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Abstract
Commercial cloud database services increase availability of data and provide reli-
able access to data. Routine database maintenance tasks such as clustering, however,
increase the costs of hosting data on commercial cloud instances. Clustering causes
an I/O burst; clustering in one-shot depletes I/O credit accumulated by an instance
and increases the cost of hosting data. An unclustered database decreases query per-
formance by scanning large amounts of data, gradually depleting I/O credits. In this
paper, we introduce Physical Location Index Plus (PL I+), an indexing method for
databases hosted on commercial cloud. PL I+ relies on internal knowledge of data
layout, building a physical location index, whichmaps a range of physical co-locations
with a range of attribute values to create approximately sorted buckets. As new data is
inserted, writes are partitioned in memory based on incoming data distribution. The
data is written to physical locations on disk in block-based partitions to favor large
granularity I/O. Incoming SQL queries on indexed attribute values are rewritten in
terms of the physical location ranges. As a result, PL I+ does not decrease query
performance on an unclustered cloud database instance, DBAs may choose to cluster
the instance when they have sufficiently large I/O credit available for clustering thus
delaying the need for clustering. We evaluate query performance over PL I+ by com-
paring it with clustered, unclustered (secondary) indexes, and log-structured merge
trees on real datasets. Experiments show that PL I+ significantly delays clustering,
and yet does not degrade query performance—thus achieving higher level of sorted-
ness than unclustered indexes and log-structured merge trees. We also evaluate the
quality of clustering by introducing a measure of interval sortedness, and the size of
index.
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1 Introduction

Database management systems (DBMS) offer users a secure and a reliable solution
to store and share data. There is an increased interest in hosting data within the cloud.
Cloud-based DBMSes1 provide a cost effective solution by allocating processing and
storage resources on demand and deallocating these resources when they are not
needed. This is particularly evident for scientific databases, such as Plenar.io [7],
the 1000 Genomes Project [8], GenBank [17], and the NASA NEX [18]. Scientific
databases such as these sporadically ingest high volumes of data, and require high
availability and support for multi-user access. For example, if a scientific database
stores information about road traffic, it is reasonable to expect that a high volume of
data will be collected around rush hour and a low volume of data will be collected
at midnight. Therefore, there are times when the DBMS requires increased resources
to load and manage data, but there are also periods of time when these resources are
unnecessary.

Even though cloud-based DBMSes offer a cost-effective scaling solution for such
databases, the cost of these services can still be prohibitive due to maintenance
demands. The majority of cloud-based DBMS vendors charge users based on the
number of I/O operations performed, in addition to the storage and processing costs.
Therefore, it is important for a cloud-based DBMS to efficiently manage storage to
reduce I/O operations.

Clustering is a common and well-known technique used in DBMSes to physically
sort data in persistent storage. When a table is clustered (or sorted), records are read
with minimal I/O operations. Therefore, it is reasonable to claim that clustering will
reduce costs for a cloud-based DBMS. Section2 provides an overview of the different
clustering methods supported by DBMSes.

While clustering results in optimal I/O costs for the read-only queries, there remains
a steep trade-off in the number of I/O operations needed to maintain a clustered table.
Most relational databases implement clustering as an external merge sort operation,
which has a worst-case disk I/O cost of 2 ∗ N ∗ [�logB−1� N

B �� + 1] for a table of
size N blocks [22]. Thus every clustering maintenance operation is I/O and memory-
intensive, causing at least double the number of I/Os based on the size of the database
and available memory, and often much higher due to temporary indexes created dur-
ing clustering. In a non-cloud DBMS, this entire operation is assumed to be free of
monetary cost. When databases are hosted on the cloud, clustering generates an I/O
burst, depleting available I/O credits of the cloud instance. If tables are to be clus-
tered frequently, which is inevitable when new datasets are inserted, instances must be
either over-provisioned in capacity adding to hosting costs or the application through-
put must be capped when credits deplete. For example, the costs can be as high as
$1000 per month for modest size databases (100–500GB). For funds and resource-
crunched data-intensive science projects, these costs can soon add up to be significant.
Section 3 demonstrates the high monetary costs needed to implement clustering on a
cloud-based DBMS.

1 A DBMS deployed on a cloud platform.
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Example 1 A federal law enforcement agency wants to study trends in crime around
the nation. The Plenar.io [7] dataset, which is stored on a cloud-based DBMS, serves
as a valuable resource since it stores crime statistics for cities around the world. The
federal agents primarily access this crime data based on the geographical attributes.
Therefore, it would be reasonable to cluster (or sort) the crime data based on the
geographical attributes to reduce the I/O for the queries issued by the federal agents.
Assuming that crimes continuously happen around the country (or city), data would
be ingested based on the order in which the events occur. To support efficient query
responses for the federal agents, the DBMS must cluster (or re-sort) the table as it
is ingested. While the I/O remains low for the read queries issued by federal agent,
the DBMS requires a high number of I/O operations to re-order the data based on the
geographical attributes. This high number of I/O operations increases the monetary
costs to host the DBMS on a cloud service.

Our previous work [30] sought to address the problem demonstrated in Example 1
with an index structure called a physical location index (PL I ). PL I allowed for a
delayed sorting approach in that as datawas ingested, itwould be appended to a table by
an insertion order. PL I maintains a mapping between approximate physical locations
and the values ingested. This approach does not experience any costs to organize the
data. So for example, if it takes 100s to scan a table and a query accessed 5% of
the table based on the sorted attribute, then a PL I could provide a query runtime
of approximately 5 s. If the table size grew by 10%, then the query that accessed
5% of the table based on the sorted attribute would now take approximately 15s.
However, the read query response time can quickly decay as large amounts of data is
continuously ingested, such as in Plenar.io. Section 4 explains how PL I is deployed
and used.

In this paper, we expand upon our previous work from [30] by proposing a solution
called PL I+. PL I+ builds upon PL I in the following ways: (1) it achieves the
optimal read query runtimes and I/O provided by a PL I and native clustering in spite
of large number of inserts, and (2) it supports a delayed clustering approach that does
not require excessive I/O, yet does not experience the query degradation observed for
a PL I . We discuss our proposed solution, PL I+, in Sect. 5. We thoroughly evaluate
PL I+ in Sect. 6. Our contributions are as follows:

– We analyze the costs associated with implementing clustering for a cloud-based
DBMS. This demonstrates that clustering produces unexpected monetary costs
due to high number of I/O operations (Sect. 3).

– We describe our previous work on PL I including its advantages and shortcom-
ings. PL I offers competitive runtimes for read queries, and delays clustering
maintenance approach (Sect. 4).

– We describe our proposed solution, PL I+, which builds upon PL I . PL I+ also
takes a delayed clustering approach, but it additionally buffers incoming data and
performs in memory sorting, which avoids the query degradation of PL I (Sect. 5).
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Fig. 1 Storage layout of native database clustered index based on an IOT

– We provide a detailed and sound experimental analysis of PL I+ including a
thorough comparison with Log-structured Merge (LSM) trees, secondary, and
clustered indexes (Sect. 6).

2 Related work

In this section, we review clustering-based methods as provided by cloud database
services, and as described in current research.

2.1 Database systems on the cloud

Clustering in a cloud database engines depends upon the type of provisioned databases
instances. We classify them as B-Tree and non-B-Tree based systems.

B-tree-based database systems (e.g., Postgres, DB2) store related items logically
adjacent in the B-tree, but B-tree structure does not guarantee that logically-adjacent
items will be physically adjacent. As a B-tree ages, leaves become scattered across
the disk due to node splits from insertions and node merges from deletions. In an aged
B-tree, there is little correlation between the logical and physical order of the leaves,
and the cost of reading a new leaf involves both the data-transfer cost and the seek
cost. The only way to improve the correlation is by manually clustering the database.

