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We define and study parafermion stabilizer codes, which can be viewed as generalizations of Kitaev’s one-

dimensional (1D) model of unpaired Majorana fermions. Parafermion stabilizer codes can protect against low-

weight errors acting on a small subset of parafermion modes in analogy to qudit stabilizer codes. Examples of

several smallest parafermion stabilizer codes are given. A locality-preserving embedding of qudit operators into

parafermion operators is established that allows one to map known qudit stabilizer codes to parafermion codes.

We also present a local 2D parafermion construction that combines topological protection of Kitaev’s toric code

with additional protection relying on parity conservation.
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I. INTRODUCTION

Topologically protected systems are potentially useful for

realizations of fault-tolerant elements in a quantum com-

puter [1,2]. The zero-temperature stability of such systems

leads to exponential suppression of decoherence induced by

local environmental perturbations. On the other hand, the

manipulation of the degenerate ground state can be achieved

by braiding operations with non-Abelian anyons [3,4].

The Kitaev chain provides an enlightening example of how

interactions can result in non-Abelian quasiparticles [5]. Net-

works of one-dimensional realizations of such quasiparticles

can be employed for realizations of quantum gates via braiding

operations [6,7]. However, only a nonuniversal set of quantum

gates can be realized with Majorana zero modes. A generaliza-

tion of the Kitaev chain model has been proposed recently in

which quasiparticles obey parafermion ZD algebra as opposed

to Z2 algebra for Majorana zero modes [8]. Many recent

publications address possible realizations of parafermion zero

modes [9–29]. The braiding properties of parafermion systems

have some advantages over the Majorana modes, while still

remaining nonuniversal [10,11,16]. However, parafermion

systems can be used for obtaining quasiparticles that permit

universal quantum computations [19].

The presence of finite temperature introduces inevitable

errors and in principle requires continuous error correc-

tion [30]. “Self-correcting” quantum memories are stable

at finite temperatures [31,32]; however, they cannot be

realized in two dimensions with local interactions [33,34].

Parafermion stabilizer codes considered here can protect

against low-weight fermionic errors, i.e., errors that act on

a small subset of parafermion modes. The measurement

and manipulation schemes required for code implementa-

tions have been formulated for Majorana zero modes [35–

37] and should in principle generalize to parafermion zero

modes [11].

In this paper, we address the possibility of active error

correction in systems containing a set of parafermion modes as

opposed to typical systems containing qubits or qudits. Earlier

works on quantum error correction usually addressed the qubit

case with a Hilbert space dimension D = 2 [30,38–40]. Error

correction on qudits with D > 2 has also been considered,

and qudit stabilizer codes have been introduced [41–47]. The

formalism is usually applied to situations in which D is

prime or a prime power [42,48,49], while generalizations to

composite D are also possible [50].

Parafermion codes can also be interpreted in terms of

termwise commuting Hamiltonians of interacting parafermion

zero modes, thus generalizing Kitaev’s one-dimensional (1D)

model of unpaired Majorana fermions to the D > 2 case

and to arbitrary interactions preserving the commutativity

of terms in the Hamiltonian. Of particular interest are the

Hamiltonians corresponding to geometrically local interac-

tions on a d-dimensional lattice. Thus, one can ask similar

questions to those posed in Ref. [51] in relation to Majorana

codes, i.e., what is the role of superselection rules in the

finite-temperature stability of topological order defined by

interacting parafermion modes. Such superselection rules are

characteristic of fermionic systems when only interactions

with bosonic environments are present. On the other hand, the

superselection rule prohibiting parity-violating error operators

is not likely to always hold, for instance, when the environment

supports gapless fermionic modes that can couple to the

system [52,53]. Parafermion stabilizer codes can help in such

situations by providing protection associated with the code

distance of parity-violating logical operators.

The paper is organized as follows. In Sec. II, we intro-

duce notations and provide background on the theory of

qudit stabilizer codes. Here we also discuss the Jordan-

Wigner transformation, which leads us to the introduction

of parafermion operators. In Sec. III, we give a formal

definition of parafermion stabilizer codes and establish their

basic properties. We also discuss the commutativity condition

on stabilizer generators, define the code distance, and prove

basic results on the dimension of the code space. In Sec. IV, we

present several examples of the smallest parafermion stabilizer

codes. In Sec. V, we construct mappings between qudit sta-

bilizer codes and parafermion stabilizer codes. By employing

such mappings, we are able to construct parafermion toric

code with an adjustable degree of protection against the

parity-violating errors. Finally, we give our conclusions in

Sec. VI.

