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Distance Verification for Classical

and Quantum LDPC Codes
Ilya Dumer, Fellow, IEEE, Alexey A. Kovalev, and Leonid P. Pryadko

Abstract— The techniques of distance verification known for
general linear codes are first applied to the quantum stabi-
lizer codes. Then, these techniques are considered for classical
and quantum (stabilizer) low-density-parity-check (LDPC) codes.
New complexity bounds for distance verification with provable
performance are derived using the average weight spectra of
the ensembles of LDPC codes. These bounds are expressed in
terms of the erasure-correcting capacity of the corresponding
ensemble. We also present a new irreducible-cluster technique
that can be applied to any LDPC code and takes advantage
of parity-checks’ sparsity for both the classical and quantum
LDPC codes. This technique reduces complexity exponents of all
existing deterministic techniques designed for generic stabilizer
codes with small relative distances, which also include all known
families of the quantum stabilizer LDPC codes.

Index Terms— Distance verification, quantum stabilizer codes,
LDPC codes, erasure correction, list decoding.

I. INTRODUCTION

QUANTUM error correction (QEC) [1]–[3] is a critical

part of quantum computing due to the fragility of quan-

tum states. Two related code families, surface (toric) quantum

codes [4], [5] and topological color codes [6]–[8], have been

of particular interest in quantum design [8], [9]. Firstly, these

codes only require simple local gates for quantum syndrome

measurements. Secondly, they efficiently correct some non-

vanishing fraction of errors, below a fault-tolerant threshold

of about 1% per gate. Unfortunately, locality limits such

codes to an asymptotically zero code rate [10] and makes a

useful quantum computer prohibitively large. Therefore, there

is much interest in feasible quantum coding with no local

restrictions.
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Low-density-parity-check (LDPC) codes [11], [12] form a

more general class of quantum codes. These codes assume

no locality but only require low-weight stabilizer gener-

ators (parity checks). Unlike locally-restricted codes, they

also achieve a finite code rate along with a non-zero error

probability threshold, both in the standard setting, and in a

fault-tolerant setting, when syndrome measurements include

errors [13], [14]. However, quantum LDPC codes are still

much inferior to their classical counterparts. Namely, all

existing quantum LDPC codes with bounded stabilizer

weight [15]–[23] have code distances d that scale at most

as
√

n ln n in length n, unlike linear scaling in the classical

LDPC codes. Many of the existing quantum constructions also

exhibit substantial gaps between the upper and lower bounds

for their distances d . In particular, the recent quantum design

of [21] yields the orders of n and
√

n for these bounds. Finding

the exact distances of such codes is thus an important open

problem.

This paper addresses various numerical algorithms that

verify code distance with provable performance for the clas-

sical LDPC codes, quantum stabilizer codes, and quantum

LDPC codes. Given some ensemble of codes, we wish to

verify code distances for most codes in this ensemble with

an infinitesimal probability of failure. In particular, we will

discuss deterministic algorithms that yield no failures for most

codes in a given ensemble. We also address probabilistic

algorithms that have a vanishing probability of failure. This

high-fidelity setting immediately raises important complexity

issues. Indeed, finding the code distance of a generic code is an

NP-hard problem. This is valid for both the exact setting [24]

and the evaluation problem [25], [26], where we only verify

if d belongs to some interval [δ, cδ] for a given constant

c ∈ (1, 2). In this regard, we note that all algorithms discussed

below still have exponential complexity in block length n,

if the average code distance grows linearly in a given ensem-

ble. Below, we consider both binary and q-ary codes and wish

to achieve the lowest exponential complexity q Fn for distance

verification of classical or quantum LDPC codes.

We analyze complexity exponents F in three steps.

Section III establishes a framework for generic quantum

codes. To do so, we revisit several algorithms known for

classical linear codes. Then we re-apply these techniques for

quantum stabilizer codes. Given the complexity benchmarks of

Section III, we then address binary LDPC codes in Section IV.

Here we can no longer use the generic properties of random

generator (or parity-check) matrices. Therefore, we modify the

existing algorithms to include the LDPC setting. In particular,
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we show that only a vanishing fraction of codes may have

atypically high complexity. These codes are then discarded.

As a result, we re-define known complexity estimates in terms

of two parameters: the average code distance and the erasure-

correcting capacity of a specific code ensemble. To estimate

this capacity, we use the average weight spectra, which were

derived in [27] for the original ensemble of LDPC codes

and in [28] for a few other LDPC ensembles. Our com-

plexity estimates hold for any ensemble given its erasure-

correcting capacity or some lower bound. More generally,

these algorithms perform list decoding within distance d from

any received vector y, whereas distance verification does so

for y = 0.

Here, however, we leave out some efficient algorithms

that require more specific estimates. In particular, we do

not address belief propagation (BP) algorithms, which can

erroneously end when they meet stopping sets, and therefore

fail to furnish distance verification with an arbitrarily high

likelihood. Despite this, the simulation results presented in

papers [29] and [30] show that list decoding BP algorithms

can also be effective in distance verification.

In Section V, we consider quantum stabilizer LDPC codes.

These codes use some self-orthogonal quaternary code C

and its dual C⊥. This self-orthogonality separates quantum

LDPC codes from their conventional counterparts. One par-

ticular difference is a low relative distance of the existing

constructions, the other is a substantial number of short

cycles in their graphical representation. The latter fact also

complicates BP algorithms. For these reasons, our goal is

to design new algorithms that are valid for any LDPC code

including any quantum code. To do so, we use the fact

that verification algorithms may seek only irreducible [14]

codewords that cannot be separated into two or more non-

overlapping codewords. This approach yields a cluster-based

algorithm that exponentially reduces the complexity of all

known deterministic techniques for sufficiently small relative

distance d/n, which is the case for the existing families of

quantum LDPC codes. This algorithm also generalizes the

algorithm of [14] for nonbinary LDPC codes.

Consider a q-ary (ℓ, m)-regular LDPC code, which has ℓ

non-zero symbols in each column and m non-zero symbols in

each row of its parity-check matrix. Let h2(x) be the binary

entropy of x ∈ [0, 1]. Our main results are presented in

Propositions 7 and 8 and can be summarized as follows.

Proposition 1: Consider any permutation-invariant ensem-

ble C of q-ary linear codes with relative distance δ∗. Let

θ∗ denote the expected erasure-correcting capacity for codes

C ∈ C. For most codes C ∈ C, the code distance δ∗n

can be verified with complexity of order 2Fn , where F =
h2(δ∗)−θ∗h2(δ∗/θ∗). For any q-ary (ℓ, m)-regular LDPC code

(classical or quantum), the code distance δ∗n can be verified

with complexity of order 2Fn , where F = δ∗ log2(γm(m − 1))

and γm grows monotonically with m in the interval

(1, (q − 1) / ln q).

