

A PROJECTIVE VARIETY WITH DISCRETE, NON-FINITELY GENERATED AUTOMORPHISM GROUP

JOHN LESIEUTRE

ABSTRACT. We construct a projective variety with discrete, non-finitely generated automorphism group. As an application, we show that there exists a complex projective variety with infinitely many non-isomorphic real forms.

1. INTRODUCTION

Suppose that X is a projective variety over a field \mathbf{K} , with $\overline{\mathbf{K}}$ an algebraic closure. The set of automorphisms of X can be given the structure of a \mathbf{K} -scheme by realizing it as an open subset of $\text{Hom}(X, X)$. In general, $\text{Aut}(X)$ is locally of finite type, but it may have countably many components. Write $\text{Aut}^0(X)$ for the connected component of the identity, and $\pi_0(\text{Aut}(X)) = (\text{Aut}(X)/\text{Aut}^0(X))_{\overline{\mathbf{K}}}$ for the group of geometric components. When \mathbf{K} is the field of complex numbers, $\pi_0(\text{Aut}(X))$ is simply the group of components of $\text{Aut}(X)$, sometimes denoted $\text{Aut}(X)^\sharp$. We will say that the group of automorphisms of X is *discrete* if $H^0(X, TX) = 0$, which implies that $\text{Aut}^0(X)$ is trivial.

Examples.

- (1) Let $X = \mathbb{P}^r$. Then $\text{Aut}(X) \cong \text{Aut}^0(X) \cong \text{PGL}_{r+1}(\mathbf{K})$, and $\pi_0(\text{Aut}(X))$ is trivial.
- (2) Let E be an elliptic curve over \mathbf{K} . Then $\pi_0(\text{Aut}(E \times E))$ contains $\text{GL}_2(\mathbf{Z})$ and hence is an infinite group.
- (3) Let X be a very general hypersurface of type $(2, 2, 2)$ in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, with $\mathbf{K} = \mathbf{C}$. Then X is a K3 surface, and the covering involutions associated to the three projections $X \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ generate $\pi_0(\text{Aut}(X)) \cong \mathbf{Z}/2\mathbf{Z} * \mathbf{Z}/2\mathbf{Z} * \mathbf{Z}/2\mathbf{Z}$ [6].

According to a result of Brion [5], any connected algebraic group over a field of characteristic 0 can be realized as $\text{Aut}^0(X)$ for some smooth, projective variety. In contrast, very little seems to be known in general about the component group $\pi_0(\text{Aut}(X))$.

Our first result is the following.

Theorem 1. *Suppose that \mathbf{K} is a field of characteristic 0, or that \mathbf{K} is a field of characteristic $p > 0$, not algebraic over \mathbf{F}_p . Then there exists a smooth, geometrically simply connected, 6-dimensional, projective variety X over \mathbf{K} for which $\pi_0(\text{Aut}(X))$ is not finitely generated.*

The question of finite generation of $\pi_0(\text{Aut}(X))$ has been raised several times in various arithmetic [16, 1] and geometric [5, 8, 22] contexts.

The automorphism group owes its arithmetic interest in part to its close relation with the forms of a variety over extension fields. If X is a variety over a field \mathbf{K} , and if \mathbf{L} is a Galois extension of \mathbf{K} , then an \mathbf{L}/\mathbf{K} -form of X is a variety X' over \mathbf{K} for which $X_{\mathbf{L}} \cong X'_{\mathbf{L}}$. The set of \mathbf{L}/\mathbf{K} -forms of X is in bijection with the Galois cohomology set $H^1(\text{Gal}(\mathbf{L}/\mathbf{K}), \text{Aut}(X_{\mathbf{L}}))$, and we will construct a variety with infinitely many \mathbf{L}/\mathbf{K} -forms by exhibiting a variety for which $\text{Aut}(X_{\mathbf{L}})$ is pathological.

Theorem 2. *Suppose that \mathbf{K} is a field of characteristic 0, or that \mathbf{K} is a field of characteristic $p > 0$, not algebraic over \mathbf{F}_p . Let \mathbf{L}/\mathbf{K} be a separable quadratic extension. Then there exists a 6-dimensional, projective \mathbf{K} -variety X' with infinitely many \mathbf{L}/\mathbf{K} -forms.*

In the case $\mathbf{K} = \mathbf{R}$ and $\mathbf{L} = \mathbf{C}$, we obtain an example of a variety with infinitely many non-isomorphic real structures.

The component group $\pi_0(\mathrm{Aut}(X))$ is an algebraic analog of the mapping class group $\pi_0(\mathrm{Diff}(M))$ of a smooth manifold M . In general, the mapping class group is not finitely generated, with an example provided by tori in dimension at least five [15]. However, according to a theorem of Sullivan, if $\dim M \geq 5$ and M is simply connected, then $\pi_0(\mathrm{Diff}(M))$ is finitely generated [21]. This contrasts with our example, which is simply connected and has real dimension 12 if $K = \mathbf{C}$.

The group $\pi_0(\mathrm{Aut}(X))$ is always finitely generated in a number of simple situations, although even then the group can be quite complicated. If X is a K3 surface, the group of automorphisms is always finitely generated [20], but there are examples in which the group of automorphisms is not even commensurable with an arithmetic group [22, Corollary 6.2]. Some other interesting automorphism groups of K3 surfaces have been studied by Baragar [2].

If X is not projective, the group of automorphisms may not even have the structure of a locally finite type scheme. Blanc and Dubouloz have exhibited affine surfaces over any uncountable field for which the normal subgroup $\mathrm{Aut}(S)_{\mathrm{alg}}$ of $\mathrm{Aut}(S)$ generated by all algebraic subgroups can not be generated by any countable family of these subgroups, and for which $\mathrm{Aut}(S)/\mathrm{Aut}(S)_{\mathrm{alg}}$ contains a free group on uncountably many generators [3].

Before giving our example, we sketch the technique. If X is a variety and Z is a closed subscheme of X with $\mathrm{codim} Z > 1$, then the automorphisms of X that lift to automorphisms of the blow-up $\mathrm{Bl}_Z(X)$ are precisely those that map Z to itself (not necessarily fixing Z pointwise). Our approach, roughly speaking, is to find a variety X with a subscheme Z so that the stabilizer $\mathrm{Stab}(Z) \subset \mathrm{Aut}(X)$ is not finitely generated, and then to pass to the blow-up $\mathrm{Bl}_Z(X)$ to obtain a variety realizing $\mathrm{Stab}(Z)$ as an automorphism group. There are three main difficulties. The first is to find X and Z for which the stabilizer of Z in $\mathrm{Aut}(X)$ is not finitely generated. The second is to prove it: in general it is very difficult to be sure that one knows the full group $\mathrm{Aut}(X)$ (cf. [18]). The third is to ensure that $\mathrm{Bl}_Z(X)$ does not have any automorphisms other than those lifted from X .

2. THE CONSTRUCTION

In what follows, let \mathbf{K} be an infinite field, not necessarily algebraically closed, and let $\overline{\mathbf{K}}$ be an algebraic closure. Where not otherwise qualified, a “variety” is a variety over \mathbf{K} , and a “point” is a \mathbf{K} -point. Let $N^1(X)_{\mathbf{R}} = N^1(X) \otimes \mathbf{R}$ denote the finite-dimensional vector space of numerical classes of divisors on X . Given a subvariety $V \subset X$, write

$$\mathrm{Aut}(X; V) = \{\phi \in \mathrm{Aut}(X) : \phi(V) = V\}.$$

Step 1: Automorphisms of surfaces with prescribed action on a curve

If z_1, z_2, z_3 , and z_4 are four distinct points in \mathbb{P}^1 , there is a unique involution $\iota : \mathbb{P}^1 \rightarrow \mathbb{P}^1$ with $\iota(z_1) = z_2$ and $\iota(z_3) = z_4$, which is defined over \mathbf{K} . Figure 1 shows how this map can be constructed geometrically when \mathbb{P}^1 is embedded as a conic in \mathbb{P}^2 . This involution is defined even if $z_1 = z_2$ or $z_3 = z_4$; in that case, the construction is the same except that we draw the tangent to the conic at z_1 or z_3 . However, if $\mathrm{char} \mathbf{K} = 2$ and both $z_1 = z_2$ and $z_3 = z_4$, the

projection from q induces an inseparable degree 2 morphism $\mathbb{P}^1 \rightarrow \mathbb{P}^1$; we will take care to avoid this situation.

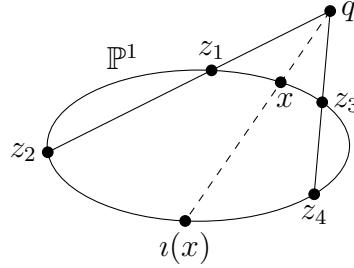


FIGURE 1. Geometric construction of ι

Given an ordered 5-tuple $P = (p_1, p_2, p_3, p_4, p_5)$ of distinct points in \mathbb{P}^1 , let $\Gamma_P \subset \mathrm{PGL}_2(\mathbf{K})$ be the subgroup generated by the involutions $\iota_{ij,kl} : \mathbb{P}^1 \rightarrow \mathbb{P}^1$ satisfying $\iota_{ij,kl}(p_i) = p_j$ and $\iota_{ij,kl}(p_k) = p_l$, where i, j, k and l are distinct indices. For a given configuration P , there are 15 such involutions, and the group Γ_P depends only on the unordered set of points p_i .

Our starting point is a classical construction, a de Jonquières involution of degree 3 [12, §7.2.3]. Suppose that $C \subset \mathbb{P}^2$ is a smooth plane cubic, and that p is a point on C . Given a point z in \mathbb{P}^2 , let ℓ_{pz} be the line connecting p and z . Over $\bar{\mathbf{K}}$, this line meets C at p and two additional points x and y . If x and y are distinct, there is a unique involution of $\ell_{\bar{\mathbf{K}}}$, defined over \mathbf{K} , which fixes the points x and y . Then $\iota(z)$ is defined to be the image of z under this involution. In what follows, we will use a different description of one such map, in which the cubic does not explicitly appear.