II. BACKGROUND

A. Qudits

Qudits are D-dimensional generalizations of qubits, and

are generally implemented using D-level physical systems.
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One of the well-known generating sets for qudit operations is

constructed by the generators of the finite discrete Weyl group

WD that obey the defining relations [54,55]

XD = ZD = 1, ZX = ωXZ. (1)

This group is sometimes referred to as the discrete Heisenberg

group [42], and the generators are sometimes referred to

as generalized Pauli matrices [50]. By diagonalizing one

of these operators, say Z, one obtains the D-dimensional

representation

X =

D−1
∑

j=0

|j + 1〉 〈j | , Z =

D−1
∑

j=0

ωj |j 〉 〈j | , (2)

where ω = e2πi/D and the addition j + 1 is in mod D. Above

and throughout the paper, 1 denotes the identity operator with

proper dimensions. Products of X and Z span the Lie algebra

su(D), hence their linear combinations can generate universal

SU(D) operations. Operations on multiple qudits are tensor

products of the single-qudit operators, hence operators acting

on distinct qudits commute. We will denote an X operator

acting on the j th site as Xj , which is equivalent to an X

operator at the j th slot of the tensor product padded with

identity operators: Xj = 1 ⊗ · · · ⊗ X ⊗ · · · ⊗ 1 (and similar

for Zj ).

B. Stabilizer codes for qudits

Stabilizer codes are an important class of quantum error-

correcting codes [30,56], which, under appropriate mapping,

can be also thought of as additive classical codes [57].

Stabilizer codes utilize a set of commuting operators, called

the stabilizer group, for defining the code space. In this section,

we review the stabilizer formalism for qudits (see, e.g., [50]).

Let S be a maximal Abelian subgroup of W⊗n
D that does

not contain ωj
1 (j ∈ ZD and j �= 0) and CS be the code

subspace of the Hilbert space stabilized by all the elements of

S, i.e., Si |ψ〉 = |ψ〉∀ Si ∈ S and |ψ〉 ∈ CS , then S is called

the stabilizer group and it is generally denoted by its generating

set S = 〈S1,S2, . . . ,Sk〉.

Since the stabilizer group S is an Abelian group, its

elements must commute with each other by definition. The

commutativity condition of its generators depends upon the

particular case of W⊗n
D at hand. Two arbitrary elements

of W⊗n
D , G = ωλXuZv and G′ = ωλ′

Xu
′

Zv′

, where Xu =

X
u1

1 X
u2

2 · · · Xun
n , Zv = Z

v1

1 Z
v2

2 · · · Zvn
n (and similarly for G′),

will commute iff

u · v′ = v · u
′ mod D (3)

is satisfied [50].

The support of a Weyl operator w ∈ W⊗n
D , denoted as

Supp(w), is defined as the set of qudits on which it acts

nontrivially. The cardinality of the support, |Supp(w)|, is called

the weight of the operator w, also denoted as |w|. The set of

all Weyl operators in W⊗n
D that commute with all the elements

of S is called the centralizer of S and is denoted as C(S).

For prime D, a stabilizer group with n − k independent

generators implies that the corresponding centralizer is gen-

erated by n + k generators. The logical operators {X̄,Z̄} of a

stabilizer code S are the elements of C(S) that are not in S.

The robustness of a quantum code can be measured by how

far two encoded states are apart, which is quantified through

the notion of distance. The weight of the logical operators

implies the separation of the encoded states. Therefore, the

distance of a stabilizer code is defined as

d = min
Li∈C(S)\S

|Li |. (4)

The longer the code distance is, the better protection the code

provides. A code of distance d can detect any error of weight up

to d − 1, and correct up to ⌊d/2⌋. A quantum error-correcting

code that encodes n physical qudits into k logical qudits with

distance d is denoted as [[n,k,d]]D .

C. Parafermion operators

Parafermion operators can be obtained by the Jordan-

Wigner transformation of the D-state spin operators

{Xj ,Zj } ∈ W⊗n
D as

γ2j−1 =

(

j−1
∏

k=1

Xk

)

Zj ,

γ2j = ω(d−1)/2

(

j−1
∏

k=1

Xk

)

ZjXj , (5)

which is a mapping of n local spin operators into 2n

nonlocal parafermion operators, therefore the total number

of parafermion modes is always even. Parafermion operators

γj obey the following relations:

γ d
j = 1, γjγk = ωγkγj (j < k, ω = ei2π/D). (6)

A special case with D = 2 gives us the anticommuting self-

adjoint Majorana fermions.

