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Distance Verification for Classical
and Quantum LDPC Codes

Ilya Dumer, Fellow, IEEE, Alexey A. Kovalev, and Leonid P. Pryadko

Abstract—The techniques of distance verification known for
general linear codes are first applied to the quantum stabi-
lizer codes. Then, these techniques are considered for classical
and quantum (stabilizer) low-density-parity-check (LDPC) codes.
New complexity bounds for distance verification with provable
performance are derived using the average weight spectra of
the ensembles of LDPC codes. These bounds are expressed in
terms of the erasure-correcting capacity of the corresponding
ensemble. We also present a new irreducible-cluster technique
that can be applied to any LDPC code and takes advantage
of parity-checks’ sparsity for both the classical and quantum
LDPC codes. This technique reduces complexity exponents of all
existing deterministic techniques designed for generic stabilizer
codes with small relative distances, which also include all known
families of the quantum stabilizer LDPC codes.

Index Terms—Distance verification, quantum stabilizer codes,
LDPC codes, erasure correction, list decoding.

I. INTRODUCTION

UANTUM error correction (QEC) [1]-[3] is a critical

part of quantum computing due to the fragility of quan-
tum states. Two related code families, surface (toric) quantum
codes [4], [5] and topological color codes [6]—[8], have been
of particular interest in quantum design [8], [9]. Firstly, these
codes only require simple local gates for quantum syndrome
measurements. Secondly, they efficiently correct some non-
vanishing fraction of errors, below a fault-tolerant threshold
of about 1% per gate. Unfortunately, locality limits such
codes to an asymptotically zero code rate [10] and makes a
useful quantum computer prohibitively large. Therefore, there
is much interest in feasible quantum coding with no local
restrictions.
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Low-density-parity-check (LDPC) codes [11], [12] form a
more general class of quantum codes. These codes assume
no locality but only require low-weight stabilizer gener-
ators (parity checks). Unlike locally-restricted codes, they
also achieve a finite code rate along with a non-zero error
probability threshold, both in the standard setting, and in a
fault-tolerant setting, when syndrome measurements include
errors [13], [14]. However, quantum LDPC codes are still
much inferior to their classical counterparts. Namely, all
existing quantum LDPC codes with bounded stabilizer
weight [15]-[23] have code distances d that scale at most
as +/nlnn in length n, unlike linear scaling in the classical
LDPC codes. Many of the existing quantum constructions also
exhibit substantial gaps between the upper and lower bounds
for their distances d. In particular, the recent quantum design
of [21] yields the orders of n and /i for these bounds. Finding
the exact distances of such codes is thus an important open
problem.

This paper addresses various numerical algorithms that
verify code distance with provable performance for the clas-
sical LDPC codes, quantum stabilizer codes, and quantum
LDPC codes. Given some ensemble of codes, we wish to
verify code distances for most codes in this ensemble with
an infinitesimal probability of failure. In particular, we will
discuss deterministic algorithms that yield no failures for most
codes in a given ensemble. We also address probabilistic
algorithms that have a vanishing probability of failure. This
high-fidelity setting immediately raises important complexity
issues. Indeed, finding the code distance of a generic code is an
NP-hard problem. This is valid for both the exact setting [24]
and the evaluation problem [25], [26], where we only verify
if d belongs to some interval [d, cd] for a given constant
¢ € (1, 2). In this regard, we note that all algorithms discussed
below still have exponential complexity in block length n,
if the average code distance grows linearly in a given ensem-
ble. Below, we consider both binary and g-ary codes and wish
to achieve the lowest exponential complexity ¢” for distance
verification of classical or quantum LDPC codes.

We analyze complexity exponents F in three steps.
Section III establishes a framework for generic quantum
codes. To do so, we revisit several algorithms known for
classical linear codes. Then we re-apply these techniques for
quantum stabilizer codes. Given the complexity benchmarks of
Section III, we then address binary LDPC codes in Section IV.
Here we can no longer use the generic properties of random
generator (or parity-check) matrices. Therefore, we modify the
existing algorithms to include the LDPC setting. In particular,
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we show that only a vanishing fraction of codes may have
atypically high complexity. These codes are then discarded.
As a result, we re-define known complexity estimates in terms
of two parameters: the average code distance and the erasure-
correcting capacity of a specific code ensemble. To estimate
this capacity, we use the average weight spectra, which were
derived in [27] for the original ensemble of LDPC codes
and in [28] for a few other LDPC ensembles. Our com-
plexity estimates hold for any ensemble given its erasure-
correcting capacity or some lower bound. More generally,
these algorithms perform list decoding within distance d from
any received vector y, whereas distance verification does so
for y =0.

Here, however, we leave out some efficient algorithms
that require more specific estimates. In particular, we do
not address belief propagation (BP) algorithms, which can
erroneously end when they meet stopping sets, and therefore
fail to furnish distance verification with an arbitrarily high
likelihood. Despite this, the simulation results presented in
papers [29] and [30] show that list decoding BP algorithms
can also be effective in distance verification.

In Section V, we consider quantum stabilizer LDPC codes.
These codes use some self-orthogonal quaternary code C
and its dual Ct. This self-orthogonality separates quantum
LDPC codes from their conventional counterparts. One par-
ticular difference is a low relative distance of the existing
constructions, the other is a substantial number of short
cycles in their graphical representation. The latter fact also
complicates BP algorithms. For these reasons, our goal is
to design new algorithms that are valid for any LDPC code
including any quantum code. To do so, we use the fact
that verification algorithms may seek only irreducible [14]
codewords that cannot be separated into two or more non-
overlapping codewords. This approach yields a cluster-based
algorithm that exponentially reduces the complexity of all
known deterministic techniques for sufficiently small relative
distance d/n, which is the case for the existing families of
quantum LDPC codes. This algorithm also generalizes the
algorithm of [14] for nonbinary LDPC codes.

Consider a g-ary (£, m)-regular LDPC code, which has ¢
non-zero symbols in each column and m non-zero symbols in
each row of its parity-check matrix. Let /&2(x) be the binary
entropy of x € [0,1]. Our main results are presented in
Propositions 7 and 8 and can be summarized as follows.

