 4 mm
θ o 78° wC2 4 mm
n 4 tC3 1 mm
tF 4 mm dC3 2 mm
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with resting folding angle close to 90° and sector angle close
to 40° provide the largest free stroke. Especially, the free
stroke increases monotonically as the resting folding angle q
increases. (3) The overall trends between free stroke and
Miura-ori designs are the same between the results from
simplified model and finite element simulation. Therefore, the
end caps do not qualitatively change the relationship between
free stroke and Miura-ori designs; instead, they only reduce
the magnitude of the achievable free stroke.

4. Block force performance of the fluidic origami

Block force is another important performance metric because
it directly indicates the load carrying capacity of fluidic ori-
gami. In this study, block force is defined as the reaction force
of the fluidic origami when its stroke is held at zero, that is,
the two ends of the fluidic origami are fixed. To examine this
performance metric without unnecessary complexities, we
only investigate the block force of the extension type fluidic
origami in the length direction L using the baseline designs in
table 3. We introduce a normalized block force B defined as
follows:

B
F

PA
, 6

o
= ( )

where F is the magnitude of the block force according to an
internal pressurization P, and
A a2 sin sin 1 sin sino 2 2 2q g q g=  -  is the cross-section
area of the fluidic origami at the initial resting configuration.
Unlike the free stroke, the block force is more closely related
to the facet material stiffness rather than crease torsional
stiffness. Therefore in this section, we examine the block
force by using two different approaches, the first approach is
based on an equivalent truss-frame model that has been used
extensively by many other studies on origami-inspired
structures and materials [6, 11, 17, 33]. Results of this
approach will be discussed in section 4.1. The other approach
is finite element simulation and it is discussed in section 4.2.
A parametric study is also conducted and discussed in
section 4.3.

4.1. Block force analysis based on the truss frame model

The equivalent pin-jointed truss frame model used in this
approach essentially converts the continuous origami into a
discrete system with a finite degrees of freedom. In this
model, the creases are represented by stretchable truss ele-
ments, and the facets are triangulated along the short diag-
onals with additional truss elements to provide a first order
estimation of their bending. Torsional spring stiffness are
assigned to the dihedral angles defined by the truss elements
along the creases and across facets to represent the crease
torsional and facet bending stiffness, respectively
(figure 9(a)). In this way, the truss frame model can establish
the connection between block force and facet compliance
while assuming ideal end caps. Three geometric transforma-
tion matrices and vectors are necessary for analyzing the

pressure-induced block force based on this truss frame model.
They are (1) a compatibility matrix C correlating the vector of
pin-joint displacements dx to the vector of truss member
stretches e so that e C xd ;= (2) a transformation matrix J
correlating dx to the vector of crease angle changes dj so that

J xd d ;j = and (3) a row vector D correlating dx to the
internal volume change dV so that V D xd d .= The total
stiffness matrix K of the fluidic origami truss frame model is
the summation of the facet stretching/shear stiffness Ks and
the bending stiffness K .b Ks equals to C C,sTL where

diag k k k, ,s s s
n
s

1 2L = ¼( ) is a diagonal matrix containing the
equivalent stretch stiffness ki

s of the truss elements; Kb equals
to J J,bTL where diag k k k k k k, , , , ,b

c c
m
c f f

p
f

1 2 1 2L = ¼ ¼( ) is a
diagonal matrix containing the equivalent crease torsional
stiffness ki

c and facet bending stiffness k .i
f The derivation of

C, J, and D matrices have been discussed extensively in
previous publications [17, 33], and the necessary details for
calculating k ,i

s k ,i
c and ki

f are provided in appendix A.1 for
clarity. To analyze the block force while assuming ideal end
caps, the longitudinal displacements of the end nodes are

Figure 9. Block force analysis of the fluidic origami. (a) Illustration
of the equivalent truss-frame model. The solid lines are truss
elements representing the crease lines, and dashed lines are truss
elements that triangulate the facets. Pin joints at the ends are
highlighted as solid circles, and their displacements along the x-axis
are set to zero. (b) Block force and pressure relationship based on the
truss-frame model and finite element simulations. From FEA
snapshots corresponding to 15 kPa, 30 kPa, and 41 kPa of pressure,
one can clearly see the facets bulging out at higher pressure. This
indicates a direct relationship between the block force performance
and facet material stiffness.