Several DBMSes (e.g., Oracle and MySQL) implement Index Organized Tables
(IOT) [20], an augmented B-Tree structure that simultaneously serves as a clustered
table. Instead ofmaintaining two independent database structures, a table and its index,
IOT is a merged structure with rows of the table spliced into the leaf nodes of the B-
Tree index itself. When new rows are inserted, IOTs maintain logical clustering as
table data is stored along the leaves of the IOT structure. However, this solution comes
at the price of slower inserts and a deteriorating read access performance. The leaves
of the B-Tree data structure form a logically sorted linked list (as shown in Fig. 1)
which is not guaranteed to maintain a physical ordering as a clustered table does. For
example, after a B-Tree node overflows, two split nodes may have to be written in a
different physical location on disk. Thus, IOTs incur the overheads of other B-tree-
based indexing systems, with the additional storage and access overhead compared
to a regular B-Tree, due to the additional row data incorporated into the leaf nodes.
Additionally, an IOT can only be organized on the primary key, while a PL I+index
can be built on any column(s).
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2.2 Clustering with write-optimized Indexing

Write-optimized indexes, such as log-structured merge trees [19] and its variants [16,
26] maintain local clustering of blocks at multiple levels, each of which is organized
as a sorted sequential structure for the purpose of efficient lookups. Incoming writes
are first sorted in memory and when full, data is merged into the first level on the disk.
When the first level is full, its data will be gradually merged to the second level, and
so on. The entire clustering process is a sequence of merges level by level. During a
merge, only sequential I/O operations are involved. However, since all levels are sorted
separately, and key spaces of different levels can overlap, LSM trees incur random
I/O during query time. Implementations of LSM-trees make point queries efficient by
using Bloom-filters which help search for levels that contain the keys. However, range
queries remain slow since searches for each point need to be performed in each level.

Since write-optimized indexing requires time to search, Bε-trees use ε amount of
space within internal for searching [12]. Here ε is a tunable parameter that selects how
much space internal nodes use for searching. Bε-trees experimentally show better
read/write performance than IOT structures. Unlike LSM and Bε-trees, which strictly
sort the data (withmerge sort), in PL I+the goal is to approximately sort the data. Thus,
PL I+maintains physical locations of blocks that contain the specific ranges of data
(min and max in a block), giving read queries an advantage by reducing the number of
seeks needed for range querying. However, this introduces additional overhead when
new data is inserted. We describe a main-memory sorting technique that determines
the physical location of where new data is inserted.

2.3 Clustering with queries

There are several ways to reduce random I/O of the query workload. The ferris-wheel
approach [32,33] queues queries if they access data out of index order. Queries can
also be used to determine the structure of an index. Generalized partial indexing builds
unclustered indexes around records defined by the user, leaving some records not
indexed [27]. In contrast, PL I and PL I+ provide the benefit of indexing all records,
and approximately sort the data across buckets. In both methods, index maintenance
cost is reduced by only recording access or reorganizing data that benefits queries.
Database cracking [14] indexes by reorganizing individual columns (DB cracking is
proposed for column-stores); the column itself serves as an index, physically reorga-
nized to speed up query access. The reorganization happens dynamically as columns
are accessed by user queries. Similar to database cracking, PL I table data is organized
across but not within individual buckets. Kimura et al. proposed dividing a table into
buckets as a scan unit with a correlation map (CM) index [15]. Representing a table as
a sequence of buckets of rows allows for a lightweight index structure which is easily
cached, reducing costs of index storage and maintenance. Similar to CMs, our method
records the ranges of values stored for each bucket and implements indexing with
query rewrite. Unlike CMs, our method relies only on internal row identifier for query
rewrite—while CMs require a built-in clustered index and the presence of correlation

123



Distributed and Parallel Databases

Fig. 2 The burst performance and baseline performance of different volume sizes on RDS [5]. Maximum
infinite IOPS is at 10K IOPS

in data (specifically, a correlation between the indexed column and the clustering key
is required).

2.4 Horizontal partitioning

Horizontal partitioning (HP) methods [1,2,9] allow tables, indexes and views to be
partitioned into a disjoint sets of rows physically stored separately.But PL I and PL I+
use buckets inwhich key-range values overlap.Horizontal partitioning is also an offline
processes that requires processing for changes to workloads or incoming data [13].
The indexing methods proposed in this article are online, light-weight indexes and can
be created to satisfy a mixed point and range query workload. Some DBMSes support
both a clustered index and a partitioned index. Similarly, a PL I (or PL I+) can be
used in parallel with a partitioned index.

3 Clustering on a cloud database instance

In this section, we analyze the monetary costs of clustering relational database
services (RDS) offered on the cloud. We use Amazon Web Services (AWS) as an
example to illustrate the high cost of clustering on the cloud. Other competing cloud
database services (e.g., Microsoft Azure) use a similar pricing structure. The cost
of storing data on the cloud (not including the cost of purchasing the Amazon EC2
instance) is twofold. First, there is a cost to purchase the disk space on cloud plat-
form (storage cost). Second, there is a cost to access this data with high throughput
(throughput cost). All cloud services, including AWS, adopt a burst model for I/O
throughput measured in number of input and output operations per second (IOPS).
Burst throughput is maximum throughput, which is available for a fixed period of time.
Even though burst credit can be replenished after 24 h, burst period is often short and
cloud instance reverts to a baseline throughput after the burst period. Operating within
the baseline throughput can dramatically degrade the clustering process, leading to the
DBMS remaining blocked for a long period. Baseline throughput can be improved by
extending the volume size (i.e., by over-provision). Figure 2 shows the relationship
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Fig. 3 Total number of I/Os of clustering on AWS with HDD and SSD storage (SSD based on 16KB I/O
size, HDD based on 1MB I/O size)

between the baseline throughput and burst throughput in terms of IOPS. The baseline
throughput grows as the volume size increases. It is equal to burst throughput at 1TB
and reaches a maximum IOPS at about 3TB (i.e., 10K IOPS). The burst model follows
the pay-as-you-go model adopted for cloud services that charges for the amount of
I/O capacity used [3]. The model, however, greatly penalizes the access pattern used
by database maintenance tasks.

The I/O cost of clustering using external merge sort algorithm requires M = 2 ∗
N ∗ [�logB−1� N

B �� + 1] I/O accesses, in which N is the number of pages in a table,
and B is the size of main memory buffer available for external merge operation [22].
Figure 3 shows the cost of clustering for different table sizes in term of number of
I/Os on a logarithmic scale. The I/O size is 16KB on SSD storage, and 1MB for HDD,
resulting in different values of total numbers of I/Os for SSDs and HDDs in Fig. 3.
Also note that we chose log base-2 for Y-axis as the best log scale to present results
in most of our subsequent figures.

If database applications are conservative and under-provision by choosing an IOPS
value based on database size, then the large number of I/O required for the clustering
process will quickly deplete the burst throughput. The clustering after that is done at
a baseline throughput, reducing query performance and requiring much larger time
to cluster. In Fig. 4, the solid line with squares shows the time different sized tables
require to be clustered at a baseline throughput after depleting burst I/O credits. If
the application over-provisions by using estimated high throughput I/O values, they
must over-provision significantly to get maximum throughput for a period of time in
which the entire clustering can finish. The solid line with triangles in Fig. 4 shows the
time to cluster when the storage is over-provisioned. Alternatively, if storage is under-
provisioned, clustering can take days to finish during which time query performance
will be impacted. If the storage is over-provisioned to maximum throughput, a 100GB
applications may need to pay for extra storage of about 3TB, while infinite IOPS are
available at an extra cost of $350 each month or $4200 per year.2 The results, reported
for RDS operating on solid-state disk drives, remain similar if EC2 instances are used
or if hard disk drives are used. In this paper, we show that PL I+can amortize the

2 We use the cost estimates from [4]; each GB at this time costs about $0.125.
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Fig. 4 Time to cluster on AWS RDS with SSD storage

clustering cost by initializing with a one time disk scan of the database and as little as
a 100MB memory buffer.

