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Abstract

This paper quantifies the interrelations induced by common asset holdings among financial

institutions. A network representation emerges, where nodes represent portfolios and edge

weights aggregate the common asset holdings and the liquidity of these holdings. As a building

block, we introduce a simple model of order imbalance that estimates price impacts due to

liquidity shocks. In our model, asset prices are set by a competitive risk-neutral market maker

and the arrival rates for the buyers and sellers depend on the common asset holdings. We

illustrate the relevance of our aggregation method and the resulting network representation

using data on mutual fund asset holdings. We compare three related measures of vulnerability

in the network and demonstrate a strong dependence between mutual fund returns and these

measures.
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Introduction

It is by now generally accepted that common asset holdings mediate contagion among finan-

cial institutions. The contagion mechanism works as follows: two institutions, A and B, have

the same asset as a part of their portfolio. Suddenly, A is forced to liquidate the asset due to

some exogenous shock. Liquidation has an impact on the common asset price, and therefore on

the value of institution B’s portfolio. The initial shock may be due to leverage targeting, see

e.g. [Adrian and Shin, 2010, Greenwood et al., 2015]; to a bank run, [Gorton and Metrick, 2012];

to large payables related to derivatives [Zawadowski, 2013, Amini et al., 2015]; to investor flows

[Coval and Stafford, 2007]. For all these reasons, common asset holdings create a de facto network

that may transmit financial distress.

The main contribution of this paper is to provide a methodology to capture the linkages due to

common asset holdings among financial institutions. We propose a weighted network representation.

The nodes represent the portfolios of these institutions. The edge weights capture the strength of

interrelations due to common asset holdings. On the theoretic side, the question we ask is: How

can we quantify these links?

The question of weight attribution is essentially a question of aggregation of the actual portfolio

holdings and the liquidity characteristics of the common assets. To see why liquidity characteris-

tics are crucial to the model, consider the following example of two institutions whose portfolios

each consist of 1000 units of a perfectly liquid stock, i.e, a stock whose price does not change no

matter how much of it is traded. Despite the fact that these institutions have common assets, no

institution can affect the other by trading the perfectly liquid asset. In this case, the strength of

the interrelation is zero. If, on the other hand, the asset were illiquid, then the two funds would be

very strongly related.

Portfolio holdings are directly measurable from the data. Estimating asset liquidity, on the

other hand, is in itself a challenging problem. The simplest way to incorporate asset liquidity in

networks of common asset holdings is using a linear exogenous price impact function. In this case,

Kyle’s lambda [Kyle, 1985] captures the liquidity characteristics of the stock.

A building block of our network model is a model for non-linear price impact that accounts for

the common asset holdings. Our approach is influenced by the market microstructure literature

that models temporary liquidity price impacts in relation to imbalances in the order flow. In our

model, we consider that the asset has a fundamental value, but, depending on the prevailing supply

and demand, it will trade at a discounted value due to a market clearing condition imposed by a

specialist. The supply (demand) is due to forced liquidations in the network (or asset purchases in

the network, for those institutions with positive liquidity shocks).

The most important implication of our proposed network representation is that institutions’

vulnerabilities to their neighbors shocks can be quantified. The vulnerability of a node is to be

understood as a measure of how a node will respond to the shocks applied to its neighbors. In

periods when neighbors have positive shocks, vulnerable nodes benefit from network effects, while

in periods when neighbors have negative shocks, vulnerable nodes’ returns are diminished due to
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network effects.

In the second part of the paper, we test the relation between vulnerability and returns using

data on mutual funds. The application of the network model to mutual funds requires us to specify

the source of the initial liquidity shock. As documented in [Coval and Stafford, 2007], investor

flows into (out of) mutual funds trigger expansion (reduction) of positions in assets; they refer to

this as flow-induced trading. Flow-induced trading occurs because mutual funds do not hold large

cash reserves, therefore they must liquidate assets to repay leaving investors or expand positions

when they receive inflows. [Coval and Stafford, 2007] find that flow-induced trading creates price

pressure, which is precisely how one fund affects others in the network of common asset holdings.

Contribution. We compare three measures of vulnerability in the network of mutual funds’

portfolios and demonstrate that these measures are correlated with funds’ returns. While the first

measure is a very natural measure of vulnerability and resembles measures of a node’s strength

well known in social networks [Barrat et al., 2004], the second and third measure are flow adjusted

refinements. Our main contribution in this paper is the third measure which removes the linear

price impact assumption and is shown to outperform the second measure.

The three measures of vulnerability can be described as follows. The first measure, the vul-

nerability index V I, is a baseline measure. It is generated, for each mutual fund, by summing up

all its exposures through common asset holdings to the other mutual funds, all renormalized by

the size of the mutual fund. This can be interpreted as the aggregate effect of the network on the

mutual fund, under the condition of uniform liquidity shocks across all funds. We find that this

measure, while not making any specific assumptions on the extent of the initial liquidity shock,

predicts mutual fund returns following market-wide events such as the equity market crashes in

2008 and 2011. Moreover, steady increases in the average vulnerability index across network are

shown to precede significant drops in the total net assets of mutual funds. We also find that the

average vulnerability is exacerbated during periods of crises, and that this is both a liquidity effect

and due to increased portfolio similarity.

The second measure, the flow-adjusted vulnerability measure FAV , removes the assumption of

uniform liquidity shocks across all funds, and defines a mutual-fund specific liquidity shock induced

by fund flows. In both the first and second measures, the liquidity characteristics of each stock are

captured using a stock specific linear price impact function.

The third measure, FAV ∗ is a refinement of the flow-adjusted vulnerability measure, in which

we propose a non-linear price impact function. The order imbalance depends on the common asset

holdings and the fund flows.