Realizations of parafermion zero modes corresponding to

Eq. (6) have been suggested. In such realizations, the localized

state is described by a parafermion operator that commutes

with the corresponding Hamiltonian and changes the parity of

ZD charge by 1 [8]. They are non-Abelian anyons and can

be used for realizations of fault-tolerant topological quantum

gates.

There are recent proposals to construct solid-state systems

that accommodate parafermion zero modes. Realizations

employing exotic fractional quantum Hall (FQH) states and

quantum nanowires have been proposed [9–21].

III. PARAFERMION STABILIZER CODES

A. The group PF(D,2n)

We shall call the group generated by the single-mode

operators γj given in Eq. (6) the parafermion group PF(D,2n).

Arbitrary elements of PF(D,2n) can be written as ωλγ α , where

λ ∈ ZD and

γ α = γ
α1

1 · · · γ
α2n

2n (7)

with α = (α1, . . . ,α2n) ∈ Z
2n
D , and by convention the terms are

arranged in increasing order in their indices. The ordered set of

nonzero elements in α is called the support of γ α , or Supp(γ α).

We define the weight of γ α as the number of nonzero entries

in α, denoted as |Supp(γ α)| or simply |γ α|.
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A parafermion operator ωλγ α ∈ PF(D,2n) will preserve

parity iff

2n
∑

i=1

αi = 0 mod D. (8)

One can generalize Eq. (6) to obtain γ m
i γ n

j = ωmnγ n
j γ m

i

for i < j . Using this, it can be shown that two parafermion

operators γ α and γ β commute iff

α�βT = 0 mod D (9)

is satisfied, where � is a 2n × 2n antisymmetric matrix �ij =

sgn(j − i) or explicitly

� =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 1 · · · 1

−1 0 1 · · · 1

−1 −1 0 · · · 1
...

...
...

...

−1 −1 −1 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

. (10)

In particular, when the index of the last nonzero entry in α

is smaller than the index of the first nonzero entry in β, the

commutativity condition Eq. (9) is reduced to
⎛

⎝

∑

j

αj

⎞

⎠

⎛

⎝

∑

j

βj

⎞

⎠ = 0 mod D. (11)

The parity-conservation condition for a parafermion oper-

ator can also be expressed in terms of the ZD charge operator

Q =

n
∏

j=1

γ
†
2j−1γ2j . (12)

For any γ α ⊂ PF(D,2n),

γ αQ = ωpQγ α, p =

2n
∑

i=1

αi mod D, (13)

where p is the ZD charge of γ α , thus the parity-conservation

condition can also be written as [γ α,Q] = 0.

Since Majorana zero modes correspond to the D = 2 case,

evidently we have PF(2,2n) ∼= Maj(2n).

B. Stabilizer groups in PF(D,2n)

It is not generally possible to map parafermion operators in

PF(D,2n) onto qudit operators in W⊗k
D due to the nonlocality

of parafermion operators. The tensor product structure of k-

qudit operators in W⊗k
D guarantees that operators acting on

different sites commute, whereas parafermion operators fail to

commute for all distinct sites. Nevertheless, even though a one-

to-one mapping between a single-mode parafermion operator

and a qudit operator is impossible, it is indeed possible to map

multiple parafermion modes onto multiple qudits at once (see

Sec. IV B) or to map multiple parafermion modes onto a local

single-qudit in a consistent way (see Sec. V). Indeed, as we

observe in the next section, PF(D,2n) proves to be rich group

with many nontrivial Abelian subgroups.

Definition. Parafermion stabilizer codes CSPF
, similar to

qudit stabilizer codes, are completely determined by their

corresponding stabilizer group, which in our case is SPF ⊆

PF(D,2n). We list the defining properties of parafermion

stabilizer codes as follows:

(i) Elements of SPF are parity-preserving operators.

(ii) SPF is an Abelian group not containing ωj
1, where

j ∈ ZD and j �= 0.

Whether these conditions hold for a given parafermion

stabilizer code or not can be verified using Eqs. (8) and (9),

respectively.