4 PLI: A Physical Location Index for delayed clustering

We first describe the basic idea of PL I through an example, which we continue to
refer to in the rest of this section. Consider Table T in Fig. 5 with attributes {ID,
Name}. Let T be physically clustered on attribute {ID} into seven pages, i.e., the
pages are in sequential order on the disk. The table also records the physical location of
each row which is marked with an internal {RowID} column. Clustering this column
on {ID} will sort the attribute {ID} and physically cluster the sorted result. Note
that in order to minimize maintenance costs, the clustering on {ID} in Fig. 5 example
is not strict but rather approximate. Consider a query that accesses values based on
ID BETWEEN #1 and #6. The secondary index will look up the matching keys,
reading a number of index pages (intermediate levels) and two pages from leaf level of
the index (incurring several seeks before accessing the table itself). First three pointers
(Row1, Row3, Row2) will access the first page, which will be cached after the Row1
lookup. Fourth match (Row4) will require a seek and a read of a seventh page at the
end. Finally, fifth and sixth match will correspond to pointers (Row5, Row6) causing
yet another seek and reading of the second page in the table. A more efficient access
path would recognize that five out of six matched values are in fact co-clustered in first
two pages, with one outlier (#4) that resides in the overflow page and avoid seeking
back and forth. While the above example assumes a separate B+-Tree over the table,
index-organized tables (IOTs) lead to a similar higher number of seeks for the same
query.

The only way to take advantage of this seek reduction is by determining the level of
physical co-clustering within attribute {ID}, information which is maximally avail-
able through the RowID column of the table. Thus for instance, if the database was
indexed on RowID, with each range of RowID values consisting of six table rows, then
such an index will quickly determine the physical co-clustering and lead to two seeks
instead of three seeks. In general, the performance difference can be much larger. The
sparse index on the right in Fig. 5 illustrates that fewer seeks are possible by knowing
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Fig. 5 Storage layout of native database indexes and PL I

the state of physical clustering. Using this basic idea, PL I implements a sparse index
and automatically rewrites SQL queries to include the database-internal row identifier
column to perform range scans. PL I can be implemented for both regular attributes,
or order-preserving expressions on attributes.

4.1 Physical data organization

The physical layout of table data within a database file must to be known to build a
PL I . In most DBMSes (e.g., Oracle and PostgreSQL), the location of rows can be
determined by accessing the internal {RowID} column. However, the organization
of data within a file may be different than that of the disk image since the file may not
be written to consecutive sectors.

To verify the fragmentation of DBMS files on disk (fragmentation of the file can-
not be determined through {RowIDs}), we use an implementation of database page
carving, DBCarver [29]. Database page carving reconstructs the contents of rela-
tional database pages without relying on the file system or DBMS itself. This method
is inspired by traditional file carving [10,23] techniques that reconstruct data (active
and deleted) from disk images or RAM snapshots without the need for a live sys-
tem. Figure6 provides an overview of DBCarver, which consists of two main
components: the parameter collector(A) and the carver(F). The parameter detector
calibrates DBCarver for the identification and reconstruction of DBMS pages. To
do this, the parameter detector loads synthetic data(B) into a working version of
the particular DBMS, and it captures underlying storage(C). The parameter detector
then learns the layout of the database pages, and describes this layout with a set of
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Fig. 6 Architecture of DBCarver

parameters, which are written to a configuration file(E). For example, the parame-
ter detector records the location of row directory, the endianness of addresses, and
the size of each address (typically a 16-bit number) as parameters in the configu-
ration file. A configuration file only needs to be generated once for each specific
DBMS and version, and it is likely that a configuration file will work for multiple
DBMS versions as page layout is rarely changed between versions. DBCarver has
been tested against ten different databases: PostgreSQL, Oracle, SQLite, DB2, SQL
Server, MySQL, Apache Derby, Firebird, Maria DB, and Greenplum. It can parse disk
storage and describe the exact physical layout (based on disk address) of each database
table.

4.2 PLI structure andmaintenance

The structure of PL I is similar to that of a traditional sparse primary index. A regular
sparse index will direct access to the correct page or sequence of pages instead of
referencing particular rows. For example, in Fig. 5, PL I consists of 3 buckets of
approximately sorted data and an overflow bucket for a total of 20 rows in the table.
Instead of storing 20 index entries, PL I only contains 4; the first bucket covers first
two pages with six rows—PL I structure knows that all indexed values in that range
are between #1 and #10 (without knowing the exact order) and can direct the query
to scan this range if the predicate matches. The following two pages belong to bucket
two which includes range between #7 to #14; note that approximate nature of sorting
can result in overlap between buckets, e.g., PL I does not know whether #8 is in the
first or second bucket and will direct the query to scan both buckets for this value.
Thus, PL I can conceptually tolerate any amount of out-of-orderness, but performance
will deteriorate accordingly. In addition to the indexed buckets, we also include the
overflow bucket (values [5–13]) which contains recent inserts.

We next discuss maintenance costs. Interestingly, PL I ’s approach requires no
maintenance for deletes. Sparse bucket-based indexing knowingly permits false-
positive matches that will be filtered out by the query after I/O was performed.
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Therefore, the index does not change when rows are deleted (e.g., in Fig. 5, dele-
tion of #6 will not change the first bucket in any way). Update queries can be viewed
as DELETE + INSERT, permitting us to treat updates as inserts as well.

A new insert would typically be appended at the end of table storage, unless there
is unallocated space on one of the existing pages and the database is willing to make
in-place overwrite (Oracle has a setting to control page utilization, while PostgreSQL
avoids in-place overwrite inserts). If the insert is appended, the overflow bucket needs
to be updated only if the range of values in the bucket changes. For example, in Fig. 5
overflow bucket is [5–13] and thus does not need to be changed when #10 is inserted
into overflow.

There are several ways to determine the location of the newly inserted row to
update PL I (RowID is the internal database identifier that reflects location of the
row). Our current prototype queries the DBMS for it (SELECT CTID in PostgreSQL or
SELECT ROWID in Oracle). However, for bulk inserts we can also use DBCarver to
inspect the storage and determine the RowID ourselves. The new insert may overwrite
a previously deleted row at any position (as we are avoiding maintenance overheads of
clustering), which could potentially widen range of values in that bucket creatingmore
false-positives on read access. The degradation is gradual, but eventually the table will
need to be reorganized. This storage reorganization can be done by targeting specific
rows (executing commands that will cause out-of-order rows to be re-appended) or by
resorting the whole table.

The storage size and the cost to maintain the PL I structure is proportional to the
number of buckets that it uses. We have experimented with different granularities and
bucket sizes—and, in practice, having a bucket of fewer than 12 disk pages does not
improve query performance. Assuming about 80 rows per page, PL I structure only
needs one bucket per one thousand (1000) rows. An index structure of this size can be
kept in RAM and used or maintained at a negligible overhead cost.

4.3 Query rewrite

In order to use PL I index, incoming SQL queries are rewritten to take full advantage
of the current layout of the table. PL I -based predicates are added to the query to
restrict the disk scan range to specific buckets; bucket-based indexing is approximate
by nature and provides a superset range in which data of interest resides. For example,
consider Fig. 5—the following query predicate:

id BETWEEN #1 AND #6

is rewritten into:
id BETWEEN #1 AND #6

AND (CTID BETWEEN Row1 and Row6)

AND (CTID BETWEEN Row19 and Row20)

The first introduced condition represents a range of regular buckets (in that case the
first bucket from PL I ) and the second condition corresponds to the special overflow
bucket. This access range results in a more efficient scan pattern of disk byminimizing
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Fig. 7 Architecture of PLI

seeks and by removing the overhead of a secondary index. The PL I condition does
include false-positives (specifically, id #10 at Row6 and #13 at Row20) but they will
be filtered out by the original query predicate (id BETWEEN #1 AND #6). PL I query
rewrite relies on an internal RowID pseudo-column, exposed by nearly all DBMSes
(known as ROWID in Oracle and CTID in PostgreSQL). In PostgreSQL (but not in
Oracle), this internal pseudo-column should also be indexed for the efficient execution
of PL I -rewritten queries; we note that in PostgreSQL 10 indexing of CTID column
has been disallowed.

