A PROJECTIVE VARIETY WITH DISCRETE, NON-FINITELY
GENERATED AUTOMORPHISM GROUP

JOHN LESIEUTRE

ABSTRACT. We construct a projective variety with discrete, non-finitely generated automor-
phism group. As an application, we show that there exists a complex projective variety with
infinitely many non-isomorphic real forms.

1. INTRODUCTION

Suppose that X is a projective variety over a field K, with K an algebraic closure. The
set of automorphisms of X can be given the structure of a K-scheme by realizing it as an
open subset of Hom (X, X). In general, Aut(X) is locally of finite type, but it may have
countably many components. Write Aut’(X) for the connected component of the identity,
and mo(Aut(X)) = (Aut(X)/ Aut’(X))g for the group of geometric components. When K
is the field of complex numbers, mo(Aut(X)) is simply the group of components of Aut(X),
sometimes denoted Aut(X)*. We will say that the group of automorphisms of X is discrete
if H°(X,TX) =0, which implies that Aut’(X) is trivial.

Examples.
(1) Let X =P". Then Aut(X) = Aut’(X) = PGL,1(K), and m(Aut(X)) is trivial.
(2) Let E be an elliptic curve over K. Then mo(Aut(E x E)) contains GLy(Z) and hence
is an infinite group.
(3) Let X be a very general hypersurface of type (2,2,2) in P! x P! x P!, with K = C.
Then X is a K3 surface, and the covering involutions associated to the three projections
X — P! x P! generate mo(Aut(X)) = Z/27Z x Z /27 * Z./27Z [6].

According to a result of Brion [5], any connected algebraic group over a field of characteristic
0 can be realized as Aut’(X) for some smooth, projective variety. In contrast, very little
seems to be known in general about the component group m(Aut(X)).

Our first result is the following.

Theorem 1. Suppose that K is a field of characteristic 0, or that K is a field of characteristic
p > 0, not algebraic over Fy,. Then there exists a smooth, geometrically simply connected,
6-dimensional, projective variety X over K for which mo(Aut(X)) is not finitely generated.

The question of finite generation of my(Aut(X)) has been raised several times in various
arithmetic [16] [I] and geometric [5], 8, 22] contexts.

The automorphism group owes its arithmetic interest in part to its close relation with the
forms of a variety over extension fields. If X is a variety over a field K, and if L is a Galois
extension of K, then an L/K-form of X is a variety X’ over K for which Xy, = X{. The set
of L/K-forms of X is in bijection with the Galois cohomology set H'(Gal(L/K), Aut(Xy,)),
and we will construct a variety with infinitely many L/K-forms by exhibiting a variety for

which Aut(Xy) is pathological.
1
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Theorem 2. Suppose that K is a field of characteristic 0, or that K is a field of characteristic
p > 0, not algebraic over F,,. Let L/K be a separable quadratic extension. Then there exists
a 6-dimensional, projective K-variety X' with infinitely many L /K-forms.

In the case K = R and L = C, we obtain an example of a variety with infinitely many
non-isomorphic real structures.

The component group my(Aut(X)) is an algebraic analog of the mapping class group
mo(Diff (M)) of a smooth manifold M. In general, the mapping class group is not finitely
generated, with an example provided by tori in dimension at least five [I5]. However, according
to a theorem of Sullivan, if dim M > 5 and M is simply connected, then my(Diff(M)) is
finitely generated [2I]. This contrasts with our example, which is simply connected and has
real dimension 12 if K = C.

The group mo(Aut(X)) is always finitely generated in a number of simple situations,
although even then the group can be quite complicated. If X is a K3 surface, the group of
automorphisms is always finitely generated [20], but there are examples in which the group
of automorphisms is not even commensurable with an arithmetic group [22, Corollary 6.2].
Some other interesting automorphism groups of K3 surfaces have been studied by Baragar [2].

If X is not projective, the group of automorphisms may not even have the structure
of a locally finite type scheme. Blanc and Dubouloz have exhibited affine surfaces over
any uncountable field for which the normal subgroup Aut(S)., of Aut(S) generated by all
algebraic subgroups can not be generated by any countable family of these subgroups, and
for which Aut(S)/ Aut(9S)a,; contains a free group on uncountably many generators [3].

Before giving our example, we sketch the technique. If X is a variety and Z is a closed
subscheme of X with codim Z > 1, then the automorphisms of X that lift to automorphisms
of the blow-up Blz(X) are precisely those that map Z to itself (not necessarily fixing Z
pointwise). Our approach, roughly speaking, is to find a variety X with a subscheme Z
so that the stabilizer Stab(Z) C Aut(X) is not finitely generated, and then to pass to the
blow-up Blz(X) to obtain a variety realizing Stab(Z) as an automorphism group. There are
three main difficulties. The first is to find X and Z for which the stabilizer of Z in Aut(X)
is not finitely generated. The second is to prove it: in general it is very difficult to be sure
that one knows the full group Aut(X) (cf. [18]). The third is to ensure that Bl (X) does not
have any automorphisms other than those lifted from X.

2. THE CONSTRUCTION

In what follows, let K be an infinite field, not necessarily algebraically closed, and let K
be an algebraic closure. Where not otherwise qualified, a “variety” is a variety over K, and a
“point” is a K-point. Let N'(X)r = N'(X) ® R denote the finite-dimensional vector space
of numerical classes of divisors on X. Given a subvariety V' C X, write

Auwt(X; V) = {¢ € Aut(X) : (V) = V}.

Step 1: Automorphisms of surfaces with prescribed action on a curve

If 21, 29, 23, and 24 are four distinct points in P!, there is a unique involution ¢ : P — P!
with 2(21) = 29 and u(z3) = 24, which is defined over K. Figure || shows how this map can be
constructed geometrically when P! is embedded as a conic in P2, This involution is defined
even if z; = z5 or z3 = z4; in that case, the construction is the same except that we draw the
tangent to the conic at z; or z3. However, if char K = 2 and both z; = 25 and z3 = 24, the
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projection from ¢ induces an inseparable degree 2 morphism P! — P!; we will take care to
avoid this situation.

q
el
z9 ’

FIiGURE 1. Geometric construction of 2

Given an ordered 5-tuple P = (py, p2, p3, pa, ps) of distinct points in P!, let T'p C PGLy(K)
be the subgroup generated by the involutions #;; 5 : P* — P! satisfying #; (p;) = p; and
1.k (Dr) = pi, where 4, j, k and [ are distinct indices. For a given configuration P, there are
15 such involutions, and the group I'p depends only on the unordered set of points p;.

Our starting point is a classical construction, a de Jonquieres involution of degree 3 [12]
§7.2.3]. Suppose that C' C P? is a smooth plane cubic, and that p is a point on C. Given a
point z in P2, let £,, be the line connecting p and z. Over K, this line meets C at p and two
additional points x and y. If x and y are distinct, there is a unique involution of /%, defined
over K, which fixes the points x and y. Then #(z) is defined to be the image of z under this
involution. In what follows, we will use a different description of one such map, in which the
cubic does not explicitly appear.