8

Smart Mater. Struct. 27 (2018) 115014 H Sane et al



assumed zero, however, their transverse displacements are not
constrained (figure 9(a)). The vector of vertices displacement
dx can be calculated as a function of internal pressure:

Px K Dd , 71 T= - ( )

and the reaction block force can be calculated as the sum-
mation of the internal forces from the truss stretches onto the
end nodes and the pressure acting on cross-section area at
the ends.

4.2. Block force analysis based on finite element simulation

While the equivalent truss frame method can analyze the
correlation between facet material stiffness and block force,
the finite element model is necessary to incorporate the end
cap effects. Figure 9(b) also displays the pressure-block force
relationship of the baseline fluidic origami module according
to finite element simulations. At low pressure, the block force
is linearly proportional to internal pressure, however, the
nonlinear finite element simulation predicts that the block
force starts to saturate at the higher pressure due to facet
bulging.

4.3. Block force vs. Miura-Ori designs

Similar to the free stroke, the block force performance of the
fluidic origami module is directly related to the underlying
Miura-ori designs, such relationship can be illustrated by the
parametric study results in figure 10. The magnitudes of the
normalized block force vary significantly as the sector angle g
and resting folding angle q change.

By examining the parametric analysis results from both
truss frame model and finite elements simulations, we can
come to the following conclusions regarding block force
performance. (1) Fluidic origami modules with 80g = 
generates higher block force than other tested sector angles. In
particular, those with 40g =  perform relatively poorly
regarding block force, even though they generate a large free
stroke as shown in figure 8. Such a tradeoff between the two
actuation metrics will be discussed in detail in the following
design optimization. (2) The block force performance peaks
when the resting folding angle q is designed in the range
between 60° and 70°. This is also different from the free
stroke analysis results, which recommends a close to 90°
resting folding angle for large free stroke. (3) End caps do not
qualitatively change the relationships between the block force
and Miura-ori designs. However, they significantly reduce the
magnitude of achievable block force.

Besides the block force magnitude, another significant
difference between the truss-frame model results and FEA
simulation is the deformation pattern of fluidic origami. The
truss-frame model predicts that the fluidic origami with higher
resting folding angle q deforms non-uniformly, that is, unit
cells at one end of the fluidic origami module contract in the
length L direction, while the cells at the opposite end elongate
significantly (figure 11). This is because at higher folding
angles, the fluidic origami is close to be fully folded; its
creases and facets are oriented in a way that can easily

accommodate the non-uniform deformations. That is, non-
uniform deformations would primarily invoke crease folding
without inducing much facet deformations. A similar
phenomenon was also studied based on eigenvalue analysis in
previous literatures [6, 17], where interested readers can learn
more about the underlying physical principles. The finite
element results shown in figure 9, on the other hand, do not
show such non-uniform deformations. In the truss-frame
model, the end caps of fluidic origami module are assumed
ideal, that is, they can seal the internal pressure and accom-
modate the shape changes from folding. Moreover, the facets
are assumed to have zero thickness. However in the finite
element model, the end caps are no longer ideal and the facets
have finite thickness. The non-ideal end caps and thick facets
impose additional constraints to the deformation of fluidic

Figure 10. Parametric analyses illustrating the correlations between
block force performance, the sector angle γ, and the resting folding
angle θ° of the underlying Miura-ori. (a) Results from the finite
element analysis, where each maker is a simulation result. (b)
Results based on the truss-frame model. Besides γ and θ°, other
fluidic origami designs are chosen from table 3, and the pressure is
set at 34.5 kPa. Some curves based on the truss-frame model show
notable dips regarding the block force magnitude, one of them is
labeled by (ii) as an example. These dips are related to the
occurrence of non-uniform deformation. Here, (i),(ii), and (iii) are
three fluidic origami designs with the same sector angle but different
resting folding angles, and their deformation patterns under pressure
are shown in detail in figure 11.
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origami, preventing the non-uniform deformation from
occurring.