The two flow-adjusted vulnerability measures FAV and FAV ∗ complement the baseline mea-

sure. They do not predict returns, since they use concurrent fund flows as triggers of the initial

liquidity shocks in the network of common asset holdings. However, contrary to the baseline mea-

sure, these flow-adjusted vulnerability measures are applicable at all times and not just during

times of market-wide events.

These measures are positively correlated with fund returns throughout all our sample period.
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Their explanatory power is maintained after controlling for the concurrent fund flows. When applied

to the data, we find that the measure FAV ∗, in which the price impact is non-linear outperforms

the measure FAV based on a linear price impact: FAV is no longer significant in a horse race.

There are, of course, many other effects that drive asset prices, other than the mechanical reac-

tion to liquidations of institutional investors. Despite its simplicity, our network based framework

is shown to have explanatory power. The network-based framework could be extended in various

directions, to incorporate a larger part of the financial system beyond mutual funds, for example

banks, hedge funds, retail investors. It could also be extended to various triggers of the initial

shocks beyond investor redemptions, such as leverage targeting, fire sales, or predatory trading.

The model could go beyond first order network effects, integrate more sophisticated liquidation

strategies beyond the scaling of existing asset positions, or allow for long-short asset positions.

This level of complexity is however beyond the scope of the current paper. We expect that the

explanatory power of the proposed measures would only increase.

Relation to the previous literature Capturing interrelations among financial institutions due

to common asset holdings has been studied by [Blocher, 2016], who consider common asset hold-

ings by mutual funds, [Greenwood et al., 2015, Caccioli et al., 2014, Duarte and Eisenbach, 2015,

Capponi and Larsson, 2015], who consider common asset holdings by banks and [Caccioli et al., 2015],

who consider the interplay between contagion in the network of common asset holdings and con-

tagion in the network of interbank loans. Our focus on mutual funds is driven by public data

availability. While mutual funds individually may not be a threat for financial stability, our paper

is the first to point out the emergence of indirect networks of common asset holdings by mutual

funds. Currently, contagion through asset holdings is part of banks’ stress tests, but only contagion

from other banks is taken into consideration. Contagion among funds/ asset managers and banks

is not currently part of the stress tests. We make the point that if we have contagion among mutual

funds, it is very likely that there is contagion among banks and funds as well.

There is a significant econometrics literature that aims at estimating network measures of

dependence for a panel of time series, see e.g. [Billio et al., 2012, Diebold and Yilmaz, 2013,

Barigozzi and Brownlees, 2013, Musmeci et al., 2015, Stavroglou et al., 2017]. Within this liter-

ature, in general, no assumptions are needed on the structural reasons that lead to dependence in

the time series. Rather, their estimates lead to identifying channels that lead to this dependence.

Our approach is complementary. Once a channel of contagion is recognized, for example common

asset holdings, our framework allows us to represent at each point in time, using the structural

details of the portfolio holdings, the linkages among institutions due to this specific channel of

contagion. Based on this representation, we can derive a time series for the vulnerably measures

for the components in the system, that can be used for monitoring purposes by regulators, fund

managers, etc.

The papers closest to ours are [Blocher, 2016] and [Lou, 2012]. In [Blocher, 2016], the author

constructs a network of mutual funds and assigns edge weights between two funds based on the

4



similarity of the investing strategies of each fund. He then uses this network to partially explain

future returns and fund flows. His focus is on demonstrating the impact of second order network

neighbors on future returns. He considers the portfolio liquidity estimates based on [Amihud, 2002]

as separate factors driving future returns. In particular, in his model, the network representation

and the aggregate liquidity of the portfolios are entirely separated. The study in [Blocher, 2016] is

based on [Cohen et al., 2005] and uses the same similarity measure to explain future returns.

Although he does not explicitly use a network representation, [Lou, 2012] considers how flow-

induced trading affects stock return predictability. He then aggregates these affects across all

stocks belonging to a portfolio to give a measure that predicts portfolio returns. He incorporates

the individual stock liquidity by using the total number of shares held by mutual funds. This

measure of stock liquidity is motivated by [Gompers and Metrick, 2001] who show that mutual

funds’ holdings are skewed toward liquid stocks. Unlike [Lou, 2012], our focus in the current study

is not return predictability per se, but to demonstrate that vulnerability in networks of common

asset holdings can be measured and that the resulting measures can explain returns.

In their study on bank holdings, [Greenwood et al., 2015] incorporate individual stock liquidity

by including a market depth parameter for each stock, which measures the price impact of trading

the stock. However, this parameter is later assumed to be identical for all stocks, making the

individual stock characteristics irrelevant to the overall network effect. A similar strategy is used in

[Duarte and Eisenbach, 2015]. Contrary to [Greenwood et al., 2015], [Duarte and Eisenbach, 2015]

incorporate a sophisticated model for investor outflows. [Capponi and Larsson, 2015] analyze the-

oretically a model similar to [Greenwood et al., 2015].

On the theoretical side, [Caccioli et al., 2014] model default contagion in a network of banks

that have constraints on leverage. Their underlying dependence structure is based on common

asset holdings, with an exogenous price impact function. This work is in the same spirit as the the-

oretical literature on random graph applications to financial networks, see e.g. [Amini et al., 2016,

Battiston et al., 2012]. These works rely on approximations, in large networks, on the whole scope

of various channels of contagion. We are complementary to the theoretical model of [Caccioli et al., 2014]

in that we use real world mutual fund data.

In general, our paper is part of the growing literature on financial networks, see e.g. some of the

more recent works [Blume et al., 2011, Cabrales et al., 2017, Allen et al., 2012, Cohen-Cole et al., 2011,

Elliott et al., 2014, Gai and Kapadia, 2010, Glasserman and Young, 2015, Gourieroux et al., 2012].