Theorem 3. Suppose that P is a configuration of five distinct points in P*. There exists a
smooth rational surface S containing a smooth rational curve C' =2 P! such that

(1) the group Aut(S) is discrete;

(2) the subgroup Aut(S;C) has finite index in Aut(S);

(3) the image of p : Aut(S;C) — Aut(C) contains I'p;

(4) if ¢ : S — S is an automorphism fixing a point on C, then ¢(C) = C.

Proof. Let Lo,...,Ls be six lines in P? intersecting at 15 distinct points p;; = L; N L;,
and suppose that for any partition of the lines into three sets of two, the three pairwise
intersections are not collinear. Let S be the blow-up of P? at these 15 points, with exceptional
divisor E;; over p;;. Write R for a partition of the six lines into three sets of two, with one of
the three pairs distinguished. Given such a labelling, denote by L and Lp 2 the members
of the distinguished pair, by Lz, and L, the members of a second pair, and by Lp ; and
L’ 5 those of the third. Let or be the point of intersection of Lr; and Lgs.

If £ is a general line passing through the point og, it meets the lines Lf |, L’RQ, L}’m, and
L7 5 at four distinct points. There is a unique involution on ¢ which exchanges the first and
second points, and exchanges the third and fourth points. We define 15 : P? —-» P? to be the
birational involution defined in this way on any line ¢ through ogr. Under the assumption
that three pairwise intersections of the L; are never collinear, we will see that this map has
five points of indeterminacy, op itself and the four points q;; = L ; N L}, ;, where i and j are
either 1 or 2. For the lines between or and ¢;;, the construction in Figure (1| degenerates: two
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of the points (for example z; and z3) coincide, and the point ¢ in turn coincides with both.
In particular, it lies on the conic, and projection from ¢ does not yield a degree 2 morphism.

Let g : Sgp — P? be the blow-up at these five points. We argue next that 1 lifts to
a biregular involution of Sg; the strategy is to carry out the construction illustrated in
Figure 1| simultaneously for all lines in the pencil of lines through og. Projection from og
realizes Bl,,P? as a P'-bundle over P!, isomorphic to P(O @& O(1)). The blow-up Bl,,P?
then embeds in the P2-bundle P(€), where & = Sym*(O @ O(1)), and the image of a line
through og is a conic contained in the corresponding fiber of P(€) — P!. The four lines
L’ and L7 determine four sections of P(€) — P!, all with image contained in Bl,,P?. In
cach fiber F & P2, form the lines through L ; N F and L, N F, and through L% ; N F and
Ly, N F. Taking the fiberwise intersections of these lines, we obtain a section @ : P! P(&),
corresponding to the point ¢ of Figure [T}

The image of @ meets Bl,,IP? precisely in the four fibers where some L' ; and L ; intersect,
at the points g;;. Let @ C &€ be the subbundle corresponding to (). Fiberwise projection
from the image of () determines a morphism c : Blgp)P(€) — P(£/Q), where the image is a
P'-bundle over P'. Let Sg be the strict transform of Bl,,P? on Blgp)P(€), so that Sg is
isomorphic to the blow-up of P? at the five points o and ¢;;. Write E,, for the exceptional
divisor of Sk above og, and E,, for the exceptional divisors above the pomts Gij-

The restriction c|g, is a ﬁnlte morphism of degree 2; because the lines L | and L, are
distinct, as are L, and L ,, this morphism is separable (in fact, because of the hypothesis
that Lr1 N Lra, Ly N Ly, and L N L, are not collinear, the restriction to any fiber is
separable). The corresponding covering involution is precisely the map g, and so Sg provides
a resolution of this involution as claimed.

The map 1 preserves each of the lines Lg;, while exchanging the two lines L/, ; and the
two lines L” . It also preserves the pencil of lines through og and the canomcal Class Ksg,.
Note too that the image of Eg,, under ug is the strict transform of the line from og to ¢;;, with
class H — E,, — E,,.. This completely characterizes the action of 1}, : N'(Sg)r = N'(Sg)r,
which we record for later use. With respect to the basis given by H = 7*Op2(1), E,,, and
the E, ., the matrix for 43 is

302 1 1 1 1
2 1 -1 -1 -1 -1
. 1 -1 -1 0 0 0
'r 1 -1 0 -1 0 0
1 -1 0 0 -1 0
1 -1 0 0 0 -1

Observe next that i lifts to an involution on S, the surface obtained by blowing up all 15
points of intersection of the six lines L;. The five points Lp 1N Lg and L ;N LY ; are already
blown up on Sg. The eight points Lr; N L ; and Lg; N Ly ; are exchanged in four pairs of
two, so 1 lifts to the blow-up at these eight additional points (for example, Lr; N L}y is
exchanged with Lr; N L,). At last, the two points L ; N Lz, and L, N L}, are both
fixed, and so 15 lifts to the blow-up S

The rational surface S claimed by the theorem can now be constructed by choosing the
lines in special position. Fix a line C' = Ly C P?, and choose five other lines L, ..., Ls so
that L; N C' = p;, where the p; are the points of the configuration P. Since the field K is
infinite, for general choices of the L;, the fifteen points of intersection are distinct and three
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pairs of lines never have collinear intersections. The involution ;; : C' — C' is realized as
the restriction of 15 : S — S for some labelling R: let m be the unique index which does not
appear among i, j, k, and [, and take Lry = C, Lpy = Ly, L'y = L;; Lpy = Lj, Ly, = Ly,

/1{2,2 = L;. The involution ;5 on C' is then the restriction of the automorphism 1z : S — S
fixing C, proving claim (3).

To check (1), note that a section in HY(S,TS) descends to a section of HY(P? TP?)
vanishing at the fifteen blown-up points, and Aut’(S) can thus be identified with an algebraic
subgroup of Aut(P?), fixing the points. Since four of the points are linearly general, such a
group is trivial. It follows that H°(S,T'S) = 0 and Aut®(S) is trivial.

We next check claim (2), that the subgroup Aut(S; C) has finite index in Aut(S). This
is a consequence of the fact that S is a Coble rational surface [13], [7]: the linear system
|-2K | has a unique element, the union of the strict transforms of the six lines L;. Indeed,
each line satisfies —2Kg - L; = —4, and so must be contained in the base locus of |-2Kg|. An
automorphism preserves the anticanonical class, so the six lines are permuted by any element
of Aut(95), giving rise to a map Aut(S) — Sg. The subgroup Aut(S;C) is the preimage of
the subgroup of permutations fixing ', and so of finite index.

Claim (4) follows similarly: any automorphism of S permutes the components of |—2Ks],.
Since these six curves are disjoint on S, if a point on C' is fixed by an automorphism ¢, it
must be that ¢(C) = C as well. O

Remark 1. Consider the four lines through the point pgs given by Lo, Ls, L(pos, p14), and
L(pos, pa3), which define four points in PT,, (P?) = P!. It will later be convenient to assume
that these points are distinct and there is no automorphism of this P! which fixes the first
two points while exchanging the third and fourth; this will be the case for general choices of

the five lines even after the intersections with Lq are prescribed.

