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Abstract. We construct a projective variety with discrete, non-finitely generated automor-
phism group. As an application, we show that there exists a complex projective variety with
infinitely many non-isomorphic real forms.

1. Introduction

Suppose that X is a projective variety over a field K, with K an algebraic closure. The
set of automorphisms of X can be given the structure of a K-scheme by realizing it as an
open subset of Hom(X,X). In general, Aut(X) is locally of finite type, but it may have
countably many components. Write Aut0(X) for the connected component of the identity,
and π0(Aut(X)) = (Aut(X)/Aut0(X))K for the group of geometric components. When K
is the field of complex numbers, π0(Aut(X)) is simply the group of components of Aut(X),
sometimes denoted Aut(X)♯. We will say that the group of automorphisms of X is discrete
if H0(X,TX) = 0, which implies that Aut0(X) is trivial.

Examples.

(1) Let X = Pr. Then Aut(X) ∼= Aut0(X) ∼= PGLr+1(K), and π0(Aut(X)) is trivial.
(2) Let E be an elliptic curve over K. Then π0(Aut(E ×E)) contains GL2(Z) and hence

is an infinite group.
(3) Let X be a very general hypersurface of type (2, 2, 2) in P1 × P1 × P1, with K = C.

ThenX is a K3 surface, and the covering involutions associated to the three projections
X → P1 × P1 generate π0(Aut(X)) ∼= Z/2Z ∗ Z/2Z ∗ Z/2Z [6].

According to a result of Brion [5], any connected algebraic group over a field of characteristic
0 can be realized as Aut0(X) for some smooth, projective variety. In contrast, very little
seems to be known in general about the component group π0(Aut(X)).

Our first result is the following.

Theorem 1. Suppose that K is a field of characteristic 0, or that K is a field of characteristic
p > 0, not algebraic over Fp. Then there exists a smooth, geometrically simply connected,
6-dimensional, projective variety X over K for which π0(Aut(X)) is not finitely generated.

The question of finite generation of π0(Aut(X)) has been raised several times in various
arithmetic [16, 1] and geometric [5, 8, 22] contexts.

The automorphism group owes its arithmetic interest in part to its close relation with the
forms of a variety over extension fields. If X is a variety over a field K, and if L is a Galois
extension of K, then an L/K-form of X is a variety X ′ over K for which XL

∼= X ′
L. The set

of L/K-forms of X is in bijection with the Galois cohomology set H1(Gal(L/K),Aut(XL)),
and we will construct a variety with infinitely many L/K-forms by exhibiting a variety for
which Aut(XL) is pathological.
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Theorem 2. Suppose that K is a field of characteristic 0, or that K is a field of characteristic
p > 0, not algebraic over Fp. Let L/K be a separable quadratic extension. Then there exists
a 6-dimensional, projective K-variety X ′ with infinitely many L/K-forms.

In the case K = R and L = C, we obtain an example of a variety with infinitely many
non-isomorphic real structures.
The component group π0(Aut(X)) is an algebraic analog of the mapping class group

π0(Diff(M)) of a smooth manifold M . In general, the mapping class group is not finitely
generated, with an example provided by tori in dimension at least five [15]. However, according
to a theorem of Sullivan, if dimM ≥ 5 and M is simply connected, then π0(Diff(M)) is
finitely generated [21]. This contrasts with our example, which is simply connected and has
real dimension 12 if K = C.
The group π0(Aut(X)) is always finitely generated in a number of simple situations,

although even then the group can be quite complicated. If X is a K3 surface, the group of
automorphisms is always finitely generated [20], but there are examples in which the group
of automorphisms is not even commensurable with an arithmetic group [22, Corollary 6.2].
Some other interesting automorphism groups of K3 surfaces have been studied by Baragar [2].
If X is not projective, the group of automorphisms may not even have the structure

of a locally finite type scheme. Blanc and Dubouloz have exhibited affine surfaces over
any uncountable field for which the normal subgroup Aut(S)alg of Aut(S) generated by all
algebraic subgroups can not be generated by any countable family of these subgroups, and
for which Aut(S)/Aut(S)alg contains a free group on uncountably many generators [3].
Before giving our example, we sketch the technique. If X is a variety and Z is a closed

subscheme of X with codimZ > 1, then the automorphisms of X that lift to automorphisms
of the blow-up BlZ(X) are precisely those that map Z to itself (not necessarily fixing Z
pointwise). Our approach, roughly speaking, is to find a variety X with a subscheme Z
so that the stabilizer Stab(Z) ⊂ Aut(X) is not finitely generated, and then to pass to the
blow-up BlZ(X) to obtain a variety realizing Stab(Z) as an automorphism group. There are
three main difficulties. The first is to find X and Z for which the stabilizer of Z in Aut(X)
is not finitely generated. The second is to prove it: in general it is very difficult to be sure
that one knows the full group Aut(X) (cf. [18]). The third is to ensure that BlZ(X) does not
have any automorphisms other than those lifted from X.

2. The construction

In what follows, let K be an infinite field, not necessarily algebraically closed, and let K
be an algebraic closure. Where not otherwise qualified, a “variety” is a variety over K, and a
“point” is a K-point. Let N1(X)R = N1(X)⊗R denote the finite-dimensional vector space
of numerical classes of divisors on X. Given a subvariety V ⊂ X, write

Aut(X;V ) = {ϕ ∈ Aut(X) : ϕ(V ) = V } .

Step 1: Automorphisms of surfaces with prescribed action on a curve

If z1, z2, z3, and z4 are four distinct points in P1, there is a unique involution ı : P1 → P1

with ı(z1) = z2 and ı(z3) = z4, which is defined over K. Figure 1 shows how this map can be
constructed geometrically when P1 is embedded as a conic in P2. This involution is defined
even if z1 = z2 or z3 = z4; in that case, the construction is the same except that we draw the
tangent to the conic at z1 or z3. However, if charK = 2 and both z1 = z2 and z3 = z4, the
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projection from q induces an inseparable degree 2 morphism P1 → P1; we will take care to
avoid this situation.

z1

z2

z3

z4
ı(x)

P1

q

x

Figure 1. Geometric construction of ı

Given an ordered 5-tuple P = (p1, p2, p3, p4, p5) of distinct points in P1, let ΓP ⊂ PGL2(K)
be the subgroup generated by the involutions ıij,kl : P1 → P1 satisfying ıij,kl(pi) = pj and
ıij,kl(pk) = pl, where i, j, k and l are distinct indices. For a given configuration P , there are
15 such involutions, and the group ΓP depends only on the unordered set of points pi.

Our starting point is a classical construction, a de Jonquières involution of degree 3 [12,
§7.2.3]. Suppose that C ⊂ P2 is a smooth plane cubic, and that p is a point on C. Given a
point z in P2, let ℓpz be the line connecting p and z. Over K, this line meets C at p and two
additional points x and y. If x and y are distinct, there is a unique involution of ℓK, defined
over K, which fixes the points x and y. Then ı(z) is defined to be the image of z under this
involution. In what follows, we will use a different description of one such map, in which the
cubic does not explicitly appear.