For reviews see, e.g. [Babus and Allen, 2009, Amini and Minca, 2013, Kara et al., 2015]. Impor-

tantly, most of the literature on financial networks interprets the interrelations as contractual

liabilities of various maturities. Contrary to networks of liabilities, the links in networks of com-

mon asset holdings are not readily specified as quantities available on balance sheets. The ability to

quantify these links is a keystone to understanding the systemic risk due to common asset holdings.

Our network construction has some important side implications for asset pricing. In our model,

no exogenous parameters such as asset correlations are required and the network of common asset

holdings can be thought of as a partial dependence structure among portfolio returns. Of course,
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the network of common asset holdings can also be seen as a dependence structure among the stock

returns themselves, and may explain endogenous correlation arising from institutional ownership,

see the theoretical model in [Cont and Wagalath, 2013]. In this sense, the correlation of fund returns

with the second measure provides empirical support for this theory. A more direct verification, using

historically uncorrelated stocks and institutional ownership data, is provided in [Gao et al., 2017].

The fund vulnerability that our measures aim to capture can be considered as the dual of

the stock frailty introduced in [Greenwood and Thesmar, 2011]: The vulnerability of a fund is ob-

tained by aggregating the price impact of liquidations across all stocks owned by a fund; The frailty

of a stock is obtained by aggregating the price impact due to liquidation across all funds owning the

stock. As in the study on vulnerable banks [Greenwood et al., 2015], in [Greenwood and Thesmar, 2011]

the price impact is linear and captured by a market depth parameter, assumed to be identical across

stocks.

In our companion paper [Guo et al., 2016], we investigate the network topology of the common

asset holdings networks. We find that this network has a scale-free structure and that funds tend

to cluster in a small number of clusters. Moreover we add the network centrality as an additional

factor to the Carhart four factors model, and show that it is a significant factor driving returns.

The focus in [Guo et al., 2016] is on hedge fund networks, and network effects are demonstrated

for that industry as well. In contrast, in the current paper we refine the way we can incorporate

stock liquidity in measures of fund vulnerability by departing from the linear price impact which

underlines the baseline vulnerability measure.

The rest of the paper is structured as follows: Section 1 introduces the network representation,

Section 2 describes the data on mutual fund holdings, Section 3 introduces three measures of

vulnerability and tests the dependence of these measures and the mutual fund returns and Section

4 concludes.

1 Model

In this section we discuss a network model for a cross-section of common asset holdings by financial

institutions (banks, mutual funds, etc.). First we introduce the notation. Since each institution is

allowed to have only one portfolio, we will use the term portfolio to refer to one institution in our

network.

Consider the case where N = {1, . . . , N} is a set of portfolios and K = {1, . . . ,K} is a set of

stocks. Each portfolio owns a subset of K, and two portfolios may have common holdings.

Let S = (s1, . . . , sK) be the vector of stock prices.

We denote the holdings of each portfolio by the matrix

B = [βki] i ∈ N, k ∈ K,
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where βki represents the number of shares of stock k owned by portfolio i. We do not allow short

positions, therefore each βki must be non-negative.

This assumption may be relaxed when one wishes to consider other financial institutions (such

as hedge funds) where short-selling is more prevalent. This could allow for network effects akin the

‘quant’ event of 2007, when the liquidation of a long-short neutral portfolio on the S&P500 did not

affect the value of index funds [Khandani and Lo, 2011]. In our terms, these index funds would

have zero weights on their linkages to the liquidated long-short portfolio. Since we are working

with mutual fund data, in our setting, considering only long positions is not a major restriction.

The value of portfolio i can be written as

Pi =
K∑
k=1

βkisk = βi · S, where βi = (β1i, . . . , βKi).

Denote the vector of portfolio values by P = (P1, . . . , PK).

We can represent the interrelations of financial institutions through common asset holdings as

a network whose nodes correspond to the portfolios. There is an edge between two nodes if the

corresponding portfolios hold common assets. In order to capture the extent of the relationship

between two portfolios, we introduce edge weights. It is intuitive to want two portfolios with large

asset commonality to have a strong relationship and portfolios with little asset commonality to

have a weak relationship. We therefore define the weight of an edge between two portfolios by

answering the following question: what effect will the liquidation of fund i have on fund j?

1.1 Edge weights under linear price impact

In order to define the edge weights, we must incorporate the price impact of trading (In our model,

we consider that trading is uninformed and the price impact is exclusively due to fund liquidations).

To capture this effect, we define the function PIk(x) to be the (relative) change in the price of stock

k due to x shares of this stock being traded.

In the baseline model, we make the simplifying assumption that the price impact function is linear

and of the form:

PIk(x) =
x

λk
, (1)

where λk is such that buying/selling λk
100 stocks will move the price of the asset up/down by 1%.

The parameter λk captures the market depth of stock k, see the seminal paper [Kyle, 1985]. In

Section 3.3, we will develop a substitute for the linear price impact based on a model of a market

in which arrival rates for the buyers and sellers depend on the common of asset holdings and prices

are set by a competitive, risk-neutral market maker.

In order for the price impact to take into account the different characteristics of each stock,
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we scale it by the average daily volume traded and multiply it by the stock’s volatility as in

[Almgren et al., 2005, Amihud, 2002]

λk =
1

λ̃

ADPk
σk

,

where ADPk is the average daily volume of trades, σk is the daily returns standard deviation of

stock k and λ̃ is an invariant across stocks [Kyle and Obizhaeva, 2016]. Our results however will

not depend on the proportionality constant λ̃.