Remark 2. For an alternative construction of the involutions iz, one can partition the six
lines L; into two sets of three, and consider the pencil of cubics spanned by the two triangles.
This determines an elliptic fibration S; — P!, where S} is obtained by blowing up the
nine points of the base locus of the pencil. Choosing a distinguished line from each set of
three gives a section of the fibration (provided by the exceptional divisor above the point
of intersection), and the fiberwise map z — —z with respect to this section determines a
biregular involution of Sg/, which can be checked to lift to S.

Step 2: Specializing the configuration P

We now exhibit configurations P = (py, p2, p3, ps, ps) of points in P! for which the group
['p contains two particular transformations with a common fixed point. Fix projective
coordinates on C', let the affine coordinate z represent the point [z, 1], and write oo for the
point [1,0].

Definition 1. A configuration P of five distinct points in P! is suitable if the group I'p

contains two elements
(1 a (b 0
T=\o 1) 77 \o 1)

(1) char K = 0 and b~! is not an algebraic integer;
(2) char K = p > 0 and b is not algebraic over F,,.

where a is nonzero and either



6 JOHN LESIEUTRE

This assumption means that the abelian group Z[ﬂ (in characteristic 0) or Fp[ﬂ (in
characteristic p) is not finitely generated.
Lemma 4.

(1) Suppose that K has characteristic 0. Then the configuration
(p17p2>P3>P4>P5) = (07 1,2,3, OO)

18 suitable, as I'p contains the two elements

() -6

(2) Suppose that K has characteristic p > 0 and is not algebraic over F,. Let t be an
element of K transcendental over ¥,,. Then the configuration
<p17p27p37p47p5) = (Oa 17 t,t+ 17 OO)

1s suitable, as I'p contains the two elements

G ()

Proof. We claim that in both cases we have T = 29435 0 21234 © 11345 and ¥ = 21534 © 25 24.
Indeed,
(224,35 O©112,34 © 113,45)(291) = (124,35 © %12,34)(]73) = Z24,35(1?4) = P2,
(224,35 ©1712,34 © Z1:‘;,45)(103) = (124,35 © 212,34)(]91) = Z24,35(292) = Pa,
(224,35 011234 © 213,45)(295) = (224735 o 212,34)(104) = Z24,35(193) = D5
In characteristic D, this y1€ldS (224735 0112340 213745)(0) = ]_, (224’35 012,34 © Z13’45)(t) =t+ ]_, and
(224,35 0 112,34 © 213,45 ) (00) = 00, and so the composition must be the automorphism 7 given by
z+ z+ 1. The same argument holds in characteristic 0, substituting 2 for ¢.
Similarly,
(215,34 o 215,24)(]91) = 115,34(175) = D1,
(215,34 o 215,24)(102) = 215,34(294) = Ps,
(215,34 o 215,24)(2?5) = Z15,34(101) = D5

In characteristic p, this map sends 0 to 0, 1 to ¢, and oo to 0o, so it must be the automorphism
~ given by z +— tz. The same argument again holds in characteristic 0 after substituting 2
for t. [

In what follows, we fix a suitable configuration P and let S be a surface satisfying the
conclusions of Theorem [3 so that the image of the restriction map p : Aut(S; C') = Aut(C)
contains the elements 7 and ~. Write p,, for the point on S corresponding to co in our
coordinates on C, and let U C PGLy(K) be the subgroup comprising matrices of the form

b 1)

which correspond to parabolic Mobius transformations z — z + a fixing co. The group U is
abelian, isomorphic to G,. Let

Gt =p Y U) = {¢ € Aut(S;C) : p(¢p) € U} C Aut(S;C)
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be the subgroup of Aut(S;C) containing automorphisms whose restriction to C' lies in U.
Lemma 5. The subgroup Gt C Aut(S; C) is not finitely generated.

Proof. Since U is abelian and p(G™) is contained in U, the group p(G™) is abelian as well.
For any positive n, the transformation

n n 1 ab™
’y OTO’Y = 0 1

is contained in U. Since 7 and 7 both lie in Im(p) C Aut(C') by the construction of Theorem 3]
the elements v~ o 7 0™ all lie in p(G™T), and so p(G™) has a subgroup isomorphic to either
Z[%] (in characteristic 0) or Fp[%] (in characteristic p). In either case, this group is not
finitely generated, by hypothesis on b. Since p(G™) is abelian and has a non-finitely generated
subgroup, it is not finitely generated either. A quotient of a finitely generated group is finitely

generated, and we conclude that G itself is not finitely generated. O

The following geometric characterization of elements of G will prove useful. Let
AS S —=95x%xS

denote the diagonal map.

Lemma 6. Suppose that ¢ : S — S is an automorphism fizing ps. Then ¢ lies in Gt if and
only if idg x¢ : S xS — 8§ x S fizes the tangent direction Tayp.)\(As(C)).

Proof. By (4) of Theorem [3] it must be that ¢(C') = C. An automorphism fixing C' and px
lies in G if and only if p., is a fixed point of ¢|c with multiplicity 2, which is the case if
and only if idg x¢ : § xS = S x S fixes Ag(pso) and the tangent direction Tay(p.)(As(C)),
so that (idg x¢)(Ag(C)) is tangent to the diagonal at Ag(pso)- O

Remark 3. Let 7 and 7 be automorphisms of .S which restrict to C' as 7 and -y, as constructed
in Theorem [3] Although the restrictions to C' of the automorphisms ji,, =5 ™ o 7 0 ™ and
[y =7 " oTo~"™ commute, these maps do not commute as automorphisms of S, and the
map p : Aut(S;C) — Aut(C) is not injective. For example, with v and 7 as in Lemma
the commutator [fig, fi1] is an automorphism of S which restricts to C' as the identity, and
a straightforward if somewhat tedious computation of the action of the involutions 2z on
N(S)gr shows if P is as in Lemma [4] the induced map [fig, fi1] : P? --» P? is a Cremona
transformation of degree 195,133 with first dynamical degree A\; =~ 60,313. This means that
the n'! iterate of the transformation [fig, fi;] has degree roughly A7. It seems conceivable that
GT is a free group on the countably many generators ji,,, though this is difficult to prove.

Remark 4. The kernel G of Aut(S;C') — Aut(C) is the subgroup of automorphisms which
fix C pointwise, including the maps [fi,,, fi,] of the previous remark. It seems likely that G
is not finitely generated; if this is the case, then by choosing a very general point ¢ on C,
we might obtain a rational surface S = Bl,S such that Aut(S’) is isomorphic to G and is
not finitely generated. However, it is not clear how to prove either that G is not finitely
generated, or that the blow-up does not admit automorphisms other than those lifted from S.