5. Design optimization

Parametric studies discussed in the previous sections clearly
indicate that the free stroke and block force performance of
the fluidic origami are directly related to the underlying
Miura-ori design, and there exists a strong trade-off between
these two actuation performance metrics. Therefore, it is
necessary to explore the fluidic origami design space more
comprehensively. To this end, we conducted a multiple-
objective design optimization. This optimization problem is
highly nonlinear and involves a large amount of variables,
which are listed in tables 1 and 3. Therefore, to identify the
globally optimized fluidic origami designs, we use the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) available
in the modeFRONTIER™ software (2017R1,
ESTECO SpA).

Figure 12 illustrates the workflow of the optimization
strategy. The ‘scheduler node’ in this workflow initiates and
selects the design variables used in every generation of
population. In particular, the initial population is generated by
the design of experiment (DOE) part of the scheduler node,

which also dictates the design parameters of new generations.
This DOE uses the Uniform Latin Hypercube (ULH) method
to randomly select designs within a prescribed design space
shown in table 4. However, random crease thinning variables
can result in geometrically incompatible designs. To mitigate
this issue, we combine a set of 26 user-defined, geometrically
compatible fluidic origami designs together with 20 randomly
assigned designs using ULH to generate the initial population
of 46.

The design variables selected by the scheduler node are
then sent to the ‘MATLAB node,’ which runs a customized
script file to generate the necessary CAD modeling para-
meters for the subsequent ‘ANSYS node.’ This ANSYS node
first uses these modeling parameters and a SOLIDWORKS
plugin to generate the CAD model, then performs finite ele-
ment simulations to obtain the normalized free stroke and
block force performance. Results of these simulations are then
sent back to the scheduler node to generate the design vari-
ables of the next generation. Two design constraints are
reinforced during the optimization iterations. Firstly, the
fluidic origami geometry has to be well-defined for CAD
modeling and 3D printing without geometry incompatibility

Figure 11. The non-uniform deformation pattern of the fluidic
origami based on truss-frame model at 34.5 kPa of internal pressure.
All three fluidic origami modules shown here share the same sector
angle γ=70°, and their corresponding block force performance are
labeled in figure 10. It is evident that fluidic origami module with a
higher resting folding angle θ° shows a stronger non-uniform
deformation, by which some unit cells contract in their length
direction and other cells extend significantly.

Figure 12. Optimization flowchart. The arrows in the optimization
loop stands for (0): design variables of the initial generation of
population; (1): design variables of the current generation; (2): CAD
modeling parameters of the current generation; (3): finite element
simulation results; and (4) the free stroke and block force
performance of the current generation. The optimization loop is
iterated for 25 generations.

Table 4. Limits of the fluidic origami design parameters used in the
optimization. Since the objective functions of free stroke and block
force are normalized, the crease line lengths are fixed at
a=31.25 mm and b=25 mm in this optimization. Pressure is
constant at 34.5 kPa, and the number of unit cells in the fluidic
origami module n is 4.

Design Parameter Minimum Maximum

Miura-ori backbone γ 10° 89°
θi 45° 89°

Additional design variables tF 0.5 mm 7 mm
tC1 0.1 mm 7 mm
tC2 0.1 mm 7 mm
wC1 0.1 mm 8 mm
wC2 0.1 mm 8 mm
tC3 0 mm 7 mm
dC3 0.1 mm 4 mm
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issues. This constraint was reinforced by the SOLIDWORKS
plugin, which automatically discards the geometrically
incompatible designs. In addition, a requirement of t tf C3> is
reinforced during the design variable selection process. The
second constraint is that the maximum stress from internal
pressure should not exceed the material ultimate tensile
strength. The ultimate strength of the 3D printed TPU mate-
rials are 80MPa, and in this optimization, we introduce a
safety factor of 2 and limit the maximum stress at 40MPa.
The optimization setup in modeFRONTIER is shown in A.2
of the appendix.

