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Abstract – We formulate a phenomenological description of thin ferromagnetic layers with inver-
sion asymmetry where the single-domain magnetic dynamics experiences magnon current-induced
torques and leads to magnon-motive forces. We first construct a phenomenological theory based
on irreversible thermodynamics, taking into account the symmetries of the system. Furthermore,
we confirm that these effects originate from Dzyaloshinskii-Moriya interactions from the analysis
based on the stochastic Landau-Lifshitz-Gilbert equation. Our phenomenological results general-
ize to a general form of Dzyaloshinskii-Moriya interactions and to other systems, such as pyrochlore
crystals and chiral magnets. Possible applications include spin current generation, magnetization
reversal and magnonic cooling.

Copyright c© EPLA, 2015

Introduction. – Spincaloritronics studies various ther-
mal effects relying on the spin degree of freedom [1]. The
most prominent examples are the spin Seebeck effect [2],
the spin Peltier effect [3,4], and thermally induced motion
of domain walls [5,6]. Apart from fascinating physics, in
some instances related to the appearance of spin-motive
force [7], these studies might offer new ways for en-
ergy harvesting, cooling, and magnetization control [8,9].
Spincaloritronics might also help with the development of
electronics relying on pure spin currents [3,10] which con-
trasts conventional electronics. The known ways to create
pure spin currents include non-local spin injection in spin
valves, optical injection by circularly polarized light, spin
pumping, and spin Hall effect [11].

Pure spin currents in a form of magnon flow have at-
tracted considerable attention recently as they can trans-
fer signals [12] and even realize magnonic logic circuits
with low dissipation and without generation of Oer-
sted fields [13]. On the other hand, magnons can ex-
hibit similar phenomena to electrons, e.g., spin-transfer
torque on magnetic textures such as domain walls [5] and
skyrmions [14,15], Hall effect, and topologically protected
edge states [16]. Such magnonic spin currents can be
driven by radio-frequency fields or temperature gradients.
In the ferrimagnetic insulator yttrium iron garnet (YIG)

magnons can travel over large distances without interrup-
tion due to remarkably low Gilbert damping [17].

Relativistic effects result in interesting physics in
the context of spin currents. Discovery of spin-orbit
torques [18] allows for magnetization control by charge
currents in bilayers consisting of a layer with strong spin-
orbit interactions, e.g., metal or topological insulator,
and a ferromagnet [19]. Spin-orbit torques are often in-
terpreted in terms of a Rashba contribution [19] and a
spin Hall contribution [20] while in a general scenario it
is more useful to separate reactive and dissipative con-
tributions [21]. Magnons, on the other hand, can be
influenced by Dzyaloshinskii-Moriya interactions (DMI)
similar to how electrons are influenced by spin-orbit in-
teractions [22–24]. In particular, a spin-orbit–like torque
generated by spin waves has been suggested [24]. DMI
can result from spin-orbit interactions in systems with bro-
ken inversion symmetry [25] or from structural asymmetry
in ultrathin magnetic bilayers [26]. Thus, one can nat-
urally expect magnon analogs of spin-orbit torques and
charge pumping observed in metal/ferromagnet bilayers
(see fig. 1).

In this paper, we develop a general phenomenological
description of the interplay between magnetization dy-
namics, magnon currents, and temperature gradients in
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Fig. 1: (Color online) Single-domain magnetization dynamics
induced by microwave field pumps magnon j and spin js =
−�j currents by virtue of Dzyaloshinskii-Moriya interactions.
This can develop a temperature gradient along the sample.
Alternatively, a temperature gradient can result in magnon
current and torque on uniform magnetization according to the
Onsager reciprocity principle.

single-domain ferromagnetic layers lacking inversion sym-
metry. We accompany our analysis by a model based
on the stochastic Landau-Lifshitz-Gilbert (LLG) equation
with DMI characteristic to ultrathin magnetic layers with
structural asymmetry. We obtain reactive and dissipative
torques on uniform magnetization and discuss the possi-
bility to reverse magnetization by magnon currents and
temperature gradients. We discuss pumping of magnonic
spin currents by precessing single-domain magnetization
and analyze the feasibility of magnonic cooling.

Phenomenology of thermal magnons with DMI.