Step 3: A variety with non-finitely generated Aut(X)

We now construct a higher-dimensional variety X realizing G* as Aut(X). Although G*
is not the stabilizer of any closed subscheme of S, it is the stabilizer of a closed subscheme of
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S x S in the group of automorphisms of S x S of the form idg x¢: an automorphism ¢ lies in
G if and only if idg x¢ fixes both the point Ag(pso) = (Poo, Poo) and the tangent direction
Tas(pe)(As(C)) (here Ag is again the diagonal map). Our variety X will be realized as a
blow-up of S x S x T, where T is a surface of general type; taking the product with 7" makes
it simpler to control automorphisms of blow-ups.

We begin with a definition that will sometimes enable us to show that a blow-up Bly X
has no automorphisms except those lifted from X.

Definition 2. A smooth, projective variety X is P"-averse if every separable K-morphism
h : P& — Xg is constant.

The term “separably P"-averse” might be more appropriate, but we omit the modifier in
the interest of brevity. Note that if X is P"-averse, it is also P*-averse for any s > r. However,
the property of P"-averseness is not a birational invariant. For example, an abelian surface
S is Pl-averse, but the blow-up of S at a point s is not P'-averse: there is a nonconstant
morphism Plﬁ — Sk given by the inclusion of the exceptional divisor.

Lemma 7. Let X be a smooth, projective variety and let m:Y — X be the blow-up of X at
a smooth, equidimensional (but possibly non-connected) subvariety V', with exceptional locus
E. Suppose that ¥ 1Y — Y is an automorphism of Y with 1)(E) = E such that ¥|g permutes
the fibers of w|g. Then 1 descends to an automorphism ¢ : X — X with (V) = V.

Proof. The composition o ¢ contracts every fiber of 7|g. Since 7,0y = Oy, it follows
from the rigidity lemma that ¢ factors through 7, inducing a map ¢ : X — X [9, Lemma
1.15(b)]. An inverse to ¢ is obtained by applying the same argument to 7 o ¢~*. Then
o(V)=o¢(r(E)) =n(¢(F)) =7n(F) =V, and so the subvariety V is fixed. O

Lemma 8. Suppose that X is a smooth, P"1-averse variety of dimension n, and V C X is
a smooth, equidimensional subvariety of codimension r, with r > 1. Write m : Bly X — X for
the blow-up of V', with exceptional locus E. Then the map Aut(X;V) — Aut(Bly X) is an
1somorphism.

Proof. We first observe that any nonconstant morphism h : Pt ! — (Bly X)g% must have
image contained in a geometric fiber of 7|g_. Indeed, 7o h : P ! — Xg must be constant
since X is P"l-averse.

Suppose that ¢ : Blyy X — Bly X is an automorphism, and let A : P%’l — (Bly X)g be the
inclusion of a geometric fiber of 7| . Then ¢oh is a nonconstant morphism Pr- = Bly X)g,
and so must be the inclusion of some fiber of 7|p_. Thus ¢ permutes the fibers of 7|p_, and
so descends to an automorphism of X fixing 7(F) =V by Lemma U

Lemma 9.

(1) Suppose that X1 and Xy are P"-averse. Then X; x Xy is P"-averse.

(2) Suppose that X is P"-averse and V C X is a smooth, equidimensional subvariety of
codimension s < r. Then Bly X is P"-averse.

(3) Suppose that r > 2 and X is an r-dimensional variety which admits a surjective
morphism to a variety V with 1 < dimV < dim X. Then X is P -averse.

Proof. For (1), suppose that h : P = Xix X Xyx is a separable morphism. Then the
projections py o h: Pz = X, g and py o h : Pz = X, % must both be constant, so that A is
constant. For (2), let 7 : Bly X — X be the blow-up, and suppose that h : Pi. — X is a
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separable morphism. The map 7 o h must be constant, and so if A is nonconstant, its image
is contained in a fiber of 7| B These fibers are isomorphic to IP’SK_ ! and since s — 1 < r, the
map h must be constant. For (3), suppose that h : P — Xg is separable and nonconstant.
The composite j : P = Xg — Vg must be constant, and so the image of & is contained in
a fiber of j. But these fibers have dimension less than r, and so can not admit nonconstant
maps from Pr. O

We require one more simple lemma before proceeding to the construction.

Lemma 10. Suppose that X is a smooth projective variety with Aut(X) discrete. There
exists a smooth, geometrically connected divisor W C X for which Aut(X; W) is trivial.

Proof. Choose a very ample divisor Wy on X, and let VW denote the complete linear system
PH(X,Wy). Let Aut(X,W) C Aut(X) denote the set of automorphisms preserving W.
There is a homomorphism Aut(X, W) — PGL(H"(X,W,)), which has trivial kernel: if
¢: X — X lies in Aut(X, W) and ¢* acts trivially on H°(X,W,), then the restriction of ¢
to the image of X in PH?(X,W;)) is also the identity. Consequently Aut(X, W) is a closed
subgroup of PGL(H(X,Wy)). Since Aut(X) is assumed discrete, Aut(X; W) is finite, and
because the field K is infinite, a general element W of W is not fixed by any automorphisms.
Since K is infinite, by Bertini’s theorem there exists a W which is smooth and geometrically
connected. U

Lemma 11. There exists a smooth surface T over K for which:
(1) the group Aut(T) is trivial;
(2) there exists a K-point t on T';
(3) T is geometrically simply connected;
(4) T is not separably uniruled.

Proof. According to [I7, Table 1], the hypersurface T in P? defined by x{ + zox] + z125 +
174 + x5 is smooth and has trivial automorphism group in any characteristic other than
2 or 5. This surface has the K-point [0,1,0,0]. Since T is a smooth hypersurface in P3, it
follows from the Lefschetz hyperplane theorem [14, XII, Cor. 3.5] that T is geometrically
simply connected. At last, T is of general type, and hence is not separably uniruled.

In characteristic 5, we take T defined by 7+ zx8 + 125+ 2925 + x%, while in characteristic
2, the surface defined by xgr) + 23 + x5 + 2oz} + 1125 + L0235 + 25 suffices [17]. O

Note that if we work over K = C, then any very general hypersurface in P? of degree at
least 4 has the required properties.

Take Xg =5 x § x T. The variety X will be constructed by a sequence of four blow-ups
of Xy. In each case, the blow-up satisfies the hypotheses of Lemma [, so we may identify its
automorphism group with a subgroup of Aut(Xj).

Lemma 12. Let Xo =S x S xT. Fiz a point s on S and a divisor W on S with Aut(S; W)
trivial, as in Lemma[10, Choose three distinct smooth, geometrically connected curves Cf,
Cy, and C3 in T, and a point t on C3 which does not lie on Cy or Cs.

(1) The variety Xq is P"-averse for any r > 2. The automorphisms of Xq are of the form
Aut(S x §) x idr.