Proposition 1: Consider any permutation-invariant ensem-
ble C of q-ary linear codes with relative distance Jy. Let
0, denote the expected erasure-correcting capacity for codes
C e C. For most codes C € C, the code distance oxn
can be verified with complexity of order 2F", where F =
h2(04)—0:h2 (04 /0y). For any q-ary (€, m)-regular LDPC code
(classical or quantum), the code distance d.n can be verified
with complexity of order 2F"", where F = 5,102, (y(m — 1))
and 'y, grows monotonically with m in the interval
(I,(g—1)/Ing).

II. BACKGROUND

Let Cln,k]; be a g-ary linear code of length n and
dimension k in the vector space Fy over the field Fy.
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This code is specified by the parity check matrix H, namely
C={ce IFZIH ¢ = 0}. Let d denote the Hamming distance
of code C.

A quantum [[n, k]] stabilizer code Q is a 2k _dimensional
subspace of the n-qubit Hilbert space H?", a common +1
eigenspace of all operators in an Abelian stabilizer group . C
Z,, —1 ¢ .7, where the n-qubit Pauli group &2, is generated
by tensor products of the X and Z single-qubit Pauli operators.
The stabilizer is typically specified in terms of its generators,
& = (81, ..., Syu—k); measuring the generators S; produces
the syndrome vector. The weight of a Pauli operator is the
number of qubits it affects. The distance d of a quantum code
is the minimum weight of an operator U which commutes
with all operators from the stabilizer .#, but is not a part of
the stabilizer, U & .¥.

A Pauli operator U = i XVZ", where v, u € {0, 1}*" and
XV=X\"X?...X,", Z" = Z{"Z3* ... Z,", can be mapped,
up to a phase, to a quaternary vector, € = u + v, where
0> =@ = o+ 1. A product of two quantum operators
corresponds to the sum (mod 2) of the corresponding vectors.
Two Pauli operators commute if and only if the frace inner
product e x e, = e - € +€; - ey of the corresponding vectors
is zero, where € = u+wv. With this map, an [[n, k]] stabilizer
code Q is defined by n — k generators of a stabilizer group,
which generate some additive self-orthogonal code C of size
2"k over F4 [31]. The vectors of code C correspond to
stabilizer generators that act trivially on the code; these vectors
form the degeneracy group and are omitted from the distance
calculation. For this reason, any stabilizer code Q has a code
distance [31] that is defined by the minimum non-zero weight
in the code C+ \ C.

An LDPC code, quantum or classical, is a code with a sparse
parity check matrix. A huge advantage of classical LDPC
codes is that they can be decoded in linear time using iterative
BP algorithms [32], [33]. Unfortunately, this is not necessarily
the case for quantum LDPC codes, which have many short
cycles of length four in their Tanner graphs. In turn, these
cycles cause a drastic deterioration in the convergence of the
BP algorithm [34]. This problem can be circumvented with
specially designed quantum codes [19], [35], but a general
solution is not known.

III. GENERIC TECHNIQUES FOR DISTANCE VERIFICATION

The problem of verifying the distance d of a linear code
(finding a minimum-weight codeword) is related to a more
general list decoding problem: find all or some codewords
at distance d from the received vector. As mentioned above,
the number of operations N required for distance verification
can be usually defined by some positive exponent F = lim
(log, N)/n as n — oo. For a linear g-ary code with k
information qubits, one basic decoding algorithm inspects all
g®" distinct codewords, where R = k/n is the code rate.
Another basic algorithm stores the list of all "% syndromes
and coset leaders. This setting gives (space) complexity F =
1 — R. We will now survey some techniques that are known
to reduce the exponent F' for linear codes and re-apply these
techniques for quantum codes. For classical codes, most results



DUMER et al.: DISTANCE VERIFICATION FOR CLASSICAL AND QUANTUM LDPC CODES

discussed below are also extensively covered in the literature
(including our citations below). In particular, we refer to [36]
for detailed proofs.

A. Sliding Window (SW) Technique

Consider ensemble C of linear codes C[n, k] generated by
the randomly chosen g-ary (Rn x n) matrices G. It is well
known that for n — 00, most codes in ensemble C have
full dimension &k = Rn and meet the asymptotic GV bound
R =1-hy(d/n), where

hq(x) = xlog,(g — 1) —xlog, x — (1 —x)log, (1 —x) (1)

is the g-ary entropy function. We use notation ¢y and Cy for
any vector ¢ and any code C punctured to some subset of
positions /. Consider a sliding window I(i, s), which is the
set of s cyclically consecutive positions beginning with i =
0,...,n—1.Itis easy to verify that most random g-ary codes
C € C keep their full dimension Rn on all n subsets I (i, s) of
length s =k 42 Llogq nJ Let C; be such a sub-ensemble of
codes C € C. Most codes C € C; also meet the GV bound,
since the remaining codes in C \. C; form a vanishing fraction
of ensemble C. Also, C; includes all cyclic codes. We now
consider the following SW technique of [37].

Proposition 2 [37]: The code distance on of any linear
g-ary code C[n, Rn] in the ensemble Cs can be found with
complexity q"fc, where

Fc = Rhy(9) 2

For most codes C € Cg, the complexity exponent is
F*=R(1—R).

Proof: Given a code C, we first verify if C € C;, which
requires polynomial complexity. For such a code C, consider
a codeword ¢ € C of weight d = 1,2,.... The weight of
any vector ¢y s) can change only by one as i + 1 replaces i.
Then some vector cy; 5) of length s has the average Hamming
weight v = |ds/n]. Consider all

L=n(g— 1)”(f))

vectors cj(;s) of weight v on each window I(i, s). Then we
use each vector cy(;s) as an information set and encode it
to the full length n. The procedure stops if some encoded
vector ¢ has weight d. This gives the overall complexity Ln?,
which has the order of ¢”"fc of (2). For codes that meet the
GV bound, this gives exponent F*. ]

Remarks: More generally, the encoding of vectors cy;,s)
represents erasure correction on the remaining n — s positions.
We use this fact in Section IV for LDPC codes. Also, any
error vector of weight d generates vector u of weight v on
some window I = [I(i,s). Thus, we can subtract any error
vector u from the received vector y;(;s) and correct d errors
in code C.

We now proceed with ensemble Q of quantum stabilizer
codes Q [[n, Rn]]. Most of these codes meet the quantum
GV bound [38], [39]

R =1-2h4(5) 3)
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Any code Q is defined by the corresponding additive qua-
ternary code C' and has the minimum distance d(Q) =
d(C+\C). Let Qy denote the ensemble of codes Q, for which
C+ € C,. Note that Q; includes most stabilizer codes.

