2016 |IEEE International Symposium on Information Theory

Distance verification for LDPC codes

Ilya Dumer*, Alexey A. Kovalev', and Leonid P. Pryadko?
* ECE Department, University of California at Riverside, USA (e-mail: dumer@ee.ucr.edu)
f Department of Physics & Astronomy, University of Nebraska-Lincoln, USA (e-mail: alexey.kovalev@unl.edu)
! Department of Physics & Astronomy, University of California at Riverside, USA (e-mail: leonid @ucr.edu)

Abstract—The problem of finding code distance has been
long studied for the generic ensembles of linear codes and led
to several algorithms that substantially reduce exponential com-
plexity of this task. However, no asymptotic complexity bounds
are known for distance verification in other ensembles of linear
codes. Our goal is to re-design the existing generic algorithms of
distance verification and derive their complexity for LDPC codes.
We obtain new complexity bounds with provable performance
expressed in terms of the erasure-correcting thresholds of long
LDPC codes. These bounds exponentially reduce complexity
estimates known for linear codes.

Index Terms — Distance verification, complexity bounds, LDPC
codes, erasure correction, covering sets

I. INTRODUCTION

This paper addresses the problem of finding code distances
of LDPC codes with provable complexity estimates. Note
that finding code distance d of a generic code is an NP-hard
problem. This is valid for both the exact setting [1] and the
evaluation problem [2], [3], where we only verify if d belongs
to some interval [d, cd] given some constant ¢ € (1,2). To this
end, all algorithms of distance verification discussed in this
paper have exponential complexity 2™ in blocklength n and
our goal is to reduce the complexity exponent F'.

Below we address generic algorithms of distance verifica-
tion - known for linear codes - and re-design these algorithms
for LDPC codes. The main problem is that such algorithms
heavily rely on the properties of the randomly chosen genera-
tor (or parity-check) matrices. These properties have not been
proved (or do not hold) for the smaller ensembles of codes,
such as cyclic codes, LDPC codes, and others. Therefore, we
will use a different technique and derive complexity estimates
for LDPC codes using a single parameter, which is the erasure-
correcting threshold of a specific code ensemble. We then
define this threshold via the average weight spectra of LDPC
codes. This technique is different from the generic approach.
In particular, we calculate the average complexity of distance
verification and then discard a vanishing fraction of LDPC
codes that have atypically high complexity. Our main result
is the new complexity bounds for distance verification for
ensembles of LDPC codes or other ensembles with a given
erasure-correcting threshold. These algorithms perform with
an arbitrarily high level of accuracy.

Here, however, we leave out some efficient algorithms that
require more specific estimates to perform distance verification
with provable complexity. In particular, we do not address
belief propagation (BP) algorithms, which can end at the
stopping sets and therefore fail to furnish distance verification
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with an arbitrarily high likelihood. Some other algorithms also
include impulse techniques [4] that apply list decoding BP
algorithms to the randomly induced errors. Simulation results
presented in [4] show that impulse techniques can also be
effective in distance verification albeit with a lesser fidelity.

II. BACKGROUND

Let C[n,k] be a linear binary code of length n and di-
mension k. The problem of verifying distance d of a linear
code (finding a minimum-weight codeword) is related to the
decoding problem: find an error of minimum weight that gives
the same syndrome as the received codeword. The number
of operations N required for distance verification can usually
be defined by some positive exponent F' = lim (logy N)/n
as n — oo. For example, for any code C[n, k], inspection
of all 2* distinct codewords has (time) complexity exponent
F = R, where R = k/n is the code rate. Given substantially
large memory, one can instead consider the syndrome table
that stores the list of all ¢" syndromes and coset leaders, where
r = n — k. This setting gives (space) complexity F' = 1 — R.

To proceed with the more efficient algorithms, we also need
to consider some parameters of the shortened and punctured
codes. Let G and H denote a generator and parity check
matrices of a code C[n,k]. Let I be some subset of g > k
positions and .J be the complementary subset of n = n — g,
n < r, positions. Consider the punctured code C; = {cs :
¢ € C} generated by submatrix G of size k x g. The
complementary shortened code C; = {c; : ¢; = 0} has
parity-check matrix H; of size r x n. These matrices include
at most k£ and 7 linearly independent rows, respectively. Let
b(Gr) = k —rank Gy and b (H ;) = n — rank H; denote the
co-ranks of these two matrices. Throughout the paper, we use
the following simple statement.