Theorem 3. *Suppose that P is a configuration of five distinct points in \mathbb{P}^1 . There exists a smooth rational surface S containing a smooth rational curve $C \cong \mathbb{P}^1$ such that*

- (1) *the group $\mathrm{Aut}(S)$ is discrete;*
- (2) *the subgroup $\mathrm{Aut}(S; C)$ has finite index in $\mathrm{Aut}(S)$;*
- (3) *the image of $\rho : \mathrm{Aut}(S; C) \rightarrow \mathrm{Aut}(C)$ contains Γ_P ;*
- (4) *if $\phi : S \rightarrow S$ is an automorphism fixing a point on C , then $\phi(C) = C$.*

Proof. Let L_0, \dots, L_5 be six lines in \mathbb{P}^2 intersecting at 15 distinct points $p_{ij} = L_i \cap L_j$, and suppose that for any partition of the lines into three sets of two, the three pairwise intersections are not collinear. Let S be the blow-up of \mathbb{P}^2 at these 15 points, with exceptional divisor E_{ij} over p_{ij} . Write R for a partition of the six lines into three sets of two, with one of the three pairs distinguished. Given such a labelling, denote by $L_{R,1}$ and $L_{R,2}$ the members of the distinguished pair, by $L'_{R,1}$ and $L'_{R,2}$ the members of a second pair, and by $L''_{R,1}$ and $L''_{R,2}$ those of the third. Let o_R be the point of intersection of $L_{R,1}$ and $L_{R,2}$.

If ℓ is a general line passing through the point o_R , it meets the lines $L'_{R,1}$, $L'_{R,2}$, $L''_{R,1}$, and $L''_{R,2}$ at four distinct points. There is a unique involution on ℓ which exchanges the first and second points, and exchanges the third and fourth points. We define $\iota_R : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ to be the birational involution defined in this way on any line ℓ through o_R . Under the assumption that three pairwise intersections of the L_i are never collinear, we will see that this map has five points of indeterminacy, o_R itself and the four points $q_{ij} = L'_{R,i} \cap L''_{R,j}$, where i and j are either 1 or 2. For the lines between o_R and q_{ij} , the construction in Figure 1 degenerates: two

of the points (for example z_1 and z_3) coincide, and the point q in turn coincides with both. In particular, it lies on the conic, and projection from q does not yield a degree 2 morphism.

Let $\pi_R : S_R \rightarrow \mathbb{P}^2$ be the blow-up at these five points. We argue next that ι_R lifts to a biregular involution of S_R ; the strategy is to carry out the construction illustrated in Figure 1 simultaneously for all lines in the pencil of lines through o_R . Projection from o_R realizes $\text{Bl}_{o_R} \mathbb{P}^2$ as a \mathbb{P}^1 -bundle over \mathbb{P}^1 , isomorphic to $\mathbb{P}(\mathcal{O} \oplus \mathcal{O}(1))$. The blow-up $\text{Bl}_{o_R} \mathbb{P}^2$ then embeds in the \mathbb{P}^2 -bundle $\mathbb{P}(\mathcal{E})$, where $\mathcal{E} = \text{Sym}^2(\mathcal{O} \oplus \mathcal{O}(1))$, and the image of a line through o_R is a conic contained in the corresponding fiber of $\mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}^1$. The four lines $L'_{R,i}$ and $L''_{R,j}$ determine four sections of $\mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}^1$, all with image contained in $\text{Bl}_{o_R} \mathbb{P}^2$. In each fiber $F \cong \mathbb{P}^2$, form the lines through $L'_{R,1} \cap F$ and $L'_{R,2} \cap F$, and through $L''_{R,1} \cap F$ and $L''_{R,2} \cap F$. Taking the fiberwise intersections of these lines, we obtain a section $Q : \mathbb{P}^1 \rightarrow \mathbb{P}(\mathcal{E})$, corresponding to the point q of Figure 1.

The image of Q meets $\text{Bl}_{o_R} \mathbb{P}^2$ precisely in the four fibers where some $L'_{R,i}$ and $L''_{R,j}$ intersect, at the points q_{ij} . Let $\mathcal{Q} \subset \mathcal{E}$ be the subbundle corresponding to Q . Fiberwise projection from the image of Q determines a morphism $c : \text{Bl}_{Q(\mathbb{P}^1)} \mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}(\mathcal{E}/\mathcal{Q})$, where the image is a \mathbb{P}^1 -bundle over \mathbb{P}^1 . Let S_R be the strict transform of $\text{Bl}_{o_R} \mathbb{P}^2$ on $\text{Bl}_{Q(\mathbb{P}^1)} \mathbb{P}(\mathcal{E})$, so that S_R is isomorphic to the blow-up of \mathbb{P}^2 at the five points o_R and q_{ij} . Write E_{o_R} for the exceptional divisor of S_R above o_R , and $E_{q_{ij}}$ for the exceptional divisors above the points q_{ij} .

The restriction $c|_{S_R}$ is a finite morphism of degree 2; because the lines $L'_{R,1}$ and $L'_{R,2}$ are distinct, as are $L''_{R,1}$ and $L''_{R,2}$, this morphism is separable (in fact, because of the hypothesis that $L_{R,1} \cap L_{R,2}$, $L'_{R,1} \cap L'_{R,2}$, and $L''_{R,1} \cap L''_{R,2}$ are not collinear, the restriction to any fiber is separable). The corresponding covering involution is precisely the map ι_R , and so S_R provides a resolution of this involution as claimed.

The map ι_R preserves each of the lines $L_{R,i}$, while exchanging the two lines $L'_{R,i}$ and the two lines $L''_{R,j}$. It also preserves the pencil of lines through o_R and the canonical class K_{S_R} . Note too that the image of $E_{q_{ij}}$ under ι_R is the strict transform of the line from o_R to q_{ij} , with class $H - E_{o_R} - E_{q_{ij}}$. This completely characterizes the action of $\iota_R^* : N^1(S_R)_{\mathbf{R}} \rightarrow N^1(S_R)_{\mathbf{R}}$, which we record for later use. With respect to the basis given by $H = \pi^* \mathcal{O}_{\mathbb{P}^2}(1)$, E_{o_R} , and the $E_{q_{ij}}$, the matrix for ι_R^* is

$$\iota_R^* = \begin{pmatrix} 3 & 2 & 1 & 1 & 1 & 1 \\ -2 & -1 & -1 & -1 & -1 & -1 \\ -1 & -1 & -1 & 0 & 0 & 0 \\ -1 & -1 & 0 & -1 & 0 & 0 \\ -1 & -1 & 0 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

Observe next that ι_R lifts to an involution on S , the surface obtained by blowing up all 15 points of intersection of the six lines L_i . The five points $L_{R,1} \cap L_{R,2}$ and $L'_{R,i} \cap L''_{R,j}$ are already blown up on S_R . The eight points $L_{R,i} \cap L'_{R,j}$ and $L_{R,i} \cap L''_{R,j}$ are exchanged in four pairs of two, so ι_R lifts to the blow-up at these eight additional points (for example, $L_{R,1} \cap L'_{R,1}$ is exchanged with $L_{R,1} \cap L'_{R,2}$). At last, the two points $L'_{R,1} \cap L'_{R,2}$ and $L''_{R,1} \cap L''_{R,2}$ are both fixed, and so ι_R lifts to the blow-up S .

The rational surface S claimed by the theorem can now be constructed by choosing the lines in special position. Fix a line $C = L_0 \subset \mathbb{P}^2$, and choose five other lines L_1, \dots, L_5 so that $L_i \cap C = p_i$, where the p_i are the points of the configuration P . Since the field \mathbf{K} is infinite, for general choices of the L_i , the fifteen points of intersection are distinct and three

pairs of lines never have collinear intersections. The involution $\iota_{ij,kl} : C \rightarrow C$ is realized as the restriction of $\iota_R : S \rightarrow S$ for some labelling R : let m be the unique index which does not appear among i, j, k , and l , and take $L_{R,1} = C$, $L_{R,2} = L_m$, $L'_{R,1} = L_i$, $L'_{R,2} = L_j$, $L''_{R,1} = L_k$, $L''_{R,2} = L_l$. The involution $\iota_{ij,kl}$ on C is then the restriction of the automorphism $\iota_R : S \rightarrow S$ fixing C , proving claim (3).

To check (1), note that a section in $H^0(S, TS)$ descends to a section of $H^0(\mathbb{P}^2, T\mathbb{P}^2)$ vanishing at the fifteen blown-up points, and $\text{Aut}^0(S)$ can thus be identified with an algebraic subgroup of $\text{Aut}(\mathbb{P}^2)$, fixing the points. Since four of the points are linearly general, such a group is trivial. It follows that $H^0(S, TS) = 0$ and $\text{Aut}^0(S)$ is trivial.

We next check claim (2), that the subgroup $\text{Aut}(S; C)$ has finite index in $\text{Aut}(S)$. This is a consequence of the fact that S is a Coble rational surface [13], [7]: the linear system $|-2K_S|$ has a unique element, the union of the strict transforms of the six lines L_i . Indeed, each line satisfies $-2K_S \cdot L_i = -4$, and so must be contained in the base locus of $|-2K_S|$. An automorphism preserves the anticanonical class, so the six lines are permuted by any element of $\text{Aut}(S)$, giving rise to a map $\text{Aut}(S) \rightarrow S_6$. The subgroup $\text{Aut}(S; C)$ is the preimage of the subgroup of permutations fixing C , and so of finite index.