The set of all parafermion operators in PF(D,2n) that

commute with all the elements of SPF is called the centralizer

of SPF and is denoted as C(SPF). The set of logical operators

L(SPF) encoding k qudits of a parafermion code SPF are the

elements of C(SPF) that are not in SPF, that is, L(SPF) =

C(SPF) \ SPF. When D is a prime number, the order of the

generating set (excluding the identity operator) of SPF is n − k

and the centralizer is generated by n + k generators.

When writing the generating sets explicitly, we will omit

the phase factors ωl (l ∈ ZD) for all generators for brevity

throughout the paper, however one should keep in mind that

such phase factors are in general required in order to satisfy the

second defining property of parafermion codes listed above.

The code space of a parafermion stabilizer code SPF is the

subspace that is invariant under the action of all the elements

of SPF. The distance d of a parafermion code is given by the

minimum weight of its logical operators,

d = min
γ α∈L(SPF)

|γ α|. (14)

We denote a parafermion stabilizer code that encodes 2n

parafermion modes into k logical qudits with distance d as

[[2n,k,d]]D . A parafermion stabilizer code of distance d can

detect any parafermion error of weight up to d − 1, and it can

correct up to ⌊d/2⌋ in analogy to qudit codes. However, it

should be noted that similar to Majorana fermion codes [51],

the robustness of parafermion codes is not solely determined

by the code distance d: when some of the logical operators

have nonzero parity, the conservation of parafermion parity

will offer additional protection, that is, a subspace of the

code space will be protected against such errors. Following

Ref. [51], we introduce an additional parameter lcon defined

as the minimum diameter of a region that can support a

parity-conserving logical operator:

lcon = min
γ α ∈ L(SPF)

∑

i αi = 0 mod D

diam[Supp(γ α)], (15)

which can be used in order to measure the degree of protection

relying on the superselection rules.

What can be said about the order of SPF? Below, we adapt

the theorem and proof given by Gheorghiu [50] to parafermion

stabilizer codes.

Theorem. Let SPF be a parafermion stabilizer code in

PF(D,2n), where D is allowed to be composite, let |SPF|

denote the order of SPF, and let |CSPF
| be the dimension of

code space. Then the following equation holds:

|CSPF
||SPF| = Dn. (16)

Proof. The operator

P =
1

|SPF|

|SPF|
∑

j=1

Sj (17)
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GÜNGÖRDÜ, NEPAL, AND KOVALEV PHYSICAL REVIEW A 90, 042326 (2014)

is a projection operator satisfying P 2 = P = P †. Clearly, for

any |ψj 〉 ∈ CSPF
, P |ψj 〉 = |ψj 〉 holds. Thus the subspace W

that P projects onto includes CSPF
, or CSPF

⊆ W .

Next we show that this relation holds the other way around.

Let |φ〉 be an arbitrary element of W (thus P |φ〉 = |φ〉) and

Sk be an arbitrary element of SPF. Since SkP = P for all k, we

obtain Sk(P |φ〉) = P |φ〉, meaning all |φ〉 ∈ W is stabilized

by SPF or W ⊆ CSPF
, leading us to the conclusion that W =

CSPF
. The dimension of the code space is then given as tr(P ).

Since SPF is an Abelian group and the trace condition tr(γ α) =

0 when γ α �= 1 and tr(1) = Dn for γ α,1 ∈ PF(D,2n), holds,

we arrive at the result

tr(P ) = |CSPF
| =

1

|SPF|
Dn. (18)

Corollary. When D is a prime power pl , |CSPF
| = plk and

|SPF| = pr with r = l(n − k) (we refer the reader to [42] for

a detailed derivation).

In later sections, we will also use a matrix form of the

stabilizer code SPF = 〈S1, . . . ,Sl〉 = 〈γ α1 , . . . ,γ αl 〉, whose

rows are given by αi , that is,

SPF =

⎛

⎜

⎝

α1

...

αl

⎞

⎟

⎠
. (19)

The same construction is also extended for the logical

operators, yielding the matrix LPF. Since SPF is an Abelian

group, due to Eq. (9), we have SPF�ST
PF = 0 mod D. The

logical operator matrix LPF, on the other hand, obeys the

relations LPF�ST
PF = 0 and LPF�LT

PF �= 0 in mod D.