Lemma 1. For any linear code C|n, k|, matrices G; and H ;
have equal co-ranks b(Gy) = b(Hj) on the complementary
subsets I and J.

Proof: Code C has size 24im € — gn—rankH, _ ob(H.)
and contains all (shortened) code vectors ¢ with ¢; = 0. On
the other hand, for a given matrix Gy, there are 2b(G1) yectors
c with ¢; = 0. Thus, b (Gy) =b(Hy). ]

Now consider the shortened codes C; of length n = 6n
taken over over different sets J. Let codes C; have the average
size Ng = 24mC7  Then Markov’s inequality gives another
useful estimate.
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Corollary 1. For any subset J and any t > 0, at most a
fraction % of the shortened codes C ;j have size exceeding t Ny.

We will now consider two ensembles of regular LDPC
codes. Ensemble A (¢, m) is defined by the equiprobable r x n
matrices H that have all columns of weight £ and all rows of
weight m = ¢n/r. Below we take m > ¢ > 3. This ensemble
also includes a smaller LDPC ensemble B(¢,m) originally
proposed by Gallager [5]. For each code in B(¢, m), its parity-
check matrix H consists of ¢ horizontal blocks Hy, ..., H; of
size % x n. The first block H; consists of m consecutive unit
matrices of size 7 X 7. Any other block H; is obtained by some
random permutation 7;(n) of n columns of H;. Ensembles
A(£,m) and B(£, m) have similar spectra and achieve the best
asymptotic distance for a given code rate 1 — £/m among
various LDPC ensembles studied to date [6].

Note that LDPC codes are defined by non-generic, sparse
parity check matrices H ;. Below we will relate the co-ranks
by = b(Hj) of these matrices H; to the erasure-correcting
thresholds of LDPC codes. In doing so, we extensively use
the average weight spectra derived for the ensemble B(¢,m)
in [5] and for ensemble A(¢,m) in [6]. We note, however,
that this analysis can readily be extended to other ensembles
with the known average weight spectra.

Let « = ¢{/m = 1 — R. For any parameter 5 < [0,1],
consider the equation

QA+e)mt+ (1 —t)ym !
(L4 t)m 4+ (1 —t)m
that has a single positive root ¢. Also, let h(5) be the binary

entropy function. Below we extensively use the parameter

1 m 1 — )™
4(@. ) = alogy LT LLZD e

and also take ¢ (o, ) = —oo if m is odd and 5 > 1—-L. Then
Theorem 4 of [6] shows that a given codeword of weight Sn

belongs to some code in ensemble A(¢,m) with probability
P (a, ) such that

lim % log, P (o, B) = q (o, B)

n—oo

=1-5 (1)

—amh(B),

3)

Lemma 2. For any given subset J of size On, where 6 < 1,
codes Cj(¢,m) of the shortened ensemble A j(¢, m) have the
average number Ny of nonzero codewords such that

nlgrolc)% log, Ng = f(6) )
f(6) = max {g(a,50) + On(6)} ®)

Proof: For any set J of size 6n, consider codewords c
of weight 56n that have support on J. For any 8 € (0,1],
codes in A ;(¢,m) contain the average number Ny (5) =
P (a, 89) (;gln) of such codewords c. Then

logy Ny (8)
. ~ me 0 6
Y ouax {g(c, 56) +6R(B)} (6)
which gives asymptotic equalities (4) and (5). [ ]

III. DISTANCE VERIFICATION FOR LDPC CODES
A. Two main parameters for complexity estimates.

Two essential differences separate LDPC ensembles from
random codes in regards to complexity estimates. These differ-
ences are closely related to two parameters, 6, and 6., which
are the roots of the equations

0x : h(dx) + q(a,0.) =0
0. : f(6) =0.

Note that J, is the average relative code distance in the
ensemble A(¢,m). Indeed, for 6 =1, equality (6) shows
that the average number of codewords Np(3) of length n and
weight Sn has asymptotic order

Llogy N(B) ~h(B) + q (e, B) ®)

For any code rate R = 1—{/m, §, falls below the GV distance
h_l(l —R) of random codes (see [5] and [6] for more details).
For example, d, ~ 0.02 for the A(3,6) ensemble of rate R =
1/2, whereas h=1(0.5) ~ 0.11. The smaller distances d, will
reduce the complexity of distance verification.

Parameter 6. also plays a significant role in distance ver-
ification. Namely, consider a code ensemble C of growing
length n — oo. Let Ny be the number of nonzero codewords
in the shortened codes C'; averaged over all codes C' € C and
all subsets J of size 6n. Then we use the following statement.