Theorem 3. Suppose that P is a configuration of five distinct points in P1. There exists a
smooth rational surface S containing a smooth rational curve C ∼= P1 such that

(1) the group Aut(S) is discrete;
(2) the subgroup Aut(S;C) has finite index in Aut(S);
(3) the image of ρ : Aut(S;C) → Aut(C) contains ΓP ;
(4) if ϕ : S → S is an automorphism fixing a point on C, then ϕ(C) = C.

Proof. Let L0, . . . , L5 be six lines in P2 intersecting at 15 distinct points pij = Li ∩ Lj,
and suppose that for any partition of the lines into three sets of two, the three pairwise
intersections are not collinear. Let S be the blow-up of P2 at these 15 points, with exceptional
divisor Eij over pij . Write R for a partition of the six lines into three sets of two, with one of
the three pairs distinguished. Given such a labelling, denote by LR,1 and LR,2 the members
of the distinguished pair, by L′

R,1 and L′
R,2 the members of a second pair, and by L′′

R,1 and
L′′
R,2 those of the third. Let oR be the point of intersection of LR,1 and LR,2.
If ℓ is a general line passing through the point oR, it meets the lines L′

R,1, L
′
R,2, L

′′
R,1, and

L′′
R,2 at four distinct points. There is a unique involution on ℓ which exchanges the first and

second points, and exchanges the third and fourth points. We define ıR : P2 99K P2 to be the
birational involution defined in this way on any line ℓ through oR. Under the assumption
that three pairwise intersections of the Li are never collinear, we will see that this map has
five points of indeterminacy, oR itself and the four points qij = L′

R,i ∩ L′′
R,j , where i and j are

either 1 or 2. For the lines between oR and qij , the construction in Figure 1 degenerates: two
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of the points (for example z1 and z3) coincide, and the point q in turn coincides with both.
In particular, it lies on the conic, and projection from q does not yield a degree 2 morphism.
Let πR : SR → P2 be the blow-up at these five points. We argue next that ıR lifts to

a biregular involution of SR; the strategy is to carry out the construction illustrated in
Figure 1 simultaneously for all lines in the pencil of lines through oR. Projection from oR
realizes BloRP2 as a P1-bundle over P1, isomorphic to P(O ⊕ O(1)). The blow-up BloRP2

then embeds in the P2-bundle P(E), where E = Sym2(O ⊕ O(1)), and the image of a line
through oR is a conic contained in the corresponding fiber of P(E) → P1. The four lines
L′
Ri

and L′′
Rj

determine four sections of P(E) → P1, all with image contained in BloRP2. In

each fiber F ∼= P2, form the lines through L′
R,1 ∩ F and L′

R,2 ∩ F , and through L′′
R,1 ∩ F and

L′′
R,2 ∩F . Taking the fiberwise intersections of these lines, we obtain a section Q : P1 → P(E),

corresponding to the point q of Figure 1.
The image of Q meets BloRP2 precisely in the four fibers where some L′

R,i and L
′′
R,j intersect,

at the points qij. Let Q ⊂ E be the subbundle corresponding to Q. Fiberwise projection
from the image of Q determines a morphism c : BlQ(P1)P(E) → P(E/Q), where the image is a
P1-bundle over P1. Let SR be the strict transform of BloRP2 on BlQ(P1)P(E), so that SR is
isomorphic to the blow-up of P2 at the five points oR and qij. Write EoR for the exceptional
divisor of SR above oR, and Eqij for the exceptional divisors above the points qij.
The restriction c|SR

is a finite morphism of degree 2; because the lines L′
R,1 and L′

R,2 are
distinct, as are L′′

R,1 and L′′
R,2, this morphism is separable (in fact, because of the hypothesis

that LR,1 ∩ LR,2, L
′
R,1 ∩ L′

R,2, and L
′′
R,1 ∩ L′′

R,2 are not collinear, the restriction to any fiber is
separable). The corresponding covering involution is precisely the map ıR, and so SR provides
a resolution of this involution as claimed.
The map ıR preserves each of the lines LR,i, while exchanging the two lines L′

R,i and the
two lines L′′

R,j. It also preserves the pencil of lines through oR and the canonical class KSR
.

Note too that the image of Eqij under ıR is the strict transform of the line from oR to qij , with
class H − EoR − Eqij . This completely characterizes the action of ı∗R : N1(SR)R → N1(SR)R,
which we record for later use. With respect to the basis given by H = π∗OP2(1), EoR , and
the Eqij , the matrix for ı∗R is

ı∗R =

⎛⎜⎜⎜⎜⎜⎝
3 2 1 1 1 1

−2 −1 −1 −1 −1 −1
−1 −1 −1 0 0 0
−1 −1 0 −1 0 0
−1 −1 0 0 −1 0
−1 −1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ .

Observe next that ıR lifts to an involution on S, the surface obtained by blowing up all 15
points of intersection of the six lines Li. The five points LR,1∩LR,2 and L

′
R,i∩L′′

R,j are already
blown up on SR. The eight points LR,i ∩ L′

R,j and LR,i ∩ L′′
R,j are exchanged in four pairs of

two, so ıR lifts to the blow-up at these eight additional points (for example, LR,1 ∩ L′
R,1 is

exchanged with LR,1 ∩ L′
R,2). At last, the two points L′

R,1 ∩ L′
R,2 and L′′

R,1 ∩ L′′
R,2 are both

fixed, and so ıR lifts to the blow-up S.
The rational surface S claimed by the theorem can now be constructed by choosing the

lines in special position. Fix a line C = L0 ⊂ P2, and choose five other lines L1, . . . , L5 so
that Li ∩ C = pi, where the pi are the points of the configuration P . Since the field K is
infinite, for general choices of the Li, the fifteen points of intersection are distinct and three
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pairs of lines never have collinear intersections. The involution ıij,kl : C → C is realized as
the restriction of ıR : S → S for some labelling R: let m be the unique index which does not
appear among i, j, k, and l, and take LR,1 = C, LR,2 = Lm, L

′
R,1 = Li, L

′
R,2 = Lj , L

′′
R,1 = Lk,

L′′
R,2 = Ll. The involution ıij,kl on C is then the restriction of the automorphism ıR : S → S

fixing C, proving claim (3).
To check (1), note that a section in H0(S, TS) descends to a section of H0(P2, TP2)

vanishing at the fifteen blown-up points, and Aut0(S) can thus be identified with an algebraic
subgroup of Aut(P2), fixing the points. Since four of the points are linearly general, such a
group is trivial. It follows that H0(S, TS) = 0 and Aut0(S) is trivial.
We next check claim (2), that the subgroup Aut(S;C) has finite index in Aut(S). This

is a consequence of the fact that S is a Coble rational surface [13], [7]: the linear system
|−2KS| has a unique element, the union of the strict transforms of the six lines Li. Indeed,
each line satisfies −2KS ·Li = −4, and so must be contained in the base locus of |−2KS|. An
automorphism preserves the anticanonical class, so the six lines are permuted by any element
of Aut(S), giving rise to a map Aut(S) → S6. The subgroup Aut(S;C) is the preimage of
the subgroup of permutations fixing C, and so of finite index.