We are now ready to define our edge weights. When portfolio i liquidates its shares of asset k,

the price of the asset sk drops by βki
λk
sk. This causes portfolio j’s value to decrease by βkj

βki
λk
sk.

Hence, the total loss experienced by j if portfolio i liquidates can be calculated by summing this

quantity across all assets

wij =
K∑
k=1

βki
λk
βkjsk. (2)

Observe that wij = wji (symmetric) and if i and j have no assets in common, then wij = 0. Thus

we set the weight of the edge connecting i and j to be wij .

The first two measures of vulnerability in the network of common asset holdings use directly

the links specified above. Our third measure of vulnerability is based on the model introduced in

the next section for the impact of order imbalance on a stock’s price.

1.2 A non-linear price impact model

In the previous section, we assumed that the change in the price of an asset was proportional to the

net supply/demand, with the market depth being the constant term in this linear relationship. In

this section develop a non-linear alternative to the price impact, by proposing a simple mechanism

to determine how imbalances in supply and demand of an asset affect its price.

Suppose we have a single asset with constant fundamental value p, which is traded continuously

by a specialist at a single price p̂. Trading occurs during times t ∈ [0, 1] and the price p̂ is chosen

by the specialist at time t = 0 and remains constant over time. We assume that buyers and sellers

arrive to the market according to independent, time-homogeneous Poisson Processes with rates

rB(p̂) and rS(p̂), both dependent on p̂. We assume that as p̂ decreases, rB(p̂) increases and rS(p̂)

decreases. Intuitively, this relationship means that as the price decreases, more people are willing

to buy and less people are willing to sell.

We assume that the specialist knows these arrival rates. This is a reasonable assumption since

the specialist sees all order flow and can therefore estimate these rates. We assume that the specialist

has deep pockets i.e. that the specialist’s risk of running out of inventory or capital during the

trading period [0, 1] is negligible. In reality, a specialist will set a price spread as compensation for

the liquidity risk he bears; however, in this simplified model the specialist must trade at a single

price. Since trading occurs at a single price, the specialist does not earn any trading profits. We

therefore assume that the specialist will choose p̂ to be a market clearing price. By this we mean

that its the price that sets at zero the expected order imbalance during the trading period.
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To quantify this condition, we note that the expected number of buyers that arrive by time 1

is given by rB(p̂) and similarly, the expected number of sellers that arrive by time 1 is given by

rB(p̂). The goal of the risk neutral specialist is therefore to choose p̂ such that its expected trade

imbalance is zero

(rB(p̂)− rS(p̂)) = 0. (3)

Its clear that the specialist will thus choose p̂ so that rB(p̂) = rS(p̂). We can rewrite p̂ as

p̂ = p× d, where d can be thought of as a price discount applied by the specialist to attract more

buyers and deter sellers, or vice versa (in the case when d > 1 its a premium, but we will still refer

to it as a discount). We can also rewrite the arrival rates in the following form

rB(p̂) = rB(d) = φB(d)×NB (4)

rS(p̂) = rS(d) = φS(d)×NS , (5)

where NB and NS can be interpreted as the total number of potential buyers and sellers on

the market, respectively; The quantities φB(d) and φS(d) are the fraction of the buyers and sellers

that the specialist attracts with his choice of discount. The assumption that lower prices (larger

discount) will attract buyers and deter sellers is captured by requiring that as d decreases, φB(d)

will increase and φS(d) will decrease.

Condition (3) can now be written as

NB

NS
=
φS(d)

φB(d)
= φ(d), (6)

where φ(d) is now a monotone increasing function in d. Applying φ−1 to both sides, we get

d = φ−1(
NB

NS
) = f(

NB

NS
). (7)

Thus the discount can be written as an increasing function of the ratio (f = φ−1 is guaranteed

to be increasing since φ is). If we had some information about the number of buyers and sellers in

the market (NB and NS) and the behavior of f prior to the start of trading, we could estimate the

effect this would have on the price. In the empirical section of the paper, this is precisely our goal.

By imposing a power law on f and estimating NB and NS from expected mutual fund order flows,

we will show that this model allows us to explain mutual fund returns due to these price discounts.

2 Data

We use quarterly mutual fund holdings data from the CRSP Mutual Fund database ranging from

01/2003 - 12/2012. The mutual fund database does not suffer from survivorship bias. We only

use equity funds (funds with Lipper Asset Code ‘EQ’) or funds that have at least 50% of their

holdings composed of common stock. We focus on U.S. funds by excluding funds with Lipper
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Objective Code ‘GL’ or ‘IF’ (global or international fund) and exclude any funds with ‘global’,

‘international’, ‘europe’ or ‘emerging’ in their names. We exclude any funds with a missing total

net assets (TNA) value or missing an associated portfolio number.

We calculate monthly portfolio TNA and returns data by aggregating fund data across share

classes by using share class TNA as weights, and exclude any portfolios whose total net assets are

under 1 million USD. We filter out any holdings that are not long positions in common stock. This

is done by excluding any holdings with a coupon rate or maturity date and anything whose share

class is not 10 or 11 (representing common stock). The number of shares owned by the portfolio

has to be positive, and the market value of the holding has to be non-zero.

Although holdings for most portfolios are reported at the end of each quarter, some portfolios

report their holdings before the end of the quarter. To deal with the latter category of portfolios, we

assume that their positions do not change from the reported date until the end of the quarter and

combine these reported positions along with asset prices from the end of the quarter to construct

the portfolio holdings. The database is missing holdings information for many portfolios in Q3

2010, therefore we do not use that quarter’s holdings in our empirical work.

Fund flows are calculated using the formula

Flowt =
TNAt − (1 + rt)TNAt−1

TNAt−1
, (8)

where TNAt is the total net assets of a portfolio in period t and rt is the return of the portfolio in

period t.