(2) Let w1 : X1 — Xq be the blow-up of Xy along s x S x Cy. The variety X, is P"-averse
for any r > 3. The automorphisms of Xy are all lifts of Aut(S;s) x Aut(S) x idy.
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(8) Let my : Xo — Xj be the blow-up along the strict transform of W X ps x Cs.
The variety Xo is P -averse for r > 4. The automorphisms of X are given by
idg X Aut(S; poo) X idr.

(4) Let w3 : X3 — Xy be the blow-up along the strict transform of poo X Poo X Cs.
Then X3 is P"-averse for r > 5, and the automorphisms of X3 are of the form
idg X Aut(S; pso) X idyp.

(5) Let E3 be the exceptional divisor of w3 : X3 — Xo. Then the strict transform of
Ag(C) x t meets E3 at a single point u. Let wy : X4 — X3 be the blow-up at u. The
automorphism group of Xy is isomorphic to idg x Gt x idrp.

Proof. We treat the blow-ups in order.

(1) To show that Xy is P"-averse for r > 2, it suffices to check that S and 7" are both
P2-averse, according to the first part of Lemma @ For T this follows since T is not separably
uniruled, while S admits a surjective morphism to a curve and so it is P%-averse by (3) of
Lemma, [9

Suppose that x : Xqg — X is an automorphism. Let p3 : Xy — T be the third projection.
We first claim that y must satisfy ps o x = p3. Indeed, consider the separable map ps o x :
Xo=85x8xT —T. Since S is rational, if this map does not factor through the projection
to T, then T is separably uniruled, contradicting the choice of T' from Lemma [11] Since
Aut(T) is trivial, the map y must preserve every fiber of p3, and so x : S x S x T"— T is an
automorphism defined over T

The group Aut(S x S) is discrete, since H(S x S, TS xTS) = H(S,TS)® H°(S,TS) = 0.
Consequently every automorphism of X is of the form ¢ x id, where ¢ is an automorphism
of § x S, and the group Aut(X,) can be identified with Aut(S x S) x idr.

(2) The center of the blow-up 7 has codimension 3, so it follows from part (1) and Lemmal9]
that X; is P™-averse for 7 > 3. According to Lemma [§ since X, is P2-averse, Aut(X;) is
the stabilizer of s x S x C in Aut(Xy), which is isomorphic to the stabilizer of s x S in
Aut(S x 9).

We claim that an element ¢ of Aut(S x §) fixes s x S only if it is of the form ¢; X ¢o,
where ¢ is in Aut(S;s) and ¢9 is in Aut(S). Indeed, if ¢ fixes one fiber of p; : S x S — S,
it must permute the fibers, and so induces an automorphism ¢; : S — S on the base with
pLo¢ = ¢1opi. Then (¢;" x idg) o ¢ is an automorphism of S x S defined over p;. This
must be given by a map idg x¢9 : S X S — S x S, since Aut(S) is a O-dimensional scheme,
and so ¢ is of the form ¢ X ¢o, where ¢, fixes s.

(3) Since X; is P -averse for r > 3 and Xj is the blow-up of X; at a center of codimension
4, it follows that X5 is P"-averse for r > 4. Lemma [§] implies that the automorphisms of X,
are all lifts of automorphisms of X; fixing W X p, x Cy, whether or not s lies on W. The
automorphisms of X are all of the form ¢; X ¢9 X idy, and since Aut(S; W) is trivial, this
stabilizer is exactly idg X Aut(S; pso) X idr.

(4) We have seen that X, is P*-averse, and X3 is the blow-up of X, at a center of
codimension 5. It follows that X3 is P"-averse for » > 5, and the automorphisms of X3
are lifts of automorphisms of X5 that fix p,, X ps X C3. Every automorphism of X fixes
Poo X Poo X C3, and so the automorphisms of X3 are again given by idg X Aut(S; ps) X idy.

(5) The centers of the blow-ups m; and 7y are both disjoint from the fiber S x S X ¢, since
t lies on neither C nor Cs, while the center of the blow-up 73 meets S x S x t at the single
point P X pPoo X t. As a result, Ag(C) x t meets F3 at one point u, as claimed; this point u
corresponds to the tangent direction of the diagonal embedding of C' at the point p.,. The
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restriction of w3 o 5 o m; to the strict transform of § x S x ¢t is the blow-up at the point
Poo X Poo X T

Since X3 is P°-averse and the center of w3 has codimension 6, Aut(X,) is isomorphic to
the stabilizer of u in Aut(X3). These are exactly the automorphisms idg x¢ X idy of X3 that
fix the tangent direction Tap..)(As(C)) x t. According to Lemma6] these are exactly the
lifts of automorphisms of the form idg x G x idy. O

This completes the construction.

Proof of Theorem[]. Let X = X, be as in Lemma [12] The variety X is smooth, projective
and geometrically simply connected, since it is a blow-up of S x S x T" where S is a rational
surface and T is smooth and geometrically simply connected. The group Aut(X) is isomorphic
to G*, which is not finitely generated according to Lemma [5} O

3. A VARIETY WITH MANY FORMS

We now show how the construction of the previous section can be adapted to give an
example of a K-variety with infinitely many L/K-forms even when L/K is a finite extension.

If L/K is a Galois extension, a standard descent argument shows that the L /K-forms of
X are classified by the Galois cohomology H'(Gal(L/K), Aut(X7y,)) [19, IT1.§1, Proposition
5]. In many settings, this set is finite. Indeed, according to a theorem of Borel and Serre [4]
Théoreme 6.1], if K = R and mo(Aut(X¢)) is an arithmetic group, then the set of C/R-forms
of X is finite; this includes nearly all varieties for which the group of automorphisms is known.
The set of C/R-forms is also finite when X is a minimal surface of non-negative Kodaira
dimension [10, Appendix D, pg. 233].

Our example of a variety with infinitely many forms is obtained by an additional blow-up
of the variety X constructed in Section [2|

Lemma 13. Suppose that L/K is a separable quadratic extension, and that X is a smooth,
projective variety over K. Suppose that there is a finite-index subgroup G' C Aut(Xy,) which
contains infinitely many conjugacy classes of involutions and on which Gal(L/K) acts trivially.
Then the variety X has infinitely many L/K-forms.

Proof. The forms of X are classified by the set H'(Gal(L/K), Aut(Xy,)). Because the action
of Gal(L/K) on G’ is trivial, H'(Gal(L/K), G") is the set of conjugacy classes of involutions
in G, which is infinite by assumption. There is an exact sequence

H°(Gal(L/K), Aut(Xy)/G") — H'(Gal(L/K),G") — H'(Gal(L/K), Aut(Xy)).

