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Abstract—The pervasive use of databases for the storage of
critical and sensitive information in many organizations has led
to an increase in the rate at which databases are exploited in com-
puter crimes. While there are several techniques and tools avail-
able for database forensics, they mostly assume apriori database
preparation, such as relying on tamper-detection software to
already be in place or use of detailed logging. Alternatively,
investigators need forensic tools and techniques that work on
poorly-configured databases and make no assumptions about the
extent of damage in a database.

In this paper, we present our database forensics methods,
which are capable of examining database content from a database
image without using any log or system metadata. We describe
how these methods can be used to detect security breaches in
untrusted environments where the security threat arose from a
privileged user (or someone who has obtained such privileges).

I. INTRODUCTION

Cyber-crime (e.g., data exfiltration or computer fraud) is

a significant concern in today’s society. A well-known fact

from security research and practice is that unbreakable security

measures are virtually impossible to create. For example, 1)

incomplete access control restrictions allows users to execute

commands beyond their intended roles, and 2) users may

illegally obtain privileges by exploiting security holes in a

Database Management System (DBMS) or OS code or through

other means (e.g., social engineering). Thus, in addition to

deploying preventive measures (e.g., access control), it is nec-

essary to 1) detect security breaches in a timely fashion, and 2)

collect evidence about attacks to devise counter-measures and

assess the extent of the damage (e.g., what data was leaked

or perturbed). This evidence can provide preparation for legal

action or be informative to prevent future attacks.
DBMSes are targeted by criminals because they serve as

repositories of data. Therefore, investigators must have the

capacity to examine and forensically interpret contents of a

DBMS. Currently, an audit log with SQL query history is

a critical (and perhaps only) source of evidence for investi-

gators [1] when a malicious operation is suspected. In field

conditions, a DBMS may not provide the necessary logging

granularity (unavailable or disabled). Moreover, the storage

itself might be corrupt or contain multiple DBMSes.
Digital forensics provides an independent analysis with

minimal assumptions about the environment. A particularly

important and well-recognized technique is file carving [2],

[3], which extracts files (but not DBMS files) from a disk

image, including deleted or corrupted files. Traditional file

carving techniques interpret files (e.g., JPEG, PDF) individ-

ually and rely on file headers. DBMS files, on the other

hand, do not maintain a file header and are never independent

(e.g., table contents are stored separate from table name and

logical structure information). Even if DBMS files could be

carved, they cannot be meaningfully imported into a different

DBMS and must be parsed to retrieve their content. Therefore,

DBMSes need their own set of digital forensics rules and tools.

Even an environment with ideal log settings, DBMSes can

not necessarily guarantee log accuracy or their immunity from

tampering. For example, log tampering is a concern when a

breach originated from a privileged user such as an admin-

istrator (DBA or an attacker who obtained DBA privileges).

Tamper-proof logging mechanisms were proposed in related

work [4], [5], but these only prevent logs from atypical

modifications and do not account for attacks that skirt logging

(e.g., logging was disabled). Knowing that even privileged

users have almost no control of the lowest level storage, an

analysis of forensic artifacts provides a unique approach to

identify data tampering in an untrusted environment.

The goal of this work is to 1) develop forensic methods for

DBMSes, and 2) use these methods to detect and describe se-

curity breaches in untrusted environments. Table I summarizes

the remainder of this paper; future work is bolded.

Sec Summary

II

Our DB forensics methods approached from the page level:
• We describe our forensic method, page carving [6], [7]. Future
work will address column-store and NoSQL DBMSes.
• We present our page carving implementation: DBCarver [8].
• We will build a meta-querying system to answer multi-DBMS
forensic questions with DBCarver output.
• Extensions in DB anti-forensics to protect against data theft.

III

Our DB forensic solutions to attacks in untrusted environments.
• We addressed the scenario where logging has been disabled by the
DBA. We present our solution, DBDetective. [9].
• We addressed DBMS file tampering without SQL by a sys admin.
We present our solution, DBStorageAuditor [10].
• Future work to address tampering/backdating logs in a DBMS.
• Future work will quantify the accuracy of our attack reports.
A reproducible analysis will support our evidence.

IV
Our uses of DB forensics that go beyond digital investigations, and
focus on optimization of database storage layout: physical location
index (PLI) [11], external page building, and query reordering.

TABLE I
SUMMARY OF THE REMAINING PAPER.