– In this section, we employ general principles of non-
equilibrium thermodynamics [27] in order to formulate
the phenomenology of thermal magnons applicable to a
system with interfacial inversion asymmetry as in fig. 1.
We begin by constructing a general phenomenological de-
scription of magnonic and thermal currents in a single-
domain ferromagnet in which thermodynamic variables
represent the direction of the reduced (averaged over
the magnonic excitations) spin density ms (for conve-
nience the index s is dropped in this section), density of
magnons ρ and density of energy ρu. We assume that
the single-domain ferromagnet is taken out of equilibrium
by applying temperature and chemical potential gradi-
ents (non-zero chemical potential for magnons can be cre-
ated by, e.g., microwave pumping [28]). An appropriate
equation of motion then determines how the ferromagnet
evolves back towards equilibrium. We now write the rate
of the entropy production [29]:

Ṡ = −

∫

d3r
∂ · ju + µρ̇ + Heff · ṁ

T
, (1)

where we introduced the magnon (j) and energy (ju) cur-
rents, and the conjugate/force corresponding to the spin
density direction defined as −δmS|jU (j)=0 = Heff/T . It
is convenient to introduce the modified energy current
jq = ju−µj in order to arrive at the more familiar equation
for the rate of the entropy production [29]:

Ṡ =

∫

d3r

(

−
∂T

T 2
· jq −

∂µ

T
· j −

Heff

T
· ṁ

)

. (2)

Here we integrated the term involving jq by parts, used the
local conservation laws of energy and number of magnons,
ρ̇ = −∂ · j − ρ/τ and ρ̇u = −∂ · ju, and disregarded
the term µρ/τ , where τ corresponds to the lifetime of
magnons. This is possible when the number of magnons
is approximately conserved. One can also consider the op-
posite limit in which magnons quickly relax to the local
equilibrium without the build-up of large µ (µ ≈ 0) as,
in this case, the term µρ/τ can be also disregarded. The
remaining conjugates/forces can be immediately identified
as −δjq Ṡ|m,j=0 = −∂ (1/T ) and −δjṠ|m,jq=0 = ∂µ/T .

We now relate the currents j and jq and the time deriva-
tive of the spin density direction ṁ to the thermodynamic
conjugates via kinetic coefficients. By accounting for the
structural asymmetries defined by the n-axis in the figure,
we obtain the magnon/energy current expansion in terms
of the chemical potential and temperature gradients as
well as the magnetization dynamics responsible for ficti-
tious fields on the magnons:

−∂αµ = ˆ̺j + Π̂∂T/T − (ηm × Dαm + ϑDαm) · ṁ,

(jq)α = Π̂T j − κ̂∂T − (η1m × Dαm + ϑ1Dαm) · ṁ,
(3)

where Dα = (D/A)(n × eα)× is a part of the chiral
derivative accounting for DMI, eα are basis vectors [21,30],
η and ϑ are the so-called reactive (also referred to as spin-
motive force) and dissipative coefficients [21] (generally
m · n dependent), ˆ̺, Π̂ and κ̂ are the resistivity, Peltier
and thermal conductivity tensors, respectively, which are
in general temperature dependent. As will become clear
from the following discussion, it is convenient to invert
the equation for the magnon current, as has been done in
eq. (3). In the remaining part of the paper we will not
consider corrections corresponding to η1 and ϑ1 as these
contributions do not appear in our microscopic treatment.
The axial symmetry around the n-axis leads to the sepa-
ration of the conductivity tensor ĝ ≡ ˆ̺−1 and the thermal
conductivity tensor κ̂ into the longitudinal g and κ, and
the Hall gH and κH contributions where ĝ = g + gHn×
and κ̂ = κ + κHn×. The LLG equation becomes

s(1 + αm×)ṁ + m × Heff = (η + ϑm×) jαDαm

+ (η1 + ϑ1m×) (∂αT/T )Dαm,
(4)

where s is the reduced spin density and the form of the
torques on the right-hand side is dictated by the Onsager
reciprocity principle. Note that in the simplest approxima-
tion Heff can be calculated from an appropriate functional
expressed in terms of the direction of the spin density
m(r, t). In a more general setting, one may need to expand
Heff in terms of small ∂iT and ∂iµ.