II. BACKGROUND

Let C[n, k]q be a q-ary linear code of length n and

dimension k in the vector space Fn
q over the field Fq .

This code is specified by the parity check matrix H , namely

C = {c ∈ Fn
q |H c = 0}. Let d denote the Hamming distance

of code C .

A quantum [[n, k]] stabilizer code Q is a 2k-dimensional

subspace of the n-qubit Hilbert space H⊗n
2 , a common +1

eigenspace of all operators in an Abelian stabilizer group S ⊂
Pn , −11 �∈ S , where the n-qubit Pauli group Pn is generated

by tensor products of the X and Z single-qubit Pauli operators.

The stabilizer is typically specified in terms of its generators,

S = 〈S1, . . . , Sn−k 〉; measuring the generators Si produces

the syndrome vector. The weight of a Pauli operator is the

number of qubits it affects. The distance d of a quantum code

is the minimum weight of an operator U which commutes

with all operators from the stabilizer S , but is not a part of

the stabilizer, U �∈ S .

A Pauli operator U ≡ im Xv Zu, where v, u ∈ {0, 1}⊗n and

Xv = X
v1

1 X
v2

2 . . . X
vn
n , Zu = Z

u1

1 Z
u2

2 . . . Z
un
n , can be mapped,

up to a phase, to a quaternary vector, e ≡ u + ωv, where

ω2 ≡ ω ≡ ω + 1. A product of two quantum operators

corresponds to the sum ( mod 2) of the corresponding vectors.

Two Pauli operators commute if and only if the trace inner

product e1 ∗ e2 ≡ e1 · e2 + e1 · e2 of the corresponding vectors

is zero, where e ≡ u+ωv. With this map, an [[n, k]] stabilizer

code Q is defined by n − k generators of a stabilizer group,

which generate some additive self-orthogonal code C of size

2n−k over F4 [31]. The vectors of code C correspond to

stabilizer generators that act trivially on the code; these vectors

form the degeneracy group and are omitted from the distance

calculation. For this reason, any stabilizer code Q has a code

distance [31] that is defined by the minimum non-zero weight

in the code C⊥ \ C .

An LDPC code, quantum or classical, is a code with a sparse

parity check matrix. A huge advantage of classical LDPC

codes is that they can be decoded in linear time using iterative

BP algorithms [32], [33]. Unfortunately, this is not necessarily

the case for quantum LDPC codes, which have many short

cycles of length four in their Tanner graphs. In turn, these

cycles cause a drastic deterioration in the convergence of the

BP algorithm [34]. This problem can be circumvented with

specially designed quantum codes [19], [35], but a general

solution is not known.

III. GENERIC TECHNIQUES FOR DISTANCE VERIFICATION

The problem of verifying the distance d of a linear code

(finding a minimum-weight codeword) is related to a more

general list decoding problem: find all or some codewords

at distance d from the received vector. As mentioned above,

the number of operations N required for distance verification

can be usually defined by some positive exponent F = lim

(logq N)/n as n → ∞. For a linear q-ary code with k

information qubits, one basic decoding algorithm inspects all

q Rn distinct codewords, where R = k/n is the code rate.

Another basic algorithm stores the list of all qn−k syndromes

and coset leaders. This setting gives (space) complexity F =
1 − R. We will now survey some techniques that are known

to reduce the exponent F for linear codes and re-apply these

techniques for quantum codes. For classical codes, most results
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discussed below are also extensively covered in the literature

(including our citations below). In particular, we refer to [36]

for detailed proofs.

A. Sliding Window (SW) Technique

Consider ensemble C of linear codes C[n, k] generated by

the randomly chosen q-ary (Rn × n) matrices G. It is well

known that for n → ∞, most codes in ensemble C have

full dimension k = Rn and meet the asymptotic GV bound

R = 1 − hq(d/n), where

hq(x) = x logq(q − 1) − x logq x − (1 − x) logq (1 − x) (1)

is the q-ary entropy function. We use notation cI and CI for

any vector c and any code C punctured to some subset of

positions I. Consider a sliding window I (i, s), which is the

set of s cyclically consecutive positions beginning with i =
0, . . . , n −1. It is easy to verify that most random q-ary codes

C ∈ C keep their full dimension Rn on all n subsets I (i, s) of

length s = k + 2
⌊

logq n
⌋

. Let Cs be such a sub-ensemble of

codes C ∈ C. Most codes C ∈ Cs also meet the GV bound,

since the remaining codes in C � Cs form a vanishing fraction

of ensemble C. Also, Cs includes all cyclic codes. We now

consider the following SW technique of [37].

Proposition 2 [37]: The code distance δn of any linear

q-ary code C[n, Rn] in the ensemble Cs can be found with

complexity qnFC, where

FC = Rhq (δ) (2)

For most codes C ∈ Cs , the complexity exponent is

F∗ = R(1 − R).

Proof: Given a code C, we first verify if C ∈ Cs, which

requires polynomial complexity. For such a code C , consider

a codeword c ∈ C of weight d = 1, 2, . . .. The weight of

any vector cI (i,s) can change only by one as i + 1 replaces i.

Then some vector cI (i,s) of length s has the average Hamming

weight v ≡ ⌊ds/n⌋. Consider all

L = n(q − 1)v
(

s

v

)

vectors cI (i,s) of weight v on each window I (i, s). Then we

use each vector cI (i,s) as an information set and encode it

to the full length n. The procedure stops if some encoded

vector c has weight d . This gives the overall complexity Ln2,

which has the order of qnFC of (2). For codes that meet the

GV bound, this gives exponent F∗.

Remarks: More generally, the encoding of vectors cI (i,s)

represents erasure correction on the remaining n − s positions.

We use this fact in Section IV for LDPC codes. Also, any

error vector of weight d generates vector u of weight v on

some window I = I (i, s). Thus, we can subtract any error

vector u from the received vector yI (i,s) and correct d errors

in code C.

We now proceed with ensemble Q of quantum stabilizer

codes Q [[n, Rn]]. Most of these codes meet the quantum

GV bound [38], [39]

R = 1 − 2h4(δ) (3)

Any code Q is defined by the corresponding additive qua-

ternary code C⊥ and has the minimum distance d(Q) =
d(C⊥\C). Let Qs denote the ensemble of codes Q, for which

C⊥ ∈ Cs . Note that Qs includes most stabilizer codes.