4.4 Architecture

The architecture of PL I operation is shown in Fig. 7. We rely on the native database
table(A) with no modifications or assumptions about DBMS engine features (e.g.,
underlying DBMS may not even support clustering). Initially, we use DBCarver to
inspect table layout as it currently exists. As shown in [29], looking for specific pages
in a table is orders of magnitude faster compared to full reconstruction of disk image.
If the table is sufficiently (approximately) organized in the desired fashion and can be
represented as a sequence of bucket ranges (e.g., first 10 pages contain function values
[0–10], next 10 pages contain function values [9–12], etc.), then PL I can be built
immediately; otherwise, we need to reorganize the table. If the table is not already
sorted as we prefer, we impose the ordering by recreating that table structure. In either
case we discard the existing secondary index (as PL I will replace it). Database user
can choose arbitrary ordering that need not be unique or strict; any function or rule
supported by ORDER BY clause would be acceptable. To order table T on function of
columns (A-C), we create a new structure as:

CREATE TABLE T_PLI AS

SELECT * FROM T

ORDER BY (A-C).
This new table structure replaces the original table and requires very little maintenance
from the hostDBMS (since new rows can be appended at the end of the table). Note that
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any sorting function supported by DBMS can be chosen (e.g., income-expenses
or

√
income).

Once the sorted table is created, we use DBCarver to validate table’s storage
sorting at the physical level. The table is likely to be sorted (or at least mostly-sorted)
as the ORDER BY clause specified as non-clustered tables are generally stored in order
of insertion. However, although such sorting is not guaranteed—in practice, new table
may be stored differently on disk (most notably in Oracle). Using the underlying
sorting, we next generate a bucket mapping structure, recording RowID boundaries
for each bucket and creating the PLI structure.

4.5 PLI validation through initial experimentation

Experiments were performed on PostgreSQL 9.6 and Oracle 12c DBMSes. The lim-
ited availability of the database-internal RowID pseudo-column prevented us from
using other DBMSes. Also, as previously mentioned, newer versions of PostgreSQL
(i.e., 10 and on) do not allow the CTID pseudo-column to be indexed, making them
inapplicable. We used data from the Unified New York City Taxi Data Set [24]. The
experiments reported here were performed on servers with an Intel X3470 2.93 GHz
processor and 8GB of RAM running Windows Server 2008 R2 Enterprise SP1 or
CentOS 6.5.

4.5.1 Experiment 1: regular clustering

The objective of this experiment is to compare the performance of a table with a native
clustered index and a table with a PL I . In Part-A, we collected query runtimes using
a predicate on the sorted attribute. In Part-B, we compare the time to batch insert data
into each table. In Part-C, we repeat the queries from Part-A.

Part A We began with 16M rows (2.5GB) from the Green_Trips table sorted by
the Trip_Distance column. For each DBMS, we created one table that imple-
mented the native clustering technique and another table that implemented PL I .
Since an Oracle IOT can only be organized by the primary key, we prepended the
Trip_Distance column to the original primary key. We then ran three queries,
which performed sequential range scans, with selectivities of 0.10, 0.20, and 0.30.
Table 1 summarizes the runtimes, which are normalized with respect to a full table
scan (i.e., 100% is the cost of scanning the table without using the index) and the num-
ber of I/O over different query selectivity. Note that the I/O access is mandated by the
PLI buckets accessed by the query; therefore, the number of I/Os is proportional to the
reported runtimes. Since our goal is to evaluate a generalized database approach, the
absolute time of a table scan is irrelevant; we are concerned with the runtime improve-
ment resulting from indexing. In PostgreSQL, both approaches exhibited comparable
performance, a few percent slower than the optimal runtime (e.g., for 0.20 selectivity
the optimal runtime would be 20% of the full table scan). PL I remained competitive
with native PostgreSQL clustering—the slight edge in PL I performance is due to not
having the overhead of accessing the secondary index structure. PostgreSQL has to
read the index and the table, while PL I access only reads the table (PL I structure
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Table 1 Query runtimes as percent of a full table scan and the number of I/O (clustered on attribute vs
PL I )

DBMS Index type Runtimes # of I/O

Query selectivity Query selectivity

0.10 0.20 0.30 0.10 0.20 0.30

PostgreSQL Clustered 15% 26% 38% 2,412 4,181 6,111

PLI 13% 25% 36% 2,091 4,021 5,790

Oracle Clustered 31% 57% 86% 4,986 9,167 13,831

PLI 12% 21% 32% 1,930 3,377 5,146

Table 2 Query runtimes as percent of a full table scan and the number of I/O (clustered on attribute vs PL I
after bulk insert)

DBMS Index type Runtimes #of I/O

Query selectivity Query selectivity

0.10 0.20 0.30 0.10 0.20 0.30

PostgreSQL Clustered 90% 115% 139% 15,922 20,344 24,590

PLI 23% 33% 44% 4,069 5,838 7,784

Oracle Clustered 123% 238% 347% 21,760 42,104 61,387

PLI 20% 31% 40% 3,538 5,484 7,076

itself is negligible in size). In Oracle, PL I significantly outperformed the IOT for the
range scans. The queries that used a PL I were about three times faster than those that
used an IOT. Oracle performance is impacted by lower average page utilization (and
unused space) in the nodes of the IOT B-Tree. In all cases, the I/O cost was similarly
reduced through the use of PL I .

Part B Next, we bulk loaded 1.6 million additional rows (250MB or 10% of the
table) into each Green_Trips from Part-A. In PostgreSQL, the records were loaded
in 263s for the table that implemented native clustering and 62s for the table that
implemented a PL I . Clustering is a one-time operation in PostgreSQL and ordering
is not maintained as inserts are performed. Therefore, the observed overhead was
primarily associated with the clustered index itself. A PL I does not have a significant
maintenance cost due to its sparse and approximate nature. In Oracle, the records
were loaded in 713s for the IOT, and 390s for the table that implemented a PL I .
Since IOT used a B-Tree to order records, the observed high overhead was caused by
maintenance of the B-Tree as new records were inserted. Note that the I/O costs are a
lower-bound approximation based on query runtimes. The implementation of IOT in
Oracle is database-specific and not publicly available. IOT may have incurred further
I/O overheads.

Part C To evaluate the maintenance approach for each index, we re-ran the queries
fromPart-A. Table 2 summarizes the resulting runtimes. For bothDBMSes, the queries
that used a PL I incurred a penalty of 10% or less compared to Part-A, which is con-
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Table 3 Query runtimes as percent of a full table scan and the number of I/O (clustered on expression-based
index vs PL I )

DBMS Index type Runtimes # of I/O

Query selectivity Query selectivity

0.10 0.20 0.30 0.10 0.20 0.30

PostgreSQL Clustered 13% 25% 37% 2,091 4,021 5,951

PLI 14% 24% 36% 2,252 3,860 5,790

Oracle Clustered 30% 62% 100% 4,825 9,971 16,082

PLI 11% 21% 32% 1,769 3,377 5,146

sistent with Part-B inserting 10% worth of new rows. All newly inserted records were
appended to the end of the table and were therefore incorporated into the overflow
bucket (requiring minimal maintenance in the process and causing limited query per-
formance deterioration). In PostgreSQL, the queries using the native clustered index
slowed down by a factor of about 4 due to the interleaving seeks inefficiency discussed
in Sect. 1. In Oracle, the queries using native clustering also slowed down by a factor of
about 4, albeit for a different reason. While the IOT maintains logically sorted records
within the leaf node pages, these leaf node pages are not necessarily ordered on disk
duringB-Tree re-organization resulting in an increased number of seeks for the queries.