Claim (4) follows similarly: any automorphism of S permutes the components of |−2KS|,.
Since these six curves are disjoint on S, if a point on C is fixed by an automorphism ϕ, it
must be that ϕ(C) = C as well. □

Remark 1. Consider the four lines through the point p05 given by L0, L5, L(p05, p14), and
L(p05, p23), which define four points in PTp05(P2) ∼= P1. It will later be convenient to assume
that these points are distinct and there is no automorphism of this P1 which fixes the first
two points while exchanging the third and fourth; this will be the case for general choices of
the five lines even after the intersections with L0 are prescribed.

Remark 2. For an alternative construction of the involutions ıR, one can partition the six
lines Li into two sets of three, and consider the pencil of cubics spanned by the two triangles.
This determines an elliptic fibration S ′

R → P1, where S ′
R is obtained by blowing up the

nine points of the base locus of the pencil. Choosing a distinguished line from each set of
three gives a section of the fibration (provided by the exceptional divisor above the point
of intersection), and the fiberwise map z ↦→ −z with respect to this section determines a
biregular involution of SR′ , which can be checked to lift to S.

Step 2: Specializing the configuration P

We now exhibit configurations P = (p1, p2, p3, p4, p5) of points in P1 for which the group
ΓP contains two particular transformations with a common fixed point. Fix projective
coordinates on C, let the affine coordinate z represent the point [z, 1], and write ∞ for the
point [1, 0].

Definition 1. A configuration P of five distinct points in P1 is suitable if the group ΓP

contains two elements

τ =

(
1 a
0 1

)
, γ =

(
b 0
0 1

)
,

where a is nonzero and either

(1) charK = 0 and b−1 is not an algebraic integer;
(2) charK = p > 0 and b is not algebraic over Fp.
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This assumption means that the abelian group Z
[
1
b

]
(in characteristic 0) or Fp

[
1
b

]
(in

characteristic p) is not finitely generated.

Lemma 4.

(1) Suppose that K has characteristic 0. Then the configuration

(p1, p2, p3, p4, p5) = (0, 1, 2, 3,∞)

is suitable, as ΓP contains the two elements

τ =

(
1 1
0 1

)
, γ =

(
2 0
0 1

)
.

(2) Suppose that K has characteristic p > 0 and is not algebraic over Fp. Let t be an
element of K transcendental over Fp. Then the configuration

(p1, p2, p3, p4, p5) = (0, 1, t, t+ 1,∞)

is suitable, as ΓP contains the two elements

τ =

(
1 1
0 1

)
, γ =

(
t 0
0 1

)
.

Proof. We claim that in both cases we have τ = ı24,35 ◦ ı12,34 ◦ ı13,45 and γ = ı15,34 ◦ ı15,24.
Indeed,

(ı24,35 ◦ ı12,34 ◦ ı13,45)(p1) = (ı24,35 ◦ ı12,34)(p3) = ı24,35(p4) = p2,

(ı24,35 ◦ ı12,34 ◦ ı13,45)(p3) = (ı24,35 ◦ ı12,34)(p1) = ı24,35(p2) = p4,

(ı24,35 ◦ ı12,34 ◦ ı13,45)(p5) = (ı24,35 ◦ ı12,34)(p4) = ı24,35(p3) = p5.

In characteristic p, this yields (ı24,35 ◦ ı12,34 ◦ ı13,45)(0) = 1, (ı24,35 ◦ ı12,34 ◦ ı13,45)(t) = t+1, and
(ı24,35 ◦ ı12,34 ◦ ı13,45)(∞) = ∞, and so the composition must be the automorphism τ given by
z ↦→ z + 1. The same argument holds in characteristic 0, substituting 2 for t.
Similarly,

(ı15,34 ◦ ı15,24)(p1) = ı15,34(p5) = p1,

(ı15,34 ◦ ı15,24)(p2) = ı15,34(p4) = p3,

(ı15,34 ◦ ı15,24)(p5) = ı15,34(p1) = p5.

In characteristic p, this map sends 0 to 0, 1 to t, and ∞ to ∞, so it must be the automorphism
γ given by z ↦→ tz. The same argument again holds in characteristic 0 after substituting 2
for t. □

In what follows, we fix a suitable configuration P and let S be a surface satisfying the
conclusions of Theorem 3, so that the image of the restriction map ρ : Aut(S;C) → Aut(C)
contains the elements τ and γ. Write p∞ for the point on S corresponding to ∞ in our
coordinates on C, and let U ⊂ PGL2(K) be the subgroup comprising matrices of the form(

1 a
0 1

)
,

which correspond to parabolic Möbius transformations z ↦→ z + a fixing ∞. The group U is
abelian, isomorphic to Ga. Let

G+ = ρ−1(U) = {ϕ ∈ Aut(S;C) : ρ(ϕ) ∈ U} ⊂ Aut(S;C)
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be the subgroup of Aut(S;C) containing automorphisms whose restriction to C lies in U .

Lemma 5. The subgroup G+ ⊂ Aut(S;C) is not finitely generated.

Proof. Since U is abelian and ρ(G+) is contained in U , the group ρ(G+) is abelian as well.
For any positive n, the transformation

γ−n ◦ τ ◦ γn =

(
1 ab−n

0 1

)
is contained in U . Since τ and γ both lie in Im(ρ) ⊂ Aut(C) by the construction of Theorem 3,
the elements γ−n ◦ τ ◦ γn all lie in ρ(G+), and so ρ(G+) has a subgroup isomorphic to either
Z
[
1
b

]
(in characteristic 0) or Fp

[
1
b

]
(in characteristic p). In either case, this group is not

finitely generated, by hypothesis on b. Since ρ(G+) is abelian and has a non-finitely generated
subgroup, it is not finitely generated either. A quotient of a finitely generated group is finitely
generated, and we conclude that G+ itself is not finitely generated. □

The following geometric characterization of elements of G+ will prove useful. Let

∆S : S → S × S

denote the diagonal map.

Lemma 6. Suppose that ϕ : S → S is an automorphism fixing p∞. Then ϕ lies in G+ if and
only if idS ×ϕ : S × S → S × S fixes the tangent direction T∆S(p∞)(∆S(C)).