Torques by magnons from the stochastic LLG

equation. – The phenomenological equation (4) can be
derived from the LLG equation with DMI. To this end,
we consider a ferromagnet with homogeneous magnetiza-
tion well below the Curie temperature. We employ the
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stochastic LLG equation:

s(1 + αm×)ṁ + m × (Heff + h) = 0. (5)

Here by s we denote the saturation spin density and
by m(r, t) a unit vector in the direction of the spin
density, h is the random Langevin field. According to
the LLG phenomenology, the effective magnetic field can
be found from the free energy, i.e. Heff = −δmF . In
the discussion of thermal magnons, we disregard magne-
tostatic and magnetocrystalline anisotropies assuming suf-
ficiently high temperatures, and the large k-limit. At very
low temperatures, one needs to account for anisotropies
as they lead to mixing of circular components of spin
waves, and renormalization of phenomenological param-
eters in our theory. We consider the free-energy density
F = (A/2)(∂αm)2 + Dm · ([n × ∂] × m) − m · H, where
Aex = A/Ms is the exchange stiffness, Ddm describes DMI
with D ≡ DdmMs, Ms is the saturation magnetization,
and He is the external magnetic field with H ≡ HeMs.
This form of DMI can be derived for systems with the axial
symmetry around the n-axis and an interfacial inversion
asymmetry along the n-axis [26].

For simplicity, we assume that the slow-dynamics mag-
netization is static as we can account for the time-
dependent effects by involving the Onsager reciprocity
principle. Without loss of generality, we also assume a
uniform temperature gradient along the x-axis. The vec-
tors for the fast mf(r, t) and slow ms(r, t) magnetization
dynamics are related by m = (1−m2

f)1/2ms +mf , where
ms ·mf = 0. The magnons are considered in a coordinate
system in which the z′-axis points along the spin density of
the slow dynamics (see fig. 1). In this coordinate system,
small excitations will only have m′

x and m′
y components.

We obtain the equation describing the fast magnetization
dynamics by linearizing the LLG equation:

is∂t(1 − iα)m+ =
[

A(i∂)2 − 2iD∂ · (n × ms) + H
]

m+.
(6)

In the absence of anisotropy terms we can disregard
the coupling between the circular components m± =
m′

x(r, t) ± im′
y(r, t), where m′

x(y)(r, t) are the transverse

components of the spin wave [31]. As was suggested in
previous studies [23], the presence of DMI in eq. (6) leads
to thermal magnons with shifted spectrum ωk = [H +
A(k+k0)

2−Ak2
0 ]/s, where k0 = (D/A)(n×ms) describes

the shift in the magnon momentum induced by DMI.
In eq. (5), we introduced the random Langevin field h

corresponding to thermal fluctuations at temperature T .
According to the fluctuation dissipation theorem the ran-
dom fields are described by the correlator [32]

〈hi(r, t)hj(r
′, t′)〉 = 2αskBT (r)δijδ(r − r′)δ(t − t′). (7)

We treat the fast magnetization dynamics as a linear re-
sponse to the fluctuating field. In addition, we consider
the slow, single-domain magnetic dynamics with a long
characteristic time-scale, e.g., corresponding to a ferro-
magnetic resonance which is typically in GHz range.

We calculate the force that fast oscillations exert on
the slow magnetization dynamics ms by employing the
method developed in ref. [15]. The force due to rapid
oscillations can only come from the second-order terms
in mf (r, t). However, direct application of the expres-
sions from ref. [15] relying on the exchange contribu-
tions results in vanishing force. In the effective field
Heff = H + A∂2m − 2D[n × ∂] × m only the higher-
order terms corresponding to DMI lead to a torque in the
absence of magnetic textures:

T = −
〈

mf × Heff

〉

= 2D
〈

mf × [(n × ∂) × mf ]
〉

, (8)

where
〈

. . .
〉

stands for averaging over the fast oscilla-
tions induced by the random Langevin field. By anal-
ogy with the transverse spin accumulation in the context
of spin-orbit torques [19], we introduce an auxiliary quan-
tity with the meaning of the transverse spin accumulation,
S = (1/A)T × ms. By coarse-graining various contribu-
tions, we obtain the following expression for the transverse
accumulation of magnon spins originating from DMI (i.e.,
the exchange term leads to a vanishing contribution):

S =
2D

A

〈

mf [n · (ms · ∂)mf ]
〉

. (9)

We recall that we consider the reference frame with
z′ = ms, in which vectors S, mf , and ∂αmf are in
the x′-y′ plane. We can simplify expressions by switch-
ing to complex notations a ≡ a′

x′ + ia′
y′ , where a is an

arbitrary vector in the x′-y′ plane. In the simplified no-
tations, we obtain the following expression for the spin
accumulation S = (D/A)

〈

m+(r, t)[υ · ∂]m−(r, t)
〉

, where
υ ≡ (nz′ , inz′ , −nx′ − iny′) and ∂ = (∂x′ , ∂y′ , ∂z′).