Claim (4) follows similarly: any automorphism of S permutes the components of $|-2K_S|$. Since these six curves are disjoint on S , if a point on C is fixed by an automorphism ϕ , it must be that $\phi(C) = C$ as well. \square

Remark 1. Consider the four lines through the point p_{05} given by L_0 , L_5 , $L(p_{05}, p_{14})$, and $L(p_{05}, p_{23})$, which define four points in $\mathbb{P}T_{p_{05}}(\mathbb{P}^2) \cong \mathbb{P}^1$. It will later be convenient to assume that these points are distinct and there is no automorphism of this \mathbb{P}^1 which fixes the first two points while exchanging the third and fourth; this will be the case for general choices of the five lines even after the intersections with L_0 are prescribed.

Remark 2. For an alternative construction of the involutions ι_R , one can partition the six lines L_i into two sets of three, and consider the pencil of cubics spanned by the two triangles. This determines an elliptic fibration $S'_R \rightarrow \mathbb{P}^1$, where S'_R is obtained by blowing up the nine points of the base locus of the pencil. Choosing a distinguished line from each set of three gives a section of the fibration (provided by the exceptional divisor above the point of intersection), and the fiberwise map $z \mapsto -z$ with respect to this section determines a biregular involution of S'_R , which can be checked to lift to S .

Step 2: Specializing the configuration P

We now exhibit configurations $P = (p_1, p_2, p_3, p_4, p_5)$ of points in \mathbb{P}^1 for which the group Γ_P contains two particular transformations with a common fixed point. Fix projective coordinates on C , let the affine coordinate z represent the point $[z, 1]$, and write ∞ for the point $[1, 0]$.

Definition 1. A configuration P of five distinct points in \mathbb{P}^1 is *suitable* if the group Γ_P contains two elements

$$\tau = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \quad \gamma = \begin{pmatrix} b & 0 \\ 0 & 1 \end{pmatrix},$$

where a is nonzero and either

- (1) $\text{char } \mathbf{K} = 0$ and b^{-1} is not an algebraic integer;
- (2) $\text{char } \mathbf{K} = p > 0$ and b is not algebraic over \mathbf{F}_p .

This assumption means that the abelian group $\mathbf{Z}[\frac{1}{b}]$ (in characteristic 0) or $\mathbf{F}_p[\frac{1}{b}]$ (in characteristic p) is not finitely generated.

Lemma 4.

(1) Suppose that \mathbf{K} has characteristic 0. Then the configuration

$$(p_1, p_2, p_3, p_4, p_5) = (0, 1, 2, 3, \infty)$$

is suitable, as Γ_P contains the two elements

$$\tau = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \gamma = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

(2) Suppose that \mathbf{K} has characteristic $p > 0$ and is not algebraic over \mathbf{F}_p . Let t be an element of \mathbf{K} transcendental over \mathbf{F}_p . Then the configuration

$$(p_1, p_2, p_3, p_4, p_5) = (0, 1, t, t+1, \infty)$$

is suitable, as Γ_P contains the two elements

$$\tau = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \gamma = \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix}.$$

Proof. We claim that in both cases we have $\tau = \iota_{24,35} \circ \iota_{12,34} \circ \iota_{13,45}$ and $\gamma = \iota_{15,34} \circ \iota_{15,24}$. Indeed,

$$\begin{aligned} (\iota_{24,35} \circ \iota_{12,34} \circ \iota_{13,45})(p_1) &= (\iota_{24,35} \circ \iota_{12,34})(p_3) = \iota_{24,35}(p_4) = p_2, \\ (\iota_{24,35} \circ \iota_{12,34} \circ \iota_{13,45})(p_3) &= (\iota_{24,35} \circ \iota_{12,34})(p_1) = \iota_{24,35}(p_2) = p_4, \\ (\iota_{24,35} \circ \iota_{12,34} \circ \iota_{13,45})(p_5) &= (\iota_{24,35} \circ \iota_{12,34})(p_4) = \iota_{24,35}(p_3) = p_5. \end{aligned}$$

In characteristic p , this yields $(\iota_{24,35} \circ \iota_{12,34} \circ \iota_{13,45})(0) = 1$, $(\iota_{24,35} \circ \iota_{12,34} \circ \iota_{13,45})(t) = t+1$, and $(\iota_{24,35} \circ \iota_{12,34} \circ \iota_{13,45})(\infty) = \infty$, and so the composition must be the automorphism τ given by $z \mapsto z+1$. The same argument holds in characteristic 0, substituting 2 for t .

Similarly,

$$\begin{aligned} (\iota_{15,34} \circ \iota_{15,24})(p_1) &= \iota_{15,34}(p_5) = p_1, \\ (\iota_{15,34} \circ \iota_{15,24})(p_2) &= \iota_{15,34}(p_4) = p_3, \\ (\iota_{15,34} \circ \iota_{15,24})(p_5) &= \iota_{15,34}(p_1) = p_5. \end{aligned}$$

In characteristic p , this map sends 0 to 0, 1 to t , and ∞ to ∞ , so it must be the automorphism γ given by $z \mapsto tz$. The same argument again holds in characteristic 0 after substituting 2 for t . \square

In what follows, we fix a suitable configuration P and let S be a surface satisfying the conclusions of Theorem 3, so that the image of the restriction map $\rho : \text{Aut}(S; C) \rightarrow \text{Aut}(C)$ contains the elements τ and γ . Write p_∞ for the point on S corresponding to ∞ in our coordinates on C , and let $U \subset \text{PGL}_2(\mathbf{K})$ be the subgroup comprising matrices of the form

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix},$$

which correspond to parabolic Möbius transformations $z \mapsto z+a$ fixing ∞ . The group U is abelian, isomorphic to \mathbb{G}_a . Let

$$G^+ = \rho^{-1}(U) = \{\phi \in \text{Aut}(S; C) : \rho(\phi) \in U\} \subset \text{Aut}(S; C)$$

be the subgroup of $\text{Aut}(S; C)$ containing automorphisms whose restriction to C lies in U .

Lemma 5. *The subgroup $G^+ \subset \text{Aut}(S; C)$ is not finitely generated.*

Proof. Since U is abelian and $\rho(G^+)$ is contained in U , the group $\rho(G^+)$ is abelian as well. For any positive n , the transformation

$$\gamma^{-n} \circ \tau \circ \gamma^n = \begin{pmatrix} 1 & ab^{-n} \\ 0 & 1 \end{pmatrix}$$

is contained in U . Since τ and γ both lie in $\text{Im}(\rho) \subset \text{Aut}(C)$ by the construction of Theorem 3, the elements $\gamma^{-n} \circ \tau \circ \gamma^n$ all lie in $\rho(G^+)$, and so $\rho(G^+)$ has a subgroup isomorphic to either $\mathbf{Z}[\frac{1}{b}]$ (in characteristic 0) or $\mathbf{F}_p[\frac{1}{b}]$ (in characteristic p). In either case, this group is not finitely generated, by hypothesis on b . Since $\rho(G^+)$ is abelian and has a non-finitely generated subgroup, it is not finitely generated either. A quotient of a finitely generated group is finitely generated, and we conclude that G^+ itself is not finitely generated. \square

The following geometric characterization of elements of G^+ will prove useful. Let

$$\Delta_S : S \rightarrow S \times S$$

denote the diagonal map.

Lemma 6. *Suppose that $\phi : S \rightarrow S$ is an automorphism fixing p_∞ . Then ϕ lies in G^+ if and only if $\text{id}_S \times \phi : S \times S \rightarrow S \times S$ fixes the tangent direction $T_{\Delta_S(p_\infty)}(\Delta_S(C))$.*

Proof. By (4) of Theorem 3, it must be that $\phi(C) = C$. An automorphism fixing C and p_∞ lies in G^+ if and only if p_∞ is a fixed point of $\phi|_C$ with multiplicity 2, which is the case if and only if $\text{id}_S \times \phi : S \times S \rightarrow S \times S$ fixes $\Delta_S(p_\infty)$ and the tangent direction $T_{\Delta_S(p_\infty)}(\Delta_S(C))$, so that $(\text{id}_S \times \phi)(\Delta_S(C))$ is tangent to the diagonal at $\Delta_S(p_\infty)$. \square

Remark 3. Let $\bar{\tau}$ and $\bar{\gamma}$ be automorphisms of S which restrict to C as τ and γ , as constructed in Theorem 3. Although the restrictions to C of the automorphisms $\bar{\mu}_m = \bar{\gamma}^{-m} \circ \bar{\tau} \circ \bar{\gamma}^m$ and $\bar{\mu}_n = \bar{\gamma}^{-n} \circ \bar{\tau} \circ \bar{\gamma}^n$ commute, these maps do not commute as automorphisms of S , and the map $\rho : \text{Aut}(S; C) \rightarrow \text{Aut}(C)$ is not injective. For example, with γ and τ as in Lemma 4, the commutator $[\bar{\mu}_0, \bar{\mu}_1]$ is an automorphism of S which restricts to C as the identity, and a straightforward if somewhat tedious computation of the action of the involutions ι_R on $N^1(S)_{\mathbf{R}}$ shows if P is as in Lemma 4, the induced map $[\bar{\mu}_0, \bar{\mu}_1] : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ is a Cremona transformation of degree 195,133 with first dynamical degree $\lambda_1 \approx 60,313$. This means that the n^{th} iterate of the transformation $[\bar{\mu}_0, \bar{\mu}_1]$ has degree roughly λ_1^n . It seems conceivable that G^+ is a free group on the countably many generators $\bar{\mu}_n$, though this is difficult to prove.