Corollary 1: The code distance on of any quantum stabi-
lizer code Q[[n, Rn]] in the ensemble Qg can be found with
complexity 2"FSWV | where

Fsw = (1 + R)h4(5) 4)

For most codes in ensemble Qg, code distances d can be found
with the complexity exponent

Fow =(1—-R»/2 )

Proof: For any quantum stabilizer code Q[[n, k]], we
apply the SW procedure to the quaternary code C. Since
code C has size 2" % in the space 7, its dual C+ has the
effective code rate !

, ( n—k
R =(1-
2n

which gives complexity 2"FSW of (4) for a generic stabilizer
code Q. Due to possible degeneracy, we also verify that any
encoded vector ¢ of weight d does not belong to code C.
Most generic codes Q [[n, Rn]] also belong to ensemble Q;
and therefore satisfy the quantum GV bound. The latter gives
exponent (5). |
Note that classical exponent F* = R(1 — R) achieves its
maximum 1/4 at R = 1/2. By contrast, quantum exponent

Fgy achieves its maximum 1/2 at the rate R = 0.

):(1+R)/2

B. Matching Bipartition (MB) Technique

Proposition 3: The code distance on of any quantum sta-
bilizer code Q[[n, Rn]] can be found with complexity onkums
where

Fup = ha(9). (6)

For random stabilizer codes
GV bound (3),

that meet the quantum

Fig = (1-R)/2. )

Proof: Similarly to the proof of Corollary 1, we consider
any stabilizer code Q [[n, Rn]] and the corresponding code
Ct. For code C+, we now apply the algorithm of [41]
and [42], which uses two similar sliding windows, the “left”
window I, (i, s¢) of length s, = |n/2] and the complementary
“right” window I of length s, = [n/2]. For any vector e of
weight d, consider vectors e, and e, in windows Iy and I,.
At least one choice of position i then yields the average
weights vy, = |d/2] and v, = [d/2] for both vectors. For
each i, both sets {e;} and {e,} of such “average-weight”
vectors have the size of order L = (¢ — 1)4/? (Z/ 2.

We now calculate the syndromes of all vectors in sets {es}
and {e,} to find matching vectors (e¢, e,), which give identical
syndromes, and form a codeword. Sorting the elements of the
combined set {e;}U{e,} by syndromes yields all matching pairs

IThis construction is analogous to pseudogenerators introduced in [40].
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with complexity of order L log, L. Thus, we find a code vector
of weight d = dn in any linear g-ary code with complexity of
order qF ™ where

F =hy(8)/2. ®)

For g-ary codes on the GV bound, F* = (1 — R)/2. For
stabilizer codes, the arguments used to prove Corollary 1 then
give exponents (6) and (7). [ |

Note that the MB-technique works for any linear code,
unlike other known techniques provably valid for random
codes. For very high rates R — 1, this technique yields the
lowest complexity exponent known for classical and quantum
codes.

C. Punctured Bipartition (PB) Technique

Proposition 4: The code distance on of a random quantum
stabilizer code Q[[n, Rn]] can be found with complexity
2nFe8 \where

2(1+R)
= ———h4(o 9
3T R 4(9) ©)
For random stabilizer codes that meet the quantum

GV bound (3),
Fjg=(1—-R>)/G+R) (10)

Proof: We combine the SW and MB techniques, sim-
ilarly to the soft-decision decoding of [43]. Let s =
[2nR/(1 4+ R)] > k. Then for most random [n, k] codes C,
all n punctured codes Cy(; ) are linear random [s, k]-codes.
Also, any codeword of weight d has average weight v =
lds/n] in some window (i, s). For simplicity, let s and »
be even. We then apply the MB technique and consider all
vectors e, and e, of weight v/2 on each window 1(i, s). The
corresponding sets have the size

2
L=~ D" (3).

We then select all matching pairs (e¢, e,) with the same
syndrome. The result is the list {e} of code vectors of weight v
in the punctured [s, k] code Cj; ). For a random [s, k] code,
this list {e} has the expected size of order

Ly=(q—1"(¢)/¢""

Each vector of the list {e} is re-encoded to the full length n.
For each d = 1,2, ..., we stop the procedure once we find
a re-encoded vector of weight d. The overall complexity has
the order of L, + Ls. It is easy to verify [43] that for codes
that meet the GV bound, our choice of parameter s gives the
same order L, ~ L; and minimizes the sum L, + L; to the
order of qF 1 where

(11

To proceed with quantum codes Q[[n, Rn]], observe that
our parameter s again depends on the effective code rate
R’ = (1 + R)/2. For stabilizer codes, this change yields
exponent (9), which gives (10) if codes meet the quantum
GV bound. [ |

F* = hy()R/(1+R) = R(1 — R)/(1+ R).
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For codes of rate R — 1 that meet the GV bound,
the PB technique gives the lowest known exponents Fg (for
stabilizer codes) and F* (for classical g-ary codes). However,
no complexity estimates have been proven for specific code
families.

Finally, consider the narrower Calderbank-Shor-
Steane (CSS) class of quantum codes. Here a parity
check matrix is a direct sum H = Gy & oG, and the
commutativity condition simplifies to GxGZT = 0. A CSS
code with rank Gy, = rank G, = (n — k)/2 has the same
effective rate R* = (1 + R)/2 since both codes include
K =n—(m—%k)/2 = (n+ k)/2 information bits. Since
CSS codes are based on binary codes, their complexity
exponents F(R,J) can be obtained from (2), (8), and (11)
with parameters ¢ = 2 and R’ = (1 + R)/2. Here we can also
use the GV bound, which reads for CSS codes as follows [44]

R=1-2h(5). (12)

D. Covering Set (CS) Technique

This probabilistic technique was proposed in [45] and
has become a benchmark in code-based cryptography since
classical paper [46]. This technique lowers all three complexity
estimates (4), (6), and (9) except for code rates R — 1. The
CS technique has also been studied for distance verification
of specific code families (see [47], [48]); however, provable
results [49], [50] are only known for generic random codes.