Proof. By (4) of Theorem 3, it must be that ϕ(C) = C. An automorphism fixing C and p∞
lies in G+ if and only if p∞ is a fixed point of ϕ|C with multiplicity 2, which is the case if
and only if idS ×ϕ : S × S → S × S fixes ∆S(p∞) and the tangent direction T∆S(p∞)(∆S(C)),
so that (idS ×ϕ)(∆S(C)) is tangent to the diagonal at ∆S(p∞). □

Remark 3. Let τ̄ and γ̄ be automorphisms of S which restrict to C as τ and γ, as constructed
in Theorem 3. Although the restrictions to C of the automorphisms µ̄m = γ̄−m ◦ τ̄ ◦ γ̄m and
µ̄n = γ̄−n ◦ τ̄ ◦ γ̄n commute, these maps do not commute as automorphisms of S, and the
map ρ : Aut(S;C) → Aut(C) is not injective. For example, with γ and τ as in Lemma 4,
the commutator [µ̄0, µ̄1] is an automorphism of S which restricts to C as the identity, and
a straightforward if somewhat tedious computation of the action of the involutions ıR on
N1(S)R shows if P is as in Lemma 4, the induced map [µ̄0, µ̄1] : P2 99K P2 is a Cremona
transformation of degree 195,133 with first dynamical degree λ1 ≈ 60,313. This means that
the nth iterate of the transformation [µ̄0, µ̄1] has degree roughly λ

n
1 . It seems conceivable that

G+ is a free group on the countably many generators µ̄n, though this is difficult to prove.

Remark 4. The kernel G of Aut(S;C) → Aut(C) is the subgroup of automorphisms which
fix C pointwise, including the maps [µ̄m, µ̄n] of the previous remark. It seems likely that G
is not finitely generated; if this is the case, then by choosing a very general point q on C,
we might obtain a rational surface S ′ = BlqS such that Aut(S ′) is isomorphic to G and is
not finitely generated. However, it is not clear how to prove either that G is not finitely
generated, or that the blow-up does not admit automorphisms other than those lifted from S.

Step 3: A variety with non-finitely generated Aut(X)

We now construct a higher-dimensional variety X realizing G+ as Aut(X). Although G+

is not the stabilizer of any closed subscheme of S, it is the stabilizer of a closed subscheme of
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S×S in the group of automorphisms of S×S of the form idS ×ϕ: an automorphism ϕ lies in
G+ if and only if idS ×ϕ fixes both the point ∆S(p∞) = (p∞, p∞) and the tangent direction
T∆S(p∞)(∆S(C)) (here ∆S is again the diagonal map). Our variety X will be realized as a
blow-up of S × S × T , where T is a surface of general type; taking the product with T makes
it simpler to control automorphisms of blow-ups.
We begin with a definition that will sometimes enable us to show that a blow-up BlVX

has no automorphisms except those lifted from X.

Definition 2. A smooth, projective variety X is Pr-averse if every separable K-morphism
h : Pr

K
→ XK is constant.

The term “separably Pr-averse” might be more appropriate, but we omit the modifier in
the interest of brevity. Note that if X is Pr-averse, it is also Ps-averse for any s > r. However,
the property of Pr-averseness is not a birational invariant. For example, an abelian surface
S is P1-averse, but the blow-up of S at a point s is not P1-averse: there is a nonconstant
morphism P1

K
→ SK given by the inclusion of the exceptional divisor.

Lemma 7. Let X be a smooth, projective variety and let π : Y → X be the blow-up of X at
a smooth, equidimensional (but possibly non-connected) subvariety V , with exceptional locus
E. Suppose that ψ : Y → Y is an automorphism of Y with ψ(E) = E such that ψ|E permutes
the fibers of π|E. Then ψ descends to an automorphism ϕ : X → X with ϕ(V ) = V .

Proof. The composition π ◦ ψ contracts every fiber of π|E. Since π∗OY = OX , it follows
from the rigidity lemma that ψ factors through π, inducing a map ϕ : X → X [9, Lemma
1.15(b)]. An inverse to ϕ is obtained by applying the same argument to π ◦ ψ−1. Then
ϕ(V ) = ϕ(π(E)) = π(ψ(E)) = π(E) = V , and so the subvariety V is fixed. □

Lemma 8. Suppose that X is a smooth, Pr−1-averse variety of dimension n, and V ⊂ X is
a smooth, equidimensional subvariety of codimension r, with r > 1. Write π : BlVX → X for
the blow-up of V , with exceptional locus E. Then the map Aut(X;V ) → Aut(BlVX) is an
isomorphism.

Proof. We first observe that any nonconstant morphism h : Pr−1

K
→ (BlVX)K must have

image contained in a geometric fiber of π|EK
. Indeed, π ◦ h : Pr−1

K
→ XK must be constant

since X is Pr−1-averse.
Suppose that ϕ : BlVX → BlVX is an automorphism, and let h : Pr−1

K
→ (BlVX)K be the

inclusion of a geometric fiber of π|EK
. Then ϕ◦h is a nonconstant morphism Pr−1

K
→ (BlVX)K,

and so must be the inclusion of some fiber of π|EK
. Thus ϕ permutes the fibers of π|EK

, and
so descends to an automorphism of X fixing π(E) = V by Lemma 7. □

Lemma 9.

(1) Suppose that X1 and X2 are Pr-averse. Then X1 ×X2 is Pr-averse.
(2) Suppose that X is Pr-averse and V ⊂ X is a smooth, equidimensional subvariety of

codimension s ≤ r. Then BlVX is Pr-averse.
(3) Suppose that r ≥ 2 and X is an r-dimensional variety which admits a surjective

morphism to a variety V with 1 ≤ dimV < dimX. Then X is Pr-averse.

Proof. For (1), suppose that h : Pr
K

→ X1,K × X2,K is a separable morphism. Then the
projections p1 ◦ h : Pr

K
→ X1,K and p2 ◦ h : Pr

K
→ X2,K must both be constant, so that h is

constant. For (2), let π : BlVX → X be the blow-up, and suppose that h : Pr
K
→ XK is a



A NON-FINITELY GENERATED AUTOMORPHISM GROUP 9

separable morphism. The map π ◦ h must be constant, and so if h is nonconstant, its image
is contained in a fiber of π|EK

. These fibers are isomorphic to Ps−1

K
, and since s− 1 < r, the

map h must be constant. For (3), suppose that h : Pr
K
→ XK is separable and nonconstant.

The composite j : Pr
K
→ XK → VK must be constant, and so the image of h is contained in

a fiber of j. But these fibers have dimension less than r, and so can not admit nonconstant
maps from Pr

K
. □

We require one more simple lemma before proceeding to the construction.

Lemma 10. Suppose that X is a smooth projective variety with Aut(X) discrete. There
exists a smooth, geometrically connected divisor W ⊂ X for which Aut(X;W ) is trivial.

Proof. Choose a very ample divisor W0 on X, and let W denote the complete linear system
PH0(X,W0). Let Aut(X,W) ⊂ Aut(X) denote the set of automorphisms preserving W.
There is a homomorphism Aut(X,W) → PGL(H0(X,W0)), which has trivial kernel: if
ϕ : X → X lies in Aut(X,W) and ϕ∗ acts trivially on H0(X,W0), then the restriction of ϕ
to the image of X in PH0(X,W0)) is also the identity. Consequently Aut(X,W) is a closed
subgroup of PGL(H0(X,W0)). Since Aut(X) is assumed discrete, Aut(X;W) is finite, and
because the field K is infinite, a general element W of W is not fixed by any automorphisms.
Since K is infinite, by Bertini’s theorem there exists a W which is smooth and geometrically
connected. □

Lemma 11. There exists a smooth surface T over K for which:

(1) the group Aut(T ) is trivial;
(2) there exists a K-point t on T ;
(3) T is geometrically simply connected;
(4) T is not separably uniruled.