Remark 4. The kernel G of $\text{Aut}(S; C) \rightarrow \text{Aut}(C)$ is the subgroup of automorphisms which fix C pointwise, including the maps $[\bar{\mu}_m, \bar{\mu}_n]$ of the previous remark. It seems likely that G is not finitely generated; if this is the case, then by choosing a very general point q on C , we might obtain a rational surface $S' = \text{Bl}_q S$ such that $\text{Aut}(S')$ is isomorphic to G and is not finitely generated. However, it is not clear how to prove either that G is not finitely generated, or that the blow-up does not admit automorphisms other than those lifted from S .

Step 3: A variety with non-finitely generated $\text{Aut}(X)$

We now construct a higher-dimensional variety X realizing G^+ as $\text{Aut}(X)$. Although G^+ is not the stabilizer of any closed subscheme of S , it is the stabilizer of a closed subscheme of

$S \times S$ in the group of automorphisms of $S \times S$ of the form $\text{id}_S \times \phi$: an automorphism ϕ lies in G^+ if and only if $\text{id}_S \times \phi$ fixes both the point $\Delta_S(p_\infty) = (p_\infty, p_\infty)$ and the tangent direction $T_{\Delta_S(p_\infty)}(\Delta_S(C))$ (here Δ_S is again the diagonal map). Our variety X will be realized as a blow-up of $S \times S \times T$, where T is a surface of general type; taking the product with T makes it simpler to control automorphisms of blow-ups.

We begin with a definition that will sometimes enable us to show that a blow-up $\text{Bl}_V X$ has no automorphisms except those lifted from X .

Definition 2. A smooth, projective variety X is \mathbb{P}^r -averse if every separable $\overline{\mathbf{K}}$ -morphism $h : \mathbb{P}_{\overline{\mathbf{K}}}^r \rightarrow X_{\overline{\mathbf{K}}}$ is constant.

The term “separably \mathbb{P}^r -averse” might be more appropriate, but we omit the modifier in the interest of brevity. Note that if X is \mathbb{P}^r -averse, it is also \mathbb{P}^s -averse for any $s > r$. However, the property of \mathbb{P}^r -averseness is not a birational invariant. For example, an abelian surface S is \mathbb{P}^1 -averse, but the blow-up of S at a point s is not \mathbb{P}^1 -averse: there is a nonconstant morphism $\mathbb{P}_{\overline{\mathbf{K}}}^1 \rightarrow S_{\overline{\mathbf{K}}}$ given by the inclusion of the exceptional divisor.

Lemma 7. *Let X be a smooth, projective variety and let $\pi : Y \rightarrow X$ be the blow-up of X at a smooth, equidimensional (but possibly non-connected) subvariety V , with exceptional locus E . Suppose that $\psi : Y \rightarrow Y$ is an automorphism of Y with $\psi(E) = E$ such that $\psi|_E$ permutes the fibers of $\pi|_E$. Then ψ descends to an automorphism $\phi : X \rightarrow X$ with $\phi(V) = V$.*

Proof. The composition $\pi \circ \psi$ contracts every fiber of $\pi|_E$. Since $\pi_* \mathcal{O}_Y = \mathcal{O}_X$, it follows from the rigidity lemma that ψ factors through π , inducing a map $\phi : X \rightarrow X$ [9, Lemma 1.15(b)]. An inverse to ϕ is obtained by applying the same argument to $\pi \circ \psi^{-1}$. Then $\phi(V) = \phi(\pi(E)) = \pi(\psi(E)) = \pi(E) = V$, and so the subvariety V is fixed. \square

Lemma 8. *Suppose that X is a smooth, \mathbb{P}^{r-1} -averse variety of dimension n , and $V \subset X$ is a smooth, equidimensional subvariety of codimension r , with $r > 1$. Write $\pi : \text{Bl}_V X \rightarrow X$ for the blow-up of V , with exceptional locus E . Then the map $\text{Aut}(X; V) \rightarrow \text{Aut}(\text{Bl}_V X)$ is an isomorphism.*

Proof. We first observe that any nonconstant morphism $h : \mathbb{P}_{\overline{\mathbf{K}}}^{r-1} \rightarrow (\text{Bl}_V X)_{\overline{\mathbf{K}}}$ must have image contained in a geometric fiber of $\pi|_{E_{\overline{\mathbf{K}}}}$. Indeed, $\pi \circ h : \mathbb{P}_{\overline{\mathbf{K}}}^{r-1} \rightarrow X_{\overline{\mathbf{K}}}$ must be constant since X is \mathbb{P}^{r-1} -averse.

Suppose that $\phi : \text{Bl}_V X \rightarrow \text{Bl}_V X$ is an automorphism, and let $h : \mathbb{P}_{\overline{\mathbf{K}}}^{r-1} \rightarrow (\text{Bl}_V X)_{\overline{\mathbf{K}}}$ be the inclusion of a geometric fiber of $\pi|_{E_{\overline{\mathbf{K}}}}$. Then $\phi \circ h$ is a nonconstant morphism $\mathbb{P}_{\overline{\mathbf{K}}}^{r-1} \rightarrow (\text{Bl}_V X)_{\overline{\mathbf{K}}}$, and so must be the inclusion of some fiber of $\pi|_{E_{\overline{\mathbf{K}}}}$. Thus ϕ permutes the fibers of $\pi|_{E_{\overline{\mathbf{K}}}}$, and so descends to an automorphism of X fixing $\pi(E) = V$ by Lemma 7. \square

Lemma 9.

- (1) Suppose that X_1 and X_2 are \mathbb{P}^r -averse. Then $X_1 \times X_2$ is \mathbb{P}^r -averse.
- (2) Suppose that X is \mathbb{P}^r -averse and $V \subset X$ is a smooth, equidimensional subvariety of codimension $s \leq r$. Then $\text{Bl}_V X$ is \mathbb{P}^r -averse.
- (3) Suppose that $r \geq 2$ and X is an r -dimensional variety which admits a surjective morphism to a variety V with $1 \leq \dim V < \dim X$. Then X is \mathbb{P}^r -averse.

Proof. For (1), suppose that $h : \mathbb{P}_{\overline{\mathbf{K}}}^r \rightarrow X_{1,\overline{\mathbf{K}}} \times X_{2,\overline{\mathbf{K}}}$ is a separable morphism. Then the projections $p_1 \circ h : \mathbb{P}_{\overline{\mathbf{K}}}^r \rightarrow X_{1,\overline{\mathbf{K}}}$ and $p_2 \circ h : \mathbb{P}_{\overline{\mathbf{K}}}^r \rightarrow X_{2,\overline{\mathbf{K}}}$ must both be constant, so that h is constant. For (2), let $\pi : \text{Bl}_V X \rightarrow X$ be the blow-up, and suppose that $h : \mathbb{P}_{\overline{\mathbf{K}}}^r \rightarrow X_{\overline{\mathbf{K}}}$ is a

separable morphism. The map $\pi \circ h$ must be constant, and so if h is nonconstant, its image is contained in a fiber of $\pi|_{E_{\overline{\mathbf{K}}}}$. These fibers are isomorphic to $\mathbb{P}_{\overline{\mathbf{K}}}^{s-1}$, and since $s-1 < r$, the map h must be constant. For (3), suppose that $h : \mathbb{P}_{\overline{\mathbf{K}}}^r \rightarrow X_{\overline{\mathbf{K}}}$ is separable and nonconstant. The composite $j : \mathbb{P}_{\overline{\mathbf{K}}}^r \rightarrow X_{\overline{\mathbf{K}}} \rightarrow V_{\overline{\mathbf{K}}}$ must be constant, and so the image of h is contained in a fiber of j . But these fibers have dimension less than r , and so can not admit nonconstant maps from $\mathbb{P}_{\overline{\mathbf{K}}}^r$. \square

We require one more simple lemma before proceeding to the construction.

Lemma 10. *Suppose that X is a smooth projective variety with $\text{Aut}(X)$ discrete. There exists a smooth, geometrically connected divisor $W \subset X$ for which $\text{Aut}(X; W)$ is trivial.*

Proof. Choose a very ample divisor W_0 on X , and let \mathcal{W} denote the complete linear system $\mathbb{P}H^0(X, W_0)$. Let $\text{Aut}(X, \mathcal{W}) \subset \text{Aut}(X)$ denote the set of automorphisms preserving \mathcal{W} . There is a homomorphism $\text{Aut}(X, \mathcal{W}) \rightarrow \text{PGL}(H^0(X, W_0))$, which has trivial kernel: if $\phi : X \rightarrow X$ lies in $\text{Aut}(X, \mathcal{W})$ and ϕ^* acts trivially on $H^0(X, W_0)$, then the restriction of ϕ to the image of X in $\mathbb{P}H^0(X, W_0)$ is also the identity. Consequently $\text{Aut}(X, \mathcal{W})$ is a closed subgroup of $\text{PGL}(H^0(X, W_0))$. Since $\text{Aut}(X)$ is assumed discrete, $\text{Aut}(X; \mathcal{W})$ is finite, and because the field \mathbf{K} is infinite, a general element W of \mathcal{W} is not fixed by any automorphisms. Since \mathbf{K} is infinite, by Bertini's theorem there exists a W which is smooth and geometrically connected. \square

Lemma 11. *There exists a smooth surface T over \mathbf{K} for which:*

- (1) *the group $\text{Aut}(T)$ is trivial;*
- (2) *there exists a \mathbf{K} -point t on T ;*
- (3) *T is geometrically simply connected;*
- (4) *T is not separably uniruled.*

Proof. According to [17, Table 1], the hypersurface T in \mathbb{P}^3 defined by $x_0^5 + x_0x_1^4 + x_1x_2^4 + x_2x_3^4 + x_3^5$ is smooth and has trivial automorphism group in any characteristic other than 2 or 5. This surface has the \mathbf{K} -point $[0, 1, 0, 0]$. Since T is a smooth hypersurface in \mathbb{P}^3 , it follows from the Lefschetz hyperplane theorem [14, XII, Cor. 3.5] that T is geometrically simply connected. At last, T is of general type, and hence is not separably uniruled.