@)

Lemma 3. Let the ensemble C have a vanishing average
number Ng — 0 of nonzero codewords in the shortened codes
C'j of length On. Then most codes C € C correct most erasure

subsets J, with the exception of a vanishing fraction of codes
C' and subsets J.

Proof: A code C € C fails to correct some erasure set .J
of weight On iff code C; has N;(C) > 1 nonzero codewords.
Let My be the average fraction of such codes C'; taken over all
codes C and all subsets .J. Note that My < Ny. Per Markov’s
inequality, no more than a fraction v/Mj of codes C may leave
a fraction v/My of sets J uncorrected. [ |

More generally, we say that an ensemble of codes C has
the erasure-correcting threshold 8, if Ng — 0 for any 6 < 6,
and N9 > 1 for any 6 > 6, on the sets J of size 6n.
Here ensembles A(¢,m) and B(¢,m) satisfy Lemma 3 for
any 6 < 6, of (7). Thus, 6, serves as a lower bound on
the erasure-correcting capacity of LDPC codes under ML
decoding. Alternatively, one can use other thresholds, such
as the threshold for message-passing algorithms. Note also
that ensembles A (¢, m) and B(¢£, m) are permutation-invariant
and therefore yield the same fraction of uncorrected codes C
for each erasure subset J. Then for any ¢ > 0, the bound
N;(C) < 2™ holds on all subsets J (except for a fraction of
27" of codes C) as long as Ny < 1.

For LDPC codes, 6, < «, where « = 1 — R is the erasure-
correcting threshold for random linear codes. For example,
0. = 0.483 for the ensemble A(3,6) of LDPC codes. See also
papers [7]-[10], where parameter 6, is discussed in a greater
detail for both ML decoding and message-passing decoder.
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The reduced erasure-correcting threshold 6, will increase
complexity estimates for LDPC codes. In the sequel, we will
show that the first factor (the smaller distance §.) outweighs
the second factor (the smaller threshold 6.) and reduces
complexity of distance verification for LDPC codes.

B. Sliding window (SW) technique for LDPC codes

This technique of [11] decodes generic linear codes
C'[n, k, d] generated by the randomly chosen (Rn x n) matri-
ces G. Note that most such codes have full dimension k = Rn
and meet the asymptotic GV bound d/n — h~'(1 — R).
It is shown in [11] that nearly full decoding (that has error
probability similar to that of ML decoding) can be performed
for most codes C[n, k, d] with complexity of order 271 =1,
Below we modify this algorithm for other ensembles of codes,
such as A(¢,m) or B(¢,m).

Proposition 1. Consider any ensemble of codes C with an
average relative distance 6, and an erasure-correcting bound
0.. For most codes C € C, SW technique performs distance
verification with complexity of exponential order 2F™ or less,
where

F=(1-6)h.) )

Proof: Consider a sliding window I (4, s), which is the set
of s cyclically consecutive positions for some 7 = 0,...,n—1.
We choose s = (1 — 6, +¢)n, where € > 0 is a parameter
such that e — 0 as n — co. A window (7, s) can change its
Hamming weight only by one when it moves from position
i to ¢ + 1; thus any codeword ¢ of weight d = d,n has at
least one window I(i,s) with the average Hamming weight
v = |0xs]. For each window I, we inspect all L = (;)
vectors ¢y of weight v. Here

Llogy L~ (1 -6, + )h(d.)

We then encode each vector ¢y performing erasure correction
on the complementary sets J = I of size (6, — )n. Thus, a
typical vector c; generates the average number Ng of nonzero
codewords c;. Given L vectors ¢y and n sets I = I(i,s), we
obtain the average encoding complexity of n®>NypL. Here we
take the average over different codes C' € C. Thus, at most a
vanishing fraction n~! of such codes have complexity above
n*NoL for all n subsets I. This gives (9) as € — 0. |

C. Matching Bipartition (MB) technique for LDPC codes

Below we briefly discuss MB-technique of [12], [13]. It
works for any linear code and yields the lowest asymptotic
complexity for very high code rates R — 1.