Proof. According to [17, Table 1], the hypersurface T in P3 defined by x50 + x0x
4
1 + x1x

4
2 +

x2x
4
3 + x53 is smooth and has trivial automorphism group in any characteristic other than

2 or 5. This surface has the K-point [0, 1, 0, 0]. Since T is a smooth hypersurface in P3, it
follows from the Lefschetz hyperplane theorem [14, XII, Cor. 3.5] that T is geometrically
simply connected. At last, T is of general type, and hence is not separably uniruled.

In characteristic 5, we take T defined by x70+x0x
6
1+x1x

6
2+x2x

6
3+x

7
3, while in characteristic

2, the surface defined by x40x1 + x51 + x52 + x0x
4
1 + x1x

4
2 + x2x

4
3 + x53 suffices [17]. □

Note that if we work over K = C, then any very general hypersurface in P3 of degree at
least 4 has the required properties.

Take X0 = S × S × T . The variety X will be constructed by a sequence of four blow-ups
of X0. In each case, the blow-up satisfies the hypotheses of Lemma 8, so we may identify its
automorphism group with a subgroup of Aut(X0).

Lemma 12. Let X0 = S × S × T . Fix a point s on S and a divisor W on S with Aut(S;W )
trivial, as in Lemma 10. Choose three distinct smooth, geometrically connected curves C1,
C2, and C3 in T , and a point t on C3 which does not lie on C1 or C2.

(1) The variety X0 is Pr-averse for any r ≥ 2. The automorphisms of X0 are of the form
Aut(S × S)× idT .

(2) Let π1 : X1 → X0 be the blow-up of X0 along s×S ×C1. The variety X1 is Pr-averse
for any r ≥ 3. The automorphisms of X1 are all lifts of Aut(S; s)× Aut(S)× idT .
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(3) Let π2 : X2 → X1 be the blow-up along the strict transform of W × p∞ × C2.
The variety X2 is Pr-averse for r ≥ 4. The automorphisms of X2 are given by
idS ×Aut(S; p∞)× idT .

(4) Let π3 : X3 → X2 be the blow-up along the strict transform of p∞ × p∞ × C3.
Then X3 is Pr-averse for r ≥ 5, and the automorphisms of X3 are of the form
idS ×Aut(S; p∞)× idT .

(5) Let E3 be the exceptional divisor of π3 : X3 → X2. Then the strict transform of
∆S(C)× t meets E3 at a single point u. Let π4 : X4 → X3 be the blow-up at u. The
automorphism group of X4 is isomorphic to idS ×G+ × idT .

Proof. We treat the blow-ups in order.

(1) To show that X0 is Pr-averse for r ≥ 2, it suffices to check that S and T are both
P2-averse, according to the first part of Lemma 9. For T this follows since T is not separably
uniruled, while S admits a surjective morphism to a curve and so it is P2-averse by (3) of
Lemma 9.
Suppose that χ : X0 → X0 is an automorphism. Let p3 : X0 → T be the third projection.

We first claim that χ must satisfy p3 ◦ χ = p3. Indeed, consider the separable map p3 ◦ χ :
X0 = S × S × T → T . Since S is rational, if this map does not factor through the projection
to T , then T is separably uniruled, contradicting the choice of T from Lemma 11. Since
Aut(T ) is trivial, the map χ must preserve every fiber of p3, and so χ : S × S × T → T is an
automorphism defined over T .

The group Aut(S×S) is discrete, since H0(S×S, TS×TS) = H0(S, TS)⊕H0(S, TS) = 0.
Consequently every automorphism of X0 is of the form ϕ× id, where ϕ is an automorphism
of S × S, and the group Aut(X0) can be identified with Aut(S × S)× idT .
(2) The center of the blow-up π1 has codimension 3, so it follows from part (1) and Lemma 9

that X1 is Pr-averse for r ≥ 3. According to Lemma 8, since X0 is P2-averse, Aut(X1) is
the stabilizer of s × S × C1 in Aut(X0), which is isomorphic to the stabilizer of s × S in
Aut(S × S).

We claim that an element ϕ of Aut(S × S) fixes s × S only if it is of the form ϕ1 × ϕ2,
where ϕ1 is in Aut(S; s) and ϕ2 is in Aut(S). Indeed, if ϕ fixes one fiber of p1 : S × S → S,
it must permute the fibers, and so induces an automorphism ϕ1 : S → S on the base with
p1 ◦ ϕ = ϕ1 ◦ p1. Then (ϕ−1

1 × idS) ◦ ϕ is an automorphism of S × S defined over p1. This
must be given by a map idS ×ϕ2 : S × S → S × S, since Aut(S) is a 0-dimensional scheme,
and so ϕ is of the form ϕ1 × ϕ2, where ϕ1 fixes s.
(3) Since X1 is Pr-averse for r ≥ 3 and X2 is the blow-up of X1 at a center of codimension

4, it follows that X2 is Pr-averse for r ≥ 4. Lemma 8 implies that the automorphisms of X2

are all lifts of automorphisms of X1 fixing W × p∞ × C2, whether or not s lies on W . The
automorphisms of X1 are all of the form ϕ1 × ϕ2 × idT , and since Aut(S;W ) is trivial, this
stabilizer is exactly idS ×Aut(S; p∞)× idT .

(4) We have seen that X2 is P4-averse, and X3 is the blow-up of X2 at a center of
codimension 5. It follows that X3 is Pr-averse for r ≥ 5, and the automorphisms of X3

are lifts of automorphisms of X2 that fix p∞ × p∞ × C3. Every automorphism of X2 fixes
p∞ × p∞ × C3, and so the automorphisms of X3 are again given by idS ×Aut(S; p∞)× idT .

(5) The centers of the blow-ups π1 and π2 are both disjoint from the fiber S × S × t, since
t lies on neither C1 nor C2, while the center of the blow-up π3 meets S × S × t at the single
point p∞ × p∞ × t. As a result, ∆S(C)× t meets E3 at one point u, as claimed; this point u
corresponds to the tangent direction of the diagonal embedding of C at the point p∞. The
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restriction of π3 ◦ π2 ◦ π1 to the strict transform of S × S × t is the blow-up at the point
p∞ × p∞ × t.
Since X3 is P5-averse and the center of π3 has codimension 6, Aut(X4) is isomorphic to

the stabilizer of u in Aut(X3). These are exactly the automorphisms idS ×ϕ× idT of X3 that
fix the tangent direction T∆(p∞)(∆S(C))× t. According to Lemma 6, these are exactly the
lifts of automorphisms of the form idS ×G+ × idT . □

This completes the construction.