In characteristic 5, we take T defined by $x_0^7 + x_0x_1^6 + x_1x_2^6 + x_2x_3^6 + x_3^7$, while in characteristic 2, the surface defined by $x_0^4x_1 + x_1^5 + x_2^5 + x_0x_1^4 + x_1x_2^4 + x_2x_3^4 + x_3^5$ suffices [17]. \square

Note that if we work over $\mathbf{K} = \mathbf{C}$, then any very general hypersurface in \mathbb{P}^3 of degree at least 4 has the required properties.

Take $X_0 = S \times S \times T$. The variety X will be constructed by a sequence of four blow-ups of X_0 . In each case, the blow-up satisfies the hypotheses of Lemma 8, so we may identify its automorphism group with a subgroup of $\text{Aut}(X_0)$.

Lemma 12. *Let $X_0 = S \times S \times T$. Fix a point s on S and a divisor W on S with $\text{Aut}(S; W)$ trivial, as in Lemma 10. Choose three distinct smooth, geometrically connected curves C_1 , C_2 , and C_3 in T , and a point t on C_3 which does not lie on C_1 or C_2 .*

- (1) *The variety X_0 is \mathbb{P}^r -averse for any $r \geq 2$. The automorphisms of X_0 are of the form $\text{Aut}(S \times S) \times \text{id}_T$.*
- (2) *Let $\pi_1 : X_1 \rightarrow X_0$ be the blow-up of X_0 along $s \times S \times C_1$. The variety X_1 is \mathbb{P}^r -averse for any $r \geq 3$. The automorphisms of X_1 are all lifts of $\text{Aut}(S; s) \times \text{Aut}(S) \times \text{id}_T$.*

- (3) Let $\pi_2 : X_2 \rightarrow X_1$ be the blow-up along the strict transform of $W \times p_\infty \times C_2$. The variety X_2 is \mathbb{P}^r -averse for $r \geq 4$. The automorphisms of X_2 are given by $\text{id}_S \times \text{Aut}(S; p_\infty) \times \text{id}_T$.
- (4) Let $\pi_3 : X_3 \rightarrow X_2$ be the blow-up along the strict transform of $p_\infty \times p_\infty \times C_3$. Then X_3 is \mathbb{P}^r -averse for $r \geq 5$, and the automorphisms of X_3 are of the form $\text{id}_S \times \text{Aut}(S; p_\infty) \times \text{id}_T$.
- (5) Let E_3 be the exceptional divisor of $\pi_3 : X_3 \rightarrow X_2$. Then the strict transform of $\Delta_S(C) \times t$ meets E_3 at a single point u . Let $\pi_4 : X_4 \rightarrow X_3$ be the blow-up at u . The automorphism group of X_4 is isomorphic to $\text{id}_S \times G^+ \times \text{id}_T$.

Proof. We treat the blow-ups in order.

(1) To show that X_0 is \mathbb{P}^r -averse for $r \geq 2$, it suffices to check that S and T are both \mathbb{P}^2 -averse, according to the first part of Lemma 9. For T this follows since T is not separably uniruled, while S admits a surjective morphism to a curve and so it is \mathbb{P}^2 -averse by (3) of Lemma 9.

Suppose that $\chi : X_0 \rightarrow X_0$ is an automorphism. Let $p_3 : X_0 \rightarrow T$ be the third projection. We first claim that χ must satisfy $p_3 \circ \chi = p_3$. Indeed, consider the separable map $p_3 \circ \chi : X_0 = S \times S \times T \rightarrow T$. Since S is rational, if this map does not factor through the projection to T , then T is separably uniruled, contradicting the choice of T from Lemma 11. Since $\text{Aut}(T)$ is trivial, the map χ must preserve every fiber of p_3 , and so $\chi : S \times S \times T \rightarrow T$ is an automorphism defined over T .

The group $\text{Aut}(S \times S)$ is discrete, since $H^0(S \times S, TS \times TS) = H^0(S, TS) \oplus H^0(S, TS) = 0$. Consequently every automorphism of X_0 is of the form $\phi \times \text{id}$, where ϕ is an automorphism of $S \times S$, and the group $\text{Aut}(X_0)$ can be identified with $\text{Aut}(S \times S) \times \text{id}_T$.

(2) The center of the blow-up π_1 has codimension 3, so it follows from part (1) and Lemma 9 that X_1 is \mathbb{P}^r -averse for $r \geq 3$. According to Lemma 8, since X_0 is \mathbb{P}^2 -averse, $\text{Aut}(X_1)$ is the stabilizer of $s \times S \times C_1$ in $\text{Aut}(X_0)$, which is isomorphic to the stabilizer of $s \times S$ in $\text{Aut}(S \times S)$.

We claim that an element ϕ of $\text{Aut}(S \times S)$ fixes $s \times S$ only if it is of the form $\phi_1 \times \phi_2$, where ϕ_1 is in $\text{Aut}(S; s)$ and ϕ_2 is in $\text{Aut}(S)$. Indeed, if ϕ fixes one fiber of $p_1 : S \times S \rightarrow S$, it must permute the fibers, and so induces an automorphism $\phi_1 : S \rightarrow S$ on the base with $p_1 \circ \phi = \phi_1 \circ p_1$. Then $(\phi_1^{-1} \times \text{id}_S) \circ \phi$ is an automorphism of $S \times S$ defined over p_1 . This must be given by a map $\text{id}_S \times \phi_2 : S \times S \rightarrow S \times S$, since $\text{Aut}(S)$ is a 0-dimensional scheme, and so ϕ is of the form $\phi_1 \times \phi_2$, where ϕ_1 fixes s .

(3) Since X_1 is \mathbb{P}^r -averse for $r \geq 3$ and X_2 is the blow-up of X_1 at a center of codimension 4, it follows that X_2 is \mathbb{P}^r -averse for $r \geq 4$. Lemma 8 implies that the automorphisms of X_2 are all lifts of automorphisms of X_1 fixing $W \times p_\infty \times C_2$, whether or not s lies on W . The automorphisms of X_1 are all of the form $\phi_1 \times \phi_2 \times \text{id}_T$, and since $\text{Aut}(S; W)$ is trivial, this stabilizer is exactly $\text{id}_S \times \text{Aut}(S; p_\infty) \times \text{id}_T$.

(4) We have seen that X_2 is \mathbb{P}^4 -averse, and X_3 is the blow-up of X_2 at a center of codimension 5. It follows that X_3 is \mathbb{P}^r -averse for $r \geq 5$, and the automorphisms of X_3 are lifts of automorphisms of X_2 that fix $p_\infty \times p_\infty \times C_3$. Every automorphism of X_2 fixes $p_\infty \times p_\infty \times C_3$, and so the automorphisms of X_3 are again given by $\text{id}_S \times \text{Aut}(S; p_\infty) \times \text{id}_T$.

(5) The centers of the blow-ups π_1 and π_2 are both disjoint from the fiber $S \times S \times t$, since t lies on neither C_1 nor C_2 , while the center of the blow-up π_3 meets $S \times S \times t$ at the single point $p_\infty \times p_\infty \times t$. As a result, $\Delta_S(C) \times t$ meets E_3 at one point u , as claimed; this point u corresponds to the tangent direction of the diagonal embedding of C at the point p_∞ . The

restriction of $\pi_3 \circ \pi_2 \circ \pi_1$ to the strict transform of $S \times S \times t$ is the blow-up at the point $p_\infty \times p_\infty \times t$.

Since X_3 is \mathbb{P}^5 -averse and the center of π_3 has codimension 6, $\text{Aut}(X_4)$ is isomorphic to the stabilizer of u in $\text{Aut}(X_3)$. These are exactly the automorphisms $\text{id}_S \times \phi \times \text{id}_T$ of X_3 that fix the tangent direction $T_{\Delta(p_\infty)}(\Delta_S(C)) \times t$. According to Lemma 6, these are exactly the lifts of automorphisms of the form $\text{id}_S \times G^+ \times \text{id}_T$. \square

This completes the construction.

Proof of Theorem 1. Let $X = X_4$ be as in Lemma 12. The variety X is smooth, projective and geometrically simply connected, since it is a blow-up of $S \times S \times T$ where S is a rational surface and T is smooth and geometrically simply connected. The group $\text{Aut}(X)$ is isomorphic to G^+ , which is not finitely generated according to Lemma 5. \square

3. A VARIETY WITH MANY FORMS

We now show how the construction of the previous section can be adapted to give an example of a \mathbf{K} -variety with infinitely many \mathbf{L}/\mathbf{K} -forms even when \mathbf{L}/\mathbf{K} is a finite extension.

If \mathbf{L}/\mathbf{K} is a Galois extension, a standard descent argument shows that the \mathbf{L}/\mathbf{K} -forms of X are classified by the Galois cohomology $H^1(\text{Gal}(\mathbf{L}/\mathbf{K}), \text{Aut}(X_{\mathbf{L}}))$ [19, III.§1, Proposition 5]. In many settings, this set is finite. Indeed, according to a theorem of Borel and Serre [4, Théorème 6.1], if $\mathbf{K} = \mathbf{R}$ and $\pi_0(\text{Aut}(X_{\mathbf{C}}))$ is an arithmetic group, then the set of \mathbf{C}/\mathbf{R} -forms of X is finite; this includes nearly all varieties for which the group of automorphisms is known. The set of \mathbf{C}/\mathbf{R} -forms is also finite when X is a minimal surface of non-negative Kodaira dimension [10, Appendix D, pg. 233].

Our example of a variety with infinitely many forms is obtained by an additional blow-up of the variety X constructed in Section 2.