4.5.2 Experiment 2: expression clustering

The objective of this experiment is to expand upon Experiment 1 by evaluating an
expression-based (rather than attribute-based) index to demonstrate the extendability
and flexibility of the PL I approach. In Part-A, we collected query runtimes using a
predicate on the sorted attribute. In Part-B, we compare the time to batch insert data
into each table. In Part-C, we re-run the same queries from Part-A.

Part A We began with 16M rows (2.5GB) from the Green_Trips table, and we
sorted the table on T ip_Amount

Trip_Distance function (i.e., tip-per-mile for each trip as our order-
preserving function). For each DBMS, we created one table that implemented the
native clustering technique and another table that implemented PL I . As Oracle does
not support function-based indexes, we created a computed column, and prepended
this computed column to the primary key so an IOT could be built. We then ran three
queries, which performed sequential range scans with selectivities of 0.10, 0.20, and
0.30.

Table 3 summarizes the number of I/Os and the runtimes, with runtimes normalized
with respect to a full table scan over different query selectivity values. These baseline
performance results are very similar the result from Experiment 1: Part-A demonstrat-
ing that query access for the function based index does not impose a significant penalty
for any of the approaches. The runtimes for the Oracle IOTwere slightly higher, which
we believe were caused by additional storage space used by the computed column.

Part B Next, we bulk loaded 1.6 million additional rows (250MB or 10% of the table)
into each Green_Trips from Part-A. For the Oracle IOT containing the computed
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Table 4 Query runtimes as percent of a full table scan and the number of I/O (clustered on expression-based
vs PL I after bulk insert)

DBMS Index type Runtimes # of I/O

Query selectivity Query selectivity

0.10 0.20 0.30 0.10 0.20 0.30

PostgreSQL Clustered 52% 79% 93% 9,199 13,976 16,452

PLI 23% 32% 44% 4,069 5,661 7,784

Oracle Clustered 259% 461% 706% 45,819 81,554 124,896

PLI 20% 30% 40% 3,538 5,307 7,076

column, we previously generated the value, and we stored it in the raw data file. In
PostgreSQL, the records were loaded in 917s for the table that implemented native
clustering, and 70s for the table that implemented a PL I . This demonstrates that a
traditional expression-based index is far more expensive to maintain than a regular
index, producing much higher overheads. PL I requires very minimal maintenance—
same as in Experiment 1, without an expression-based clustering. The insert cost into
the table itself is using append and is thus comparable for both. In Oracle, the records
were loaded in 1527s for the IOT, and 408s for the table that implemented a PL I .
This drastic overhead increase in the time to load the data (compared to Experiment
1: Part-B) can be explained by data distributed. The data in Experiment 1 was more
uniform requiring less B-Tree rebuilding, while computed ordering was much more
scattered resulting in more B-Tree restructuring.

Part C To evaluate the maintenance penalties for each index, we re-ran the queries
from Part-A as summarized in Table 4. Just as in Experiment 1, the queries that used
PL I increased in cost by about 10% of a full table scan—as expected because inserted
records were appended to the overflow bucket causing queries to scan additional 10%
of overflowdata. In PostgreSQL, the runtimes for the native expression-based clustered
index increased by about a factor of 3 due to interleaving seeks as in Experiment 1.
Interestingly, the penalty caused by computed index and storage fragmentationwas not
nearly as significant as regular built-in clustered index. We expect that PostgreSQL
makes some additional effort to mitigate the overhead of interleaving seeks when
utilizing an expression-based clustered index. In Oracle, the queries using the IOT
increased by a factor of about 7, which is significantly more than Experiment 1: Part-
C. This difference can be attributed to a greater amount of fragmentation caused by
the B-Tree restructuring in Part-B.

5 PLI+: an in-memory Physical Location Index for delayed clustering

5.1 Limitations of PLI

We demonstrated that PL I is competitive with a clustered index when performing
read-only range scan queries on approximately sorted data. However, as inserted data
is added to the overflow-page (or overflow bucket), PL I performance degrades (since
the entire overflow bucket is always scanned). To address this limitation, we propose
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Fig. 8 The architecture of PL I+

an extension of PL I called PL I+. PL I+ implements bucket-based reads similar
to PL I , but additionally maintains performance for insert-intensive workloads. We
describe PL I+ in the remainder of this paper.

5.2 Overview of PLI+

PL I+ is a write-optimized external index for PL I that live databases can use
to approximately sort the data in memory and reduce the number of I/Os. PL I+
addresses two primary shortcomings of PL I . First, as the size of overflow bucket in
PL I increases, there is an increased need to cluster, reducing the effectiveness of the
index. PL I+ further delays the need to cluster by approximate sorting of incoming
data in memory. Current techniques to sort data either sort data locally in memory,
i.e., no global sorting of data requiring an expensive merge step later [19], or require
large buffers to sort data in its entirety. PL I+ approximately sorts tables by feeding
incoming data into several intervals and maintaining a tree of intervals in memory.
Data within each interval is not sorted. In subsequent section, we describe the structure
of this in-memory interval tree, how it is initialized, and maintained. Second, PL I+
improves on PL I insertion granularity; PL I inserts new data at a page level (typically
at 32KB or 64KB). PL I+ reduces the number of I/Os required for clustering by
favoring large granularity of I/O (i.e., page size is larger than 512KB) [16].

5.3 PLI+ Structure, initialization and querying

Figure 8 shows how PL I+ operates along with PL I table. PL I+ consists of
three components, the in-memory interval tree, the buckets and their positions in a
log file, and the flushing buffer. Figure 9 describes how the three components relate
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Fig. 9 The internal structure of PL I+

to each other. First, a path of the in-memory interval tree3 is shown from root to
leaf nodes. Leaves consist of multiple data buckets, with each bucket identified by an
interval [li , hi ]. Note that the intervals of all leaves are disjoint. Also, in order for the
ranges of in-memory tree to cover all input keys, we set the intervals of leftmost and
rightmost leaf nodes with very large and very small numbers representing infinity (i.e.,
((−∞, h0] and [ln,+∞)). Buckets consist of pointers to data tuples stored in a data
buffer. Non-leaf nodes simply record the I nterval[Lowi , Highi ] over all buckets of
the subtree pointed by it. Thus technically, all of the data is stored in the leaves, while
intermediate nodes are only used to store broader interval ranges and guide the search
operation to narrower intervals in the leaves.

As a new data tuple (each tuple has a key) arrives, in-memory tree will be traversed
using the tuple’s key to find out the appropriate leaf node to append this new tuple.
When a bucket is full, its data (i.e., tuples) will be immediately moved from the data
buffer to a flushing buffer, its metadata is indexed in PL I table and the interval that
previously contained this bucket is cleared. This means that there are no full leaf nodes
in the in-memory tree. In other words, it is always possible to find an appropriate leaf
node to insert a new tuple.