Let C[n, k] be some g-ary random linear code with an r x n
parity check matrix H, r = n — k. Consider some subset J
of p <r positions and the complementary subset / of g > k
positions. Then the shortened code C; = {c; : ¢; = 0} has
the parity-check matrix Hj of size r x p. We say that matrix
Hj has co-rank b (Hj) = p — rank H;. Note that b (Hy) =
dim C;, which is the dimension of code Cj.

Proposition 5: The code distance on of a random quantum
stabilizer code Q[[n, Rn]] can be found with complexity
2nFes ywhere

Fcs = h2(0) — (I_TR) h (%)

Proof: First, consider a g-ary code C[n, k]. We randomly
choose the sets J of r positions to cover every possible set of
d < r non-zero positions. To do so, we need no less than

rora=()(0)

sets J. On the other hand, the proof of [51, Th. 13.4] shows
that a collection of

(13)

T=T(n,r,dnlnn (14)

random sets J fails to yield such an (n, r, d)-covering with a
probability less than e~!"" Tt is also well known that most
r x n matrices H (excluding a fraction ('r’)_l of them) yield
small co-ranks

oggmﬁz%() (15)
r

for all square submatrices Hy, |J| =r.
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binary complexity exponent F*

0.4 0.6
stabilizer code rate R

Fig. 1.  Complexity exponents of the four generic decoding techniques
applied to quantum codes that meet the quantum GV bound (3). SW: sliding
window, (5), MB: matching bipartition, (7), PB: punctured bipartition, (10),
and CS: covering set, (13).

Given an (n, r, d)-covering W, the CS procedure inspects
each set J € W and discards code C if dimC; > bmax.
Otherwise, it finds the lightest codewords on each set J. To do
so, we first perform Gaussian elimination on H; and obtain
a new r X r matrix H; that has the same co-rank b (Hy).
Let Hy include r — by unit columns u; = (0...01;0...0)
and by other (linearly dependent) columns g;. All  columns
have zeroes in the last b; positions. If b; = 0 in trial J, then
Cy = 0 and we proceed further. If b; > 0, the CS algorithm
inspects g?/ — 1 linear combinations (LC) of columns g j. Let
LC(p) denote some LC that includes p columns g;. If this
LC(p) has weight w, we can nullify it by adding w unit
columns u; and obtain a codeword ¢ of weight w + p. The
algorithm ends once we find a codeword of weight w+p = d,
beginning with d = 2.

For codes that satisfy condition (15), the CS algorithm has
the complexity order of n3g?™T(n,r,d) that is defined by
T (n,r,d). For any g, this gives complexity 2"F with exponent

F=(-R[1-h /(- R

For a stabilizer code [[nr, Rn]], we obtain (13) using
the quaternary code C- with the effective code rate
R =0+ R)/2. ]

For stabilizer codes that meet the quantum GV bound (3),
exponent Fcs of (13) reaches its maximum Fpax & 0.22 at
R = 0. Their binary counterparts yield exponent (16) that
achieves its maximum 0.119 at R =~ 1/2.

Discussion: Fig. 1 exhibits different complexity expo-
nents computed for stabilizer codes that meet the quantum
GV bound. The CS technique gives the best performance for
most code rates R < 1, while the two bipartition techniques
perform better for high code rates R, which are close to 1.
Indeed, equations (7) and (10) scale linearly with 1 — R, unlike
the CS technique that yields a logarithmic slope, according
to (13).

More generally, the above algorithms correct the received
vector y into the list of codewords located at distance d from y.
In this regard, they are similar to list decoding of vector y

(16)
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within a given distance. For example, given an error syndrome
h # 0, MB technique still forms the sets of vectors {es}
and {e,}. It also derives the syndromes h(e¢), but uses the
syndromes h(e,) + h on the right half. Similarly, some SW
trials will correctly identify errors on the information blocks
and then perform error-free re-encoding. For the CS algorithm,
we also make a slight adjustment and inspect all combinations
LC(p) + h. Each combination LC(p) + h of weight w gives
an error of weight p + w. It is also important that every trial
of the CS algorithm needs only the syndrome # instead of the
received vector y. Thus, this algorithm can perform syndrome-
based decoding of quantum stabilizer codes.

Finally, let dgv = dgv(n, k) be the Gilbert-Varshamov
distance of an arbitrary linear [n, k] code. An important result
of [37] shows that list decoding of this [n, k] code within a
radius dgy gives the block error probability P(dgy) < 2PwmL,
where Pymp. is the block error rate of the maximum
likelihood decoding for this [n, k] code. Also, note [43]
that the block error probability P(d) satisfies inequality
P(d) < PmL(1 + 1/n) if d > dgv + log, n. Thus, distance
verification techniques considered above can be employed
for generic list decoding algorithms and maximum likelihood
decoding, in particular.

IV. DISTANCE VERIFICATION FOR LDPC CODES

Below, we consider two ensembles of binary (£, m)-LDPC
codes with m > ¢ > 3. Codes in these ensembles are defined
by the binary equiprobable r x n parity-check matrices H.
In ensemble A (¢, m), matrices H have all columns of weight £
and all rows of weight m = ¢n/r. This ensemble also includes
a smaller LDPC ensemble B(¢,m) originally proposed by
Gallager [27]. For each code in B(¢, m), its parity-check
matrix H is divided into ¢ horizontal blocks Hi, ..., Hy of
size % x n. Here the first block H consists of m unit matrices
of size 7 x 7. Any other block H; is obtained by some
random permutation 7; (n) of n columns of Hj. Below, we use
an equivalent description, where block H; also undergoes a
random permutation 71(n). Ensembles A(£, m) and B(¢, m)
have similar spectra and achieve the best asymptotic distance
for a given code rate 1 — {/m among the LDPC ensembles
studied to date [28].

For brevity, we say below that a linear code C with N non-
zero codewords has null-free size N. We also say that code
ensemble C is permutation-invariant (PI) if any permutation of
positions 7 in any code C € C again gives a code 7 (C) € C.
In particular, LDPC ensembles are in this class. For any
subset of positions J of size p = On, consider all shortened
codes C; € Cy. Then for any PI ensemble C, all shortened
ensembles C; have the same expected null-free size Ny given
any J of size On. By Markov’s inequality, for any parameter
t > 0, at most a fraction % of the shortened codes C; have
null-free size exceeding ¢ Ny on any subset J.