Corollary 1: The code distance δn of any quantum stabi-

lizer code Q[[n, Rn]] in the ensemble Qs can be found with

complexity 2nFSW , where

FSW = (1 + R)h4(δ) (4)

For most codes in ensemble Qs, code distances d can be found

with the complexity exponent

F∗
SW = (1 − R2)/2 (5)

Proof: For any quantum stabilizer code Q[[n, k]], we

apply the SW procedure to the quaternary code C⊥. Since

code C has size 2n−k in the space Fn
4 , its dual C⊥ has the

effective code rate 1

R′ =
(

1 −
n − k

2n

)

= (1 + R)/2

which gives complexity 2nFSW of (4) for a generic stabilizer

code Q. Due to possible degeneracy, we also verify that any

encoded vector c of weight d does not belong to code C .

Most generic codes Q [[n, Rn]] also belong to ensemble Qs

and therefore satisfy the quantum GV bound. The latter gives

exponent (5).

Note that classical exponent F∗ = R(1 − R) achieves its

maximum 1/4 at R = 1/2. By contrast, quantum exponent

F∗
SW achieves its maximum 1/2 at the rate R = 0.

B. Matching Bipartition (MB) Technique

Proposition 3: The code distance δn of any quantum sta-

bilizer code Q[[n, Rn]] can be found with complexity 2nFMB ,

where

FMB = h4(δ). (6)

For random stabilizer codes that meet the quantum

GV bound (3),

F∗
MB = (1 − R)/2. (7)

Proof: Similarly to the proof of Corollary 1, we consider

any stabilizer code Q [[n, Rn]] and the corresponding code

C⊥. For code C⊥, we now apply the algorithm of [41]

and [42], which uses two similar sliding windows, the “left”

window Iℓ(i, sℓ) of length sℓ = ⌊n/2⌋ and the complementary

“right” window Ir of length sr = ⌈n/2⌉. For any vector e of

weight d, consider vectors eℓ and er in windows Iℓ and Ir .

At least one choice of position i then yields the average

weights vℓ = ⌊d/2⌋ and vr = ⌈d/2⌉ for both vectors. For

each i , both sets {eℓ} and {er } of such “average-weight”

vectors have the size of order L = (q − 1)d/2
(

n/2
d/2

)

.

We now calculate the syndromes of all vectors in sets {eℓ}
and {er } to find matching vectors (eℓ, er ), which give identical

syndromes, and form a codeword. Sorting the elements of the

combined set {eℓ}∪{er } by syndromes yields all matching pairs

1This construction is analogous to pseudogenerators introduced in [40].
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with complexity of order L log2 L. Thus, we find a code vector

of weight d = δn in any linear q-ary code with complexity of

order q Fn , where

F = hq(δ)/2. (8)

For q-ary codes on the GV bound, F∗ = (1 − R)/2. For

stabilizer codes, the arguments used to prove Corollary 1 then

give exponents (6) and (7).

Note that the MB-technique works for any linear code,

unlike other known techniques provably valid for random

codes. For very high rates R → 1, this technique yields the

lowest complexity exponent known for classical and quantum

codes.

C. Punctured Bipartition (PB) Technique

Proposition 4: The code distance δn of a random quantum

stabilizer code Q[[n, Rn]] can be found with complexity

2nFPB, where

FPB =
2(1 + R)

3 + R
h4(δ) (9)

For random stabilizer codes that meet the quantum

GV bound (3),

F∗
PB = (1 − R2)/(3 + R) (10)

Proof: We combine the SW and MB techniques, sim-

ilarly to the soft-decision decoding of [43]. Let s =
⌈2n R/(1 + R)⌉ > k. Then for most random [n, k] codes C ,

all n punctured codes CI (i,s) are linear random [s, k]-codes.

Also, any codeword of weight d has average weight v =
⌊ds/n⌋ in some window I (i, s). For simplicity, let s and v

be even. We then apply the MB technique and consider all

vectors eℓ and er of weight v/2 on each window I (i, s). The

corresponding sets have the size

Ls = (q − 1)v/2
(

s/2
v/2

)

.

We then select all matching pairs (eℓ, er ) with the same

syndrome. The result is the list {e} of code vectors of weight v

in the punctured [s, k] code CI (i,s) . For a random [s, k] code,

this list {e} has the expected size of order

Lv = (q − 1)v
(

s
v

)

/qs−k

Each vector of the list {e} is re-encoded to the full length n.

For each d = 1, 2, . . ., we stop the procedure once we find

a re-encoded vector of weight d . The overall complexity has

the order of Lv + Ls . It is easy to verify [43] that for codes

that meet the GV bound, our choice of parameter s gives the

same order Lv ∼ Ls and minimizes the sum Lv + Ls to the

order of q F∗n , where

F∗ = hq(δ)R/(1 + R) = R(1 − R)/(1 + R). (11)

To proceed with quantum codes Q[[n, Rn]], observe that

our parameter s again depends on the effective code rate

R′ = (1 + R)/2. For stabilizer codes, this change yields

exponent (9), which gives (10) if codes meet the quantum

GV bound.

For codes of rate R → 1 that meet the GV bound,

the PB technique gives the lowest known exponents F∗
PB (for

stabilizer codes) and F∗ (for classical q-ary codes). However,

no complexity estimates have been proven for specific code

families.

Finally, consider the narrower Calderbank-Shor-

Steane (CSS) class of quantum codes. Here a parity

check matrix is a direct sum H = Gx ⊕ ωGz , and the

commutativity condition simplifies to Gx GT
z = 0. A CSS

code with rank Gx = rank Gz = (n − k)/2 has the same

effective rate R′ = (1 + R)/2 since both codes include

k ′ = n − (n − k)/2 = (n + k)/2 information bits. Since

CSS codes are based on binary codes, their complexity

exponents F(R, δ) can be obtained from (2), (8), and (11)

with parameters q = 2 and R′ = (1 + R)/2. Here we can also

use the GV bound, which reads for CSS codes as follows [44]

R = 1 − 2h2(δ). (12)

D. Covering Set (CS) Technique

This probabilistic technique was proposed in [45] and

has become a benchmark in code-based cryptography since

classical paper [46]. This technique lowers all three complexity

estimates (4), (6), and (9) except for code rates R → 1. The

CS technique has also been studied for distance verification

of specific code families (see [47], [48]); however, provable

results [49], [50] are only known for generic random codes.

Let C[n, k] be some q-ary random linear code with an r ×n

parity check matrix H , r = n − k. Consider some subset J

of ρ ≤ r positions and the complementary subset I of g ≥ k

positions. Then the shortened code CJ = {cJ : cI = 0} has

the parity-check matrix HJ of size r × ρ. We say that matrix

HJ has co-rank b (HJ ) = ρ − rank HJ . Note that b (HJ ) =
dim CJ , which is the dimension of code CJ .