3 This is a skeleton tree. At the initial stage, all tree nodes are initialized with meta data (e.g., intervals,
pointers, etc.) but nodes initially do not contain any data.
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Table 5 Notations used in the paper

Notation Description

NNode Number of nodes

NB Maximum number of buckets in buffer

NI Maximum number of buckets in a leaf node

BT Number of buckets in database

CSize Buffer cache size

BSize Bucket size

[XL ; XH ] Range value of indexed key

f u(x) uniform distribution function

f G (x) Gaussian distribution function

θ Buffer cache usage factor

μ The mean value

δ The standard division

B(Ni , Pj ) Number of generating buckets at node Ni , position Pj during time window WT

M Average number of generating buckets

Bh Upper-bound number of generating buckets

Bl Lower-bound number of generating buckets

Flushing buffer contains full bucketswhich are ready to be flushed onto the database
disk. We distinguish between data buffer and flushing buffer as PL I+ favors large
granularity I/O and aggregates data in flushing buffer before writing it out to disk. For
example, in our most optimal setting a typical bucket size is around 256KB, and a
flushing buffer is of size 20MB, so one disk I/O is performed when approximately 80
buckets are full. PL I+ also records which interval ranges within leaves generate more
full buckets. These are logged in a bucket-position data structure. This information
will be used for maintaining the structure of PL I+ so as to utilize maximum available
memory for organizing the data in intervals (see Sect. 5.4). In other words, more
memory must be allocated for intervals that have more data distributed within them.
Currently, we initialize the intervals of the in-memory tree from an interval B-Tree [6],
which provides historical initialization.Alternatively, uniformorGaussian distribution
can also be used. The next section describes how these distributions can be used to
determine initial intervals.

5.3.1 In-memory Interval tree initialization

We support three methods to initialize the in-memory interval tree’s structure: (i)
historical initialization, (ii) uniform distribution and (iii) Gaussian distribution. We
will briefly describe these methods and their assumptions; all notations used in this
section are described in Table 5. Historic initialization was used for experiments.

Historical initialization This method relies on the assumption that the data distribution
in the injection flow follows a consistent pattern. Therefore, the structure of in-memory
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interval tree should adapt to the history of data distribution. Based on the knowledge
of data distribution log file we build an interval B-Tree [6] and then copy its structure
(i.e., all node metadata and its intervals) to in-memory interval tree. At the beginning
stage (when there is no history of data distribution), we consider data to be using
uniform distribution that will be discussed in the next part.

Uniform distribution The uniform distribution [31] is defined by Formula 1. The
uniform distribution in indexed keys of the insertion leads to equal interval division
for the in-memory interval tree. Hence, we initialize the structure of the in-memory
interval tree with uniform intervals. Particularly, the total number of nodes (NNode)
and maximum number of buckets in buffer (NB) of the in-memory interval tree are
determined by Formula 2. Interval information of each bucket is defined by Formula 3.

f u(x) =
{ 1

b−a f or b ≥ x ≥ a
0 f or x > b or x < a

(1)

NB = θ
CSize

BSize
and NNode = NB

NI
= θ

CSize

BSize.NI
(2)

I ntervali = (ai , bi ) ,

{
ai = a + i . b−a

NB

bi = ai + b−a
NB

(3)

Gaussian distribution Gaussian distribution or normal distribution [31] is defined by
Formula 4. The division of intervals ismade followingGaussian distribution as defined
in 5, where NI is determined by Formula 2. The main idea is to have small interval in
the high rate distribution range and vice versa.

f G(x) = 1√
2πδ2

e− (x−μ)2

2δ2 (4)

where μ is the mean value and δ is the standard deviation.

I ntervali = (ai , bi ) ,

{
ai = XL + i . 1

f G (x).NB

bi = ai + 1
f G (x).NB

(5)

Even though the in-memory tree structure (described in the next part) will dynam-
ically adjust to the current status of input data distribution, it is important to select
a suitable initialization technique at the beginning. First, in-memory tree will not
immediately arrive to the optimal structure, instead gradually adapting—and a better
in-memory tree may only be obtained after several maintenance calls. Second, all of
the buckets generated before the adjustment takes place are not compact and if stored
on disk, will degrade the scanning performance.

5.3.2 PLI+ querying

Algorithm 1 presents the search operation in PL I+. It searches for all tuples in a
database table where keys belong to a given interval. Query answer in PL I+ is a
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combination of the results of two searches (Line 5): tuple scanning in the in-memory
PL I+ (Lines 6–17) and bucket scanning in the PL I index table (Lines 18–21).
Searching in PL I+ returns tuples that are part of the query result, while the results
(in buckets) from PL I index table are set of on-disk buckets which need to be further
filtered to eliminate irrelevant tuples (Line 4). To search over interval ranges, the search
value is compared with the maximum high value over all interval ranges in the subtree
rooted at a non-leaf node (Line 15).

Algorithm 1: Search for all tuples whose keys belong to a given interval.
1 Search(interval, Output):
2 SearchTree(root, interval, Tuples1);
3 SearchPLI(PLIRoot, interval, Bucket);
4 Tuples2 ←− Load and filter the list of buckets in Buckets
5 Output ←− Combine Tuples1 and Tuples2

6 SearchTree(node, interval, Output):
7 if (node.isLea f ) then
8 foreach (entr y in node) do
9 if (entry.key is inside interval) then

10 Output ←− Add entr y to the result list;

11 else
12 for (i = 0 to node.length) do
13 if (interval[1] < node.child[i].interval[0]) then
14 break;

15 if (interval[0] ≤ node.max[i]) then
16 /*Search in each child*/
17 SearchTree(node.child[i], interval, Output);

18 SearchPLI(PL Iroot , interval, Output):
19 foreach (bucket in PL Iroot .Table) do
20 if (bucket .interval intersects with interval) then
21 Output ←− Add bucket to the result list;

5.4 Maintaining PLI+

The intervals of the in-memory interval tree are created during the initialization stage.
However, the distribution of indexed attribute values may change rapidly, requiring
adjustment in the interval ranges in the in-memory interval tree. The in-memory inter-
val tree resides on a restricted pool of data buffer. Each new incoming data tuple is
appended to the end of this buffer. A bucket for an interval range is formed when a
fixed number of data tuples (e.g., 1000 or 2000) are placed into the buffer. When the
bucket is full, it is moved to a flushing buffer.Many interval ranges in an incoming data
distribution do not receive a sufficient number of tuples to become full, and thus must
be grouped or merged to form a full bucket, so that it can be moved to the flushing
buffer. Similarly, if a specific interval range received a large number of tuples that
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form too many full buckets, this interval must be split because the large number of full
buckets corresponds to a high density of data in this interval. As a result, the chosen
interval range might be too broad for high selectivity queries to performwell, i.e., they
may read more data than required.

To adjust the in-memory interval tree, currently we adopt a greedy heuristic. We
note a single parameter, the number of times a given interval range becomes full to
form a bucket, in the bucket position log data structure, and use this to merge or split
bucket. If a given interval range in the leaf node has generated a number of buckets
that is larger than the maximum value of a threshold, it is split, else if the number
if greater than the minimum value of a threshold, it is merged with the neighboring
bucket. Algorithm 2 describes the procedure. First, a data buffer to keep the new tree
will be initialized (Line 3). Next, it begins with the left leaf-node of the tree (Line 2)
and goes through all remaining leaf-nodes. At a position (i.e., an entry in a node), this
process counts the history of generating buckets for this position in the tree (Line 7). If
the large number of generating buckets (compared to the average number of buckets)
is counted, then a split is applied on this position. Alternatively, if there is a small
number of buckets generated at an entry, it should be merged with its sibling entries
(Line 8). Finally, the new tree will be built on top of the chain of new leaves (Line 18).