II. DATABASE FORENSICS

Unlike traditional files (e.g., PDF), DBMS files do not

contain headers that allow for file identification. At the same

time, all row-store DBMSes use fixed-size pages to store user

data, auxiliary data (e.g., indexes and materialized views),

and the system catalog. DBMS data is accessed and cached

in a unit of pages. Pages maintain a consistent structure,
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Parameter Oracle
Postg

reSQL

SQLite
Firebird

DB2
SQLServer

MySQL
ApacheDerby

Row Identifier No Yes No Yes
Column Count Yes No Yes No Yes
Column Sizes Yes No Yes
Column Directory No Yes No
Numbers Stored w/ Strings Yes No Yes

TABLE II
A SUMMARY OF SIGNIFICANT TRADE-OFFS MADE BY DBMSES IN PAGE LAYOUT.

whereas individual record structure varies throughout DBMS

storage, which is why we approach database forensics at

the page level. In this section, we describe page carving

including our implementation (DBCarver), future work to

answer forensic questions from DBCarver output, and anti-

forensics techniques that can sanitize and hide data in DBMS

storage.

A. Page Carving

Database page carving is a method we previously introduced

for the reconstruction of relational DBMSes without relying on

file system or the DBMS. Page carving is similar to traditional

file carving [2], [3] in that data, including deleted data, can be

reconstructed from images or RAM snapshots without the use

of a live system. Forensic tools, such as Sleuth Kit [12] and

EnCASE Forensic [13], are commonly used by investigators

to reconstruct file system data but are incapable of parsing

DBMS files. None of the third party recovery tools (e.g., [14],

[15]) are helpful for independent audit purposes because they

only recover “active” data from current tables. A database

forensic tool (just like a forensic file system tool) should also

reconstruct unallocated pieces of data including deleted rows,

auxiliary structures (indexes, MVs), or buffer cache space.

While each DBMS uses its own page layout, a great deal of

overlap between page layouts allowed us to generalize storage

for many row-store DBMSes. In [6] we presented a compara-

tive page structure study for IBM DB2, Oracle, Microsoft SQL

Server, PostgreSQL, MySQL, SQLite, Firebird, and Apache

Derby. In this work, we also described a set of parameters that

define the layout of a page for the purpose of reconstruction.

Table II demonstrates just a few example characteristics

shared between DBMS pages. The row identifier is an internal

DBMS pseudo-column which is sometimes explicitly stored

in rows. If a DBMS stores the sizes of (string) columns, then

numbers and strings are kept together (and column directory is

not used). Alternatively, if a DBMS does not store the column

sizes, then it maintains pointers to all string columns, and

stores numbers separately from strings in each record.

a) Deleted Data: When data is deleted, the DBMS ini-

tially marks it as deleted, rather than explicitly overwriting it.

This data becomes unallocated (free listed) storage – our work

in [7] described the expected lifetime of forensic evidence

within database storage following deletion and defragmenta-

tion. We described three categories of deleted data: records,

pages, and values. A record is the minimum deletion unit and

can be attributed to a DELETE, the old version of an UPDATE, or

failed (aborted) transactions. A deleted record can be identified

by its delete marking during page reconstruction. Dropped or

rebuilt objects can create deleted pages, which are identified

by carving system catalog tables. Deleted values are found in

auxiliary objects – e.g., indexes; they are identified by mapping

pointers back to records (only records but not index values are

deleted). We presented generalized pointer deconstruction and

pointer-record mapping in [10].
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Fig. 1. Deleted row examples: 1-MySQL/Oracle, 2-PostgreSQL and 3-SQLite

Figure 1 visualizes deleted record examples for sev-

eral DBMSes. In each example, Row2-(Customer2, Jane) is

deleted while Row1-(Customer1, Joe) and Row2-(Customer3,
Jim) are active. Page#1 shows a case when the row delimiter

is marked, such as in MySQL or Oracle. Page#2 shows when

the raw data delimiter is marked in PostgreSQL. Page#3 shows

when the row identifier is marked in SQLite. We omit DB2 and

SQL Server as they only alter the row directory on deletion.

b) Column-Store and NoSQL DBMSes: Page carving

only supports row-store DBMSes. Column-store and NoSQL

DBMSes do not typically use pages similar to row-store

DBMSes. Future work will expand our database forensic

methods to support column-store and NoSQL DBMSes.

B. DBCarver

We previously presented our implementation of page carv-

ing called DBCarver [8]. Figure 2 provides an overview of

DBCarver architecture, which consists of two main compo-

nents: the parameter collector (A) and the carver (F).