Proposition 2. MB technique performs distance verification
for a linear code of distance §.n with complexity of exponen-
tial order 2F™, where

F = h(5.)/2 (10)

Proof: To find an (unknown) vector e of weight d = J.n,
we use the “left” window I, of length s, = |n/2] starting in
any position ¢ and the complementary “right” window I, of
length s, = [n/2] . At least one choice of 7 gives the average

weights vy = |d/2| and v, = [d/2] for truncated vectors e,
and e,. in windows Iy and I,.. The number L of vectors e, and
e, has the order of

Llog, L~ log, (f}r) ~h(8.)/2

We calculate the syndromes of all vectors e, and e, and try
to match two vectors with equal syndromes. This matching is
performed by sorting the elements of the combined set with
complexity of order Ln log, L, which gives exponent (10). B

Exponents (9) and (10) give the combined estimate

F = min{(1 — 6,)A(5,), h(5,)/2} (11)

Here parameters d, and 0, are defined for LDPC codes in (7).
D. Covering set (CS) technique for LDPC codes

This probabilistic technique was proposed in [14] and has
become a benchmark in cryptography since the classical paper
[15]. It lowers complexity estimate (11) for all but very high
code rates R — 1. CS technique has also been studied for
distance verification of specific code families (see [16] and
[17]); however, provable results [18], [19] are only known for
generic random codes.

Below we choose any LDPC ensemble and describe CS
technique in the following proposition.

Proposition 3. Consider any code ensemble C with an av-
erage relative distance 6, and an erasure-correcting bound
.. For most codes C € C, CS technique performs distance
verification or corrects up to d.n errors with complexity of
order 2™ or less, where

F = h(8,) — 0.h(6,/65) (12)

Proof: Let e be some unknown codeword of weight d in
a given code C € C. Alternatively, we can consider an error
vector e of weight d. To find e, we repeatedly try to cover all
d nonzero positions of e with some subsets J = {iy,...,is} of
s = On positions, where 6 =6, —e and € — 0 as n — oo.
To cover every possible d-set, we need no less than

v () ()

sets J. Below we randomly choose a larger number of

T =T(n,s,d)nlnn (13)

sets J. Following Theorem 13.4 of [20] it is easy to see that T’
trials fail to yield such an (n, s, d)-covering with a probability
less than e~ 7" 7,

Recall that Ny — 0 for the shortened codes C;. Let C(b)
be a code that contains 2° — 1 nonzero codewords for some
b=0,...,6n. Also, let ap(b) be the fraction of codes C;(b)
in the ensemble C ;. Then

on
N9 = Z (Qb - 1) ag(b)

b=0

(14)

A parity-check matrix H; of any code C;(b) has rank s —b
and size r X s, where 7 = n — k is the number of parity
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checks. By Gaussian elimination, matrix H; can be modified
into a new r X s matrix A that includes b zero rows. We
will also place s — b unit columns u; = (0...01;0...0) in the
first positions ¢ € [1,s — b] of #;, and b other columns g;
in the last positions j € [s — b+ 1,s]. Let v = Hel denote
the syndrome of vector e (possibly modified by the Gaussian
elimination procedure).

A. First, consider general error correction given a syndrome
v # 0. If b = 0 in a given trial .J, then matrix H ; has full rank
and we obtain vector e of weight wt(v). If b > 0, we assume
that v contains only zero symbols in the last b positions. Then
CS algorithm inspects all 2° linear combinations (LC) of the
last columns g;. Let LC(p) denote some LC that includes p
columns. If LC(p) + v has weight w, we obtain vector e of
weight w + p by adding w unit columns u;.

The overall decoding algorithm successively tries to find a
vector e of weight d = 1,2.... For any given d, it runs over
all subsets J and ends once we find a vector e of weight
w+p = d. For any given code C;(b), this procedure includes
one Gaussian elimination and up to b vector additions, which
gives complexity Dy(b) < n® + 762 < n32°.  For a given
set J, different codes C;(b) yield the average complexity

on
Do(J) <Y n*2%ag(b) = n® Ny +n (15)
b=0
Thus, CS algorithm has the total average complexity Dgqe ~
n>T for all T sets J. Then at most a vanishing fraction 1/n of
codes C have complexity D > n*T, which gives the exponent
(12) for the remaining codes in ensemble C as n — oo.