To ensure the global optimal is reached, the genetic
optimization iterates for 25 generations and creates 658 valid
designs, and the values of the corresponding objective func-
tions are shown in figure 13. Due to the conflict relationship
between these two objectives, no single optimized design is
feasible. Instead, a Pareto front can be identified based on the
74 pareto-optimal design points identified by the mode-
FRONTIER. The distribution of design variables in these
optimal designs are shown in table 5. The sector angle g
among the optimal designs shows a large variation. It is
observed that γ in the range of 32° to 60° yield stronger free
stroke performance, while those in the range of 60° to 86°
yield a stronger block force performance. The corresponding
resting folding angle q surprisingly shows a significantly

smaller variation near the mean value of 79.2 ,q =  which
can be considered as the optimal folding angle for actuation.
Therefore, we can conclude that the averaged values of the
resting folding angle and crease thinning variables shown in
table 5 are the optimal fluidic origami designs, meanwhile,
tuning the sector angle g is the most effective approach for
tuning the actuation performance for specific application
requirements (figure 13(b)).

6. Summary and conclusion

Via analytical investigation, finite element simulation,
experiment validation, and design optimization, this study
holistically examines the actuation performance of a plant-
inspired fluidic origami cellular structure. In particular, we
aim to understand the influences of thick facet material
stiffness and pressure sealing end caps in order to obtain
practical guidelines for implementing the fluidic origami. To
this end, we construct CAD models of the fluidic origami
modules based on realistic design parameters to ensure that
they can be fabricated via commercially accessible 3D prin-
ters while remaining pressure proof. Two fluidic origami
prototypes based on different designs, 3D printing methods,
and materials are fabricated for experimental validation. We
then use two different approaches to examine the free stroke
and block force performance of fluidic origami. The first
approach is to use simplified analytical models that assume
zero facet thickness and ideal end caps. In particular, for free-
stroke analysis we use a model based on rigid-folding kine-
matics; and for block force analysis we use an equivalent
truss-frame model. These analytical models have been used
extensively for the previous studies of origami applications.
The second approach is to use the more comprehensive
nonlinear finite element simulation. Comparing the results
from these different approaches can reveal the influence of
thick facet material stiffness and realistic end caps. It is found
that the thick facets and end caps reduce the magnitude of free
stroke and block force. They also alter the deformation pattern
of fluidic origami under pressure. That is, in the free-stroke
analysis, the end caps induce localized bending deformation
at each end of the fluidic origami module; in the block force

Figure 13. Results of the constrained genetic optimization. (a) Each
gray dot represents the free stroke and block force performance of a
feasible fluidic origami designs generated in the optimization
iterations. The highlighted dots are the Pareto optimal results. (b)
CAD rendering of the optimal designs with high free stroke, high
block force, and a balanced performance, respectively.

Table 5. The arithmetic mean and standard deviation of the design
values among the Pareto optimal designs shown in figure 13.

Design Parameter Mean Deviation

Miura-ori backbone γ 68.1° 18.0°
θ° 79.2° 1.4°

Additional design variables tF 4.5 mm 0.9 mm
tC1 1.3 mm 0.7 mm
tC2 1.4 mm 0.9 mm
wC1 3.3 mm 0.8 mm
wC2 3.4 mm 1.4 mm
tC3 1.3 mm 0.2 mm
dC3 3.6 mm 1.0 mm
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analysis, the thick facet and end caps prevent the non-uniform
elongation and contraction predicted by the truss-frame
model. However, thick facet and end caps do not qualitatively
change the relationships between the actuation performance
and the underlying Miura-ori design.