To calculate stock market depths (λk = ADPk

λ̃×σk
), we use daily stock data from the CRSP US

Stock Database. Stock average daily trading volumes and daily returns standard deviations are

calculated for each quarter based on that quarter’s volume and returns alone (i.e. not using volumes

and returns from previous quarters). The exact value of λ̃ plays no role in our data analysis because

we will use regression models and results will not depend on this exact value. Therefore, for the

purpose of computing λk, we set λ̃ = 1.

3 Three measures of vulnerability

3.1 The baseline vulnerability measure

Two nodes that are connected in the network are referred to as neighbors. During periods of mass

asset liquidations (purchases), a portfolio may be subject to losses (gains) due to the trading activity

of its neighbors. These losses (gains) are not uniform for each portfolio and will be more extreme

for portfolios with more neighbors. In order to measure this endogenous impact on portfolio i’s

value, we define the portfolio vulnerability measure

V Ii =
1

Pi

N∑
j=1
j 6=i

wji. (9)
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This measure corresponds to the first order effects on node i’s loss, imposed by its neighbors. To

intuitively understand this measure, εV Ii the fraction by which portfolio i’s value will decrease

(increase) if all its neighbors liquidate (expand) their portfolios by a factor of ε.

The measure V Ii is similar to the vulnerability measure proposed by [Greenwood et al., 2015] in

their study of banking networks with common asset holdings. The difference is that in their case,

banks adjust portfolios to satisfy a constant leverage constraint, whereas in the case of mutual

funds, portfolio adjustment is triggered by investor flow.

Essentially, these measures are natural measures of a node’s vulnerability in the network. In

a study of general complex weighted networks, [Barrat et al., 2004] discuss a quantity called the

vertex strength, defined as the sum of weights of all edges adjacent to a vertex i, which in our

mutual fund network is
∑N

j=1
j 6=i

wji. To obtain V Ii, we simply scale the vertex strength by the value

of the portfolio Pi – the total net assets of the portfolio – to account for the scale effect.

To illustrate the use of this first vulnerability measure, consider the following. As a result of

significant market events, mutual funds can be faced with mass outflows (inflows) of investors. As

documented by [Coval and Stafford, 2007], an outflow (inflow) experienced by a fund will cause the

fund to liquidate (expand) its asset positions. The flow-induced liquidations (expansions) of asset

positions will cause funds that were not affected by the original market events to experience losses

(gains) due to their neighbors’ actions.

Indeed, this is what happened when the banking sector was hit by massive losses during the

financial crisis of 2007/2008. Portfolio managers with banking sector assets modified their portfolio

holdings; in particular, they liquidated assets not belonging to the banking sector to pay leaving

investors and in turn, they had an impact on the prices of these assets, see e.g. [Hau and Lai, 2016].

Thus, even portfolios with no financial stock holdings still lost money due to the losses propagating

from the initial banking sector shock. If i and j were two such portfolios and V Ii < V Ij , we would

expect portfolio j to incur a higher loss than i, because it would have been a more vulnerable

node in the network (and thus would have been more likely to have been impacted by a neighbor’s

liquidations). We formalize this idea by introducing the following hypothesis:

Hypothesis: Portfolios with a higher vulnerability have lower returns in periods of mass liq-

uidations.

In order to test this hypothesis, we examine mutual fund data obtained from the CRSP database.

3.1.1 Vulnerability measure and future returns

The most significant drops in cumulative TNA occurred in Q4 2008, shortly after the collapse of

the Lehman Brothers, and Q3 2011 during which S&P downgraded the U.S. credit rating. Both

quarters experienced crashes in various market indices (Dow Jones, S&P 500). Using holdings data

from the end of Q3 2008 and Q2 2011, we calculate portfolio vulnerabilities and then plot portfolio

returns for the following quarters of Q4 2008 and Q3 2011 against those vulnerabilities. Figures 1
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and 2 show plots of returns vs. vulnerability along with the fitted regression lines. Both quarters

show a significant negative relationship between vulnerability and future returns.

[Figure 1 here]

[Figure 2 here]

We point out that these quarters were chosen due to the extreme events that occurred in them.

In many other quarters, the vulnerability measure failed to display any significant relationship with

future returns. This is because the vulnerability measure is only useful conditional on a market

wide event occurring that triggers mass liquidations.

3.1.2 Portfolio vulnerabilities over time

We examine the average portfolio vulnerabilities as they evolve over our sample period of 2003-2012.

Figure 3 plots the average vulnerability of portfolios alongside the cumulative TNA of all portfolios.

Two distinct spikes in portfolio vulnerability are visible in Q4 2008 and Q3-Q4 2011. These spikes

coincide with the two largest troughs in the cumulative total net assets (TNA) of portfolios, which

occurred after the Lehman Brothers collapse in September 2008 and the downgrading of the U.S.

credit rating by S&P in Q3 2011.

[Figure 3 here]

Note that the average portfolio vulnerability was relatively stable before Q1 2007 and then

steadily increased after Q2 2007 up to Q4 2008 (with the sharpest increase after the fall of Lehman

Brothers, in Q4 2008). The cumulative TNA started to drop only after Q2 2008. This suggests

that increases in average vulnerability precede significant drops in total net assets.

Moreover, from the spikes in average vulnerability, we note that portfolio vulnerabilities exacer-

bate their increase in response to financial distress. According to our model, there are two factors

that can cause this sudden increase in vulnerabilities; portfolios can increase their exposure to other

portfolios if everybody starts buying similar assets, or vulnerabilities may increase if the market

depths of stocks fall.