Proof of Theorem 1. Let X = X4 be as in Lemma 12. The variety X is smooth, projective
and geometrically simply connected, since it is a blow-up of S × S × T where S is a rational
surface and T is smooth and geometrically simply connected. The group Aut(X) is isomorphic
to G+, which is not finitely generated according to Lemma 5. □

3. A variety with many forms

We now show how the construction of the previous section can be adapted to give an
example of a K-variety with infinitely many L/K-forms even when L/K is a finite extension.
If L/K is a Galois extension, a standard descent argument shows that the L/K-forms of

X are classified by the Galois cohomology H1(Gal(L/K),Aut(XL)) [19, III.§1, Proposition
5]. In many settings, this set is finite. Indeed, according to a theorem of Borel and Serre [4,
Théorème 6.1], if K = R and π0(Aut(XC)) is an arithmetic group, then the set of C/R-forms
of X is finite; this includes nearly all varieties for which the group of automorphisms is known.
The set of C/R-forms is also finite when X is a minimal surface of non-negative Kodaira
dimension [10, Appendix D, pg. 233].

Our example of a variety with infinitely many forms is obtained by an additional blow-up
of the variety X constructed in Section 2.

Lemma 13. Suppose that L/K is a separable quadratic extension, and that X is a smooth,
projective variety over K. Suppose that there is a finite-index subgroup G′ ⊂ Aut(XL) which
contains infinitely many conjugacy classes of involutions and on which Gal(L/K) acts trivially.
Then the variety X has infinitely many L/K-forms.

Proof. The forms of X are classified by the set H1(Gal(L/K),Aut(XL)). Because the action
of Gal(L/K) on G′ is trivial, H1(Gal(L/K), G′) is the set of conjugacy classes of involutions
in G′, which is infinite by assumption. There is an exact sequence

H0(Gal(L/K),Aut(XL)/G
′) → H1(Gal(L/K), G′) → H1(Gal(L/K),Aut(XL)).

Here Aut(XL)/G
′ should be interpreted as the set of left-conjugacy classes of G′ rather than

a group, but the sequence is nevertheless exact [19, III.§5, Proposition 36]. Since G′ has finite
index in Aut(XL), the leftmost set is finite, whence H1(Gal(L/K),Aut(XL)) is infinite, as
claimed. □

Remark 5. Concretely, suppose that L = C and K = R, and that Aut(XC) = Aut(XR). If
c : XC → XC is the antiholomorphic involution determined by complex conjugation, then
XR can be recovered as the fixed locus of c. For any involution ϕ in Aut(XR), the composite
c ◦ ϕ defines another antiholomorphic involution, giving rise to another real form on the fixed
locus. Two involutions ϕ and ϕ′ define equivalent real structures on XC if and only if they
are conjugate in Aut(XR).
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Our argument will rely on some specific details from the construction in the proof of
Theorem 3; for the remainder of Section 3 the surface S is taken to be the specific example
constructed in the proof of Theorem 3, rather than an arbitrary surface satisfying its
conclusions.
Fix the configuration P of Lemma 4 (depending on the characteristic), and maintain the

notation introduced in the proof of Theorem 3, labelling the six lines as L0, . . . , L5, with L0

the curve C. Let pij = Li ∩Lj , and write pi for the point p0i. The lines Li are chosen so that
the intersections of L1, L2, L3, L4 and L5 with L0 (with respect to affine coordinates) are
given by

(p1, p2, p3, p4, p5) =

{
(0, 1, 2, 3,∞) if charK = 0,

(0, 1, t, t+ 1,∞) if charK > 0.

We will consider the following subgroups of Aut(S;C):

(1) G+ ⊂ Aut(S;C), the subgroup of automorphisms restricting to L0 as z ↦→ z + a;
(2) G± ⊂ Aut(S;C), the subgroup of automorphisms restricting to L0 as either z ↦→ z+a

or z ↦→ −z + a;
(3) G±

ev ⊂ G±, the subgroup of automorphisms which fix the two lines L0 and L5 as well
as the curves L1 ∪ L4 and L2 ∪ L3.

Recall that every automorphism of S must permute the six lines Li since their union is the
unique member of |−2KS|; an automorphism lies in G±

ev if it fixes L0 and L5 and either fixes
or exchanges the members of the two other pairs. In particular, G±

ev has finite index in G±.
Let s0 : S → S be the involution of S determined by the marking with L0, L5 the

distinguished pair, and L1, L4 and L2, L3 the other two pairs: the automorphism s0 fixes the
two distinguished lines L0 and L5, and exchanges L1 with L4 and L2 with L3. This map
restricts to L0 in such a way that it exchanges p1 with p4 and p2 with p3; thus the restriction
is an involution z ↦→ c− z, where c = 3 if charK = 0 or c = t+ 1 if charK > 0. It follows
that s0 lies in the subgroup G±

ev.
Figure 2 shows the important curves in P2 acted on by the map s0. The two dashed lines

are exchanged, as are the two heavily dotted lines. The pencil of lines passing through the
point p5 is preserved by s0. The strict transforms of the two lightly dotted lines through p5
are (−1)-curves on S with classes H −E05 −E14 and H −E05 −E23, which will appear later.
By the generality assumption of Remark 1, these two lines are distinct.

p1 p2 p3 p4 p5

p14

p23

L1 L2 L3 L4

L0

L5

Figure 2. The involution s0
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Let s̃0 : X3 → X3 be the automorphism of X3 induced by idS ×s0 × idT . Observe that if
charK ̸= 2, the point s̃0(u) is distinct from u: idS ×s0 acts on T∆S(p∞)(S × S) by the linear
transformation ( 1 0

0 −1 ), which fixes T∆S(p∞)∆S(C) if and only if charK = 2.
We now construct a variety dominating X and on which s̃0 lifts to an automorphism. If

charK ̸= 2, take X ′ to be the blow-up of X at the two points u and s̃0(u). If charK = 2,
take X ′ = X; the involution s̃0 already lifts to an automorphism of X and no blow-up is
needed.

Lemma 14. The variety X ′ satisfies Aut(X ′) ∼= G±.

Proof. In characteristic 2, G+ = G± and we have already seen that Aut(X) ∼= G+, so we may
assume that charK ̸= 2. According to Lemma 8, because X3 is P5-averse, the automorphisms
of X ′ are the stabilizer of u ∪ s̃0(u). These are precisely the automorphisms S which are of
either the form z ↦→ z + a or z ↦→ −z + a, as required. □

Let γ̄ : S → S be an automorphism restricting to L0 as γ = (z ↦→ bz), where b is as
in Lemma 4; if charK = 0 then b = 2, while if charK > 0, then b = t. The elements
sn = γ̄−n ◦ s0 ◦ γ̄n are all involutions, and the restriction of sn to L0 is the map z ↦→ cb−n − z,
which lies in G±. Although the maps sn are conjugate in Aut(S), they are conjugate by
powers of γ̄, and γ̄ is not contained in G±. We now work to show that the sn indeed define
distinct conjugacy classes in the subgroup G±.