Since we are interested in the steady-state solution, we
Fourier-transform m±(r, t) with respect to time and trans-
verse coordinate:

m∓(q, ω, x) =

∫

dd−1ρdω

(2π)d
e±i(ωt−qρ)m∓(r, t), (10)

which leads to the expression for the spin accumulation:

S =
D

A

∫

dlqdlq′dω′dω

(2π)2d
〈m+(q, ω, x)υ · ∂m−(q′, ω′, x)〉 ,

(11)
where l = d − 1, d = 2 or 3 depending on the dimen-
sionality of the magnet and S = Sx′ + iSy′ describes two
components of the spin accumulation leading to the reac-
tive and dissipative torques. As we are interested in the
linear response to the random Langevin field, the LLG
equation (5) takes the form of the following equation:

A
[

∂2
x + κ2

]

m−(x,q, ω) = h(x,q, ω), (12)

where the left-hand side of this equation coincides with
eq. (6) and κ2 = [(1 + iα)sω − H ]/A − k2

0 − q2. The
momentum shift by k0 discussed after eq. (6) can be re-
moved by a gauge transformation, thus the effect of DMI
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on magnons can be accounted for by renormalizing κ2.
We solve eq. (12) by employing the Green’s function for
the Helmholtz equation, G(x − x0) = ieik|x−x0|/(2k). We
substitute this solution in eq. (11) and carry through inte-
grations over variables x and x1 by employing the Fourier-
transformed correlator for the stochastic fields [33]:

〈h(x,q, ω)∗h(x1,q
′, ω′)〉

4(2π)dαskB
= T (x)δ(x−x1)δ(q−q′)δ(ω−ω′).

(13)
We arrive at the expression for the magnon spin torque:

T = −i
sαD

4A2

∫

dd−1q

(2π)d

∫ ∞

ω0

dω
[υ · ∂]

(

�ω coth �ω
2kBT (r)

)

κ∗[Im(κ)]2
,

(14)
where we had to limit the frequency integration by ω0 =
(H + Aq2 + Ak2

0)/s as within this description we are only
interested in magnonic excitations with energies above
the magnonic gap. In addition, we replaced 2kBT →
�ω coth(�ω/2kBT ) by employing the quantum fluctuation
dissipation theorem in order to introduce a high-frequency
cutoff at �ω ≫ kBT . Note that eq. (14) contains terms
that can be identified as magnon currents obtained from
the Boltzmann approach.

We can simplify eq. (14) after replacing integration over
ω with integration over k and keeping only the first two
orders in α, arriving at the following expression:

T = −
�D

A
(1 + iβ)(υ · j). (15)

Here j = J1∂T/T coincides with the expression for the
magnon current calculated within the relaxation time ap-
proximation where Jn = −

∫

ddk/(2π)dτ(ε)εnυ2
x∂f0/∂ε

and τ(ε) = (2αω)−1 account for the non-equilibrium dis-
tribution correction δf = τε(∂f/∂ε)υα(∂αT/T ) arising
in the Boltzmann equation [34]. Here we also use the
spectrum of magnons ε(k) = �(Ak2 + Ak2

0 + H)/s, the
velocity υx = ∂ωk/∂kx, and the Bose-Einstein equilib-

rium distribution f0 = {exp [ε/kBT ] − 1}−1. Two terms
in eq. (15) result in two torque components that are per-
pendicular to each other. Thus, the first term corresponds
to the reactive torque and the second term corresponds
to the dissipative torque, with the ratio between them
given by the parameter β. As these corrections arise due
to magnon spin dephasing, we expect that the parame-
ter β should coincides with the one obtained in the con-
text of magnonic torques in textured ferromagnets [15].
We can also confirm this by inspecting eq. (14) which re-
sults in the expression β/α = (d/2)B(x)/F1(x) ∼ d/2,
where Fn(x) =

∫ ∞

0
dǫǫd/2(ǫ + x)n−1eǫ+x/(eǫ+x − 1)2 and

B(x) =
∫ ∞

0 dǫ(ǫ + x)ǫd/2−1eǫ+x/(eǫ+x − 1)2 evaluated at
the magnon gap x = �ω0/kBT , where d = 2 or 3. We also
recall that the magnon current density is given by [6]

jα = kB∂αTF1/(6π2λ�α), (16)

where d = 3 and λ =
√

�A/(skBT ) is the thermal
magnon wavelength. In the case of d = 2 we obtain
jα = kB∂αTF1/(4π�α).