Note that for LDPC codes, parity checks form non-generic
sparse matrices H ;. Therefore, below we change the approach
of Section IIL. In essence, we will relate the size 287 of codes
C to the erasure-correcting capacity of LDPC codes. In doing
so, we extensively use average weight spectra derived for
ensemble B(¢, m) in [27] and for ensemble A(¢, m) in [28].



4680

This analysis can readily be extended to other ensembles
with known average weight spectra. The following results are
well known and will be extensively used in our complexity
estimates.

Let o = ¢/m =1 — R. For any parameter § € [0, 1], the
equation

A+p"'+a-—n""t
Grormsa—or 7P

has a single positive root ¢ as a function of 5. Below we use
the parameter

a7)

d+)"+d=0"
2tBm

—amhy(f), (18)

q(a,f) = alogy

where we also take g(a,f) = —oo if m is odd and
p > 1—m~!. Then [28, Th. 4], shows that a given codeword of
weight fn belongs to some code in A(¢, m) with probability
P(a,p) such that

1
nli)ngoz 10g2 P(a’ﬁ) = C](a,ﬁ) (19)

Lemma 1: For any given subset J of size On, where
6 < 1, codes Cj(€,m) of the shortened LDPC ensembles
A(l,m) or B(£, m) have the average null-free size Ny such
that

Jim Liog, Ny = £(0) 20)
where
fO) = omax, {q(a, pO) + 6ha(P)} (21)

Proof: For any set J of size On, consider codewords
of weight f6n that have support contained on J. For any
p € (0, 1], codes in Ay(£, m) contain the average number

No (8) = P(a, ﬁe>( o ) 22)

pOn
of such codewords of weight f0n. Then

1 1

~1 ~ 1 ~

_ logy Ny - rélg? og, No (B) rlglg{q(a,ﬁﬁ) +0hy(B)}
(23)

which gives asymptotic equalities (20) and (21). ]

We show in this section that verification complexity is
defined by two important parameters, d; and 6,, which are
the roots of the equations

Okt h2(0x) + q(a,04) =0

Oy : f(6x) = 0.

Discussion: Note that J, is the average relative code distance
in ensemble A(¢, m). Indeed, for 8 = 1, equality (22) shows

that the average number of codewords Ny (/) of length n and
weight fn has the asymptotic order

(24)

1
- log, N(B) ~h2(B) + q(a.p) (25)

Parameter 6, bounds from below the erasure-correcting capac-
ity of LDPC codes. Indeed, f(#) < 0 in (21) and Ny =
2nf©0) 5 (O for any 6 < 6,. Thus, most codes C € A(¢, m)
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yield only the single-vector codes C; (¢, m) = 0 and correct
any erased set J of size On. The upper bounds on the erasure-
correcting capacity of LDPC codes are also very close to
0, and we refer to papers [52], [53], where this capacity is
discussed in detail.

More generally, consider any PI ensemble C of g-ary linear
codes. We say that 6, is the erasure-correcting capacity for
ensemble C if for any € > 0 the shortened subcodes C; of
length On, n — oo, have expected size Ny such that

Ny — 0,
Ny > 1,

if0 <6, —¢€

. (26)
if @ >0, +¢

Without ambiguity, we will use the same notation 6, for any
lower bound on the erasure-correcting capacity (26). In this
case, we still have asymptotic condition Ny — 0 for any
6 < 6, — €, which is the only condition required for our
further estimates. In particular, we use parameter 6, of (24)
for the LDPC ensembles A(¢£, m) or B(¢, m).

For any code rate R =1 —{/m, d, of (24) falls below the
relative GV distance dgv (R) of random codes (see [27], [28]).
For example, d, ~ 0.02 for the A(3, 6) LDPC ensemble of rate
R = 1/2, whereas dgy ~ 0.11. On the other hand, 6, also falls
below the erasure-correcting capacity 1 — R of random linear
codes. For example, 8, = 0.483 for the ensemble A(3, 6) of
LDPC codes of rate 0.5. In our comparison of LDPC codes and
random linear codes, we will show that the smaller distances
0 reduce the verification complexity for LDPC codes, despite
their weaker erasure-correcting capability 6, for any code
rate R.

A. Deterministic Techniques for the LDPC Ensembles.

Proposition 6: Consider any PI ensemble of codes C with
the average relative distance . and the erasure-correcting
capacity 0. For most codes C € C, the SW technique performs
distance verification with complexity of exponential order gt™"
or less, where

F = (1 - 9*)hq (5*) (27

Proof: We use the generic SW technique but select sliding
windows I = I(i, s) of length s = (1 — 6« + ¢)n. Here ¢ > 0
is a parameter such that ¢ — 0 as n — oo. For a given weight
d = d.n, we again inspect each window I (i, s) and take all L
punctured vectors ¢y 5) of average weight v = |Jdys] . Thus,

1 1
~log, L~~log,(q — 1)’ (”‘) ~ (1= 0u + )y (62)
n n [

For each vector cj(;5), we recover symbols on the comple-
mentary set J = I of size (fs — &)n, by correcting erasures in
a given code C € C. This recovery is done by encoding each
vector cy(;s) into C and gives the codeword list of expected
size Np. Thus, codes C have the average complexity of n3 Ny L
combined for all n subsets /. Then only a fraction n~! of such
codes may have a complexity above n*NyL. This gives (27)
as ¢ — 0. [ ]

We proceed with the MB technique, which can be applied
to any linear code. For g-ary codes, the MB technique
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gives the complexity exponent F' = h; (Jx)/2. Combining
Propositions 3 and 6, we have

Corollary 2: Distance verification for most LDPC codes in
the ensembles A(€, m) or B(€, m) can be performed with the
complexity exponent

F = min{(1 — 6,)h2(dx), h2(dx)/2} (28)

where parameters 0y and 0y are defined in (24).

The PB technique can also be applied to LDPC codes with-
out changes. However, its analysis becomes more involved.
Indeed, syndrome-matching in the PB technique yields some
punctured (s, k) codes Cj(;s), which are no longer LDPC
codes. However, we can still use their weight spectra, which
are defined by the original ensemble C and were derived
in [54]. Here we omit lengthy calculations and proceed with
a more efficient CS technique.