Lemma 13. *Suppose that \mathbf{L}/\mathbf{K} is a separable quadratic extension, and that X is a smooth, projective variety over \mathbf{K} . Suppose that there is a finite-index subgroup $G' \subset \text{Aut}(X_{\mathbf{L}})$ which contains infinitely many conjugacy classes of involutions and on which $\text{Gal}(\mathbf{L}/\mathbf{K})$ acts trivially. Then the variety X has infinitely many \mathbf{L}/\mathbf{K} -forms.*

Proof. The forms of X are classified by the set $H^1(\text{Gal}(\mathbf{L}/\mathbf{K}), \text{Aut}(X_{\mathbf{L}}))$. Because the action of $\text{Gal}(\mathbf{L}/\mathbf{K})$ on G' is trivial, $H^1(\text{Gal}(\mathbf{L}/\mathbf{K}), G')$ is the set of conjugacy classes of involutions in G' , which is infinite by assumption. There is an exact sequence

$$H^0(\text{Gal}(\mathbf{L}/\mathbf{K}), \text{Aut}(X_{\mathbf{L}})/G') \rightarrow H^1(\text{Gal}(\mathbf{L}/\mathbf{K}), G') \rightarrow H^1(\text{Gal}(\mathbf{L}/\mathbf{K}), \text{Aut}(X_{\mathbf{L}})).$$

Here $\text{Aut}(X_{\mathbf{L}})/G'$ should be interpreted as the set of left-conjugacy classes of G' rather than a group, but the sequence is nevertheless exact [19, III.§5, Proposition 36]. Since G' has finite index in $\text{Aut}(X_{\mathbf{L}})$, the leftmost set is finite, whence $H^1(\text{Gal}(\mathbf{L}/\mathbf{K}), \text{Aut}(X_{\mathbf{L}}))$ is infinite, as claimed. \square

Remark 5. Concretely, suppose that $\mathbf{L} = \mathbf{C}$ and $\mathbf{K} = \mathbf{R}$, and that $\text{Aut}(X_{\mathbf{C}}) = \text{Aut}(X_{\mathbf{R}})$. If $c : X_{\mathbf{C}} \rightarrow X_{\mathbf{C}}$ is the antiholomorphic involution determined by complex conjugation, then $X_{\mathbf{R}}$ can be recovered as the fixed locus of c . For any involution ϕ in $\text{Aut}(X_{\mathbf{R}})$, the composite $c \circ \phi$ defines another antiholomorphic involution, giving rise to another real form on the fixed locus. Two involutions ϕ and ϕ' define equivalent real structures on $X_{\mathbf{C}}$ if and only if they are conjugate in $\text{Aut}(X_{\mathbf{R}})$.

Our argument will rely on some specific details from the construction in the proof of Theorem 3; for the remainder of Section 3 the surface S is taken to be the specific example constructed in the proof of Theorem 3, rather than an arbitrary surface satisfying its conclusions.

Fix the configuration P of Lemma 4 (depending on the characteristic), and maintain the notation introduced in the proof of Theorem 3, labelling the six lines as L_0, \dots, L_5 , with L_0 the curve C . Let $p_{ij} = L_i \cap L_j$, and write p_i for the point p_{0i} . The lines L_i are chosen so that the intersections of L_1, L_2, L_3, L_4 and L_5 with L_0 (with respect to affine coordinates) are given by

$$(p_1, p_2, p_3, p_4, p_5) = \begin{cases} (0, 1, 2, 3, \infty) & \text{if } \text{char } \mathbf{K} = 0, \\ (0, 1, t, t+1, \infty) & \text{if } \text{char } \mathbf{K} > 0. \end{cases}$$

We will consider the following subgroups of $\text{Aut}(S; C)$:

- (1) $G^+ \subset \text{Aut}(S; C)$, the subgroup of automorphisms restricting to L_0 as $z \mapsto z + a$;
- (2) $G^\pm \subset \text{Aut}(S; C)$, the subgroup of automorphisms restricting to L_0 as either $z \mapsto z + a$ or $z \mapsto -z + a$;
- (3) $G_{\text{ev}}^\pm \subset G^\pm$, the subgroup of automorphisms which fix the two lines L_0 and L_5 as well as the curves $L_1 \cup L_4$ and $L_2 \cup L_3$.

Recall that every automorphism of S must permute the six lines L_i since their union is the unique member of $|-2K_S|$; an automorphism lies in G_{ev}^\pm if it fixes L_0 and L_5 and either fixes or exchanges the members of the two other pairs. In particular, G_{ev}^\pm has finite index in G^\pm .

Let $s_0 : S \rightarrow S$ be the involution of S determined by the marking with L_0, L_5 the distinguished pair, and L_1, L_4 and L_2, L_3 the other two pairs: the automorphism s_0 fixes the two distinguished lines L_0 and L_5 , and exchanges L_1 with L_4 and L_2 with L_3 . This map restricts to L_0 in such a way that it exchanges p_1 with p_4 and p_2 with p_3 ; thus the restriction is an involution $z \mapsto c - z$, where $c = 3$ if $\text{char } \mathbf{K} = 0$ or $c = t + 1$ if $\text{char } \mathbf{K} > 0$. It follows that s_0 lies in the subgroup G_{ev}^\pm .

Figure 2 shows the important curves in \mathbb{P}^2 acted on by the map s_0 . The two dashed lines are exchanged, as are the two heavily dotted lines. The pencil of lines passing through the point p_5 is preserved by s_0 . The strict transforms of the two lightly dotted lines through p_5 are (-1) -curves on S with classes $H - E_{05} - E_{14}$ and $H - E_{05} - E_{23}$, which will appear later. By the generality assumption of Remark 1, these two lines are distinct.

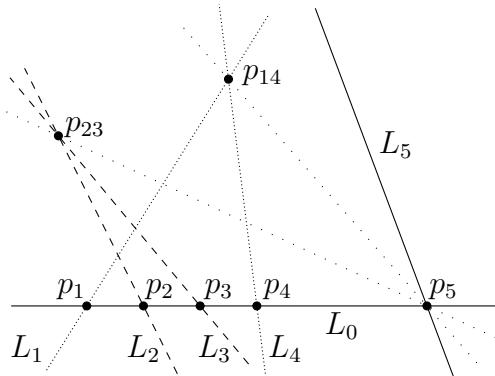


FIGURE 2. The involution s_0

Let $\tilde{s}_0 : X_3 \rightarrow X_3$ be the automorphism of X_3 induced by $\text{id}_S \times s_0 \times \text{id}_T$. Observe that if $\text{char } \mathbf{K} \neq 2$, the point $\tilde{s}_0(u)$ is distinct from u : $\text{id}_S \times s_0$ acts on $T_{\Delta_S(p_\infty)}(S \times S)$ by the linear transformation $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, which fixes $T_{\Delta_S(p_\infty)}\Delta_S(C)$ if and only if $\text{char } \mathbf{K} = 2$.

We now construct a variety dominating X and on which \tilde{s}_0 lifts to an automorphism. If $\text{char } \mathbf{K} \neq 2$, take X' to be the blow-up of X at the two points u and $\tilde{s}_0(u)$. If $\text{char } \mathbf{K} = 2$, take $X' = X$; the involution \tilde{s}_0 already lifts to an automorphism of X and no blow-up is needed.

Lemma 14. *The variety X' satisfies $\text{Aut}(X') \cong G^\pm$.*

Proof. In characteristic 2, $G^+ = G^\pm$ and we have already seen that $\text{Aut}(X) \cong G^+$, so we may assume that $\text{char } \mathbf{K} \neq 2$. According to Lemma 8, because X_3 is \mathbb{P}^5 -averse, the automorphisms of X' are the stabilizer of $u \cup \tilde{s}_0(u)$. These are precisely the automorphisms S which are of either the form $z \mapsto z + a$ or $z \mapsto -z + a$, as required. \square

Let $\bar{\gamma} : S \rightarrow S$ be an automorphism restricting to L_0 as $\gamma = (z \mapsto bz)$, where b is as in Lemma 4; if $\text{char } \mathbf{K} = 0$ then $b = 2$, while if $\text{char } \mathbf{K} > 0$, then $b = t$. The elements $s_n = \bar{\gamma}^{-n} \circ s_0 \circ \bar{\gamma}^n$ are all involutions, and the restriction of s_n to L_0 is the map $z \mapsto cb^{-n} - z$, which lies in G^\pm . Although the maps s_n are conjugate in $\text{Aut}(S)$, they are conjugate by powers of $\bar{\gamma}$, and $\bar{\gamma}$ is not contained in G^\pm . We now work to show that the s_n indeed define distinct conjugacy classes in the subgroup G^\pm .

Lemma 15. *The $(+1)$ -eigenspace of $s_0^* : N^1(S)_{\mathbf{R}} \rightarrow N^1(S)_{\mathbf{R}}$ has dimension 8. Moreover, the six classes*

$$\begin{aligned} H & E_{01} & E_{02} & E_{03} & E_{04} & E_{05} & E_{12} & E_{13} & E_{14} & E_{15} & E_{23} & E_{24} & E_{25} & E_{34} & E_{35} & E_{45} \\ R_1 &= & (3 & 0 & -1 & -1 & 0 & -1 & -1 & -1 & 0 & -1 & 0 & -1 & 0 & -1 & 0 & -1), \\ R_2 &= & (3 & -1 & 0 & 0 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & 0), \\ R_3 &= & (4 & 0 & -1 & -1 & 0 & -2 & -1 & -1 & -2 & 0 & 0 & -1 & -1 & -1 & -1 & 0), \\ R_4 &= & (4 & -1 & 0 & 0 & -1 & -2 & -1 & -1 & 0 & -1 & -2 & -1 & 0 & -1 & 0 & -1), \\ R_5 &= & (5 & 0 & -1 & -1 & 0 & -3 & -1 & -1 & -2 & -1 & -2 & -1 & 0 & -1 & 0 & -1), \\ R_6 &= & (5 & -1 & 0 & 0 & -1 & -3 & -1 & -1 & -2 & 0 & -2 & -1 & -1 & -1 & -1 & 0). \end{aligned}$$

define elliptic fibrations on S which are invariant under s_0 .