Parameter
Detector

DBCarver

Iteratively load synthetic data

Capture DB  storage

Generate DB
config. file RAM ImagesDisk Images

DBMS

DB config.
files

Reconstructed Storage
● Data pages (e.g., 

table, index)
● Deleted data
● Catalogs, logs

A B

C

D

E
F

G

H

Fig. 2. DBCarver architecture.

The parameter detector loads synthetic data into a DBMS

(B), captures storage (C), finds pages in storage, and captures
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page layout parameters in a configuration file (E) – a text

file that describes page-level layout for that particular DBMS.

The parameters we store include those described in [6], and

have since been expanded to extract additional metadata.

DBCarver automatically generates parameters values for new

DBMSes, or new DBMS versions. While most DBMSes retain

the same page layout across versions, we observed different

parameter values for PostgreSQL 7.3 and 8.4.

The carver (F) uses the the parameter values from the con-

figuration files to reconstruct any database content from disk

images, RAM snapshots, or any other input file (G). The carver

returns storage artifacts (H), such as user records, metadata

describing user data, deleted data, and system catalogs.

C. Meta-Querying

After storage artifacts were extracted by DBCarver, they

must be analyzed to determine their evidential significance.

By connecting reconstructed metadata and data, investigators

can ask questions such as “Return all deleted records within

a file.” No such command is supported by any DBMS. More

complex questions can be answered by combining both disk

and memory data. As future work, we are currently interview-

ing and collaborating with law enforcement agencies to build a

querying system that can answer real-world forensic questions.

In [8] we offered a preliminary view of this system. We

presented several scenarios which an investigator may wish to

explore. We termed them “meta-queries” because such queries

are not executed on the original active DBMS but rather on

reconstructed DBMS internals obtained through page carving.

a) Scenario 1: Reconstruction of Deleted Data: An

analyst wants to query the carved database storage for deleted

values. Deleted row identification is of particular interest when

the audit log is missing or altered. For example, the following

logged query obfuscates what records were actually deleted:

DELETE FROM Customer

WHERE Name LIKE NameFunction()

With database carving analysis, deleted records can be trivially

identified with the following query:

SELECT * FROM CarvCustomer

WHERE RowStatus = ‘DELETED’

We note that determining whether extracted rows were deleted

due to normal or malicious operations requires incorporating

audit logs and other evidence sources.

b) Scenario 2: Detecting Updated Data: An investigator

wants to find the most recent updates. For example, consider

the problem of searching for all recent product price changes

in RAM. In order to form this query, we join disk and memory

storage, returning the rows for which price is different:

SELECT * FROM CarvRAMProduct AS M,

CarvDiskProduct AS D

WHERE M.PID = D.PID AND M.Price <> D.Price

D. Anti-Forensics

Anti-forensics (AF) is the field of interfering with forensic

techniques [16], [17]. We note that digital forensic tools can be

used by either investigators and criminals, to both protect data

and to interfere with a criminal investigation. In this section,

we discuss future work that uses AF to protect data.

Two of the most representative AF techniques we consider

are data wiping and steganography [18]. A corporation can ap-

ply data wiping to erase already-deleted customer information

to prevent potential data theft. Steganography is the process

of hiding data – e.g., a means to discretely whistle-blow.

Most prior work in database AF is highly DBMS-specific.

Stahlberg erased deleted MySQL data by modifying the purge

thread in source code [19]. We propose a more generalized

sanitization method for all DBMSes (including closed-source

DBMSes). We distinguish four categories of deleted DBMS

data to wipe in order to prevent unintended data exposure:

records, auxiliary data (e.g., indexes), system catalog, and

unallocated pages. To effectively erase this data, the data itself

must be overwritten and page metadata (e.g., checksums and

pointers) must be updated accordingly. We further propose

steganography that additively alters the database state, which

can bypass all constraints and logging.
a) Steganography Example: We added the record shown

in Figure 3 to a PostgreSQL file containing the LINEORDER
[20] table. The composite primary key is underlined (solid

line), the foreign keys are underlined (dashed line), and values

that bypassed a constraint are highlighted.

NULL NULL -1 -1 -1 -1 LOW 0 1 1 1 1 1 1 0 1800 Hello_World
Fig. 3. The hidden record that was added to the LINEORDER file.

The LO_Shipmode column was declared as a string of

up to 10 characters (VARCHAR(10)). Since ‘Hello World’ is

11 characters, it violates the domain constraint. Such hidden

messages can be easily retrieved by returning only the values

that violate domain constraints (which is normally impossible).