Proposition 5: The code distance δn of a random quantum

stabilizer code Q[[n, Rn]] can be found with complexity

2nFCS , where

FCS = h2(δ) −
(

1 − R

2

)

h2

(

2δ

1 − R

)

(13)

Proof: First, consider a q-ary code C[n, k]. We randomly

choose the sets J of r positions to cover every possible set of

d < r non-zero positions. To do so, we need no less than

T (n, r, d) =
(

n

d

)

/

(

r

d

)

sets J . On the other hand, the proof of [51, Th. 13.4] shows

that a collection of

T = T (n, r, d)n ln n (14)

random sets J fails to yield such an (n, r, d)-covering with a

probability less than e−n ln n . It is also well known that most

r × n matrices H (excluding a fraction
(

n
r

)−1
of them) yield

small co-ranks

0 ≤ bJ ≤ bmax =

√

2 logq

(

n

r

)

(15)

for all square submatrices HJ , |J | = r.
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Fig. 1. Complexity exponents of the four generic decoding techniques
applied to quantum codes that meet the quantum GV bound (3). SW: sliding
window, (5), MB: matching bipartition, (7), PB: punctured bipartition, (10),
and CS: covering set, (13).

Given an (n, r, d)-covering W , the CS procedure inspects

each set J ∈ W and discards code C if dim CJ > bmax.

Otherwise, it finds the lightest codewords on each set J . To do

so, we first perform Gaussian elimination on HJ and obtain

a new r × r matrix HJ that has the same co-rank b (HJ ) .

Let HJ include r − bJ unit columns ui = (0 . . . 01i0 . . . 0)

and bJ other (linearly dependent) columns g j . All r columns

have zeroes in the last bJ positions. If bJ = 0 in trial J, then

CJ = 0 and we proceed further. If bJ > 0, the CS algorithm

inspects qbJ − 1 linear combinations (LC) of columns g j . Let

LC(p) denote some LC that includes p columns g j . If this

LC(p) has weight w, we can nullify it by adding w unit

columns ui and obtain a codeword c of weight w + p. The

algorithm ends once we find a codeword of weight w+ p = d ,

beginning with d = 2.

For codes that satisfy condition (15), the CS algorithm has

the complexity order of n3qbmax T (n, r, d) that is defined by

T (n, r, d). For any q, this gives complexity 2nF with exponent

F = (1 − R)
[

1 − h2 (δ/(1 − R))
]

(16)

For a stabilizer code [[n, Rn]], we obtain (13) using

the quaternary code C⊥ with the effective code rate

R′ = (1 + R)/2.

For stabilizer codes that meet the quantum GV bound (3),

exponent FCS of (13) reaches its maximum Fmax ≈ 0.22 at

R = 0. Their binary counterparts yield exponent (16) that

achieves its maximum 0.119 at R ≈ 1/2.

Discussion: Fig. 1 exhibits different complexity expo-

nents computed for stabilizer codes that meet the quantum

GV bound. The CS technique gives the best performance for

most code rates R < 1, while the two bipartition techniques

perform better for high code rates R, which are close to 1.

Indeed, equations (7) and (10) scale linearly with 1− R, unlike

the CS technique that yields a logarithmic slope, according

to (13).

More generally, the above algorithms correct the received

vector y into the list of codewords located at distance d from y.

In this regard, they are similar to list decoding of vector y

within a given distance. For example, given an error syndrome

h �= 0, MB technique still forms the sets of vectors {eℓ}
and {er }. It also derives the syndromes h(eℓ), but uses the

syndromes h(er ) + h on the right half. Similarly, some SW

trials will correctly identify errors on the information blocks

and then perform error-free re-encoding. For the CS algorithm,

we also make a slight adjustment and inspect all combinations

LC(p) + h. Each combination LC(p) + h of weight w gives

an error of weight p + w. It is also important that every trial

of the CS algorithm needs only the syndrome h instead of the

received vector y. Thus, this algorithm can perform syndrome-

based decoding of quantum stabilizer codes.

Finally, let dGV = dGV(n, k) be the Gilbert-Varshamov

distance of an arbitrary linear [n, k] code. An important result

of [37] shows that list decoding of this [n, k] code within a

radius dGV gives the block error probability P(dGV) ≤ 2PML,

where PML is the block error rate of the maximum

likelihood decoding for this [n, k] code. Also, note [43]

that the block error probability P(d) satisfies inequality

P(d) ≤ PML(1 + 1/n) if d ≥ dGV + log2 n. Thus, distance

verification techniques considered above can be employed

for generic list decoding algorithms and maximum likelihood

decoding, in particular.

IV. DISTANCE VERIFICATION FOR LDPC CODES

Below, we consider two ensembles of binary (ℓ, m)-LDPC

codes with m ≥ ℓ ≥ 3. Codes in these ensembles are defined

by the binary equiprobable r × n parity-check matrices H .

In ensemble A(ℓ, m), matrices H have all columns of weight ℓ

and all rows of weight m = ℓn/r . This ensemble also includes

a smaller LDPC ensemble B(ℓ, m) originally proposed by

Gallager [27]. For each code in B(ℓ, m), its parity-check

matrix H is divided into ℓ horizontal blocks H1, . . . , Hℓ of

size r
ℓ ×n. Here the first block H1 consists of m unit matrices

of size r
ℓ

× r
ℓ
. Any other block Hi is obtained by some

random permutation πi (n) of n columns of H1. Below, we use

an equivalent description, where block H1 also undergoes a

random permutation π1(n). Ensembles A(ℓ, m) and B(ℓ, m)

have similar spectra and achieve the best asymptotic distance

for a given code rate 1 − ℓ/m among the LDPC ensembles

studied to date [28].

For brevity, we say below that a linear code C with N non-

zero codewords has null-free size N . We also say that code

ensemble C is permutation-invariant (PI) if any permutation of

positions π in any code C ∈ C again gives a code π(C) ∈ C.

In particular, LDPC ensembles are in this class. For any

subset of positions J of size ρ = θn, consider all shortened

codes CJ ∈ CJ . Then for any PI ensemble C, all shortened

ensembles CJ have the same expected null-free size Nθ given

any J of size θn. By Markov’s inequality, for any parameter

t > 0, at most a fraction 1
t

of the shortened codes CJ have

null-free size exceeding t Nθ on any subset J .