Here Aut(Xy,)/G’ should be interpreted as the set of left-conjugacy classes of G’ rather than
a group, but the sequence is nevertheless exact [19, I11.§5, Proposition 36]. Since G’ has finite
index in Aut(Xp,), the leftmost set is finite, whence H'(Gal(L/K), Aut(Xy,)) is infinite, as
claimed. U

Remark 5. Concretely, suppose that L = C and K = R, and that Aut(X¢) = Aut(Xg). If
¢ : X¢ — Xc is the antiholomorphic involution determined by complex conjugation, then
Xgr can be recovered as the fixed locus of ¢. For any involution ¢ in Aut(Xg), the composite
c o ¢ defines another antiholomorphic involution, giving rise to another real form on the fixed
locus. Two involutions ¢ and ¢ define equivalent real structures on X¢ if and only if they
are conjugate in Aut(Xgr).
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Our argument will rely on some specific details from the construction in the proof of
Theorem [3} for the remainder of Section [3] the surface S is taken to be the specific example
constructed in the proof of Theorem rather than an arbitrary surface satisfying its
conclusions.

Fix the configuration P of Lemma {| (depending on the characteristic), and maintain the
notation introduced in the proof of Theorem [3] labelling the six lines as Ly, ..., Ls, with L
the curve C. Let p;; = L; N L;, and write p; for the point py;. The lines L; are chosen so that
the intersections of Ly, Lo, L3, Ly and Ls with Ly (with respect to affine coordinates) are
given by

(0,1,2,3,00) if charK = 0,

(P, P2, 3, 1, P5) = {(0, 1,t,t+1,00) if charK > 0.

We will consider the following subgroups of Aut(S;C):

(1) GT C Aut(S;C), the subgroup of automorphisms restricting to Lo as z — z + a;

(2) G* C Aut(S;C), the subgroup of automorphisms restricting to Lg as either z — 2 +a
or 2 — —2 + a;

(3) G C G#, the subgroup of automorphisms which fix the two lines Ly and Ls as well
as the curves L; U Ly and Ly U Ls.

Recall that every automorphism of S must permute the six lines L; since their union is the
unique member of |-2Kg|; an automorphism lies in GZ, if it fixes Ly and L5 and either fixes
or exchanges the members of the two other pairs. In particular, GZ has finite index in G*.

Let sg : § — S be the involution of S determined by the marking with Lg, L5 the
distinguished pair, and L, L4 and Lo, L3 the other two pairs: the automorphism sq fixes the
two distinguished lines Ly and Ls, and exchanges L, with Ly and Lo with Ls. This map
restricts to Ly in such a way that it exchanges p; with ps and ps with ps; thus the restriction
is an involution z — ¢ — 2z, where ¢ = 3 if char K =0 or ¢ =¢ + 1 if char K > 0. It follows
that sg lies in the subgroup GZ,.

Figure [2| shows the important curves in P? acted on by the map sy. The two dashed lines
are exchanged, as are the two heavily dotted lines. The pencil of lines passing through the
point ps is preserved by sg. The strict transforms of the two lightly dotted lines through ps
are (—1)-curves on S with classes H — Egs — E14 and H — Egs5 — Esa3, which will appear later.
By the generality assumption of Remark [T} these two lines are distinct.

FIGURE 2. The involution sg
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Let 5y : X3 — X3 be the automorphism of X3 induced by idg xsg x idy. Observe that if
char K # 2, the point 5¢(u) is distinct from w: idg xs¢ acts on Tayp.)(S x S) by the linear
transformation (§ ), which fixes Tay(p..)As(C) if and only if char K = 2.

We now construct a variety dominating X and on which §y lifts to an automorphism. If
char K # 2, take X’ to be the blow-up of X at the two points u and 5¢(u). If char K = 2,
take X’ = X; the involution §; already lifts to an automorphism of X and no blow-up is
needed.

Lemma 14. The variety X' satisfies Aut(X') = G*.

Proof. In characteristic 2, G = G* and we have already seen that Aut(X) = G, so we may
assume that char K #£ 2. According to Lemma because X3 is Po-averse, the automorphisms
of X’ are the stabilizer of u U §y(u). These are precisely the automorphisms S which are of
either the form z +— 2 4+ a or z — —2z + a, as required. O

Let ¥ : S — S be an automorphism restricting to Ly as v = (z +— bz), where b is as
in Lemma [4 if char K = 0 then b = 2, while if char K > 0, then b = ¢. The elements
Sp =7 "o sgoA™ are all involutions, and the restriction of s, to Ly is the map z — ¢cb™" — 2,
which lies in G*. Although the maps s, are conjugate in Aut(S), they are conjugate by
powers of 4, and 7 is not contained in G*. We now work to show that the s, indeed define
distinct conjugacy classes in the subgroup G*.

Lemma 15. The (+1)-eigenspace of s : N*(S)r — N'(S)r has dimension 8. Moreover,
the siz classes

H FEy Ey By Eou Eos Eio Eis By Eis Eos Eay Eos Esq FEss Eys

R, = 0-1-1 0 -1-1-1 0-1 0-1 0-1 0 -1),
Ry = -1 0 0-1-1-1-1 0 0 O0-1 -1 -1 -1 ,
R3 = )

-1 0 0-1-2-1-1 0-1 -2 -1 0-1 0 -
0 -1 -1 0 -3 -1 -1 -2 -1 -2 -1 0O -1 0 -
5-1.. 0 0 -1 -3 -1 -1 -2 0 -2 -1 -1 -1 -1

Ot = = W W
=}
|
—_

Ay

oy
S
I
N N N N N

5
Re =

define elliptic fibrations on S which are invariant under sg.

1
0
-1 0 -2 -1 -1 -2 0 0 -1 -1 -1 -1 O
1
1
0

Proof. The dimension of the (41)-eigenspace can be computed based on the geometric
description of sy given in the proof of Theorem [3 The matrix ¢}, for the action of s on a
five-point blow-up Sg is given in the proof of Theorem [3[ and has a two-dimensional (+1)-
eigenspace. The other eleven exceptional divisors arise as four pairs exchanged by sj, and
two divisors fixed by sj. The four pairs each contribute a one-dimensional subspace to the
(+1)-eigenspace, as does each invariant divisor. The total dimension of the (+1)-eigenspace
is then 2+ 4 +2 =8.
Each R; can be written as a sum of effective classes in two distinct ways:

Ry = Lo+ Ly + Ly +2Ey + 2Ey + 2E4
= Lo+ L+ Ly + 2FE53 + 2E55 + 2F55
Ro=11+Ly+ Ls+2FE1, + 215+ 2E,5
= Lo+ Lo + L3 + 2Ep + 2Ep3 + 2Es3
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R3 = Lo+ L3+ 2E53 + 2(H — Egps — E14)
= Lo+ Ly + Ly+ Ls + 2Eg + 2Eoy + 2E15 + 2Ey5
Ri=Li+ Ly + 2By + 2(H — Egs — Es3)
= Lo+ Lo+ L3+ Ls + 2E02 + 2FEo3 + 2Ea5 + 2E3;5
Rs = Lo+ Ly + L5 + 2Es5 + 2E35 + 2(H — Eos — E14)
=Lo+ L1+ Ly +2Eg + 2Eo + 2(H — Egs — Ea3)
Rg = Lo+ Lo+ Lg + 2En + 2Eo3 + 2(H — Eos — E4)
=Ls+ L1+ Ly + 2F 15 + 2Es5 + 2(H — Egs — Fa3)

In each case, the two effective representatives have disjoint support, and so each R; determines
a basepoint-free linear system on S. For each i we have R; - R; =0 and Kg - R; = 0, so these
define elliptic fibrations with the given divisors as reducible fibers.