IV. EXAMPLES OF PARAFERMION STABILIZER CODES

A. Three-state quantum clock model

We present a simple example of a parafermion code starting

from a three-state quantum clock model Hamiltonian (for h =

0):

H3 = −J

n−1
∑

j=1

(Z
†
jZj+1 + Z

†
j+1Zj ). (20)

By employing the Jordan-Wigner transformation, this Hamil-

tonian can be rewritten in terms of parafermion operators in

the following form:

H = iJ

n−1
∑

j=1

(γ
†
2jγ2j+1 − γ

†
2j+1γ2j ), (21)

which is known as the Fendley [8] generalization of the Kitaev

chain model. For D = 2, Eq. (20) reduces to the familiar Ising

model with h = 0.

We form the corresponding stabilizer group taking individ-

ual terms of the Hamiltonian for each value of j as

〈iγ
†
2 γ3, − iγ

†
3 γ2, . . . ,iγ

†
2n−2γ2n−1, − iγ

†
2n−1γ2n−2〉. (22)

Logical operators of the code can be chosen as Z̄ = γ1 and

X̄ = γ2n. Then the distance of the code is d = 1. But these

logical operators are not parity-preserving, we can combine

them as γ
†
1 γ2n and γ1γ

†
2n to obtain parity-preserving logical

operators. Even though this code does not provide protection

against parity-violating errors, in the absence of such errors

the code protection can be described by the diameter of even

logical operators, i.e., lcon = 2n.

B. Minimal parafermion stabilizer codes

Quantum error-correcting schemes come at the expense of

introducing additional qudits in order to protect information

encoded into quantum states. The ratio of the number of

encoded qudits k (whose state can be restored after deco-

herence) to the number of underlying physical qudits n is

called encoding rate r = k/n. The relative distance is defined

as δ = d/n. Codes with higher encoding rate r and relative

distance are preferable, and it is known that both δ and r can

be finite for a particular code family [58]. In this section, we

discuss the minimal stabilizer codes encoding the k = 1 qudit

and try to find codes with the best encoding rate r for the

minimal nontrivial distance d = 3 for prime D.

Using an exhaustive search, we find that for D = 3 the

smallest nontrivial code requires eight parafermion modes and

results in an [[8,1,3]]3 parafermion stabilizer code:

SPF =〈γ
†
1 γ2γ

†
4 γ6,γ

†
2 γ3γ

†

5 γ7,γ
†
3 γ4γ

†
6 γ8〉,

L(SPF) =〈γ
†
1 γ2γ3γ7,γ

†
2 γ

†
3 γ6〉. (23)

The logical operators generate W3, encoding eight

parafermion modes into a single logical qutrit.

Realizations of D = 6 parafermion zero modes have

been proposed recently [11], making this case particularly

interesting. Because D = 6 is not a prime or prime power,

the original construction for qudit stabilizer codes [42] is not

directly applicable. We will instead “double” the D = 3 code

given above by squaring all the generators. However, this is

a mapping onto a larger space and we need to take care of

the additional operators that commute with the new stabilizer

generators. The full set of generators for D = 6 thus becomes

SPF =
〈

γ 3
1 γ 3

2 ,γ 3
3 γ 3

4 ,γ 3
5 γ 3

6 ,γ 3
7 γ 3

8

(γ
†
1 γ2γ

†
4 γ6)2,(γ

†
2 γ3γ

†

5 γ7)2,(γ
†
3 γ4γ

†
6 γ8)2

〉

,

L(SPF) = 〈(γ
†
1 γ2γ3γ7)2,(γ

†
2 γ

†
3 γ6)2〉. (24)

Since these logical operators behave like X2 and Z2 for D = 6

qudits, the code above essentially encodes a qutrit using 2n =

8 parafermion zero modes. We also note that this code may

not have the best encoding rate for D = 6.

However, the minimal number of modes depends on D. For

the case of D = 7, there exists a [[6,1,3]]7 code that requires

only six modes,

SPF =
〈

γ1γ2γ
5
5 ,γ1γ

5
4 γ6

〉

,
(25)

L(SPF) =
〈

γ 3
1 γ 6

2 γ6,γ
2
1 γ 5

2 γ3

〉

.

This indicates that there is a minimal D for which the encoding

rate is optimal [59].
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V. MAPPINGS BETWEEN QUDITS AND PARAFERMION

MODES

A. Mappings to and from parafermion codes

There is an established literature on stabilizer codes for

qudits when D is prime or a prime power [60,61]. Recently,

some properties of qudit stabilizer codes for the nonprime

case have been discussed in [50]. An isomorphism between

multi-qudit and multi-parafermion mode operators will let us

construct parafermion stabilizer codes based on qudit codes.