Based on these insights, we developed a customized
generic algorithm, based on the finite element model, to
identify the optimal fluidic origami designs for actuation. We
find an optimal resting folding angle to maximize the actua-
tion capability, while the sector angle in Miura-ori can be
tailored to effectively program the actuation performance.
Therefore, this study provides the practical guidelines for
implementing fluidic origami for many applications that
require embedded actuation such as morphing airframe and
soft robots.
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Appendix

A.1. Equivalent stiffness parameter formulation

This section details the formulation used for defining the
stiffness parameters used in this study: They are the equiva-
lent crease torsional stiffness k ,i

c facet bending stiffness k ,i
f

and facet stretching stiffness k ,i
s where the sub-index i iden-

tifies the different creases or facets in the fluidic origami
module. The simplified free-stroke analysis section 3.1 uses
only the crease torsional stiffness, while the truss-frame
model in section 4.1 uses all three stiffness parameters. Much
of the published work on such stiffness calculation is
applicable to uniform thin sheets made of linearly elastic
materials, but the fluidic origami modules are fabricated from
3D printed hyperelastic materials. Moreover, the fabricated
modules feature v-grooves along the crease lines to facilitate
proper folding. Currently, there is no universal framework to
describe mechanical properties of such structures, so we
resort to careful approximation techniques to describe these
stiffness properties. In the subsections below, we present the
stiffness parameter formulation which approximates the
folding characteristics of the 3D printed fluidic origami as
seen in the experiments and finite element analyses.

Crease torsional stiffness kc
i :

The crease torsional stiffness characterizes the elastic folding
and unfolding behaviors along the crease lines. To derive this
parameter, we approximate the crease as a non-uniform can-
tilever beam subjected to an external moment M (figure 14).
The magnitude of this moment is chosen such that it creates
crease deformations of the same order as seen in finite ele-
ment simulations. The applied moment is higher in the free-

stroke analysis than in the block force analysis; because the
crease folding is more significant in the former case. To
simplify the analysis, we neglect the constraining effects due
to surrounding facets so that the crease stiffness parameter is
calculated based on the following equations:

k
M

w
, 8i

c

ij
=

( )
( )

where the crease folding angle wij ( ) is related to the applied
moment M and resting crease dihedral angle j is defined at
the stress-free state:

w
M

EI x
dx , 9i

b

0

i

òj j= + ( )
( )

( )

and

I x
l d t d x w

l t w x b

0

1

12

. 10
i i i i

x

w i

i i i i

1

12

3

3

i
 

 
=

+ -
⎧
⎨⎪

⎩
⎪⎪

( )
( )

( )
( )

The crease geometry parameters l ,i d ,i w ,i t ,i and bi are chosen
based on the 3D CAD designs shown in figure 3, tables 1, and
3. The ideal end caps are simulated by assigning zero crease
stiffness at the boundary. Since the crease stiffness is a
function of resting dihedral opening angle ,j it is dependent
on the Miura-ori resting folding angle .q

Facet bending stiffness k f
i :

The facet bending stiffness is added to the truss elements that
triangulates the facets in the equivalent truss-frame model
(figure 9). The facet bending is not considered in the rigid-
folding kinematics, but it’s important to be taken into account
for the fluidic modules fabricated from realistic materials. The
3D printed modules show notable facet bulging when the
internal pressure is very high. To derive this stiffness

Figure 14. An example of the cross-section area of half of a crease,
which is modeled as a non-uniform cantilever beam for crease
torsional stiffness characterization.
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parameter, we use the formulation introduced by Lobkovskey
et al for small bending angle deformations (<0.1 radian) [34].
This assumption is consistent with the facet deformations
seen in experiments and finite element simulation. We define
a scaling parameter SF to ensure that the equivalent facet
bending stiffness ki

f is at least an order higher than the crease
stiffness ki

c so that

k SF
Et l

t12 1
, 11i

f fi di

fi

3

2

1 3

n
=

-

⎛
⎝⎜

⎞
⎠⎟( )