Proof. The dimension of the $(+1)$ -eigenspace can be computed based on the geometric description of s_0 given in the proof of Theorem 3. The matrix ι_R^* for the action of s_0^* on a five-point blow-up S_R is given in the proof of Theorem 3 and has a two-dimensional $(+1)$ -eigenspace. The other eleven exceptional divisors arise as four pairs exchanged by s_0^* , and two divisors fixed by s_0^* . The four pairs each contribute a one-dimensional subspace to the $(+1)$ -eigenspace, as does each invariant divisor. The total dimension of the $(+1)$ -eigenspace is then $2 + 4 + 2 = 8$.

Each R_i can be written as a sum of effective classes in two distinct ways:

$$\begin{aligned} R_1 &= L_0 + L_1 + L_4 + 2E_{01} + 2E_{04} + 2E_{14} \\ &= L_2 + L_3 + L_5 + 2E_{23} + 2E_{25} + 2E_{35} \\ R_2 &= L_1 + L_4 + L_5 + 2E_{14} + 2E_{15} + 2E_{45} \\ &= L_0 + L_2 + L_3 + 2E_{02} + 2E_{03} + 2E_{23} \end{aligned}$$

$$\begin{aligned}
R_3 &= L_2 + L_3 + 2E_{23} + 2(H - E_{05} - E_{14}) \\
&= L_0 + L_1 + L_4 + L_5 + 2E_{01} + 2E_{04} + 2E_{15} + 2E_{45} \\
R_4 &= L_1 + L_4 + 2E_{14} + 2(H - E_{05} - E_{23}) \\
&= L_0 + L_2 + L_3 + L_5 + 2E_{02} + 2E_{03} + 2E_{25} + 2E_{35} \\
R_5 &= L_2 + L_3 + L_5 + 2E_{25} + 2E_{35} + 2(H - E_{05} - E_{14}) \\
&= L_0 + L_1 + L_4 + 2E_{01} + 2E_{04} + 2(H - E_{05} - E_{23}) \\
R_6 &= L_0 + L_2 + L_3 + 2E_{02} + 2E_{03} + 2(H - E_{05} - E_{14}) \\
&= L_5 + L_1 + L_4 + 2E_{15} + 2E_{45} + 2(H - E_{05} - E_{23})
\end{aligned}$$

In each case, the two effective representatives have disjoint support, and so each R_i determines a basepoint-free linear system on S . For each i we have $R_i \cdot R_i = 0$ and $K_S \cdot R_i = 0$, so these define elliptic fibrations with the given divisors as reducible fibers.

It is also necessary to check that the R_i are invariant under s_0^* . In each case, the geometric description from the proof of Theorem 3 shows that s_0 permutes the components of the given reducible fibers. For example, the invariance of R_1 follows from the facts that $s_0(L_0) = L_0$, $s_0(L_1) = L_4$, $s_0(E_{01}) = E_{04}$, and $s_0(E_{14}) = E_{14}$. \square

Lemma 16. *The class $H - E_{05}$ is the unique class D in $N^1(S)_{\mathbf{R}}$ for which:*

- (1) D is contained in the $(+1)$ -eigenspace of the involution $s_0^* : N^1(S)_{\mathbf{R}} \rightarrow N^1(S)_{\mathbf{R}}$.
- (2) $D \cdot L_0 = D \cdot L_5 = 0$ and $D \cdot L_1 = D \cdot L_2 = D \cdot L_3 = D \cdot L_4 = 1$.
- (3) D is nef.
- (4) $D^2 = 0$.

Proof. The linear system $H - E_{05}$ contains the strict transforms on S of the pencil of lines through p_{05} . Since this pencil is preserved by s_0 and the linear system on S is basepoint-free, the claimed properties follow for the class $H - E_{05}$.

We next check that there are no other classes with these four properties. Suppose that D is such a class, and let $D' = D - (H - E_{05})$. Then D' lies in the $(+1)$ -eigenspace of s_0^* , and $D' \cdot L_i = 0$ for each L_i ; the set of D' satisfying these hypotheses is a linear subspace of $N^1(S)_{\mathbf{R}}$.

Since $L_1 - L_4$ and $L_2 - L_3$ lie in the (-1) -eigenspace, the space of D' which lie in the $(+1)$ -eigenspace and satisfy $D' \cdot L_i = 0$ for each i is 4-dimensional. Each of the six classes R_i of Lemma 15 lies in this space, and so a basis is provided by R_1, R_2, R_3 , and R_4 ; the other rays satisfy $R_5 = R_3 + R_4 - R_2$ and $R_6 = R_3 + R_4 - R_1$.

We wish to know when the class $D = (H - E_{05}) + a_1 R_1 + a_2 R_2 + a_3 R_3 + a_4 R_4$ is nef. Intersecting with the eight effective classes

$$\begin{array}{llll}
E_{14}, & E_{23}, & E_{35}, & E_{01}, \\
H - E_{05} - E_{14}, & H - E_{05} - E_{23}, & E_{15}, & E_{02},
\end{array}$$

we obtain the eight inequalities

$$\begin{array}{llll}
a_3 \geq 0, & a_4 \geq 0, & a_2 + a_3 \geq 0, & a_2 + a_4 \geq 0, \\
a_1 + a_2 + a_4 \geq 0, & a_1 + a_2 + a_3 \geq 0, & a_1 + a_4 \geq 0, & a_1 + a_3 \geq 0,
\end{array}$$

which all must hold if D is nef. Summing the eight inequalities we find that $a_1 + a_2 + a_3 + a_4 \geq 0$ with equality only if the left side of each is 0; it follows that $a_1 + a_2 + a_3 + a_4 = 0$ only if each a_i is 0. Any nonzero (a_1, a_2, a_3, a_4) satisfying the inequalities is thus a positive multiple

of a solution with $a_1 + a_2 + a_3 + a_4 = 1$. Substituting $a_1 = 1 - a_2 - a_3 - a_4$, the four columns above yield the four constraints:

$$0 \leq a_3 \leq 1, \quad 0 \leq a_4 \leq 1, \quad -a_3 \leq a_2 \leq 1 - a_3, \quad -a_4 \leq a_2 \leq 1 - a_4.$$

These inequalities on (a_2, a_3, a_4) determine a compact three-dimensional polyhedron with six vertices $(a_2, a_3, a_4) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 1, 1), (0, 1, 1)$. The set of solutions to the original inequalities is then the four-dimensional cone spanned by the six classes

$$(a_1, a_2, a_3, a_4) = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, -1, 1, 1), (-1, 0, 1, 1).$$

The corresponding classes $a_1R_1 + a_2R_2 + a_3R_3 + a_4R_4$ in $N^1(S)_{\mathbf{R}}$ are precisely $R_1, R_2, R_3, R_4, -R_2 + R_3 + R_4 = R_5$ and $-R_1 + R_3 + R_4 = R_6$.

As a result, the set of D satisfying hypotheses (1)–(3) is contained in the cone given by divisors of the form $(H - E_{05}) + \sum_{i=1}^6 c_i R_i$ with $c_i \geq 0$. Since $(H - E_{05}) \cdot R_i = 2$ for each $1 \leq i \leq 6$, while $R_i \cdot R_j \geq 0$ for any i and j , and $(H - E_{05})^2 = 0$, we find that

$$\left((H - E_{05}) + \sum_{i=1}^6 c_i R_i \right)^2 \geq 0,$$

with equality if and only if $c_i = 0$ for each i , so that $D = H - E_{05}$. \square

Lemma 17. *The centralizer of s_0 in G_{ev}^{\pm} is the two-element group $\{\text{id}_S, s_0\}$.*

Proof. Suppose that $\phi : S \rightarrow S$ is an element of G_{ev}^{\pm} commuting with s_0 . Then $\phi^* : N^1(S)_{\mathbf{R}} \rightarrow N^1(S)_{\mathbf{R}}$ must preserve the $(+1)$ -eigenspace of s_0^* , and so $\phi^*(H - E_{05})$ lies in this eigenspace as well. If ϕ lies in G_{ev}^{\pm} , then the intersection property (2) must be satisfied by $\phi^*(H - E_{05})$. Since ϕ^* also preserves the nef cone and the intersection form, $\phi^*(H - E_{05})$ in fact satisfies the hypotheses (1)–(4) of Lemma 16. It then follows from the lemma that $\phi^*(H - E_{05}) = H - E_{05}$ in $N^1(S)_{\mathbf{R}}$, and since $\text{Pic}^0(S)$ is trivial, that ϕ must preserve the class $H - E_{05}$ in $\text{Pic}(S)$. As a result, ϕ factors through the map $\lambda : S \rightarrow \mathbb{P}^1$ given by the basepoint-free linear system $|H - E_{05}|$.

In particular, ϕ permutes the singular fibers of λ . The fibers are the preimages on S of the lines in \mathbb{P}^2 passing through the point p_{05} , and the singular fibers are precisely those corresponding to lines which pass through p_{05} and any of the other 14 points which are blown up on S . Eight of those points lie on the two lines L_0 and L_5 ; the other six are the lines through the point p_{05} and a point p_{ij} for which neither i nor j is equal to 0 or 5. These six singular fibers are each unions of two (-1) -curves, with classes $H - E_{05} - E_{ij}$ and E_{ij} , arising as the strict transform of the line itself, and as the exceptional divisor of the blow-up.