For example, to return only our message:

SELECT LO_Shipmode FROM Lineorder

WHERE LENGTH(LO_Shipmode) > 10;

All SSBM queries [20] perform joins using the foreign

key columns in LINEORDER. For example, Query 1.1 joins

LINEORDER and DATE using LO_Orderdate.Our hidden

record stores -1 for LO_Orderdate which does not match

any D_Datekey column value. Our record bypassed ref-

erential integrity (normally impossible), and will never be

returned by a query that performs a join on DATE. Similarly,

our record bypassed referential integrity for LO_Custkey,

LO_Partkey, and LO_Suppkey with -1. None of the

SSBM queries return our hidden record because they perform

at least one join, thus hiding the message from accidental

discovery.

By default, all DBMSes create an index on the primary

key column(s). Using (NULL, NULL) in the key value (again,

normally impossible), we omit the hidden record from the

primary key index and make unintentionally retrieval less

likely. As with other indexes, rebuild of the primary key index

will exclude NULL values, remaining blind to the record.
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III. DATABASE SECURITY

Privileged users (e.g., DBA), by definition, have the ability

to control and modify access permissions. Therefore, audit

logs alone are fundamentally unsuitable for the detection of

malicious, privileged users. DBMSes do not provide many

tools to defend against insider threats. Interestingly, DBAs

have little to no control over how data is stored at the lowest

level. Thus, malicious activity will still create inconsistencies

within storage artifacts. In this section, we consider attack

vectors that are detectable using database forensics methods

from Section II. All of these solutions assume that some level

of logging was enabled and is available.

A. DBDetective

Audit logs are a critical piece of evidence for investiga-

tors – and existing research has explored tamper-proof logs.

However, DBAs are able to disable logging for legitimate

operations (e.g., bulk loads). Therefore, we consider an attack

where logging was disabled, malicious activity was performed,

and logging was re-enabled. We proposed DBDetective in

our previous work [9] to detect activity missing from the logs.

Peha [4] and Snodgrass [5] used one-way hash functions to

verify and validate audit logs. Our approach detects both log

tampering and cases when logging was temporarily disabled.

To detect unlogged activity, DBDetective compares the

disk images and/or RAM snapshots output from DBCarver
against the audit logs. We classify two categories of hidden

activity: record modifications and read-only queries (i.e., SQL

SELECT). When a record is inserted or modified the record

itself changes, page metadata may be updated (e.g., a delete

mark is set) and index page(s) are likely to change. We classify

artifacts that can not be explained by a log entry as suspicious.

1, Christine, Chicago 

3, Christopher, Seattle 

4, Thomas, Austin 

2, George, New York 

5, Mary, Boston 

T1, DELETE FROM Customer  
WHERE City = ‘Chicago’; 
 
T2, DELETE FROM Customer  
WHERE Name LIKE ‘Chris%’; 

 � 
 � 

 � 
 � 

 � 

          Page Type: Table 
          Structure: Customer 

Log File 

UNATTRIBUTED 
DELETE 

DICE Output 
Del. 
Flag 
 

Fig. 4. Detecting unattributed deleted records.

Figure 4 is an example of unaccounted, deleted row

detection. DBCarver reconstructed 3 deleted rows from

Customer: (1,Christine,Chicago), (3,Christopher,Seattle), and

(4, Thomas,Austin). The log file contains two operations:

DELETE FROM Customer WHERE City = ‘Chicago’ (T1)

& DELETE FROM Customer WHERE Name LIKE ‘Chris%’

(T2). After comparing the deleted records to the log file

operations, DBDetective returned (4,Thomas,Austin),
indicating a deleted record that could not be attributed to

logged deletes. Here, we cannot conclude whether T1 or T2
caused the deletion of (1,Christine,Chicago), which is not

necessary to identify record #4 as an unattributed delete.

When a SELECT query reads a table or a materialized view

from disk, it ultimately uses one of two access patterns: a

full table scan or an index scan. Both of these query access

types produce a consistent, repeatable caching pattern. Using

metadata from the pages in the buffer cache, we can identify

caching patterns to compare to the log file commands.

B. DBStorageAuditor

Privileged OS users commonly have access to database files.

Consider a SysAdmin who, acting as the root, maliciously

edits a DBMS data file in a Hex editor or through Python. The

DBMS is unaware of external file write activity taking place

outside its own programmatic access and thus cannot log it.