It is also necessary to check that the R; are invariant under sj. In each case, the geometric
description from the proof of Theorem [3| shows that sy permutes the components of the given
reducible fibers. For example, the invariance of R; follows from the facts that so(Lg) = Lo,
S()(Ll) = L4, So(E()l) = E04, and 80(E14> = E14. O

Lemma 16. The class H — Eys is the unique class D in N'(S)r for which:
(1) D is contained in the (+1)-eigenspace of the involution s} : N'(S)r — N'(S)r.
(2) DL():DL5:0 andDleDngDngDL4:1
(3) D is nef.
(4) D> =0

Proof. The linear system H — Fy5 contains the strict transforms on S of the pencil of lines
through pgs. Since this pencil is preserved by sy and the linear system on S is basepoint-free,
the claimed properties follow for the class H — Eys.

We next check that there are no other classes with these four properties. Suppose that
D is such a class, and let D' = D — (H — Eys). Then D’ lies in the (+1)-eigenspace of sg,
and D' - L; = 0 for each L;; the set of D’ satisfying these hypotheses is a linear subspace of
NY(S)R.

Since Ly — L4 and Ly — L3 lie in the (—1)-eigenspace, the space of D’ which lie in the
(41)-eigenspace and satisfy D’ - L; = 0 for each i is 4-dimensional. Each of the six classes R;
of Lemma (15| lies in this space, and so a basis is provided by R, Ry, R3, and Ry4; the other
rays satisfy Ry = R3 + Ry — Ry and Rg = R3 + Ry — R;.

We wish to know when the class D = (H — Eo5) + a1 Ry + agRy + azRs + a4 Ry is nef.
Intersecting with the eight effective classes

E147 E237 E357 E017
H — Fys — Eg, H — Eos — Eas, Es, Eopa,
we obtain the eight inequalities
az > 0, ag > 0, as +asz > 0, as +aq > 0,
a1 +as+ays >0, a;+ay+a3>0, a;+ag >0, a, +az >0,

which all must hold if D is nef. Summing the eight inequalities we find that a; +as+asg+as > 0
with equality only if the left side of each is 0; it follows that a; + as + a3 + a4 = 0 only if
each a; is 0. Any nonzero (ay, as, as, ay) satisfying the inequalities is thus a positive multiple
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of a solution with a; 4+ as + ag + a4 = 1. Substituting a; = 1 — as — az — ay4, the four columns
above yield the four constraints:

0<az3<1, 0<ay4<1, —-az3<ay<1l-a3 —az<ay;<1-a.

These inequalities on (az, ag, as) determine a compact three-dimensional polyhedron with six
vertices (ag, as, aq) = (0,0,0),(1,0,0),(0,1,0),(0,0,1), (—1,1,1),(0,1,1). The set of solutions
to the original inequalities is then the four-dimensional cone spanned by the six classes

(a17a27a3>a4):(1707070)7 <0717070)7 (0707170)7 (0707071>7 (05_17171>7 <_1>05171>

The corresponding classes a; Ry + as Ry + azR3 + ayRy in N'(S)g are precisely Ry, Ro, R,
Ry, =Ry + R3 + Ry = Rs and —R; + R3 + Ry = Rs.

As a result, the set of D satisfying hypotheses (1)—(3) is contained in the cone given by
divisors of the form (H — Eps) + 2?21 ¢;R; with ¢; > 0. Since (H — Eos) - R; = 2 for each
1 <4 <6, while R;- R; >0 for any i and j, and (H — Eps)* = 0, we find that

((H — Eos) + cz-RZ) >0,

i=1
with equality if and only if ¢; = 0 for each ¢, so that D = H — FEys. OJ
Lemma 17. The centralizer of sy in G=, is the two-element group {idg, so}.

Proof. Suppose that ¢ : S — S is an element of GZ commuting with so. Then ¢* : N}(S)g —
N'(S)r must preserve the (+1)-eigenspace of s%, and so ¢*(H — Eps) lies in this eigenspace
as well. If ¢ lies in GZ, then the intersection property (2) must be satisfied by ¢*(H — Egs).
Since ¢* also preserves the nef cone and the intersection form, ¢*(H — Ey;) in fact satisfies the
hypotheses (1)—(4) of Lemmal[l6] It then follows from the lemma that ¢*(H — Egs) = H — Eos
in N*(S)g, and since Pic’(S) is trivial, that ¢ must preserve the class H — Eps in Pic(S).
As a result, ¢ factors through the map A : S — P! given by the basepoint-free linear system
|H — Eos).

In particular, ¢ permutes the singular fibers of A\. The fibers are the preimages on S of
the lines in P? passing through the point pys, and the singular fibers are precisely those
corresponding to lines which pass through pgs and any of the other 14 points which are blown
up on S. Eight of those points lie on the two lines Ly and Ls; the other six are the lines
through the point pgs and a point p;; for which neither ¢ nor j is equal to 0 or 5. These six
singular fibers are each unions of two (—1)-curves, with classes H — Eys — E;; and E;;, arising
as the strict transform of the line itself, and as the exceptional divisor of the blow-up.

Since by assumption ¢ lies in the subgroup GZ, it fixes the two curves Ly and Ls and
either fixes or exchanges the members of the pairs L, Ly and Lo, L3. It must map F4 to
another so-invariant (—1)-curve contained in a fiber of A that has intersection 1 with both L,
and Ly, and 0 with Ly and L3. From the description of the preceding paragraph, the only
two such curves are Ey4 itself and the strict transform of the line from pgs to ps3, which has
class H — Eys — Eb3. However, under the generality hypothesis of Remark [1} there is no map
that fixes Ly and L5 while exchanging the fibers containing these curves; consequently each
of these fibers must be mapped to itself. This implies that ¢ fixes four fibers of the map A,
and since the base is P!, that ¢ maps every fiber of A to itself.

Replacing ¢ with ¢ o sq if necessary, we obtain an element commuting with sy which fixes
the four curves Ly, Ls, L1, and L4, and either fixes the two curves Ly and L3 or exchanges
them.
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Suppose for now that ¢ exchanges the two sections Ly and Ls. The fibers of A are preserved,
and so ¢(F12) must be either Fis or the curve of class H — FEos — E15. We have

Ly - ¢(Er2) = ¢(Lh) - ¢(Er2) = Ly - Erp = 1,
Ly - ¢(Er2) = ¢(Ls3) - 9(E12) = L3 - E12 = 0.

Neither F15 nor H — Eys — E15 has the required intersection properties for ¢(FEjs): we have
L2 . Elg = ]_, while L1 . (H — E()5 - ElZ) = 0. We conclude that ¢(L2) = L2 and ¢(L3) = L3.