Since by assumption ϕ lies in the subgroup G_{ev}^{\pm} , it fixes the two curves L_0 and L_5 and either fixes or exchanges the members of the pairs L_1, L_4 and L_2, L_3 . It must map E_{14} to another s_0 -invariant (-1) -curve contained in a fiber of λ that has intersection 1 with both L_1 and L_4 , and 0 with L_2 and L_3 . From the description of the preceding paragraph, the only two such curves are E_{14} itself and the strict transform of the line from p_{05} to p_{23} , which has class $H - E_{05} - E_{23}$. However, under the generality hypothesis of Remark 1, there is no map that fixes L_0 and L_5 while exchanging the fibers containing these curves; consequently each of these fibers must be mapped to itself. This implies that ϕ fixes four fibers of the map λ , and since the base is \mathbb{P}^1 , that ϕ maps every fiber of λ to itself.

Replacing ϕ with $\phi \circ s_0$ if necessary, we obtain an element commuting with s_0 which fixes the four curves L_0, L_5, L_1 , and L_4 , and either fixes the two curves L_2 and L_3 or exchanges them.

Suppose for now that ϕ exchanges the two sections L_2 and L_3 . The fibers of λ are preserved, and so $\phi(E_{12})$ must be either E_{12} or the curve of class $H - E_{05} - E_{12}$. We have

$$\begin{aligned} L_1 \cdot \phi(E_{12}) &= \phi(L_1) \cdot \phi(E_{12}) = L_1 \cdot E_{12} = 1, \\ L_2 \cdot \phi(E_{12}) &= \phi(L_3) \cdot \phi(E_{12}) = L_3 \cdot E_{12} = 0. \end{aligned}$$

Neither E_{12} nor $H - E_{05} - E_{12}$ has the required intersection properties for $\phi(E_{12})$: we have $L_2 \cdot E_{12} = 1$, while $L_1 \cdot (H - E_{05} - E_{12}) = 0$. We conclude that $\phi(L_2) = L_2$ and $\phi(L_3) = L_3$.

Thus ϕ must commute with the projection λ and fix the four sections L_1 , L_2 , L_3 , and L_4 . A general geometric fiber F of λ is a rational curve in the linear system $|H - E_{05}|$. The map ϕ fixes the four points of intersection of F with the sections listed, and so $\phi|_F$ must be the identity map. Since ϕ fixes a Zariski dense set of points on $S_{\mathbf{K}}$, it must be the identity. As we may have previously replaced ϕ with $\phi \circ s_0$, we conclude that the centralizer is $\{\text{id}_S, s_0\}$. \square

Corollary 18. *The group G_{ev}^{\pm} contains infinitely many conjugacy classes of involutions.*

Proof. Let $\bar{\gamma}$ be an automorphism of S restricting to $z \mapsto bz$ on L_0 . Since any automorphism of S permutes the six lines, there exists some $N > 0$ for which the iterate $\bar{\gamma}^N$ maps each of the six lines L_i to itself. The map $s_{Nn} = \bar{\gamma}^{-Nn} \circ s_0 \circ \bar{\gamma}^{Nn}$ is an involution which restricts to L_0 as $z \mapsto cb^{-Nn} - z$, and since s_{Nn} induces the same permutation of the L_i as does s_0 , it lies in the subgroup G_{ev}^{\pm} .

We claim that no two distinct s_{Nm} and s_{Nn} are conjugate by an element of G_{ev}^{\pm} . It suffices to show that s_0 is not conjugate to any s_{Nn} . If $s_{Nn} = \bar{\gamma}^{-Nn} \circ s_0 \circ \bar{\gamma}^{Nn} = \alpha \circ s_0 \circ \alpha^{-1}$ for some α , then $\bar{\gamma}^{Nn} \circ \alpha$ commutes with s_0 . According to Lemma 17, either $\alpha = \bar{\gamma}^{-Nn}$ or $\alpha = \bar{\gamma}^{-Nn} \circ s_0$. Since neither $\bar{\gamma}^{-Nn}$ nor $\bar{\gamma}^{-Nn} \circ s_0$ is contained in G_{ev}^{\pm} for any nonzero value of n , the claim follows. \square

Lemma 19. *Every automorphism of $X'_{\mathbf{L}}$ is defined over \mathbf{K} .*

Proof. Since $S_{\mathbf{L}}$ is constructed by blowing up \mathbf{K} -points in \mathbb{P}^2 , its Picard group is generated by the classes of \mathbf{K} -divisors. The Galois action on $\text{Pic}(S_{\mathbf{L}})$ is therefore trivial, and preserves the class of any (-1) -curve. Because each (-1) -curve is rigid in its numerical class, these curves are invariant under the conjugation map $c : S_{\mathbf{L}} \rightarrow S_{\mathbf{L}}$.

Suppose that $\phi : X'_{\mathbf{L}} \rightarrow X'_{\mathbf{L}}$ is any automorphism. Then ϕ is induced by some automorphism $\psi : S_{\mathbf{L}} \rightarrow S_{\mathbf{L}}$, and $c \circ \psi \circ c : S_{\mathbf{L}} \rightarrow S_{\mathbf{L}}$ is an automorphism which has the same action as ψ on the class of any (-1) -curve. Since $\text{Pic}(S)$ is generated by classes of (-1) -curves defined over \mathbf{K} , ψ and $c \circ \psi \circ c$ have the same action on $\text{Pic}(S)$. As $H^0(S_{\mathbf{L}}, TS_{\mathbf{L}}) = 0$, these two maps must coincide, so that $c \circ \psi = \psi \circ c$, and ψ is defined over \mathbf{K} . \square

Proof of Theorem 2. We have $\text{Aut}(X'_{\mathbf{L}}) \cong G^{\pm}$, and G_{ev}^{\pm} is a finite index subgroup of G^{\pm} on which $\text{Gal}(\mathbf{L}/\mathbf{K})$ acts trivially. By Lemma 18, G_{ev}^{\pm} contains infinitely many conjugacy classes of involutions, and Theorem 2 then follows from Lemma 13. \square

4. ACKNOWLEDGEMENTS

I am deeply grateful to Igor Dolgachev for a number of discussions related to this problem. I also thank the referees, whose suggestions have significantly improved both the results and the readability of this paper. A number of people made useful comments on an earlier version, including Serge Cantat, Izzet Coskun, Jeff Diller, Daniel Litt, James M^cKernan, Roberto Svaldi, and Burt Totaro.

The participants in the MathOverflow thread [1] provided useful context, and I had useful discussions with Piotr Pokora on these rational surfaces. The SageMath system was invaluable for making many of the computations [11]. I thank the UIC Mathematical Computing Laboratory for computer time.

This material is based upon work supported by the NSF RTG grant No. DMS-1246844. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

1. Various authors, *Finiteness property of automorphism scheme*, MathOverflow, URL:<http://mathoverflow.net/q/22211> (version: 2016-08-25).
2. Arthur Baragar, *Automorphisms of surfaces in a class of Wehler K3 surfaces with Picard number 4*, Rocky Mountain J. Math. **46** (2016), no. 2, 399–412.
3. Jérémie Blanc and Adrien Dubouloz, *Affine surfaces with a huge group of automorphisms*, Int. Math. Res. Not. IMRN (2015), no. 2, 422–459.
4. A. Borel and J.-P. Serre, *Théorèmes de finitude en cohomologie galoisienne*, Comment. Math. Helv. **39** (1964), 111–164.
5. Michel Brion, *On automorphisms and endomorphisms of projective varieties*, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., vol. 79, Springer, Cham, 2014, pp. 59–81.
6. Serge Cantat, *Dynamics of automorphisms of compact complex surfaces*, Frontiers in complex dynamics, Princeton Math. Ser., vol. 51, Princeton Univ. Press, Princeton, NJ, 2014, pp. 463–514.
7. Serge Cantat and Igor Dolgachev, *Rational surfaces with a large group of automorphisms*, J. Amer. Math. Soc. **25** (2012), no. 3, 863–905.
8. Serge Cantat and Abdelghani Zeghib, *Holomorphic actions, Kummer examples, and Zimmer program*, Ann. Sci. Éc. Norm. Supér. (4) **45** (2012), no. 3, 447–489.
9. Olivier Debarre, *Higher-dimensional algebraic geometry*, Universitext, Springer-Verlag, New York, 2001.
10. A. Degtyarev, I. Itenberg, and V. Kharlamov, *Real Enriques surfaces*, Lecture Notes in Mathematics, vol. 1746, Springer-Verlag, Berlin, 2000.
11. The Sage Developers, *SageMath, the Sage Mathematics Software System (Version 7.6)*, 2017, <http://www.sagemath.org>.
12. Igor V. Dolgachev, *Classical algebraic geometry*, Cambridge University Press, Cambridge, 2012.
13. Igor V. Dolgachev and De-Qi Zhang, *Coble rational surfaces*, Amer. J. Math. **123** (2001), no. 1, 79–114.
14. Alexander Grothendieck, *Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2)*, North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968, Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics, Vol. 2.
15. A. E. Hatcher, *Concordance spaces, higher simple-homotopy theory, and applications*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–21.
16. B. Mazur, *On the passage from local to global in number theory*, Bull. Amer. Math. Soc. (N.S.) **29** (1993), no. 1, 14–50.
17. Bjorn Poonen, *Varieties without extra automorphisms. III. Hypersurfaces*, Finite Fields Appl. **11** (2005), no. 2, 230–268.
18. ———, *Automorphisms mapping a point into a subvariety*, J. Algebraic Geom. **20** (2011), no. 4, 785–794.
19. Jean-Pierre Serre, *Galois cohomology*, english ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002, Translated from the French by Patrick Ion and revised by the author.
20. Hans Sterk, *Finiteness results for algebraic K3 surfaces*, Math. Z. **189** (1985), no. 4, 507–513.
21. Dennis Sullivan, *Infinitesimal computations in topology*, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 269–331 (1978).
22. Burt Totaro, *Algebraic surfaces and hyperbolic geometry*, Current developments in algebraic geometry, Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 2012, pp. 405–426.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607

Email address: `ndl@uic.edu`