Note that for LDPC codes, parity checks form non-generic

sparse matrices HJ . Therefore, below we change the approach

of Section III. In essence, we will relate the size 2bJ of codes

CJ to the erasure-correcting capacity of LDPC codes. In doing

so, we extensively use average weight spectra derived for

ensemble B(ℓ, m) in [27] and for ensemble A(ℓ, m) in [28].
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This analysis can readily be extended to other ensembles

with known average weight spectra. The following results are

well known and will be extensively used in our complexity

estimates.

Let α = ℓ/m = 1 − R. For any parameter β ∈ [0, 1], the

equation

(1 + t)m−1 + (1 − t)m−1

(1 + t)m + (1 − t)m
= 1 − β (17)

has a single positive root t as a function of β. Below we use

the parameter

q(α,β) = α log2

(1 + t)m + (1 − t)m

2tβm
− αmh2(β), (18)

where we also take q(α,β) = −∞ if m is odd and

β ≥ 1−m−1. Then [28, Th. 4], shows that a given codeword of

weight βn belongs to some code in A(ℓ, m) with probability

P(α,β) such that

lim
n→∞

1

n
log2 P(α,β) = q(α,β) (19)

Lemma 1: For any given subset J of size θn, where

θ ≤ 1, codes CJ (ℓ, m) of the shortened LDPC ensembles

A(ℓ, m) or B(ℓ, m) have the average null-free size Nθ such

that

lim
n→∞

1

n
log2 Nθ = f (θ) (20)

where

f (θ) = max
0<β<1

{q(α, βθ) + θh2(β)} (21)

Proof: For any set J of size θn, consider codewords

of weight βθn that have support contained on J . For any

β ∈ (0, 1], codes in AJ (ℓ, m) contain the average number

Nθ (β) = P(α, βθ)

(

θn

βθn

)

(22)

of such codewords of weight βθn. Then

1

n
log2 Nθ ∼

1

n
max
β<1

log2 Nθ (β) ∼ max
β<1

{q(α, βθ) + θh2(β)}

(23)

which gives asymptotic equalities (20) and (21).

We show in this section that verification complexity is

defined by two important parameters, δ∗ and θ∗, which are

the roots of the equations

δ∗ : h2(δ∗) + q(α, δ∗) = 0

θ∗ : f (θ∗) = 0. (24)

Discussion: Note that δ∗ is the average relative code distance

in ensemble A(ℓ, m). Indeed, for θ = 1, equality (22) shows

that the average number of codewords Nθ (β) of length n and

weight βn has the asymptotic order

1

n
log2 N(β) ∼ h2(β) + q(α,β) (25)

Parameter θ∗ bounds from below the erasure-correcting capac-

ity of LDPC codes. Indeed, f (θ) < 0 in (21) and Nθ =
2n f (θ) → 0 for any θ < θ∗. Thus, most codes C ∈ A(ℓ, m)

yield only the single-vector codes CJ (ℓ, m) ≡ 0 and correct

any erased set J of size θn. The upper bounds on the erasure-

correcting capacity of LDPC codes are also very close to

θ∗ and we refer to papers [52], [53], where this capacity is

discussed in detail.

More generally, consider any PI ensemble C of q-ary linear

codes. We say that θ∗ is the erasure-correcting capacity for

ensemble C if for any ǫ > 0 the shortened subcodes CJ of

length θn, n → ∞, have expected size Nθ such that
{

Nθ → 0, if θ ≤ θ∗ − ǫ

Nθ ≥ 1, if θ ≥ θ∗ + ǫ
(26)

Without ambiguity, we will use the same notation θ∗ for any

lower bound on the erasure-correcting capacity (26). In this

case, we still have asymptotic condition Nθ → 0 for any

θ ≤ θ∗ − ǫ, which is the only condition required for our

further estimates. In particular, we use parameter θ∗ of (24)

for the LDPC ensembles A(ℓ, m) or B(ℓ, m).

For any code rate R = 1 − ℓ/m, δ∗ of (24) falls below the

relative GV distance δGV(R) of random codes (see [27], [28]).

For example, δ∗ ∼ 0.02 for the A(3, 6) LDPC ensemble of rate

R = 1/2, whereas δGV ∼ 0.11. On the other hand, θ∗ also falls

below the erasure-correcting capacity 1 − R of random linear

codes. For example, θ∗ = 0.483 for the ensemble A(3, 6) of

LDPC codes of rate 0.5. In our comparison of LDPC codes and

random linear codes, we will show that the smaller distances

δ∗ reduce the verification complexity for LDPC codes, despite

their weaker erasure-correcting capability θ∗ for any code

rate R.

A. Deterministic Techniques for the LDPC Ensembles.

Proposition 6: Consider any PI ensemble of codes C with

the average relative distance δ∗ and the erasure-correcting

capacity θ∗. For most codes C ∈ C, the SW technique performs

distance verification with complexity of exponential order q Fn

or less, where

F = (1 − θ∗)hq(δ∗) (27)

Proof: We use the generic SW technique but select sliding

windows I = I (i, s) of length s = (1 − θ∗ + ε)n. Here ε > 0

is a parameter such that ε → 0 as n → ∞. For a given weight

d = δ∗n, we again inspect each window I (i, s) and take all L

punctured vectors cI (i,s) of average weight v = ⌊δ∗s⌋ . Thus,

1

n
logq L ∼

1

n
logq(q − 1)v

(

s

v

)

∼ (1 − θ∗ + ε)hq(δ∗)

For each vector cI (i,s), we recover symbols on the comple-

mentary set J = I of size (θ∗ −ε)n, by correcting erasures in

a given code C ∈ C. This recovery is done by encoding each

vector cI (i,s) into C and gives the codeword list of expected

size Nθ . Thus, codes C have the average complexity of n3 Nθ L

combined for all n subsets I. Then only a fraction n−1 of such

codes may have a complexity above n4 Nθ L. This gives (27)

as ε → 0.

We proceed with the MB technique, which can be applied

to any linear code. For q-ary codes, the MB technique
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gives the complexity exponent F = hq (δ∗)/2. Combining

Propositions 3 and 6, we have

Corollary 2: Distance verification for most LDPC codes in

the ensembles A(ℓ, m) or B(ℓ, m) can be performed with the

complexity exponent

F = min{(1 − θ∗)h2(δ∗), h2(δ∗)/2} (28)

where parameters δ∗ and θ∗ are defined in (24).

The PB technique can also be applied to LDPC codes with-

out changes. However, its analysis becomes more involved.

Indeed, syndrome-matching in the PB technique yields some

punctured (s, k) codes CI (i,s) , which are no longer LDPC

codes. However, we can still use their weight spectra, which

are defined by the original ensemble C and were derived

in [54]. Here we omit lengthy calculations and proceed with

a more efficient CS technique.