( )
/

where the elastic modulus E is estimated based on the dog
bone tests shown in figure 4, 0.45n = is the Poisson’s ratio,
and tfi is the facet thickness. Note that the facet bending
stiffness is function of diagonal truss element length l ,di which
in turn is related to the crease lengths a, b and facet sector
angle .g

Facet stretching stiffness ks
i

The facet stretching stiffness is assigned to all of the truss
elements in the truss-frame model. Filipov et al introduced a
stretching stiffness formulation to model thin sheets in ori-
gami [6]. They assumed isotropic material properties and
uniform sheet thickness to describe in-plane stretching and
shearing behavior of initially unbent facets. We adopt the
same formulation, which provides satisfactory results to
qualitatively describe the fluidic origami actuator perfor-
mance. The equivalent stretching stiffness ki

s for the truss
element is calculated by,

k E
A

l
, 12ki

s ki

ki
= ( )

where the sub-index k=a, b, or d represents the different

Figure 15. Estimating the facet bending and stretching stiffness. (a) The schematic diagram of a facet showing the truss-frame elements and
geometric variables. (b) The four different examples of Miura-ori designs, and their corresponding stiffness parameters are summarized in
table 6.

Table 6. The normalized stiffness parameters of four examples of fluidic origami design shown in figure 15.

Stiffness γ=20°, θ°=77.9° γ=20°, θ°=88° γ=60°, θ°=1° γ=60°, θ°=77.9°

k c/a 3.9 3.8 4.5 3.9
k f/a 103.3 103.3 139.8 139.8
k sa k k 1.4 10a

s
b
s 3= = ´ k k 1.4 10a

s
b
s 3= = ´ k k 1.4 10a

s
b
s 3= = ´ k k 1.4 10a

s
b
s 3= = ´

k 8.5 10d
s 3= ´ k 8.5 10d

s 3= ´ k 3.4 10d
s 3= ´ k 3.4 10d

s 3= ´

Figure 16. A screenshot of the modeFRONTIER optimizer used in this study.
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truss members in the facet #i (figure 15(a)), so that

A
t a b

a
A

t b a

b

A
t a b

ab

2 1
,

2 1
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2 1
, 13
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f

di
f

2 2

2
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2

2 2 1.5

2
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-
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-

-

=
+
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( )
( )

( )
( )

( )
( )

( )

and

l b l a l a b ab, , 2 cos . 14bi ai di
2 2 g= = = + - ( ) ( )

Thus, the stretching stiffness is inversely proportional to
the length of truss elements. Based on the formulations above,
we can calculate the stiffness parameters for every facet and
crease, and use them for the parametric analysis of free-stroke
and block force. Table 6 shows the calculated stiffness
parameters corresponding to four different examples of
Miura-ori designs (figure 15(b)). Results in this table clearly
show the connection between the stiffness parameters and the
Miura-ori designs. The crease folding stiffness ki

c decreases
when θ° increases. while change in g doesn’t have any effect
on its value. The facet bending stiffness ki

f increases when g
increases, while change in θ° doesn’t have any effect on its
value. The crease stretching stiffness ka

s and kb
s is independent

of the changes in θ° and ;g while the facet stretching stiffness
kd
s decreases with an increasing .g

A.2. modeFRONTIER optimizer set up

Figure 16 shows a screenshot of the modeFRONTIER opti-
mizer developed for this study. The scheduler node in this
optimizer comprises of the design of experiment (DOE) and
the optimizing algorithm (NSGA-II). The values for crease
thinning as well as the Miura-ori backbone design parameters
g and q are assigned by this node. The MATLAB node
generates the CAD modeling parameters accordingly, and
sends these parameters to the ANSYS nodes. Within the
ANSYS nodes, a SolidWorks plugin builds the CAD model
using these parameters and performs FEA simulations for free
stroke and block force. Nodal displacements of vertices of
both end caps are extracted from the free stroke FEA simu-
lation to calculate the normalized free stroke in the calculator
node. The objective nodes store the free stroke and block
force performance, which are then used by the NSGA-II
solver to generate new designs.
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