Thus ¢ must commute with the projection A and fix the four sections Ly, Lo, L3, and Ly.
A general geometric fiber F' of X is a rational curve in the linear system |H — Eys|. The map
¢ fixes the four points of intersection of F' with the sections listed, and so ¢|r must be the
identity map. Since ¢ fixes a Zariski dense set of points on Sg, it must be the identity. As we
may have previously replaced ¢ with ¢ o sy, we conclude that the centralizer is {idg, so}. O

Corollary 18. The group GZE, contains infinitely many conjugacy classes of involutions.

Proof. Let 4 be an automorphism of S restricting to z +— bz on Ly. Since any automorphism
of S permutes the six lines, there exists some N > 0 for which the iterate ¥ maps each of
the six lines L; to itself. The map sy, = 7 V" 0 59 0 ¥V is an involution which restricts to
Loy as z — cb™™" — 2z, and since sy, induces the same permutation of the L; as does sg, it
lies in the subgroup G=.

We claim that no two distinct sy, and sy, are conjugate by an element of GZ. It suffices
to show that sq is not conjugate to any sy,. If sy, =5 V05509V = aosyoa~? for some a,
then ¥V™ o & commutes with sy. According to Lemma either o = 4~ V" or o = Y V" o 5.
Since neither 5" nor 47" o 4 is contained in GZ, for any nonzero value of n, the claim

follows. O
Lemma 19. Every automorphism of Xy is defined over K.

Proof. Since Sy, is constructed by blowing up K-points in P2, its Picard group is generated
by the classes of K-divisors. The Galois action on Pic(Sy,) is therefore trivial, and preserves
the class of any (—1)-curve. Because each (—1)-curve is rigid in its numerical class, these
curves are invariant under the conjugation map c: Sy, — Str.

Suppose that ¢ : X1 — X, is any automorphism. Then ¢ is induced by some automorphism
¥ Sy, — S, and cotoc: Sy, — Si is an automorphism which has the same action as 1) on
the class of any (—1)-curve. Since Pic(S) is generated by classes of (—1)-curves defined over
K, ¢ and co 1) o ¢ have the same action on Pic(S). As H°(Sp,TS) = 0, these two maps
must coincide, so that co1 =1 o ¢, and 1 is defined over K. U

Proof of Theorem [3. We have Aut(X}) = GF, and G is a finite index subgroup of G* on
which Gal(L/K) acts trivially. By Lemma GZ contains infinitely many conjugacy classes
of involutions, and Theorem [2| then follows from Lemma U

4. ACKNOWLEDGEMENTS

[ am deeply grateful to Igor Dolgachev for a number of discussions related to this problem.
I also thank the referees, whose suggestions have significantly improved both the results and
the readability of this paper. A number of people made useful comments on an earlier version,
including Serge Cantat, Izzet Coskun, Jeff Diller, Daniel Litt, James M°Kernan, Roberto
Svaldi, and Burt Totaro.



A NON-FINITELY GENERATED AUTOMORPHISM GROUP 17

The participants in the MathOverflow thread [I] provided useful context, and I had
useful discussions with Piotr Pokora on these rational surfaces. The SageMath system
was invaluable for making many of the computations [II]. I thank the UIC Mathematical
Computing Laboratory for computer time.

This material is based upon work supported by the NSF RTG grant No. DMS-1246844. Any
opinions, findings and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

1. Various authors, Finiteness  property  of  automorphism  scheme, MathOverflow,
URL:http://mathoverflow.net/q/22211 (version: 2016-08-25).
2. Arthur Baragar, Automorphisms of surfaces in a class of Wehler K3 surfaces with Picard number 4,
Rocky Mountain J. Math. 46 (2016), no. 2, 399-412.
3. Jérémy Blanc and Adrien Dubouloz, Affine surfaces with a huge group of automorphisms, Int. Math. Res.
Not. IMRN (2015), no. 2, 422-459.
4. A. Borel and J.-P. Serre, Théorémes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39
(1964), 111-164.
5. Michel Brion, On automorphisms and endomorphisms of projective varieties, Automorphisms in birational
and affine geometry, Springer Proc. Math. Stat., vol. 79, Springer, Cham, 2014, pp. 59-81.
6. Serge Cantat, Dynamics of automorphisms of compact complezr surfaces, Frontiers in complex dynamics,
Princeton Math. Ser., vol. 51, Princeton Univ. Press, Princeton, NJ, 2014, pp. 463-514.
7. Serge Cantat and Igor Dolgachev, Rational surfaces with a large group of automorphisms, J. Amer. Math.
Soc. 25 (2012), no. 3, 863-905.
8. Serge Cantat and Abdelghani Zeghib, Holomorphic actions, Kummer examples, and Zimmer program,
Ann. Sci. Ec. Norm. Supér. (4) 45 (2012), no. 3, 447-489.
9. Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001.
10. A. Degtyarev, 1. Itenberg, and V. Kharlamov, Real Enriques surfaces, Lecture Notes in Mathematics, vol.
1746, Springer-Verlag, Berlin, 2000.
11. The Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.6), 2017,
http://www.sagemath.org.
12. Igor V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, 2012.
13. Igor V. Dolgachev and De-Qi Zhang, Coble rational surfaces, Amer. J. Math. 123 (2001), no. 1, 79-114.
14. Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorémes de Lefschetz locaux
et globauz (SGA 2), North-Holland Publishing Co., Amsterdam; Masson & Cie, Editeur, Paris, 1968,
Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics, Vol. 2.
15. A. E. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and
geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc.
Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3-21.
16. B. Mazur, On the passage from local to global in number theory, Bull. Amer. Math. Soc. (N.S.) 29 (1993),
no. 1, 14-50.
17. Bjorn Poonen, Varieties without extra automorphisms. III. Hypersurfaces, Finite Fields Appl. 11 (2005),
no. 2, 230-268.
18. , Automorphisms mapping a point into a subvariety, J. Algebraic Geom. 20 (2011), no. 4, 785-794.
19. Jean-Pierre Serre, Galois cohomology, english ed., Springer Monographs in Mathematics, Springer-Verlag,
Berlin, 2002, Translated from the French by Patrick Ion and revised by the author.
20. Hans Sterk, Finiteness results for algebraic K3 surfaces, Math. Z. 189 (1985), no. 4, 507-513.
21. Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Etudes Sci. Publ. Math. (1977),
no. 47, 269-331 (1978).
22. Burt Totaro, Algebraic surfaces and hyperbolic geometry, Current developments in algebraic geometry,
Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 2012, pp. 405-426.




18 JOHN LESIEUTRE

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE7 UNIVERSITY OF ILLINOIS AT
CHICAGO, CHICAGO, IL 60607
Email address: jdl@uic.edu



	1. Introduction
	2. The construction
	Step 1: Automorphisms of surfaces with prescribed action on a curve
	Step 2: Specializing the configuration P
	Step 3: A variety with non-finitely generated `3́9`42`"̇613A``45`47`"603AAut(X)

	3. A variety with many forms
	4. Acknowledgements
	References