Algorithm 2: Reshape in-memory interval Tree’s structure
1 Reshaping():

Input : The root of the tree, Bucket Position.log
Output: The root of the new tree

2 lea f Node ←− Get the left leaf-node of the tree
3 bu f f er [] ←− initialize a data buffer for the new tree
4 while (leafNode != NULL) do
5 bu f f er .cur ←− Load lea f Node to the first available position in buffer
6 foreach (entr y in bu f f er .cur .data) do
7 1. Count the number of generated bucket at this current position of entr y and

lea f Node in the tree using data from Bucket Posi tion.log
8 2. Determine which actions (i.e., Split, Merge or Keep) will be applied to entr y

according to above number

9 lea f Node ←− lea f Node.sibling

10 /*Merge operations*/
11 foreach (entr y that requires a merge in bu f f er ) do
12 1. Get a sibling entry having criteria: not null, small number of generated buckets.
13 2. Merge entr y with its sibling entry

14 /*Split operations*/
15 foreach (entr y that requires a split in bu f f er ) do
16 split this entry into 2 sub-entries

17 Clear content of root of the tree
18 root ←− Rebuild the new root from the chain of leaf nodes in bu f f er

It is to be emphasized the PL I+ is a tree for delaying clustering in databases
that requires clustering due to large number of bulk-inserts, and the user queries are
predominantly read-only. This is the case of most scientific databases in which large
number of inserts but few deletes and updates are present. Consequently, delete and
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Table 6 NYC and HEP dataset
sizes

Table Records (M) Size (GB)

(a) NYC datasets

NYC_T1 1.5 .23

NYC_T2 15 2.2

NYC_T3 30 4.4

NYC_T4 59 8.8

NYC_T5 148 22

(b) HEP datasets

HEP_T1 28 3

HEP_T2 289 30

HEP_T3 587 61

HEP_T4 1200 122

HEP_T5 2900 305

update operations do not need to be optimized and PL I+ treats them similarly to
PL I .

6 Experiments

In Sect. 4.5, we have shown the effectiveness of PL I for a variety of queries and
DBMSes. In this section, we evaluate the performance of PL I+ aswell as demonstrate
its usability.

Initial setup Our experiments were performed against a PostgreSQL RDS cloud
instance running Ubuntu 16.04 64-bit OS with an Intel Core i7-3770 3.4GHz CPU,
8GB of main memory, and a 1TB SATA HDD. We have selected two real-world data
sets: New York City (NYC) Taxi dataset of year 2016 [25] and High Energy Physics
(HEP) dataset [21]. We used various table sizes from each dataset, which are summa-
rized in Table 6a, b. To perform experiments for PL I+, we initialized a table with
1GB of data clustered on the tr i p_distance column in NYC Taxi dataset and the Pt
of Muon column in HEP dataset, and bulk loaded the remaining raw data. A set of
read-only (i.e., SELECT) queries that we used to measure performance of our indexes
is summarized in Table 7. In Table 7, key range refers to delta difference in the value
of the clustered attribute, i.e., range between X and X+ < keyrange >, where X
refers to the value of the attribute. The selectivity refers to the ratio of the number of
tuples in the query result to the total number of tuples in the database. Selectivity is
larger than the key range due to higher density of the data overlapping the key range
(e.g., in Q4, a 2% range query covers 11.1% and 17.5% in NYC and HEP datasets
respectively).

Data distribution To demonstrate the benefit of PL I+, we examine the entropy of
the indexed attribute, i.e., tr i p_distance column in NYC Taxi dataset and the Pt of
Muon column in HEP dataset as present in the downloaded dataset. The entropy [11]
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Table 7 Query range and
selectivity

Range query Key range Selectivity

NYC HEP

Q1 0.0025 0.028 0.031

Q2 0.005 0.035 0.059

Q3 0.010 0.067 0.104

Q4 0.020 0.111 0.175

Q5 0.050 0.191 0.268

Fig. 10 The entropy of indexed key in NYC and HEP datasets

is computed based on Eq. 6. In Eq. 6, pi is the frequency of occurrence of a given
value of the indexed attribute over the total number of values in the domain range.
Entropy, E , ranges from 0 to 1, with a random distribution at E = 1.

E = −
∑

pi ∗ logn(pi ) (6)

To compute entropy, we constructed 20 1-million-tuple windows, with each window
containing around one million of tuple insertions. Figure 10 shows the entropy values
for NYC data remain around 0.71 for all 20 windows, and for HEP periodically ranges
from 0.75 to 0.85. Nevertheless, entropy for both datasets is high, showing that the
data values are mostly random.

Comparative indexing methods We selected three different indexing approaches that
we believe provide a representative competition against PL I+: secondary index,
PL I [30], and LSM-Tree [19]. The secondary index served as a baseline comparison
since it is the most commonly utilized indexing technique. We re-used our previous
work to implement PL I , since PL I+ is essentially an extension of this work. We
applied 100MB of buffer for all evaluated candidates. We implemented LSM-Tree
since this approach was designed for massive data ingestion. To ensure fairness of our
comparison, we applied the same configuration to all indexing approaches.

It is important to emphasize that range scanqueryperformanceof a clustered index is
always optimal, since the data in table is always physically ordered on disk. However,
keeping a table clustered is unrealistic as the table size and the query throughput
increases. The cost to maintain a clustered index is proportional to the table size as
shown in Table 8. During the clustering maintenance operation time, the database may
experience a downtime and the table may become inaccessible for querying.
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Table 8 Time to cluster NYC
Taxi and HEP dataset tables

Table Clustering (min)

(a) NYC datasets

NYC_T1 0.9

NYC_T2 6.8

NYC_T3 11

NYC_T4 34.5

NYC_T5 93.6

Table Clustering (h)

(b) HEP datasets

HEP_T1 0.4

HEP_T2 1.5

HEP_T3 2.5

HEP_T4 8

HEP_T5 21.6

6.1 Comparison of query execution performance

We examine the impact on query performance for different indexing methods i.e.,
clustered index, unclustered index, table scan, PL I , PL I+, and LSM-Tree. We fur-
thermore considered PL I+ at different bucket size settings (i.e., 250 tuples/bucket,
500 tuples/bucket, 1000 tuples/bucket and 2000 tuples/bucket). For this experiment,
we indexed the NYC_T5 dataset, which is 22GB in size, and run our queries with
different data selectivity varying from 0.01 to 0.57. Our primary result is shown in
Fig. 11 (we excluded the extremely slow runtimes of unclustered index from the chart
for better readability).

The cost of full table scan stands at a constant value of 350s. We selected the
cost of table scan as a baseline and calculated the relative performance compared
to that option. Figure 11 shows the relative performance, normalized with respect
to a full table scan (i.e., 100% is the cost of scanning the entire table without using
indexing). At one extreme, unsurprisingly, is the unclustered index, which performs
poorly over queries at all selectivities. With a high number of random I/Os in the
unclustered index, execution time of querying even 0.01 of the table is slower than
that of the table scan. The query execution time of unclustered index rapidly grows
as query selectivity increases. For example, it is 10X slower than the table scan at
query selectivity of 0.03. We therefore excluded the runtimes of unclustered index for
better readability of the chart. On the other extreme is the clustered index that always
outperforms other indexingmethods at all values of query selectivity. This is expected,
since table data is physically clustered on disk before querying. However, maintaining
physical clustering data is impractical due to its high cost (see details in Sect. 3 and
Table 8). The performance of PL I is dominated by the cost of overflow bucket scan.
As discussed earlier, PL I is designed for read-oriented database and approximately
sorted data. However, this experiment deals with large injection and randomly ordered
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Fig. 11 Relative performance of queries at varying selectivity with different indexing methods on hard disk

data. Specifically,we startedwith 1GBof clustered data and inserted 21GBof unsorted
data. Therefore, most of data in PL I is redirected to the overflow-page, degrading the
scanning performance of PL I . Scanning overflow-page of PL I is done sequentially
with large granularity I/Os, and thus the query execution cost becomes similar to table
scan over query selectivities higher than 0.01.

The performance of queries using PL I+ is significantly better than other candidates
and tends to approach the performance of the clustered index (optimal performance)
for high selectivity queries (0.01–0.15) over bucket sizes larger than 1000. The larger
the size of bucket used in PL I+, the closer its query execution times are able to
track clustered index runtime, improving PL I+ runtime for larger ranges of query
selectivity. For example, PL I+ (2000) shows the best performance among the tested
buckets, with better performance than a table scan for query selectivity as high as
0.4. It is to be emphasized that in large scientific databases full table scans or queries
with low selectivity are infrequent; often scientific users are looking for needles in
haystack [28].