B. CS Technique for LDPC Ensembles

Below we estimate the complexity of the CS technique for
any LDPC code ensemble. Recall from Section III-D that for
most linear random [n, k] codes, all shortened codes C; of
length 1 — k have non-exponential size 2°7. This is not proven
for the LDPC codes or any other ensemble of codes. Therefore,
we modify the CS technique to extend it to these non-generic
ensembles. In essence, we leave aside the specific structure of
parity-check matrices H. Instead, we use the fact that atypical
codes C; with large size 2%/ still form a very small fraction
of all codes Cj.

Proposition 7: Consider any PI ensemble C of q-ary linear
codes with the average relative distance J, and the erasure-
correcting capacity 6. For most codes C € C, the CS
technique performs distance verification with complexity of
exponential order 2Fn or less, where

F = hy(0x) — 0xh2(9:/0x) 29

Proof: We now select sets J of s = @n positions, where
0=0,—¢ and ¢ > 0 as n — oo. To find a codeword of
weight d in a given code C € C, we randomly pick up T =
(nInn)(3)/ () sets J. For any J, the shortened code ensemble
C; has the expected null-free size Ny — 0. Let C;(b) Cc C;,
be a sub-ensemble of codes Cy(b) that have null-free size
g”—1forsome b =0, ..., 0n. Also, let ag(b) be the fraction
of codes C;(b) in the ensemble C;. Then

On

Ny = Z (qb - 1) ag(b)

b=0

(30)

For each code C;(b), we again apply Gaussian elimination
to its parity-check matrix H; of size r x s. Similarly to the
proof of Proposition 5, we obtain the diagonalized matrix H,
which consists of s — b unit columns u#; = (0...01;0...0)
and b other columns g;. To find the lightest codewords on
a given set J, we again consider all g® — 1 non-zero linear
combinations of b columns g;. For any given code C;(b),
this gives complexity of order Dy(i) < n® + rb(g® — 1) <
n3(g” — 1). Taking all codes Cy(b) for b = 0,...,0n on a
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SW or MB
CS o

0.2

0.1
(3, 6)

(4,8)

complexity exponent F*

o
(3.6)

0 0.2 0.4 0.6 0.8 1
binary code rate R

Fig. 2. Complexity exponents for the binary codes meeting the GV bound
and for some (¢, m)-regular LDPC codes as indicated. “SW or MB” stands for
deterministic techniques from Eq. (28) for LDPC codes, or Eq. (32) for codes
meeting the GV bound, and CS stands for covering set technique, Eq. (29)
for LDPC codes, or Eq. (16) for codes meeting the GV bound.

given set J, we obtain the expected complexity

On
Dy = n’(q" — Dag(b) = n*Ny (31)
b=0
Thus, the CS algorithm has the expected complexity D,y =
n3T Ny for all T sets J. Then only a vanishing fraction Ny/n
of codes C have complexity D > n*T, which gives the
exponent F' < lim % log, (n4T) of (29) for most codes. [ ]

Discussion: Note that Propositions 6 and 7 employ PI code
ensembles C. This allows us to consider all sets J of 6n
positions and output all codewords of weight d for most
codes C € C. If we replace this adversarial model with a less
restrictive channel-coding model, we may correct most errors
of weight d instead of all of them. Then we also remove the
above restrictions on ensembles C. Indeed, let us re-define
Ny as the null-free size of codes C; averaged over all codes
C € C and all subsets J of size On. Then we use the following
statement:

Lemma 2: Let ensemble C have vanishing null-free size
Ny — 0 in the shortened codes Cj of length On as n — oo.
Then most codes C € C correct most erasure subsets J,
with the exception of vanishing fraction /Ny of codes C and
subsets J.

Proof: A code C € C fails to correct some erasure set J
of weight fn if and only if code C; has N;(C) > 1 non-
zero codewords. Let Mp be the average fraction of such
codes C; taken over all codes C and all subsets J. Note
that My < Ny. Per Markov’s inequality, no more than a
fraction /My of codes C may leave a fraction /Mp of sets J
uncorrected. [ ]

Finally, we summarize the complexity estimates for classical
binary LDPC codes in Fig. 2. For comparison, we also plot
two generic exponents valid for most linear binary codes. The

first exponent
F =min{R(1 — R), (1 — R)/2} (32)

combines the SW and MB algorithms, and the second expo-
nent (16) represents the CS algorithm. For LDPC codes,
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we similarly consider the exponent (28) that combines the
SW and MB algorithms and the exponent (29) that represents
the CS algorithm for the LDPC codes. Here we consider
ensembles A (¢, m) or B(¢, m) for various LDPC (¢, m) codes
with code rates ranging from 0.125 to 0.8. With the exception
of low-rate codes, all LDPC codes of Fig. 2 have substantially
lower distances than their generic counterparts. This is the
reason LDPC codes also achieve an exponentially smaller
complexity of distance verification despite their lower erasure-
correcting capacity.

V. IRREDUCIBLE-CLUSTER (IC) TECHNIQUE

The complexity estimates of Sec. IV rely on the average
weight distributions of binary (¢, m)-regular LDPC codes and
hold for most codes in the corresponding ensembles. Here
we suggest a deterministic distance-verification technique,
which is applicable to any g-ary (£, m)-regular LDPC code,
quantum or classical. First, we define irreducible codewords.

Definition 1: Given a linear q-ary code C4, we say that a
codeword c is irreducible if it cannot be represented as a linear
combination of two codewords with non-overlapping supports.

Our technique is based on the following simple lemma.

Lemma 3 [14]: A minimum-weight codeword of a linear
code Cy is irreducible.

IC Algorithm: General Description: Let a g-ary
(¢, m)-regular LDPC code be defined by a list £ of
parity checks b with supports Jp of size m. The following
algorithm finds an irreducible codeword ¢ of weight d. The
algorithm performs multiple runs and includes a variable
number o < d — 1 of steps in each run. The initial step
i = 0 of each run is given a position jo =0,...,n — 1 and
the symbol cj, = 1. The input to each consecutive step i
includes some previously derived sub-vector c(J;) with its
support J;. It also includes the ordered sublist ;C £ of all
parity checks b unsatisfied by sub-vector c(J;). Then step i
extends vector c(J;) with some non-overlapping subset c(/;)
of v; new non-zero symbols. The extension I;, ¢(;) is chosen
to make the first parity check bV e N; satisfied on the
extended support Ji11 = J; U :

> e+ > be; =0

jeJi Jel;

(33)

The result is the extended vector ¢(J;+1) and the new list Ny
of parity checks unsatisfied by ¢(J;11). Clearly, N; 1 excludes
parity check b("). It may also drop some other checks in A,
which were satisfied in step i, but may include new parity
checks, which become unsatisfied due to the newly added
symbols. Note that a parity check dropped in step i may later
re-appear in some list Ny, s > i + 1. Each run must satisfy
restrictions (33) for all steps and end with d symbols, thus

3}
ZD,' =d-1
i=1

Each run ends with a complete selection list
{Ii,c(l;)|i =0,...,w} and gives a codeword of weight d
if the list Mgy is empty. For a quantum stabilizer code,
we also verify the restriction ¢ € C* . C. Given no codeword

(34)
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of weight d, we proceed with a new run, which employs a
new selection list. We will now limit possible choices of all
vectors c¢(1;).