B. CS Technique for LDPC Ensembles

Below we estimate the complexity of the CS technique for

any LDPC code ensemble. Recall from Section III-D that for

most linear random [n, k] codes, all shortened codes CJ of

length n −k have non-exponential size 2bJ . This is not proven

for the LDPC codes or any other ensemble of codes. Therefore,

we modify the CS technique to extend it to these non-generic

ensembles. In essence, we leave aside the specific structure of

parity-check matrices HJ . Instead, we use the fact that atypical

codes CJ with large size 2bJ still form a very small fraction

of all codes CJ .

Proposition 7: Consider any PI ensemble C of q-ary linear

codes with the average relative distance δ∗ and the erasure-

correcting capacity θ∗. For most codes C ∈ C, the CS

technique performs distance verification with complexity of

exponential order 2Fn or less, where

F = h2(δ∗) − θ∗h2(δ∗/θ∗) (29)

Proof: We now select sets J of s = θn positions, where

θ = θ∗ − ε and ε → 0 as n → ∞. To find a codeword of

weight d in a given code C ∈ C, we randomly pick up T =
(n ln n)

(

n
d

)

/
(

s
d

)

sets J. For any J, the shortened code ensemble

CJ has the expected null-free size Nθ → 0. Let CJ (b) ⊂ CJ

be a sub-ensemble of codes CJ (b) that have null-free size

qb −1 for some b = 0, . . . , θn. Also, let αθ (b) be the fraction

of codes CJ (b) in the ensemble CJ . Then

Nθ =
θn
∑

b=0

(

qb − 1
)

αθ (b) (30)

For each code CJ (b), we again apply Gaussian elimination

to its parity-check matrix HJ of size r × s. Similarly to the

proof of Proposition 5, we obtain the diagonalized matrix HJ ,

which consists of s − b unit columns ui = (0 . . . 01i0 . . . 0)

and b other columns g j . To find the lightest codewords on

a given set J , we again consider all qb − 1 non-zero linear

combinations of b columns g j . For any given code CJ (b),

this gives complexity of order Dθ (i) ≤ n3 + rb(qb − 1) ≤
n3(qb − 1). Taking all codes CJ (b) for b = 0, . . . , θn on a

Fig. 2. Complexity exponents for the binary codes meeting the GV bound
and for some (ℓ, m)-regular LDPC codes as indicated. “SW or MB” stands for
deterministic techniques from Eq. (28) for LDPC codes, or Eq. (32) for codes
meeting the GV bound, and CS stands for covering set technique, Eq. (29)
for LDPC codes, or Eq. (16) for codes meeting the GV bound.

given set J , we obtain the expected complexity

Dθ =
θn
∑

b=0

n3(qb − 1)αθ (b) = n3 Nθ (31)

Thus, the CS algorithm has the expected complexity Dave =
n3T Nθ for all T sets J . Then only a vanishing fraction Nθ/n

of codes C have complexity D ≥ n4T, which gives the

exponent F ≤ lim 1
n

log2

(

n4T
)

of (29) for most codes.

Discussion: Note that Propositions 6 and 7 employ PI code

ensembles C. This allows us to consider all sets J of θn

positions and output all codewords of weight d for most

codes C ∈ C. If we replace this adversarial model with a less

restrictive channel-coding model, we may correct most errors

of weight d instead of all of them. Then we also remove the

above restrictions on ensembles C. Indeed, let us re-define

Nθ as the null-free size of codes CJ averaged over all codes

C ∈ C and all subsets J of size θn. Then we use the following

statement:

Lemma 2: Let ensemble C have vanishing null-free size

Nθ → 0 in the shortened codes CJ of length θn as n → ∞.

Then most codes C ∈ C correct most erasure subsets J,

with the exception of vanishing fraction
√

Nθ of codes C and

subsets J.

Proof: A code C ∈ C fails to correct some erasure set J

of weight θn if and only if code CJ has NJ (C) ≥ 1 non-

zero codewords. Let Mθ be the average fraction of such

codes CJ taken over all codes C and all subsets J. Note

that Mθ ≤ Nθ . Per Markov’s inequality, no more than a

fraction
√

Mθ of codes C may leave a fraction
√

Mθ of sets J

uncorrected.

Finally, we summarize the complexity estimates for classical

binary LDPC codes in Fig. 2. For comparison, we also plot

two generic exponents valid for most linear binary codes. The

first exponent

F = min{R(1 − R), (1 − R)/2} (32)

combines the SW and MB algorithms, and the second expo-

nent (16) represents the CS algorithm. For LDPC codes,
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we similarly consider the exponent (28) that combines the

SW and MB algorithms and the exponent (29) that represents

the CS algorithm for the LDPC codes. Here we consider

ensembles A(ℓ, m) or B(ℓ, m) for various LDPC (ℓ, m) codes

with code rates ranging from 0.125 to 0.8. With the exception

of low-rate codes, all LDPC codes of Fig. 2 have substantially

lower distances than their generic counterparts. This is the

reason LDPC codes also achieve an exponentially smaller

complexity of distance verification despite their lower erasure-

correcting capacity.

V. IRREDUCIBLE-CLUSTER (IC) TECHNIQUE

The complexity estimates of Sec. IV rely on the average

weight distributions of binary (ℓ, m)-regular LDPC codes and

hold for most codes in the corresponding ensembles. Here

we suggest a deterministic distance-verification technique,

which is applicable to any q-ary (ℓ, m)-regular LDPC code,

quantum or classical. First, we define irreducible codewords.

Definition 1: Given a linear q-ary code Cq , we say that a

codeword c is irreducible if it cannot be represented as a linear

combination of two codewords with non-overlapping supports.

Our technique is based on the following simple lemma.

Lemma 3 [14]: A minimum-weight codeword of a linear

code Cq is irreducible.