We can achieve better performance in PL I+ by increasing the size of the bucket.
However, having very large bucket size requires larger buffer for in-memory interval-
tree to be loaded. Furthermore, therewas no difference in the bucket compactness value
ARB (see Sect. 6.3) for bucket sizes larger than 1000 tuples/bucket. The minimum
amount of data accessed by queries with low selectivity is expected to be larger as
bucket size is increased (since at least 1 full bucket must be scanned by all query),
and thus a very large bucket size can degrade overall PL I+ performance. In our later
evaluation, to avoid using large buffer for in-memory interval tree, we fix the bucket
size at 1000 tuples/bucket, as our compactness measure presented in Sect. 6.3 reaches
the maximum value at this bucket size.
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Fig. 12 Performance of queries with different indexing methods on SSD

We also evaluated query runtimes on the NYC Taxi dataset (i.e., NYC_T5) for
each indexing approach on SSD drives. Figure 12 summarizes these query runtimes.
First, the performance of all methods is improved on SSD, since the throughput of
SSD is much better than HDD. Also, because the cost of random I/O is similar to
sequential I/O on SSD, we observed a significant improvement in query runtimes of
both unclustered index and LSM-Tree indexes compared toHDD results. PL I+ offers
the smallest execution time in all types of queries on SSD due to large granularity of
reading data, which is favored in SSDs; SSD performance decreases at page I/O which
is performed in PL I and LSM.

6.2 Amount of data accessed

The objective of this experiment is to compare the the amount of data accessed by the
different indexing approaches.

To compare the amount of data accessed by each indexing approach, we executed
our set of queries (Table 7) against the NYC Taxi and the HEP datasets. We measured
the data access for each index by collecting the read data based on our implementation
of PL I+ and LSM-Trees, and clustered index. Before we executed each query, we
flushed both the DBMS and OS caches.

Figure 13 summarizes the results for the data access. As expected, the LSM-Trees
and the clustered index accessed a similar amount of data for all queries from both
the NYC and HEP datasets. This is because data in the LSM-Trees and the clustered
index are completely clustered. Meanwhile, PL I+ accessed a slightly higher amount
of data compared to the LSM-Trees and clustered index. The explanation is that PL I+
uses approximately sorted intervals thus reading some unnecessary data. Also, PL I+
reads data in a bucket units rather than individual pages, thus an upper bound on
the number of buckets covering matching data may be accessed instead of the exact
number of pages. This performance in PL I+ (in amount of data accessed) shows that
the quality of buckets in PL I+ is close to optimal intervals for the queries (i.e., high
level of compactness, see Sect. 6.3 for the details) leading to fetching only the relevant
data in PL I+. Finally, PL I accessed significantly more data than the other indexing
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Fig. 13 Amount of data accessed by different indexing methods. We eliminated PL I due to very large
amount of data accessed

approaches in this experiment. We eliminated PL I from Fig. 13 due to its very large
amount of data accessed. PL I incurred a significant penalty for all queries due to the
inserted data being appended to the overflow bucket, and because the entire overflow
bucket is always scanned.

6.3 The quality of buckets in PLI+

PL I+ inherits the idea of using bucket instead of tuple/row from PL I to favor the
large granularity in I/O access. However, the exact amount of accessed data depends
how distributed the data is in the buckets of PL I+. In this experiment, we show that in
fact PL I+’s interval indexing generates compact buckets. To measure compactness,
we define a metric that compares the range of minimum and maximum values in a
bucket in for completely sorted data and the range of minimum and maximum values
in same-sized PL I+ bucket. For a given bucket size, we sum this over all buckets, as
shown in Eq. 7. The average relative bucket range factor (ARB) is:

ARB =
∑K

i=1 |Range(Bucketsortedi )|∑K
i=1 |Range(Bucket PL I+

i )| (7)

in which K is the total number of buckets in a table, |Range(Bucketoptimal
i )| and

|Range(Bucketreali )| are the range of the indexed values in a bucket of same size
that is completely sorted and in PL I+, respectively. ARB → 1 (ARB approaches
1) means the buckets are highly compact, similar to perfectly sorted data; whereas
ARB → 0 (ARB approaches 0) means the values are distributed at random. Note
that PL I+ does not care if individual buckets are sorted internally, and thereforewe do
not consider the order of tuples in a bucket. Rather, we are concerned with how many
values from other buckets have been injected into a given bucket due to sub-optimal
merge and split operations in PL I+.

The evaluation of the compactness of buckets in PL I+ over different bucket sizes
is presented in Table 9. We used the data from the NYC_T2 table. Our results show
that compactness improves as bucket size increases—1000 and 2000 rows/bucket are
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Table 9 Compactness of buckets
in PL I+ Bucket size (tuple/bucket) Raw input data PL I+

250 0.00316 0.382

500 0.00529 0.519

1000 0.00869 0.9996

2000 0.01865 0.9999

closest to the ideal value of 1.Whilewe are still working on proving the result formally,
intuitively at smaller sizes even a deviation of a few values between buckets, makes
the ARB value gravitate to 0. A larger-sized bucket has less potential of scattering its
values in other buckets (e.g., a bucket set to the size of the entire table will always have
an ARB value of 1). However, there are two penalties associated with larger bucket
sizes. First, a larger bucket requires more memory to store in the in-memory interval
tree; second, highly selective queries will experience additional I/O that is not needed
to satisfy the query (e.g., if bucket size is equal to the size of the table, all queries will
scan the entire table regardless of their selectivity).

6.4 The size of the constructed index

The objective of this experiment is to evaluate the storage requirements for PL I+.
For this we compare the index sizes used by each indexing approach. To compare
the index sizes, we collected the storage size of each index for our datasets when
all data was inserted, i.e., around 22GB on NYC Taxi dataset and 305GB on HEP
dataset. Figure 14 summarizes the index sizes for each indexing approach in NYC
Taxi and HEP datasets, respectively. As shown in these figures, PL I has the smallest
index size; whereas secondary index and LSM-Tree have large sizes in all datasets.
While one may argue that with large memory sizes, the amount of memory that LSM
consumes is small, a closer observation shows that in larger datasets (belonging to
HEP), LSM consumes gigabytes of memory, which can be very expensive on a cloud
instance. In PL I and PL I+ data is grouped and indexed by buckets. Bucket interval
is selected as indexed key. This means the size of index is reduced by the number of
tuples in bucket. Compared to PL I , PL I+ organizes the overflow page into buckets
and indexes them, thus the number of buckets indexed in PL I+ is larger than that in
PL I .

7 Conclusion

We have presented PL I—a generalized clustered indexing approach that can be inte-
grated into a live relational database using ROWID column. This indexing approach
uses a bucket-based sparse indexing structure, which results in a very lightweight and
easy-to-maintain index. The sparse pointers into the table can easily tolerate approx-
imate clustering (i.e., reordering within the bucket is irrelevant) and trivially allows
PL I variations to use an expression-based index to match query predicate. DBMSes
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Fig. 14 Sizes of Constructed Index on NYC taxi and HEP datasets

could expose ROWID column further to make custom clustered index creation simple
for the user—or this approach can be used to create a generation of better clustered
indexes inside the database engine, as existing engines do not implement true (i.e.,
textbook-like) sparse clustering indexes. Moreover, we also propose an extension of
PL I (PL I+), a bucket-clustered indexing method for live relational databases that
can be applied to both read-intensive workflows or huge injection workflows. This
extension overcomes the overflow limitation in PL I by applying the approximation
sorting with an efficient B-Tree-like structure to re-organize the data into buckets
before storing and indexing them on secondary storage.

In the future, we plan to apply PL I+ in the context of spatio-temporal data as well
as using this technique in NoSQL context. We would also like to endow PL I+ with
an improved self-tuning algorithm that allows it to adapt to any kind of data input
distribution.
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