Additively Irreducible Selection: We say that a new selection
I, ¢(I) of non-zero symbols is additively irreducible (Al) for
a parity-check b if any non-empty subset I’ C I satisfies
restriction

> bjcj #0 (35)
jer
From now on, any selection list {/;, c¢(/;)|i =0, ..., w} must

also satisfy restrictions (35) in each step i. We proceed with
the following observations.

A. If an AT vector satisfies parity check b1, then no smaller
subset ¢(I") can do so. Indeed, let restrictions (33) hold on the
sets [ and I’ C I. Then we obtain equality > bjc; = 0 on
the subset I ~. I’, which contradicts (35). We also see that for
any reducible vector ¢(I) that satisfies the current check b1,
there exists its sub-vector ¢(I"), which also satisfies b().

B. We may process parity checks one-by-one. Indeed,
irrespective of the order in which parity checks are processed,
the codewords will satisfy all parity checks after w steps.
We may also set cj, = 1 in a linear code C. Our brute-force
algorithm begins with a correct choice of jj for some runs and
then exhausts all possible irreducible selections. Thus, in each
step, one of the runs begins with a correct subvector c(J;) and
then adds some correct Al subvector c([;).

C. The algorithm may terminate only at some codeword of
weight d. More generally, the algorithm can return all (non-
collinear) irreducible vectors up to some weight D.

D. If some run fails in step w, we can return to step w — 1
and exhaust all choices of vectors ¢([,,—1). Similarly, we can
return to step w — 2 and so on. This back-and-forth version
slightly reduces the overall complexity; however, it will keep
its asymptotic order.

Let N,(q, b) denote the number of g-ary vectors c(I) of
length v that satisfy restrictions (33) and (35). Clearly,

No(g,b) < (g — 1)’ (36)
Below, we use notation N,(g) since we will prove that all
parity checks b give the same number N, (g, b) = N, (g). Note
also that the Al restriction (35) drastically limits the number
N, (g) for small ¢. For example, a binary parity check b))
is satisfied in (33) only if v is odd; however, any string of
v > 3 ones includes a subset of two ones and contradicts the
Al property (35 ). Thus, v =1 for g =2 and N;(2) = 1.

We now proceed with complexity estimates. First,
we employ a trivial upper bound (36). We further reduce this
number in Lemma 4.

Let d,,, be the Kronecker symbol, h = d — 1 and
t = m — 1. Recall that each run is defined by some set
{li,c(I;)|i =0,...,w}. Given restriction (34), the number
of runs is bounded from above by the quantities

Sh(m’ CI) = Z Z 5h,1)1+...+1)wHNl); (51) (lf) (37)
} i=1 !

w>1 v;€{l,2,...,t
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which have the power-moment generating function

g@) =14 Sim, q)" =D (T()1°
h=1 w=0
=[1-T@]", (38)
T() = gzhzwq)(;). (39)

We can now derive the coefficients Sy (m, ¢). This can be done
by the Chernoff bound, similarly to the estimates of [27] or by
the combinatorial technique of [28]. Instead, we use another
simple technique that employs contour integration and gives
the exact formulas for the coefficients Sj,(m, ¢) along with
their exponential orders. Namely, let the denominator 1 —7'(z)
in (38) have s <t distinct roots z,, r =0,1,...,s — 1, with
ordered magnitudes p = |z9| < |z1] < ... < |zg—1|. Then
coefficients Sy, (m, g) can be derived by a contour integration
over a circle of radius € < p around the origin,

1}§dz 1
2ri ) 291 -T(2)

s—1

1
- > Res| ———,zr 40
2 es(zd[l—T(zn’Z) 0

where Res(f(z),a) is the residue of f(z) at a. For large
weights d, the exponential order of Sy(m,q) is defined by
the root zp, which has the smallest magnitude p. Next, note
that zo = p > 0 is strictly positive and non-degenerate,
since the coefficients of 7(z) are non-negative. In this
case,

Sp(m,q) =

1 1
R _ P 41
° (zd[l - T(z)]’zo) 24T (z0) @b

where T'(z) is the derivative of the polynomial T'(z); it is
non-negative at z = zo. This gives the exponential bound

Sn(m, q) < cp™@ + O(z117) ~ clym(m — )Y (42)

with the complexity exponent y,, = 1/[(m — 1)p].
We now employ upper bound (36). In this case, equality (39)
gives the polynomial

T(2) = q—il {lg =Dz +11 =1}
which has the roots
=@ 1)/ (g—1), r=0,1,...,t—1
Thus, the asymptotic expansion (42) yields the constant
l+(q—Dp  ¢"mD
" qt T gm—1)
and the complexity exponent

— qg—1 =
ym_(m—l)(ql/(mfl)—l) —yoo_

qg—1
Ing

(43)

As a side remark, note that the larger values v; > 1 reduce the
number of terms in the product taken in (37); therefore, they
contribute relatively little to the overall sum Sy (m, ¢). It is for
this reason that a simple bound (36) can yield a reasonably
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TABLE 1
NUMBER OF ADDITIVELY-IRREDUCIBLE g-ARY
STRINGS OF LENGTH » FOR ¢ = p™
v|g=2 q=3 q=4 gqg=5 ¢q=8

1 1 1 1 1 1

2 0 1 2 3 6

3 0 4 24

4 1 0

TABLE II
COEFFICIENT y;; OF THE COMPLEXITY EXPONENT

dlog, (ym(m — 1)) FOR DIFFERENT m AND ¢
m q=2 q=3 q=4 q=>5 q=28
3 1 1.2071  1.3660 L5 1.8229
5 1 1.2906 1.5 1.7331 2.2779
10 1 1.3333  1.5672 1.8555  2.5051
102 1 1.3631 1.6135 1.9416  2.6626
103 1 1.3657 1.6176  1.9493  2.6765
00 1 1.3660 1.6180 1.9501  2.6780

Upper bound

(q—1)/Ingq 1.4427 1.8205 2.1640 2.4853 3.3663

tight estimate (43). Our next step is to reduce the exponent 7,
by limiting the number N, (¢, b). Let M, (g) denote the set of
g-ary vectors c(I) of length v that satisfy the restrictions

ch #£Qforall I'C 1
jel’

(44)

Let A,(q) be the size of M,(q) and vmax be the maximum
length of vectors in M, (q).