IC Algorithm: General Description: Let a q-ary

(ℓ, m)-regular LDPC code be defined by a list L of

parity checks b with supports Jb of size m. The following

algorithm finds an irreducible codeword c of weight d . The

algorithm performs multiple runs and includes a variable

number ω ≤ d − 1 of steps in each run. The initial step

i = 0 of each run is given a position j0 = 0, . . . , n − 1 and

the symbol c j0 = 1. The input to each consecutive step i

includes some previously derived sub-vector c(Ji) with its

support Ji . It also includes the ordered sublist Ni⊂ L of all

parity checks b unsatisfied by sub-vector c(Ji ). Then step i

extends vector c(Ji) with some non-overlapping subset c(Ii )

of vi new non-zero symbols. The extension Ii , c(Ii ) is chosen

to make the first parity check b(1) ∈ Ni satisfied on the

extended support Ji+1 = Ji ∪ Ii :
∑

j∈Ji

b
(1)
j c j +

∑

j∈Ii

b
(1)
j c j = 0 (33)

The result is the extended vector c(Ji+1) and the new list Ni+1

of parity checks unsatisfied by c(Ji+1). Clearly, Ni+1 excludes

parity check b(1). It may also drop some other checks in Ni ,

which were satisfied in step i, but may include new parity

checks, which become unsatisfied due to the newly added

symbols. Note that a parity check dropped in step i may later

re-appear in some list Ns, s > i + 1. Each run must satisfy

restrictions (33) for all steps and end with d symbols, thus

ω
∑

i=1

vi = d − 1 (34)

Each run ends with a complete selection list

{Ii , c(Ii ) | i = 0, . . . , ω} and gives a codeword of weight d

if the list Nω+1 is empty. For a quantum stabilizer code,

we also verify the restriction c ∈ C⊥ � C. Given no codeword

of weight d , we proceed with a new run, which employs a

new selection list. We will now limit possible choices of all

vectors c(Ii ).

Additively Irreducible Selection: We say that a new selection

I, c(I ) of non-zero symbols is additively irreducible (AI) for

a parity-check b if any non-empty subset I ′ ⊂ I satisfies

restriction

∑

j∈I ′

b j c j �= 0 (35)

From now on, any selection list {Ii , c(Ii ) | i = 0, . . . , ω} must

also satisfy restrictions (35) in each step i. We proceed with

the following observations.

A. If an AI vector satisfies parity check b(1), then no smaller

subset c(I ′) can do so. Indeed, let restrictions (33) hold on the

sets I and I ′ ⊂ I. Then we obtain equality
∑

b j c j = 0 on

the subset I � I ′, which contradicts (35). We also see that for

any reducible vector c(I ) that satisfies the current check b(1),

there exists its sub-vector c(I ′), which also satisfies b(1).

B. We may process parity checks one-by-one. Indeed,

irrespective of the order in which parity checks are processed,

the codewords will satisfy all parity checks after w steps.

We may also set c j0 = 1 in a linear code C. Our brute-force

algorithm begins with a correct choice of j0 for some runs and

then exhausts all possible irreducible selections. Thus, in each

step, one of the runs begins with a correct subvector c(Ji ) and

then adds some correct AI subvector c(Ii ).

C. The algorithm may terminate only at some codeword of

weight d. More generally, the algorithm can return all (non-

collinear) irreducible vectors up to some weight D.

D. If some run fails in step w, we can return to step w − 1

and exhaust all choices of vectors c(Iw−1). Similarly, we can

return to step w − 2 and so on. This back-and-forth version

slightly reduces the overall complexity; however, it will keep

its asymptotic order.

Let Nv (q, b) denote the number of q-ary vectors c(I ) of

length v that satisfy restrictions (33) and (35). Clearly,

Nv (q, b) ≤ (q − 1)v−1 (36)

Below, we use notation Nv (q) since we will prove that all

parity checks b give the same number Nv (q, b) ≡ Nv (q). Note

also that the AI restriction (35) drastically limits the number

Nv (q) for small q. For example, a binary parity check b(1)

is satisfied in (33) only if v is odd; however, any string of

v ≥ 3 ones includes a subset of two ones and contradicts the

AI property (35 ). Thus, v = 1 for q = 2 and N1(2) = 1.

We now proceed with complexity estimates. First,

we employ a trivial upper bound (36). We further reduce this

number in Lemma 4.

Let δa,b be the Kronecker symbol, h = d − 1 and

t = m − 1. Recall that each run is defined by some set

{Ii , c(Ii ) | i = 0, . . . , ω} . Given restriction (34), the number

of runs is bounded from above by the quantities

Sh(m, q) ≡
∑

ω≥1

∑

vi∈{1,2,...,t}
δh,v1+...+vω

ω
∏

i=1

Nvi (q)

(

t

vi

)

(37)



DUMER et al.: DISTANCE VERIFICATION FOR CLASSICAL AND QUANTUM LDPC CODES 4683

which have the power-moment generating function

g(z) = 1 +
∞
∑

h=1

Sh(m, q)zh =
∞
∑

ω=0

[T (z)]ω

= [1 − T (z)]−1, (38)

T (z) ≡
t

∑

h=1

zh Nh(q)

(

t

h

)

. (39)

We can now derive the coefficients Sh(m, q). This can be done

by the Chernoff bound, similarly to the estimates of [27] or by

the combinatorial technique of [28]. Instead, we use another

simple technique that employs contour integration and gives

the exact formulas for the coefficients Sh(m, q) along with

their exponential orders. Namely, let the denominator 1−T (z)

in (38) have s ≤ t distinct roots zr , r = 0, 1, . . . , s − 1, with

ordered magnitudes ρ = |z0| ≤ |z1| ≤ . . . ≤ |zs−1|. Then

coefficients Sh(m, q) can be derived by a contour integration

over a circle of radius ǫ < ρ around the origin,

Sh(m, q) =
1

2π i

∮

dz

zd

1

1 − T (z)

= −
s−1
∑

r=0

Res

(

1

zd [1 − T (z)]
, zr

)

(40)

where Res( f (z), a) is the residue of f (z) at a. For large

weights d , the exponential order of Sh(m, q) is defined by

the root z0, which has the smallest magnitude ρ. Next, note

that z0 = ρ > 0 is strictly positive and non-degenerate,

since the coefficients of T (z) are non-negative. In this

case,

Res

(

1

zd [1 − T (z)]
, z0

)

= −
1

zd
0 T ′(z0)

(41)

where T ′(z) is the derivative of the polynomial T (z); it is

non-negative at z = z0. This gives the exponential bound

Sh(m, q) ≤ cρ−d + O(|z1|−d) ∼ c[γm(m − 1)]d (42)

with the complexity exponent γm ≡ 1/[(m − 1)ρ].
We now employ upper bound (36). In this case, equality (39)

gives the polynomial

T (z) =
1

q − 1

{

[(q − 1)z + 1]t − 1
}

which has the roots

zr = (q1/t e2π ir/t − 1)/(q − 1), r = 0, 1, . . . , t − 1

Thus, the asymptotic expansion (42) yields the constant

c =
1 + (q − 1)ρ

qt
=

q1/(m−1)

q(m − 1)

and the complexity exponent

γ m =
q − 1

(m − 1)
(

q1/(m−1) − 1
) ≤ γ ∞ =

q − 1

ln q
(43)

As a side remark, note that the larger values vi > 1 reduce the

number of terms in the product taken in (37); therefore, they

contribute relatively little to the overall sum Sh(m, q). It is for

this reason that a simple bound (36) can yield a reasonably

TABLE I

NUMBER OF ADDITIVELY-IRREDUCIBLE q -ARY

STRINGS OF LENGTH v FOR q = pm

TABLE II

COEFFICIENT γm OF THE COMPLEXITY EXPONENT

δ logq (γm(m − 1)) FOR DIFFERENT m AND q

tight estimate (43). Our next step is to reduce the exponent γ m

by limiting the number Nv (q, b). Let Mv (q) denote the set of

q-ary vectors c(I ) of length v that satisfy the restrictions

∑

j∈I ′

c j �= 0 for all I ′ ⊆ I (44)

Let Av(q) be the size of Mv (q) and vmax be the maximum

length of vectors in Mv (q).