B. Vector e forms a codeword with syndrome v = 0. Then
any code C;(0) has no nonzero codewords, and CS algorithm
skips the above case b = 0. Also, we consider only 2b _1q
nonzero combinations LC(p) for the last b columns in any
Cj(b). Thus, we replace (15) with a similar inequality

on
Do(J) <Y _n® (22— 1) ag(b) < n®Np +n® (16)
b=1

that satisfies complexity bound (12). [ |

Remark. The existing CS algorithms employ some stringent
properties of random ensembles of linear codes. For example,
the algorithm of [18] uses the fact that most random binary 7 x
n matrices H, except an exponentially small fraction (,:)1—(:
for ¢ > 1, have all » x r submatrices H; with nearly-full
rank r — b, where

0 < b < bmax = y/clogy (1) (17)

Thus, all shortened codes C; have limited size 2° for most
linear codes C. For LDPC codes, we use a slightly weaker
condition. Our technique discards codes C; of large size 2°
that form an exponentially small fraction of all codes C';.
Fig. 1 summarizes complexity estimates for LDPC codes.
For comparison, we also plot two generic exponents valid
for most linear codes. Note that these codes meet the GV
bound and have parameters h(d,) = 6. = 1 — R. Then the

combination (11) of SW and MB algorithms gives exponent
F = min{R(1-R), (1—R)/2}, whereas exponent (12) of CS
algorithm reads as F' = (1—R)[1—h (6/(1 — R))]. For LDPC
codes, we similarly consider the exponents (11) and (12). Here
we consider ensembles A (¢, m) or B(¢, m) for various LDPC
(¢£,m) codes with code rates ranging from 0.125 to 0.8. With
the exception of low-rate codes, all LDPC codes of Fig. 1
achieve a substantial reduction in complexity exponent for
distance verification compared to the generic linear codes.

SWorMB =
CSs
N 02 F
w
k]
()
i~
[=]
o
x
[
2
=
()
E. 01 F
: e e.o
2 o
(7,8 4,8) (.4 16)
G4 £3, 9 (4, 16)
° ©
3,6) o (3, 16)
0 2 x 38 Y
0 0.2 0.4 0.6 0.8 1
binary code rate R
Fig. 1. Complexity exponents for the binary codes meeting the GV bound

and for some (¢, m)-regular LDPC codes as indicated. Abbreviation “SW
or MB” stands for the Sliding Window or Matching Bipartition techniques
(marked with filled boxes), and ”CS” stands for the Covering-Set technique
(marked with empty circles).

IV. FURTHER EXTENSIONS

In this paper, we study provable algorithms of distance
verification for LDPC codes and derive complexity estimates
using only the relative distance J. and the erasure-correcting
threshold 6. averaged over a given ensemble of codes. For
LDPC codes, these algorithms exponentially reduce generic
complexity estimates known for random linear codes. More
generally, this approach can be used for any ensemble of codes
with a given erasure-correcting threshold.

One particular extension is any ensemble of irregular
LDPC codes with the known parameters ¢, and .. Note that
parameter 6, has been studied for both ML decoding and
message-passing decoding of irregular codes [7], [8], [10].
For ML decoding, this parameter can also be derived using
the weight spectra obtained for irregular codes in papers [21],
[22].

Another direction is to design more advanced algorithms of
distance verification for LDPC codes. Most of such algorithms
known to date for linear [n,k] codes combine Matching
Bipartition (MB) techniques with the Covering Set (CS) al-
gorithms. In particular, the algorithm of [23] first applies CS
technique seeking some slightly corrupted information set of
k bits. It also tries to select some small subset of A parity
bits, every time assuming that these bits are error-free. Then
MB technique is applied to correct information bits in the
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[k + A, k]-code with A correct parity bits. This algorithm
reduces the maximum complexity exponent maxg F'(R) of
CS technique from 0.1208 to 0.1167. A slightly more efficient
algorithm of [24] (see also [25]) reduces this exponent to
0.1163 using a lightly corrupted block of length greater than
k. Later, this algorithm has been re-established for crypto-
graphic setting in [26], [27] with many applications related
to the McEliece cryptosystem. More recently, the maximum
complexity exponent F'(R) has been further reduced to 0.1019
using some robust MB techniques that allow randomly over-
lapping partitions [28]. An important observation is that both
MB and CS techniques can be applied to LDPC codes;
therefore our conjecture is that provable complexity bounds for
distance verification also carry over to the above techniques.
These more advanced algorithms can again slightly reduce the
exponent of CS complexity for LDPC codes; however, their
detailed description is beyond the scope of this paper.

Finally, one more approach is to combine LDPC-specific
message-passing algorithms with the subsequent erasure cor-
rection. Such an approach has been used in [29] for quantum
LDPC codes that require stringent self-orthogonality condi-
tions. The corresponding complexity exponent closely ap-
proaches exponent F'(R) for self-orthogonal LDPC codes that
have high code rate and low distance. For all other instances,
this approach requires substantial improvements as complexity
exponents exceed the exponent F'(R) obtained in the current
paper.
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