To examine the possibility that portfolios may be purchasing similar assets in response to

financial distress, we look at stock ownership distributions. Each quarter, for every stock held

by portfolios in our sample, we calculate the percentage of portfolios that own that stock (stock

ownership). Then we use this data to estimate the distribution, across stocks, of stock ownership.

We then calculate the 5% quantile of this distribution (our choice of 5% was based on observing

the distributions, choosing a different threshold will not significantly affect our conclusions). This

quantile gives the percentage of stocks held by more than 5% of all portfolios. Heavier tails can

occur due to increased commonality between portfolio assets, or simply because the number of

portfolios is increasing.
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Figure 4 displays the quantiles of the distribution, across stocks, of stock ownership along with

the number of portfolios in our sample over time. The quantiles increase over time, while the

number of portfolios have a linear increase only up to the crisis. In fact the number of portfolios is

constant (with a slight drop at the end) over the periods 2008-2010, and 2010-2012. These figures

thus suggest that the heavier tails are simply a result of more funds entering the market prior to

the crisis, while in the crisis periods these heavier tails are certainly due to increases in portfolio

asset commonality. The portfolio vulnerability spikes are therefore attributed in crisis periods to

plunges in the market depth of stocks in conjunction with increases in asset commonality.

[Figure 4 here]

[Figure 5 here]

To summarize, we find that portfolio vulnerabilities spiked significantly during the periods of

mass financial distress in the late quarters of 2008 and 2011. These spikes were caused by increased

asset commonalities, in conjunction with decreases is market depths suggesting liquidity shortages.

During these periods, portfolios were much more vulnerable to losses from widespread investor

outflow.

We now consider the dual of portfolio vulnerability which is the concept of stock frailly in

[Greenwood and Thesmar, 2011]: The vulnerability of a fund is obtained by aggregating the price

impact of liquidations across all stocks owned by a fund; The frailty of a stock is obtained by

aggregating the price impact due to liquidations across all funds owning the stock. Similarly as

above, we introduce a measure of stock frailty, which we call stock vulnerability measure. We

aggregate stock vulnerabilities across sectors to obtain a measure of the sector’s vulnerability, due

to institutional ownership.

Figure 6 plots this measure over time, for seven sectors. For each sector, the vulnerability

over time follows the same pattern as the average portfolio vulnerability in Figure 3. Consistent

with our previous conclusion that vulnerability spikes are attributed to plunges in stock liquidity,

the financial sector changes form the least vulnerable sector in 2003 to the most vulnerable sector

during the financial crisis. These dual measures of vulnerability of stocks (sectors), rather than

funds, may be useful tools for comparing stocks (sectors), at any given time, in terms of their

vulnerabilities. Our results suggest a type of stickiness of the vulnerabilities: for all sectors the

vulnerabilities change over time, yet the ranking of sectors in terms of vulnerabilities, for the

non-financial sectors, remained relatively stable over the considered time frame.

[Figure 6 here]

3.2 Flow-adjusted vulnerability

In this section, we refine the vulnerability measure by incorporating fund-specific investor flow. If

a fund is expected to expand its existing asset positions, then its actions will benefit its neighbors
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and this fund can be considered as a ‘good’ neighbor. Conversely, funds that liquidate assets

are ‘bad’ neighbors. The vulnerability measure is limited because it is a simple measure of a

portfolio’s centrality and does not distinguish between good and bad neighbors. Thus, to be useful,

it implicitly requires the same trading direction throughout the whole network (i.e. everyone

liquidates or everyone purchases), so that everyone is either a good neighbor or a bad neighbor.

Although this mass trading behavior is more likely to occur during a financial crisis or a large boom

in the market, most of the time fund behavior is heterogeneous and V I is no longer as useful. The

measures introduced below addresses this limitation.

In the reminder of this section we assume that the price impact is linear, as in the definition of

the vulnerability measure.

Given a network of funds at the start of a quarter, we set Fi to be the flow to be experienced

by fund i over this quarter. The fund’s flow-induced trading during this quarter will then have an

impact on asset prices. To capture the effect of a fund on its neighbors, we impose two simplifying

assumptions on the trading behavior of a fund:

1. No new assets are purchased as a result of inflows, existing positions are expanded instead.

2. Proportional buying/selling: when a fund experiences an outflow Fi < 0, it liquidates

an equal fraction of each asset and when a fund experiences an inflow Fi > 0, it expands its

positions proportionally.

Our assumption of proportional buying/selling of assets is unlikely to hold in reality. Indeed,

[Hau and Lai, 2016] found that a fund experiencing outflows will raise money by liquidating its best

performing assets. Yet, they find no evidence for an important interaction among stock liquidity and

holding reductions. Attempting to determine exact liquidation policies is an interesting problem in

itself; however, it is well outside the scope of this paper. We demonstrate that even under a simple

policy such as this, our vulnerability measures are still a significant factor in explaining returns.

At the end of the quarter, the impact of portfolio j’s flow-induced trading on portfolio i is

1

(1 + Fi)Pi

K∑
k=1

Fjβkj
λk

(1 + Fi)βkisk =
Fjwji
Pi

. (10)

This impact is now either positive or negative, all depending on the sign of Fj .

We now define the flow-adjusted vulnerability (FAV) measure for fund i as the sum of

the impacts of all its neighbors (including itself). It is the percentage change in portfolio i’s value

due to flow-induced trading

FAVi =
1

Pi

N∑
j=1

Fjwji. (11)

The FAV can be calculated using the portfolio holdings network at the start of each quarter

and the investor flows over that quarter. In section 3.4, we show that a portfolio’s FAV is positively

correlated with its returns over this quarter. Unlike the vulnerability measure V I, the FAV can
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be used to explain returns at all times and not only in periods of (near) uniform trading behavior.