In this section, we establish such an isomorphism by mapping

four parafermion modes to a single qudit.

Remark. Let X̃j and Z̃j (j = 1, . . . ,k) denote the generat-

ing operators of W⊗k
D embedded into PF(D,2n), encoding k

qudits into 2n parafermion modes. Such an embedding has the

following properties:

(i) Logical qudit operators {X̃j ,Z̃j } obey Eq. (1), that is,

they generate the embedded Weyl group W⊗k
D ⊆ PF(D,2n).

(ii) Logical qudit operators for different sites commute

([X̃i,X̃j ] = [Z̃i,Z̃j ] = [X̃i,Z̃j ] = 0 when i �= j ).

(iii) The embedding ofW⊗k
D into the larger group PF(D,2n)

may require additional parafermion operators {Q̃
(i)
j } that

commute with the original qudit stabilizer group S or its

corresponding logical operators L(SPF). Such operators must

be included in the parafermion stabilizer group SPF and hence

must preserve parity [an example is given in Eq. (26) below].

In turns out that the minimum number of parafermion

modes required for such an embedding is four, that is, four

parafermion modes will map to a single qudit. This mapping

leads to the following lemma.

Lemma. Every [[n,k,d]]D stabilizer code can be mapped

onto a [[4n,k,2d]]D parafermion stabilizer code, encoding four

parafermion modes into a single qudit.

Proof. Let us define the operators

Z̃j+1 = γ
†
1+4jγ2+4j , X̃j+1 = γ

†
1+4jγ3+4j ,

(26)

Q̃j+1 = γ
†
1+4jγ2+4jγ

†
3+4jγ4+4j .

It is straightforward to show that 〈X̃j ,Z̃j 〉 generate the

embedded Weyl group W⊗k
D ⊆ PF(D,2n) (that is, Z̃iX̃j =

ωX̃j Z̃iδij and X̃D
j = Z̃D

j = 1) and are parity-preserving. We

can treat L(SPF) = 〈X̃j ,Z̃j 〉 as the logical operators of a

stabilizer group SPF = 〈Q̃j 〉. This makes the purpose of the

additional fourth mode (which does not appear in the logical

operators) clear: without it, the stabilizer group would include

a non-parity-preserving operator. Finally, since every Weyl

operator is mapped to a parafermion operator with two modes,

the distance of the new code is 2d.

This mapping allows us to construct families of parafermion

stabilizer codes from known families of qudit stabilizer codes.

In particular, one can map the qudit toric codes [60] (and their

generalizations [62,63]) to the corresponding parafermion

code. The advantage of this mapping is that a local stabilizer

generator in a d-dimensional lattice will map to a local

parafermion operator. The disadvantage is that all logical

operators preserve parity, thus there is no additional protec-

tion associated with the presence of parity-violating logical

operators.

It turns out that we can do a similar mapping in the opposite

direction, albeit without preserving the locality of stabilizer

generators.

Lemma. Any parafermion stabilizer code with parame-

ters [[2n,k,d]]D and stabilizer group SPF can generate a

[[2n,2k,d ′]]D qudit CSS code.

Proof. Consider the check matrix

SCSS =

(

SPF� 0

0 SPF

)

. (27)

For a parafermion code, k = n − rank(SPF), whereas for the

CSS code, k′ = 2n − 2 × rank(SPF) = 2k (� is a full-rank

matrix). Hence SCSS is the check matrix of a [[2n,2k,d ′]]D
CSS code. The corresponding logical operator matrices LPF

and LPF� behave like X- and Z-type logical qudit operators.

We note that this construction is a proper generalization

of the doubling lemma described in [51], which maps a

Majorana fermion code to a weakly self-dual CSS code.

Unfortunately, for D > 2 this mapping becomes nonlocal,

i.e., a local qudit operator will generally map to a nonlocal

parafermion operator.

B. Parafermion toric code with parity-violating

logical operators

In this section, we construct a parafermion analog of

Kitaev’s toric code [1] for qudits [60]. The toric code is a

stabilizer code defined on an a × b lattice on the surface of

a torus. A portion of the lattice is depicted in Fig. 1, where

each dot represents a single qudit (hence, there are 2ab qudits

overall).