We express the result in eq. (15) in the form of the LLG
equation which constitutes the main result of this section:

s(1 + αsms×)ṁs + ms × Hs
eff = (η + ϑms×) jαDαms,

(17)
where η = �, ϑ = ηβ [35], s = |〈m〉| s is the renormalized
spin density, Hs

eff = −(s/s)
〈

δmF
〉

is the effective field,
αs = (s/s)α is the renormalized Gilbert damping (in other
sections we always skip the index s).

Critical current instability and switching. – The
LLG equation (17) describes the magnon current-induced
magnetic instabilities and magnetization switching. We
can estimate the corresponding critical current and
required temperature gradient by employing a simple
stability analysis of the linearized LLG equation after
transforming it to the Landau-Lifshitz form, i.e., by multi-
plying eq. (17) by (1−αm×). We consider the case in fig. 1
where a time-independent magnon current is j = jx, and
the effective field is given as Hs

eff = Hy + Kmzz, where
H is the strength of the external magnetic field and K
is the easy-plane magnetic anisotropy, e.g., corresponding
to the shape anisotropy. When the temperature is uni-
form (j = 0) at equilibrium, the fixed point solution is
ms = −y. This solution becomes unstable when j reaches

jc =
A

D

H + K/2

|ϑ/α − η|
. (18)

We assume that H2 + HK � 4K2α2 and ϑ > ηα (for
ϑ < ηα eq. (18) gives only the upper bound for the critical
current). For ϑ ∼ ηβ one can see that our estimate of the
critical current becomes large. When ϑ ∼ η and α ≪ 1, we
obtain a more favorable estimate jc ≈ (H + K/2)αA/�D
which will be used for our numerical estimates. The rea-
son is that for a general form of DMI corresponding to
pyrochlore crystals [16] or chiral magnets [36] we expect
other mechanisms, not necessarily relying on the dissipa-
tive β-type correction [15], to contribute to the dissipative
torque [35] by analogy with the current-induced torques in
bilayers [21]. For estimates, we consider Cu2OSeO3 thin
insulating layer in ferromagnetic phase. By taking the lat-
tice spacing a = 0.5 nm, T = 50 K, α = 0.01, s = 0.5�/a3,
A/(a2kB) = 50 K, K = 4πMs and D/(akB) = 3 K we
obtain A/D ≈ 80 nm [36]. A temperature gradient com-
parable to experimentally accessible ∂αT = 1 K/µm [37]
should be sufficient for the instability according to eq. (16).

Magnon pumping by magnetization dynamics.

– The dissipative terms in eq. (3) lead to pumping of
magnons by magnetization dynamics. This effect is anal-
ogous to charge pumping by a combination of the spin
pumping and the inverse spin Hall effect in bilayers [38]
where the magnetization dynamics is induced by exter-
nal microwave fields. Under a simple circular precession
of the magnetization the time-averaged magnon current
is given by jpump = sin2 θωϑ/̺ where θ is the cone an-
gle of the magnetization dynamics. We can also de-
fine the corresponding spin current as js = �jpump. For
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numerical estimates we use parameters characteristic to
Pt/Co/AlOx or Pt/CoFe/MgO thin films which we treat
as two-dimensional magnets [39]. We use A = 1.6 ×
10−11 J/m, Ms = 8.3 × 105 A/m, t = 0.6 × 10−9 nm and

D = 4×10−3 J/m
2

arriving at js = sin2 θ�ωDϑ/(4πAtηα)
which is reminiscent of the expression for spin pumping
js = sin2 θ�ωg↑↓/(4π) with g↑↓ = Dϑ/(Atηα). Compared
to spin pumping we recover an order of magnitude smaller
spin current under equal pumping conditions.