However, contrary to the V I, the FAV cannot predict returns, as computing the FAV requires

knowing the investor flow during a quarter ahead of time. Therefore, the FAV for a given quarter

can only be computed at the end of the quarter, once the flows (and returns) are already known.

Our measure is similar to the flow induced trading (FIT) measure proposed by [Lou, 2012]. The

difference lies in the way stock liquidity is accounted for. The FIT uses the total number of stocks

owned by all funds as a measure of each stock’s liquidity, motivated by [Gompers and Metrick, 2001]

who show that mutual funds’ holdings are skewed toward liquid stocks. We use information about

a stock’s trading volume and volatility.

The main limitation of the FAV measure is that the price impact is linear. In the next section,

we address this shortcoming by refining the FAV using the model discussed in Section 1.2.

3.3 Refining the flow-adjusted vulnerability measure

To replace the assumption of linear price impact for each stock, we shall use the model from Section

1.2. In the model, a stock with fundamental value p is traded continuously during some time period

[0, 1] at a discounted price d× p. We let the time period [0, 1] represent one quarter and we let the

fundamental price be the price at the start of the quarter. The price at the end of the quarter will

therefore be the discounted price d× p. We showed that the discount can be written as

d = f

(
NB

NS

)
, (12)

where f is an increasing function and NB and NS represent the total number of potential buyers

and sellers on the market.

We estimate NB and NS using the total number of stock bought and sold by all funds during

the quarter. According to our assumptions, the number of shares of a stock that a single fund will

trade is equal to its investor flow during the quarter multiplied by the number of shares of that

stock it owns. Therefore, for stock k, we set the estimators

N̂B,k =

N∑
i=1

βkiFi1{Fi>0}, (13)

N̂S,k =

N∑
i=1

βkiFi1{Fi<0}. (14)

This implies that the impact of trading (captured by d) is simply a function of the ratio of the

order inflow to the order outflow.

Next, we need to impose some conditions on the form of f . In particular, we assume that f is

a power-law of the form

f(x) = xα. (15)
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For the purposes of performing regression analysis, we set α = 1/3; however, our results do not

depend qualitatively on this particular choice of α.

We can now write the return of the stock at the end of a quarter as

returnk =
dk × sk − sk

sk
= dk − 1 = f

(
NB,k

NS,k

)
− 1 ≈

(
N̂B,k

N̂S,k

)1/3

− 1. (16)

By aggregating these returns across all stocks in a portfolio, we obtain the refinement of the

flow-adjusted vulnerability measure

FAV ∗i =
1

Pi

K∑
k=1

βkisk

(N̂B,k

N̂S,k

)1/3

− 1

.
This refined measure can be interpreted as a measure of vulnerability to order imbalance.

Note that in the above measure the neighbors (in the network of asset holdings) do not appear

explicitly. The effects of their distress on a given portfolio are captured by the price discount factor,

which is driven by the imbalance of the supply and demand. This measure directly aggregates the

discount (weighted by the relative position) across all stocks belonging to a portfolio to obtain

the impact of trading on the value of an entire portfolio. This can be viewed as a refinement of

the FAV measure, because instead of using a linear price impact function, we use the model we

proposed in Section 1.2 to measure how order flow will impact prices.

3.4 Explaining mutual fund performance

We compare the ability of both the FAV and FAV ∗ measures to explain mutual fund returns.

Table 1 displays the results of regressing a fund’s quarterly returns against the FAV and FAV ∗

measures computed for the fund at the start of that quarter. We run a Fama-Macbeth regression:

in the first stage we run N regressions, for each mutual fund, to determine the factor loadings. In

the second stage we run T (the number of quarters) cross-sectional regressions of returns against the

estimated loadings to determine the risk premium for each factor. We use Newey-West corrections

of four lags.

As expected, both measures are positively correlated with returns. Furthermore, we find that

after accounting for the FAV ∗ measure, the FAV is no longer significant in explaining returns.

These results indicate that the FAV ∗ is indeed a refinement of the FAV , and suggest that the

ratio of order inflows to outflows may be a more suitable measure of price impact than simply

considering net order flow.

Computing the FAV and FAV ∗ measures for a quarter requires using fund flows for that

quarter, which are certainly expected to be correlated with the returns for the quarter. Therefore,

any relationship between the two vulnerability measures and fund returns may occur simply because

we used concurrent flows to compute the measure. The most important point in the validity of the

regressions is therefore introducing the concurrent flows as control variables. Unsurprisingly, these
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are positively correlated with the returns in the same quarter.

We find that the two measures of vulnerability maintain their explanatory power after control-

ling for the concurrent flows.

[Table 1 here]

4 Conclusion

In this paper we measure the interrelations due to common asset holdings. The aggregation of asset

holdings in a network structure depends on the model of distress propagation, i.e, the sequence:

the initial shock, the liquidations in response to the initial shock, the effect of liquidations on other

participants. We construct a model for the price impact of trading, in which demand and supply

depend on the asset holdings and fund flows.

The network representation is useful to derive measures of vulnerability of funds to the shocks

experienced by their neighbors in the network. We find, using mutual fund data, that the vulnera-

bility index is useful in predicting returns in periods of mass liquidations. In such periods, we can

identify vulnerable funds based on asset holdings and the liquidity characteristics of the stocks.

The vulnerability index V I is only useful during periods of mass liquidations. However, our

flow-adjusted measure of vulnerability to order imbalance FAV , is shown to be correlated with

returns throughout all our sample period.