Let D = p2l , where p is a prime number and l ∈ Z
+. The

operators

Z̃j+1 = γ
pl−1

1+4j γ2+4j , X̃j+1 = γ
pl−1

1+4j γ3+4j ,
(28)

Q̃j+1 = γ
†
1+4jγ

†
2+4jγ3+4jγ4+4j

define a mapping of four parafermion modes onto a single

qudit via the one-qudit stabilizer group SPF = 〈Q̃j 〉 and its

corresponding logical operators L(SPF) = 〈X̃j ,Z̃j 〉.

As

Bp

X̃−1

X̃ = γ
pl

−1

1+4jγ3+4j

X̃
−1

X̃

Z̃
Z̃ = γ

pl
−1

1+4jγ2+4j

Z̃−1

Z̃−1

As

Bp

FIG. 1. (Color online) A portion of the lattice place on a torus,

where each dot represents four parafermion modes (the index j � 0

uniquely denotes the lattice point). On the right, parafermion star and

plaquette operators As and Bp are given in detail [pl is a prime power;

further details are given in Eq. (28)].
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Z1X2

Z2

X1

FIG. 2. (Color online) Loops corresponding to the logical opera-

tors of the toric code.

Consider the operators defined on a star-shaped and

plaquette-shaped portion of the lattice:

As =
∏

j∈star(s)

X̃
aj

j , Bp =
∏

j∈plaquette(p)

Z̃
bj

j , (29)

where aj and bj are ±1, specified on the right side of Fig. 1.

In general, As and Bp either do not overlap or overlap at

two sites. One can easily verify that the construction given in

Eq. (29) ensures that the commutator [As,Bp] vanishes in both

cases. We also note that both As and Bp are parity-conserving

operators. The set of all As and Bp forms a stabilizer group.

Due to the fact that the lattice is defined on the surface of a

torus, the lattice is periodic in both dimensions, leading to the

result
∏

s

As = 1,
∏

p

Bp = 1. (30)

This implies |S| = 2(ab − 1), and using Eq. (16), we find that

k = 2. The logical operators Xl,Zl (l = 1,2) are horizontal

and vertical loops along the lattice, as given in Fig. 2. Since

these loops go all the way through the torus, they commute

with the stabilizer generators As and Bp at all sites.

We note that the parity (charge) associated with operators

is pl �= 0 mod D [64]. Hence, the parity of the horizontal

(vertical) logical operators of the parafermion toric code is

a × pl (b × pl) mod D. By tuning a and b, we can ensure

that one of the logical operators will violate parity (that is, pl

divides a but does not divide b). The choice of the smallest b

would correspond to the absence of parity-violating errors. In

general, b can be tuned depending on the probability of parity-

violating errors. Therefore, this code construction combines

topological protection of Kitaev’s toric code with additional

protection relying on suppression of parity-violating errors.

VI. CONCLUSION

We have introduced stabilizer codes in which parafermion

zero modes represent the constructing blocks as opposed to

qudit stabilizer codes. Our work generalizes earlier construc-

tions based on Majorana zero modes [51]. While it is possible

in general to start with a stabilizer code for qudits and use it

with parafermion zero modes through the mapping given in

Eq. (26), which utilizes the embedding W⊗n
D ⊂ PF(D,4n),

we find that there are more efficient codes in PF(D,2n)

requiring fewer parafermion modes, as we have exemplified

in Sec. IV B. These results also show that the parafermions

can achieve a better encoding rate than Majorana fermions.

We have also shown that by using a similar embedding

with a qudit toric code, it is possible to construct a code

protecting parafermion modes against parity-violating errors

where the degree of protection (i.e., distance) can be adjusted.

A similar construction has been introduced for color codes

using Majorana zero modes [51].

Parafermion stabilizer codes can be used for construct-

ing Hamiltonians in which commuting terms correspond to

stabilizer generators. Parafermion stabilizer codes thus lead

to a multitude of models generalizing Kitaev’s 1D chain of

unpaired Majorana zero modes to higher dimensions (D > 2)

and to arbitrary interactions defined by the choice of stabilizer

generators. An important question arising here is related

to finite-temperature stability of topological order in such

systems. In general, a 2D lattice with local interactions cannot

lead to stable topological order at finite temperature. Thus,

it could be plausible to assume that by requiring some of

the logical operators to be parity-violating operators, one

can add additional protection to topological order where this

additional protection relies on superselection rules. Whether

such constructions can lead to the absence of parity-conserving

stringlike logical operators (e.g., stringlike logical operators

are absent in Haah’s code [65]) is an open problem.
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