Lemma 4: The number Nv (q, b) of q-ary vectors c(I ) of

length v, which satisfy restrictions (33) and (35) in a Galois

field Fq , does not depend on a parity check b and is equal

to Av(q)/(q − 1). For any q = 2u, vmax = u and Nv (q) =
(q −2) · . . . · (q −2v−1). For a prime number q, vmax = q −1.

Proof: Let two sets of q-ary vectors c(I, b) and c(I, B)

of length v satisfy restrictions (33) and (35) for some parity

checks b and B. Then any such vector c(I, B) has its coun-

terpart c(I, b) with symbols c j (I, b) = B j c j (I, b)/b j . Thus,

the two sets have the same size and Nv (q, b) = Nv (q). We can

also specify AI-restrictions (35) using AI-restrictions (44) for

the parity check b∗ = (1, . . . , 1) and all subsets I ′ ⊂ I. Now

let λ �= 0 be the value of the first summand in (33) for some

unsatisfied parity check. Consider a subset of vectors in Mv (q)

that satisfy restriction
∑

I c j = −λ. This subset has the size

Av(q)/(q − 1) and satisfies both restrictions (33) and (35) for

the parity check b∗. Thus, Nv (q) = Av(q)/(q − 1).

Next, consider the Galois field Fq for q = 2u . Then

the sums in the left-hand side of (44) represent all possible

linear combinations over F2 generated by v or fewer elements

of Mv (q). Thus, any symbol c j (I ) must differ from the linear

combinations of the previous symbols c1(I ), . . . , c j−1(I ).

This gives the size Av(q) = (q − 1)(q − 2) · . . . · (q − 2v−1)

and also proves that vmax = u.

For any prime number q, any sum of s elements in (44)

must differ from the sums of t < s elements on its subsets.
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Thus, different sums may take at most vmax non-zero values

for s = 1, . . . , vmax and vmax ≤ q − 1. Then vmax = q − 1 is

achieved on the vector c = (1, . . . , 1) of length q − 1.

Lemma 4 shows that the numbers Nv (q) and the lengths

vmax differ substantially for different q. Some of these quan-

tities are listed in Table I for small q . Table II gives some

exponents γm obtained for irreducible clusters, along with

the upper bound γ ∞ (valid for all clusters) in the last row.

We summarize our complexity estimates as follows.

Proposition 8: A codeword of weight δn in any q-ary (ℓ, m)

LDPC code can be found with complexity 2FICn , where

FIC = δ log2(γm(m − 1)),

γm ∈ (1, γ∞) grows monotonically with m and γ∞ < γ ∞ =
(q − 1) / ln q.

Remarks: The algorithm presented here for linear q-ary

codes generalizes an algorithm described in [14] for binary

codes. It can be also applied to a more general class of

q-ary (ℓ, m)-limited LDPC codes, whose parity check matrices

have all columns and rows of Hamming weights no more

than ℓ and m, respectively. This algorithm is also valid for

q-ary CSS codes, and gives the same complexity exponent.

However, for q-ary stabilizer codes, the numbers of additively

irreducible clusters (e.g., from Table I) have to be increased

by an additional factor of qv , N
(stab)
v (q) = qv Nv (q). As a

result, the complexity exponents in Table II also increase,

γ
(stab)
m = qγm . In particular, for qubit stabilizer codes, q = 2,

we obtain complexity exponent γ
(qubit)
m = 2.

Also, note that for the existing quantum LDPC codes with

distance d of order
√

n, the presented IC algorithm has the

lowest proven complexity among deterministic algorithms.

Indeed, exponent FIC is linear in the relative distance δ,

whereas deterministic techniques of Sec. III give the higher

exponents F → δ log(1/δ) in this limit. In this regard,

exponent FIC performs similarly to the CS exponent FCS of

generic codes, which is bounded by δ − δ log2(1 − R) and is

linear in δ.

VI. FURTHER EXTENSIONS

In this paper, we study provable algorithms of distance

verification for LDPC codes. More generally, this approach

can be used for any ensemble of codes with a given relative

distance δ∗ and erasure-correcting capacity θ∗.

One particular extension is any ensemble of irregular LDPC

codes with known parameters δ∗ and θ∗. Note that parameter

θ∗ has been studied for both ML decoding and message-

passing decoding of irregular codes [52], [53], [55]. For ML

decoding, this parameter can also be derived using the weight

spectra obtained for irregular codes in papers [56], [57]. Also,

these techniques can be extended to ensembles of q-ary LDPC

codes. The weight spectra of some q-ary ensembles are derived

in [58] and [59].

Another direction is to design more advanced algorithms of

distance verification for LDPC codes. Most of such algorithms

known to date for linear [n, k] codes combine the MB and CS

techniques. In particular, algorithm [60] takes a linear

[n, k]-code and seeks some high-rate punctured

[k + µ, k]-block that has ε ≪ k errors among k information

bits and µ error-free parity bits. The search is conducted

similarly to the CS technique. Then the MB technique

corrects ε errors in this high-rate [k + µ, k]-code. A slightly

more efficient algorithm [61] simplifies this procedure

and seeks punctured [k + µ, k]-code that has ε ≪ k + µ

errors spread across information and parity bits. In this

case, the optimal choice of parameters ε and µ reduces the

maximum complexity exponent F(R) to 0.1163. Later, this

algorithm was re-established in [62] and [63], with detailed

applications for the McEliece cryptosystem. More recently,

the maximum complexity exponent F(R) has been further

reduced to 0.1019 using some robust MB techniques that

allow randomly overlapping partitions [64]. An important

observation is that both the MB and CS techniques can be

applied to LDPC codes; therefore, our conjecture is that

provable complexity bounds for distance verification also

carry over to these more advanced techniques.
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