We have shown how to measure vulnerabilities in a network of mutual funds. Our model

only considers mutual funds and any imbalance comes from mutual fund selling pressure. In the

companion paper [Guo et al., 2016], we show that similar network effects due to common asset

holdings arise for the hedge fund industry. In addition, we analyze the topology of the hedge fund

network and demonstrate the existence of large clusters and heavy tails in the degree distribution.

As mentioned in the introduction, there are are several available studies of networks in banks’

portfolios, where liquidations are either driven by repo investor outflows or leverage targeting.

It may be the case that other network reasons are important (say, interlocking boards between

firms). However, we believe that networks of common asset holdings play a primary role in returns

and this fact is valid for several industries. In past years (not included in the study), we have

witnessed unprecedented growth in passive investing and we conjecture that this would exacerbate

the network effects due to common asset holdings. The fact remains that all available studies and

stress tests consider only one industry: mutual funds, hedge funds, banks. Having accumulated

evidence of network effects due to common asset holdings in several industries, the critical next

step is a cross-industry study of network-based vulnerabilities to yield more precise indicators.

In this paper we focused on vulnerabilities. In the other direction, the network of common asset

holdings is useful to identify funds that are likely to have large network externalities on the the other

funds, as well as clusters of funds which collectively pose systemic risk. An important direction

that emerges out of the current study is to understand how funds should optimally allocate their

funds in order to manage their vulnerability.
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45(4):1273–1309.

[Greenwood et al., 2015] Greenwood, R., Landier, A., and Thesmar, D. (2015). Vulnerable banks.

Journal of Financial Economics, 115(3):471–485.

[Greenwood and Thesmar, 2011] Greenwood, R. and Thesmar, D. (2011). Stock price fragility.

Journal of Financial Economics, 102(3):471–490.

[Guo et al., 2016] Guo, W., Minca, A., and Wang, L. (2016). The topology of overlapping portfolio

networks. Statistics & Risk Modeling, 33(3-4):139–155.

[Hau and Lai, 2016] Hau, H. and Lai, S. (2016). The role of equity funds in the financial crisis

propagation. Review of Finance, 21(1):77–108.

[Kara et al., 2015] Kara, G. I., Tian, M. H., and Yellen, M. (2015). Taxonomy of studies on

interconnectedness. Available at SSRN.

[Khandani and Lo, 2011] Khandani, A. E. and Lo, A. W. (2011). What happened to the quants

in august 2007? evidence from factors and transactions data. Journal of Financial Markets,

14(1):1–46.

[Kyle, 1985] Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica: Journal

of the Econometric Society, pages 1315–1335.

[Kyle and Obizhaeva, 2016] Kyle, A. S. and Obizhaeva, A. A. (2016). Market microstructure in-

variance: Empirical hypotheses. Econometrica, 84(4):1345–1404.

[Lou, 2012] Lou, D. (2012). A flow-based explanation for return predictability. Review of Financial

Studies, 25(12):3457–3489.

[Musmeci et al., 2015] Musmeci, N., Di Matteo, T., and Aste, T. (2015). Risk diversification: a

study of persistence with a filtered correlation-network approach. Journal of Network Theory in

Finance, 1(1):1–22.

[Stavroglou et al., 2017] Stavroglou, S., Pantelous, A. A., Soramaki, K., and Zuev, K. (2017).

Causality networks of financial assets. Journal of Network Theory in Finance, 3(2):17–67.

20



[Zawadowski, 2013] Zawadowski, A. (2013). Entangled financial systems. Review of Financial

Studies, 26(5):1291–1323.

21



Table 1: Fama-Macbeth regressions of future fund returns with Newey-West corrections of four
lags. The dependent variable is fund return over quarter t, the FAV ∗ and FAV measures are
computed using the asset holdings at the start of quarter t and the fund flows over quarter t. We
control for the log total net assets owned by a fund at the end of the previous quarter, the log
total number of shares owned by the fund at the end of the previous quarter and the return of
the fund in the previous quarter. We also control for fund flows over quarter t to ensure that the
explanatory power of the two measures is not a simple consequence of the correlation of returns
with concurrent flows. When computing the values of FAV ∗ and FAV , we exclude funds whose
inflows are greater than 100%.

(1) (2) (3)

FAV ∗t 0.0683∗∗∗ 0.0705∗∗∗

(4.85) (4.36)

FAVt 0.463∗∗∗ -0.00706
(4.38) (-0.08)

log(TNAt−1) 0.00101 0.000635 0.000623
(0.69) (0.41) (0.39)

log(Sharest−1) -0.000800 -0.000352 -0.000333
(-0.57) (-0.24) (-0.22)

flowt 0.0230∗∗∗ 0.0162∗∗ 0.0155∗∗

(4.55) (3.49) (3.34)

returnt−1 0.000742 -0.0233 -0.0251
(0.02) (-0.51) (-0.56)

Constant 0.0227 0.0205 0.0203
(1.48) (1.29) (1.23)

Sample Size 87257 87257 87257
R2 0.1746 0.2032 0.2105

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 1: Portfolio returns for Q4 2008 plotted against portfolio vulnerability calculated at the
start of the quarter.

Figure 2: Portfolio returns for Q3 2011 plotted against portfolio vulnerability calculated at the
start of the quarter.

Figure 3: Average portfolio vulnerability V I plotted alongside the cumulative TNA of all portfolios.
Data for 09/2010 is missing.
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Figure 4: Time series of the 5% quantile of the distribution of stock ownership and the number of
portfolios used in the sample. Data for 09/2010 and 12/2012 is missing.

Figure 5: Stock ownership tail probabilities against the sample size. A clear linear relationship is
evident. Data for 09/2010 and 12/2012 is missing.
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Figure 6: Stock vulnerability measure across sectors. Data for 09/2010 and 12/2012 is missing.
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