We suppose that the power dissipated by magnetiza-
tion dynamics, P = sin2 θω2αsV , is equally divided be-
tween the cooled and heated reservoirs [9]. From eq. (3)
the maximum cooling then corresponds to the regime in
which the heat current carried by magnons from the cooled
reservoir is exactly compensated by dissipation:

∆T

TL
=

ωΠϑ/̺ − ω2αsL/2

Π2/̺ + κT
sin2 θ, (19)

where κ could also include the thermal conductivity of
phonons, L is the length of the magnet, and we assume
that heat flows couple to magnetization only via magnon
currents. The maximum is reached for ω = Πϑ/(̺αsL).
By analogy with the thermoelectric figure of merit we can
define the figure of merit for magnonic cooling as ZT =
2∆Tmax/T which leads to the following expression:

ZT

sin2 θ
=

(Πϑ/̺)2/(αs)

Π2/̺ + κT
=

D2(ϑ/η)2�

6π2
sA2λα2

F 2
1

F2
, (20)

where we assume sufficiently low temperature so that the
effect of phonons can be disregarded, e.g., at 3 K the ther-
mal conductivity of magnons can become comparable to
the thermal conductivity of phonons [17], Π/̺ = −J1 and
Π2/̺+κT = J2 within the relaxation time approximation
applied to thermal magnons, and F 2

1 /F2 ∼ 1 (for d = 2
we obtain Z = D2(ϑ/η)2�F 2

1 /(4πsA2α2F2), where s is the
spin surface density). For Pt/Co/AlOx or Pt/CoFe/MgO
thin films we obtain ZT ∼ 0.001. The absolute cooling of
the cold reservoir is relatively weak which is a consequence
of the large dissipated power P . However, the relative
temperature difference between reservoirs found without
P can be large at typical ferromagnetic resonance frequen-
cies, i.e., ∆T/T ∼ 0.05, and it should be measurable.

Generalizations to arbitrary DMI. – The magnon
spin torque in eq. (17) can be obtained from results in
ref. [15] (see eq. (13)) by replacing the texture deriva-
tive ∂i with a chiral derivative Dα = ∂α + (D/A)(n ×
eα)× [21,30]. In general, such procedure does not guar-
antee the correct values for ϑ and η. Based on the
phenomenological symmetry-based argument, we can de-
scribe the magnon spin torque and magnon pumping in
eqs. (3) and (4) for the most general form of DMI by sub-
stituting the chiral derivative, Dα = ∂α + (Dα/A)×, i.e.,
for the reactive and dissipative torques we obtain

T = (1/A) (η + ϑm×) jαDα × m. (21)

Here we sum over repeated indices, and the tensor Dαβ =
Dα · eβ describes the most general form of DMI, FD =
Dαβεβδγmδ∂αmγ , leading to the exchange contribution
in the free energy, Fex = (A/2)(Dαm)2. By separat-
ing Dαβ into symmetric and antisymmetric parts, Dαβ =
Dsym

αβ + εαβγDant
γ , we identify Dant = Dn for DMI due

to structural asymmetry in the figure. The contribution
Dsym

αβ = Dδαβ arises in non-centrosymmetric crystals, e.g.,
in Cu2OSeO3, resulting in T = (D/A) (η + ϑm×) j × m.

Conclusions. – We developed a phenomenological de-
scription for the interplay between magnetization dynam-
ics and magnon currents in ferromagnets with DMI. Our
theory describes: i) magnon current-induced instability
and switching; ii) pure spin current pumping; and iii) cool-
ing effects in single-domain magnets. The strength of
all mentioned effects is related to the magnitude of the
dissipative torque which is weakened by the Gilbert damp-
ing factor compared to the reactive torque for the sim-
ple form of DMI considered here. The general form
of DMI, Dij · (Si × Sj), should in principle result in
a situation where the dissipative and reactive torques
are comparable [35] in analogy to spin-orbit torques in
metal/ferromagnet bilayers. We thus expect magnonic
dissipative torques and spin pumping in such systems as
pyrochlore crystals (e.g., Lu2V2O7) and chiral magnets
(e.g., MnSi or Cu2OSeO3). The proposed pumping mech-
anism could potentially be useful for electronics relying on
pure spin currents. Our results agree with ref. [24] where
only the reactive thermal torque has been discussed in
detail.
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