Lemma 4: The number N, (q,b) of g-ary vectors c(I) of
length v, which satisfy restrictions (33) and (35) in a Galois
field F,, does not depend on a parity check b and is equal
to Ay(q)/(q —1). For any ¢ = 2", vmax = u and N,(q) =
(g—2)-...-(g—2°"Y). For a prime number q, vmax = q — 1.

Proof: Let two sets of g-ary vectors c¢(I, b) and c(I, B)
of length v satisfy restrictions (33) and (35) for some parity
checks b and B. Then any such vector c¢(Z, B) has its coun-
terpart c(/, b) with symbols ¢;(I,b) = Bjc;(I,b)/b;. Thus,
the two sets have the same size and N, (¢, b) = N, (g). We can
also specify Al-restrictions (35) using Al-restrictions (44) for
the parity check b* = (1,..., 1) and all subsets I’ C I. Now
let 1 # 0 be the value of the first summand in (33) for some
unsatisfied parity check. Consider a subset of vectors in M, (q)
that satisfy restriction > ; ¢; = —A. This subset has the size
Ay(q)/(g — 1) and satisfies both restrictions (33) and (35) for
the parity check b*. Thus, N,(q) = A,(q)/(g — 1).

Next, consider the Galois field F, for ¢ = 2“. Then
the sums in the left-hand side of (44) represent all possible
linear combinations over F> generated by v or fewer elements
of M, (g). Thus, any symbol c; (/) must differ from the linear
combinations of the previous symbols c(([),...,c;j—1(1).
This gives the size A,(q) = (g — 1)(g —2)-...- (g —2°71)
and also proves that omax = u.

For any prime number ¢, any sum of s elements in (44)
must differ from the sums of ¢ < s elements on its subsets.
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Thus, different sums may take at most vmax non-zero values
fors =1,...,0max and vmax < g — 1. Then opax = q — 1 18
achieved on the vector ¢ = (1,..., 1) of length ¢ — 1. [ |
Lemma 4 shows that the numbers N,(q) and the lengths
vmax differ substantially for different g. Some of these quan-
tities are listed in Table I for small g. Table II gives some
exponents y, obtained for irreducible clusters, along with
the upper bound y ., (valid for all clusters) in the last row.
We summarize our complexity estimates as follows.
Proposition 8: A codeword of weight on in any g-ary (€, m)
LDPC code can be found with complexity 271" where

Fic = dlogy (ym(m — 1)),

ym € (1, yoo) grows monotonically with m and yoo <7 o =
(g —1)/Ing.

Remarks: The algorithm presented here for linear g-ary
codes generalizes an algorithm described in [14] for binary
codes. It can be also applied to a more general class of
g-ary (€, m)-limited LDPC codes, whose parity check matrices
have all columns and rows of Hamming weights no more
than ¢ and m, respectively. This algorithm is also valid for
g-ary CSS codes, and gives the same complexity exponent.
However, for g-ary stabilizer codes, the numbers of additively
irreducible clusters (e.g., from Table I) have to be increased
by an additional factor of ¢°, lesmb) () = ¢°Ny(q). As a
result, the complexity exponents in Table II also increase,

(stab) . . e
Ym = gym. In particular, for qubit stabilizer codes, g = 2,

. . (qubit)
we obtain complexity exponent y,, =2

Also, note that for the existing quantum LDPC codes with
distance d of order \/n, the presented IC algorithm has the
lowest proven complexity among deterministic algorithms.
Indeed, exponent Fic is linear in the relative distance J,
whereas deterministic techniques of Sec. III give the higher
exponents F — Jlog(1/0) in this limit. In this regard,
exponent Fic performs similarly to the CS exponent Fcs of
generic codes, which is bounded by 6 — dlog,(1 — R) and is
linear in J.

VI. FURTHER EXTENSIONS

In this paper, we study provable algorithms of distance
verification for LDPC codes. More generally, this approach
can be used for any ensemble of codes with a given relative
distance J, and erasure-correcting capacity 6.

One particular extension is any ensemble of irregular LDPC
codes with known parameters J, and 6,. Note that parameter
0, has been studied for both ML decoding and message-
passing decoding of irregular codes [52], [53], [55]. For ML
decoding, this parameter can also be derived using the weight
spectra obtained for irregular codes in papers [56], [57]. Also,
these techniques can be extended to ensembles of g-ary LDPC
codes. The weight spectra of some g-ary ensembles are derived
in [58] and [59].

Another direction is to design more advanced algorithms of
distance verification for LDPC codes. Most of such algorithms
known to date for linear [, k] codes combine the MB and CS
techniques. In particular, algorithm [60] takes a linear
[n,k]-code and seeks some  high-rate  punctured
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[k + u, k]-block that has ¢ <« k errors among k information
bits and u error-free parity bits. The search is conducted
similarly to the CS technique. Then the MB technique
corrects ¢ errors in this high-rate [k + u, k]-code. A slightly
more efficient algorithm [61] simplifies this procedure
and seeks punctured [k + u, k]-code that has ¢ < k + u
errors spread across information and parity bits. In this
case, the optimal choice of parameters ¢ and u reduces the
maximum complexity exponent F(R) to 0.1163. Later, this
algorithm was re-established in [62] and [63], with detailed
applications for the McEliece cryptosystem. More recently,
the maximum complexity exponent F(R) has been further
reduced to 0.1019 using some robust MB techniques that
allow randomly overlapping partitions [64]. An important
observation is that both the MB and CS techniques can be
applied to LDPC codes; therefore, our conjecture is that
provable complexity bounds for distance verification also
carry over to these more advanced techniques.
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