Lemma 15. The (+1)-eigenspace of s∗0 : N1(S)R → N1(S)R has dimension 8. Moreover,
the six classes

H E01 E02 E03 E04 E05 E12 E13 E14 E15 E23 E24 E25 E34 E35 E45

R1 =
(

3 0 −1 −1 0 −1 −1 −1 0 −1 0 −1 0 −1 0 −1
)
,

R2 =
(

3 −1 0 0 −1 −1 −1 −1 0 0 0 −1 −1 −1 −1 0
)
,

R3 =
(

4 0 −1 −1 0 −2 −1 −1 −2 0 0 −1 −1 −1 −1 0
)
,

R4 =
(

4 −1 0 0 −1 −2 −1 −1 0 −1 −2 −1 0 −1 0 −1
)
,

R5 =
(

5 0 −1 −1 0 −3 −1 −1 −2 −1 −2 −1 0 −1 0 −1
)
,

R6 =
(

5 −1 0 0 −1 −3 −1 −1 −2 0 −2 −1 −1 −1 −1 0
)
.

define elliptic fibrations on S which are invariant under s0.

Proof. The dimension of the (+1)-eigenspace can be computed based on the geometric
description of s0 given in the proof of Theorem 3. The matrix ı∗R for the action of s∗0 on a
five-point blow-up SR is given in the proof of Theorem 3 and has a two-dimensional (+1)-
eigenspace. The other eleven exceptional divisors arise as four pairs exchanged by s∗0, and
two divisors fixed by s∗0. The four pairs each contribute a one-dimensional subspace to the
(+1)-eigenspace, as does each invariant divisor. The total dimension of the (+1)-eigenspace
is then 2 + 4 + 2 = 8.

Each Ri can be written as a sum of effective classes in two distinct ways:

R1 = L0 + L1 + L4 + 2E01 + 2E04 + 2E14

= L2 + L3 + L5 + 2E23 + 2E25 + 2E35

R2 = L1 + L4 + L5 + 2E14 + 2E15 + 2E45

= L0 + L2 + L3 + 2E02 + 2E03 + 2E23
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R3 = L2 + L3 + 2E23 + 2(H − E05 − E14)

= L0 + L1 + L4 + L5 + 2E01 + 2E04 + 2E15 + 2E45

R4 = L1 + L4 + 2E14 + 2(H − E05 − E23)

= L0 + L2 + L3 + L5 + 2E02 + 2E03 + 2E25 + 2E35

R5 = L2 + L3 + L5 + 2E25 + 2E35 + 2(H − E05 − E14)

= L0 + L1 + L4 + 2E01 + 2E04 + 2(H − E05 − E23)

R6 = L0 + L2 + L3 + 2E02 + 2E03 + 2(H − E05 − E14)

= L5 + L1 + L4 + 2E15 + 2E45 + 2(H − E05 − E23)

In each case, the two effective representatives have disjoint support, and so each Ri determines
a basepoint-free linear system on S. For each i we have Ri ·Ri = 0 and KS ·Ri = 0, so these
define elliptic fibrations with the given divisors as reducible fibers.

It is also necessary to check that the Ri are invariant under s∗0. In each case, the geometric
description from the proof of Theorem 3 shows that s0 permutes the components of the given
reducible fibers. For example, the invariance of R1 follows from the facts that s0(L0) = L0,
s0(L1) = L4, s0(E01) = E04, and s0(E14) = E14. □

Lemma 16. The class H − E05 is the unique class D in N1(S)R for which:

(1) D is contained in the (+1)-eigenspace of the involution s∗0 : N
1(S)R → N1(S)R.

(2) D · L0 = D · L5 = 0 and D · L1 = D · L2 = D · L3 = D · L4 = 1.
(3) D is nef.
(4) D2 = 0.

Proof. The linear system H − E05 contains the strict transforms on S of the pencil of lines
through p05. Since this pencil is preserved by s0 and the linear system on S is basepoint-free,
the claimed properties follow for the class H − E05.
We next check that there are no other classes with these four properties. Suppose that

D is such a class, and let D′ = D − (H − E05). Then D
′ lies in the (+1)-eigenspace of s∗0,

and D′ · Li = 0 for each Li; the set of D′ satisfying these hypotheses is a linear subspace of
N1(S)R.
Since L1 − L4 and L2 − L3 lie in the (−1)-eigenspace, the space of D′ which lie in the

(+1)-eigenspace and satisfy D′ · Li = 0 for each i is 4-dimensional. Each of the six classes Ri

of Lemma 15 lies in this space, and so a basis is provided by R1, R2, R3, and R4; the other
rays satisfy R5 = R3 +R4 −R2 and R6 = R3 +R4 −R1.
We wish to know when the class D = (H − E05) + a1R1 + a2R2 + a3R3 + a4R4 is nef.

Intersecting with the eight effective classes

E14, E23, E35, E01,
H − E05 − E14, H − E05 − E23, E15, E02,

we obtain the eight inequalities

a3 ≥ 0, a4 ≥ 0, a2 + a3 ≥ 0, a2 + a4 ≥ 0,
a1 + a2 + a4 ≥ 0, a1 + a2 + a3 ≥ 0, a1 + a4 ≥ 0, a1 + a3 ≥ 0,

which all must hold ifD is nef. Summing the eight inequalities we find that a1+a2+a3+a4 ≥ 0
with equality only if the left side of each is 0; it follows that a1 + a2 + a3 + a4 = 0 only if
each ai is 0. Any nonzero (a1, a2, a3, a4) satisfying the inequalities is thus a positive multiple



A NON-FINITELY GENERATED AUTOMORPHISM GROUP 15

of a solution with a1 + a2 + a3 + a4 = 1. Substituting a1 = 1− a2 − a3 − a4, the four columns
above yield the four constraints:

0 ≤ a3 ≤ 1, 0 ≤ a4 ≤ 1, −a3 ≤ a2 ≤ 1− a3, −a4 ≤ a2 ≤ 1− a4.

These inequalities on (a2, a3, a4) determine a compact three-dimensional polyhedron with six
vertices (a2, a3, a4) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 1, 1), (0, 1, 1). The set of solutions
to the original inequalities is then the four-dimensional cone spanned by the six classes

(a1, a2, a3, a4) = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0,−1, 1, 1), (−1, 0, 1, 1).

The corresponding classes a1R1 + a2R2 + a3R3 + a4R4 in N1(S)R are precisely R1, R2, R3,
R4, −R2 +R3 +R4 = R5 and −R1 +R3 +R4 = R6.
As a result, the set of D satisfying hypotheses (1)–(3) is contained in the cone given by

divisors of the form (H − E05) +
∑6

i=1 ciRi with ci ≥ 0. Since (H − E05) · Ri = 2 for each
1 ≤ i ≤ 6, while Ri ·Rj ≥ 0 for any i and j, and (H − E05)

2 = 0, we find that(
(H − E05) +

6∑
i=1

ciRi

)2

≥ 0,

with equality if and only if ci = 0 for each i, so that D = H − E05. □

Lemma 17. The centralizer of s0 in G±
ev is the two-element group {idS, s0}.

Proof. Suppose that ϕ : S → S is an element of G±
ev commuting with s0. Then ϕ

∗ : N1(S)R →
N1(S)R must preserve the (+1)-eigenspace of s∗0, and so ϕ∗(H − E05) lies in this eigenspace
as well. If ϕ lies in G±

ev, then the intersection property (2) must be satisfied by ϕ∗(H − E05).
Since ϕ∗ also preserves the nef cone and the intersection form, ϕ∗(H−E05) in fact satisfies the
hypotheses (1)–(4) of Lemma 16. It then follows from the lemma that ϕ∗(H−E05) = H−E05

in N1(S)R, and since Pic0(S) is trivial, that ϕ must preserve the class H − E05 in Pic(S).
As a result, ϕ factors through the map λ : S → P1 given by the basepoint-free linear system
|H − E05|.
In particular, ϕ permutes the singular fibers of λ. The fibers are the preimages on S of

the lines in P2 passing through the point p05, and the singular fibers are precisely those
corresponding to lines which pass through p05 and any of the other 14 points which are blown
up on S. Eight of those points lie on the two lines L0 and L5; the other six are the lines
through the point p05 and a point pij for which neither i nor j is equal to 0 or 5. These six
singular fibers are each unions of two (−1)-curves, with classes H −E05−Eij and Eij , arising
as the strict transform of the line itself, and as the exceptional divisor of the blow-up.
Since by assumption ϕ lies in the subgroup G±

ev, it fixes the two curves L0 and L5 and
either fixes or exchanges the members of the pairs L1, L4 and L2, L3. It must map E14 to
another s0-invariant (−1)-curve contained in a fiber of λ that has intersection 1 with both L1

and L4, and 0 with L2 and L3. From the description of the preceding paragraph, the only
two such curves are E14 itself and the strict transform of the line from p05 to p23, which has
class H −E05 −E23. However, under the generality hypothesis of Remark 1, there is no map
that fixes L0 and L5 while exchanging the fibers containing these curves; consequently each
of these fibers must be mapped to itself. This implies that ϕ fixes four fibers of the map λ,
and since the base is P1, that ϕ maps every fiber of λ to itself.

Replacing ϕ with ϕ ◦ s0 if necessary, we obtain an element commuting with s0 which fixes
the four curves L0, L5, L1, and L4, and either fixes the two curves L2 and L3 or exchanges
them.
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Suppose for now that ϕ exchanges the two sections L2 and L3. The fibers of λ are preserved,
and so ϕ(E12) must be either E12 or the curve of class H − E05 − E12. We have

L1 · ϕ(E12) = ϕ(L1) · ϕ(E12) = L1 · E12 = 1,

L2 · ϕ(E12) = ϕ(L3) · ϕ(E12) = L3 · E12 = 0.

Neither E12 nor H − E05 − E12 has the required intersection properties for ϕ(E12): we have
L2 · E12 = 1, while L1 · (H − E05 − E12) = 0. We conclude that ϕ(L2) = L2 and ϕ(L3) = L3.

Thus ϕ must commute with the projection λ and fix the four sections L1, L2, L3, and L4.
A general geometric fiber F of λ is a rational curve in the linear system |H − E05|. The map
ϕ fixes the four points of intersection of F with the sections listed, and so ϕ|F must be the
identity map. Since ϕ fixes a Zariski dense set of points on SK, it must be the identity. As we
may have previously replaced ϕ with ϕ ◦ s0, we conclude that the centralizer is {idS, s0}. □

Corollary 18. The group G±
ev contains infinitely many conjugacy classes of involutions.

Proof. Let γ̄ be an automorphism of S restricting to z ↦→ bz on L0. Since any automorphism
of S permutes the six lines, there exists some N > 0 for which the iterate γ̄N maps each of
the six lines Li to itself. The map sNn = γ̄−Nn ◦ s0 ◦ γ̄Nn is an involution which restricts to
L0 as z ↦→ cb−Nn − z, and since sNn induces the same permutation of the Li as does s0, it
lies in the subgroup G±

ev.
We claim that no two distinct sNm and sNn are conjugate by an element of G±

ev. It suffices
to show that s0 is not conjugate to any sNn. If sNn = γ̄−Nn◦s0◦ γ̄Nn = α◦s0◦α−1 for some α,
then γ̄Nn ◦ α commutes with s0. According to Lemma 17, either α = γ̄−Nn or α = γ̄−Nn ◦ s0.
Since neither γ̄−Nn nor γ̄−Nn ◦ s0 is contained in G±

ev for any nonzero value of n, the claim
follows. □

Lemma 19. Every automorphism of X ′
L is defined over K.

Proof. Since SL is constructed by blowing up K-points in P2, its Picard group is generated
by the classes of K-divisors. The Galois action on Pic(SL) is therefore trivial, and preserves
the class of any (−1)-curve. Because each (−1)-curve is rigid in its numerical class, these
curves are invariant under the conjugation map c : SL → SL.

Suppose that ϕ : X ′
L → X ′

L is any automorphism. Then ϕ is induced by some automorphism
ψ : SL → SL, and c ◦ ψ ◦ c : SL → SL is an automorphism which has the same action as ψ on
the class of any (−1)-curve. Since Pic(S) is generated by classes of (−1)-curves defined over
K, ψ and c ◦ ψ ◦ c have the same action on Pic(S). As H0(SL, TSL) = 0, these two maps
must coincide, so that c ◦ ψ = ψ ◦ c, and ψ is defined over K. □

Proof of Theorem 2. We have Aut(X ′
L)

∼= G±, and G±
ev is a finite index subgroup of G± on

which Gal(L/K) acts trivially. By Lemma 18, G±
ev contains infinitely many conjugacy classes

of involutions, and Theorem 2 then follows from Lemma 13. □
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Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics, Vol. 2.

15. A. E. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and
geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc.
Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–21.

16. B. Mazur, On the passage from local to global in number theory, Bull. Amer. Math. Soc. (N.S.) 29 (1993),
no. 1, 14–50.

17. Bjorn Poonen, Varieties without extra automorphisms. III. Hypersurfaces, Finite Fields Appl. 11 (2005),
no. 2, 230–268.

18. , Automorphisms mapping a point into a subvariety, J. Algebraic Geom. 20 (2011), no. 4, 785–794.
19. Jean-Pierre Serre, Galois cohomology, english ed., Springer Monographs in Mathematics, Springer-Verlag,

Berlin, 2002, Translated from the French by Patrick Ion and revised by the author.
20. Hans Sterk, Finiteness results for algebraic K3 surfaces, Math. Z. 189 (1985), no. 4, 507–513.

21. Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977),
no. 47, 269–331 (1978).

22. Burt Totaro, Algebraic surfaces and hyperbolic geometry, Current developments in algebraic geometry,
Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 2012, pp. 405–426.



18 JOHN LESIEUTRE

Department of Mathematics, Statistics and Computer Science, University of Illinois at
Chicago, Chicago, IL 60607

Email address: jdl@uic.edu


	1. Introduction
	2. The construction
	Step 1: Automorphisms of surfaces with prescribed action on a curve
	Step 2: Specializing the configuration P
	Step 3: A variety with non-finitely generated `3́9`42`"̇613A``45`47`"603AAut(X)

	3. A variety with many forms
	4. Acknowledgements
	References