Such an attack is a ‘black-hat’ application of anti-forensics dis-

cussed in Section II-D. We proposed DBStorageAuditor
in our previous work [10] to detect database file tampering.

One-way hash functions were used in [21], [22] to detect

file tampering at the file system level. However, we expect

DBMS files to be regularly modified by legitimate operations.

Thus, the challenge of distinguishing a malicious tampering

operation and a legitimate SQL operation remains.

To detect database file tampering, DBStorageAuditor
[10] uses indexes to verify the integrity of table data. We first

verify the integrity of the indexes by checking for tampering-

based inconsistencies within the B-Tree structure. Once the

index integrity is verified, we deconstruct the index pointers

and match them to table records using the table page metadata;

we generalized the deconstruction of index pointers for all

major DBMSes. We organize the index pointers based on

physical location to keep our matching approach scalable.

Finally, any extraneous data or erased data found from the

index and table comparison is flagged as suspicious.

C. LogEventAnalysis

Privileged users with access to the DBMS server have the

capability to change server information, specifically the global

clock. This quietly affects the veracity of DBMS audit logs.

Consider a system administrator who changes the server global

clock to an earlier date, performs malicious activity, and resets

the global clock. Such an attack backdates activity without

altering the log files, and disguises when the malicious activity

actually occurred. As future work, we are exploring methods

to detect such attempts to backdate log entries.

In such an environment, any global or logical clock can not

be assumed to be reliable. Therefore, to create a timeline of

events, we believe it is necessary to use storage metadata,

which even a privileged user cannot modify. The internal

RowID pseudo-column is of particular interest to construct

a timeline. RowID is used by indexes and reflects the physical

location of a record including its PageID. Whenever a page

is modified, we can store the PageID to know when data was

modified. Thus, the order of the PageIDs must be consistent

with the order of the log files commands. We are exploring

tamper-proof techniques to store the PageID. One method

involves storing the PageID of the previously modified record

in a page using steganography (Section II-D). Another method
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involves storing the PageID and log commands offsite to later

compare to storage snapshots for inconsistencies.

D. Quantitative Analysis and Reproducibility

As future work, we will explore the detection accuracy

for each attack described in this section. For each detection

type, we will compute a confidence rating based on a variety

of environment variables (e.g., buffer cache size, volume of

operations, and DBMS storage engine). For example, given a

low volume of DELETE operations in Oracle, DBDetective
would detect attacks with higher accuracy because Oracle

implements storage with a percent page utilization. This engine

setting prevents deleted data from being overwritten by other

operations until a page contains a significant quantity of

deleted records.

To verify the presence of malicious operations, we need

supporting evidence and information to guarantee repeatable

analysis. We will develop algorithms to collect the minimal

subset of storage artifacts needed to reproduce our results.

These collected storage artifacts must be sufficient to verify

the security breach independent of our analysis. For example,

such functionality is needed to present evidence in court.

IV. DATABASE STORAGE OPTIMIZATION

DBCarver allows us to analyze storage beyond what a

DBMS exposes: physical ordering of data, object fragmenta-

tion, and specific data in the buffer cache. In this section, we

present database forensics uses to optimize storage.

a) PLI: RDBMSes only support one clustered index

per table. DBMS applications, that continually ingest large

amounts of data, incur a very high overhead ensuring that the

clustered index ordering is maintained. In [11], we showed

that clustering slowdown can often be avoided if we use

DBCarver to expose the physical location of attributes that

are approximately clustered. Toward this, we proposed PLI,

a physical location index, constructed by determining the

physical ordering of an attribute and creating approximately

sorted buckets that map physical ordering to attribute values

in a live database.

b) External Page Building: DBCarver creates parame-

ters for the purpose of deconstructing DBMS storage. At the

same time, our future work uses these same parameters to

construct DBMS files externally. Once the DBMS files are

constructed, we believe they can be appended to a database

instance with minor changes to system and file meta data.

c) Query Reordering: While most databases are good at

managing memory, randomly ordered queries typically result

in non-optimal buffer cache utilization. We explored caching

patterns and DBMS memory management for the purpose

of security (Section III-A). Our future work leverages this

same information to create a method that analyzes RAM and

reorders queries to achieve the most efficient I/O.

V. CONCLUSION

In this work, we presented page carving and our page carv-

ing implementation, DBCarver. Future work will expand this

method to include support for column-store and NoSQL DBM-

Ses, offer meta-querying functionality, and incorporate anti-

forensic methods to further protect data. We also presented

methods that use page carving to detect security breaches

in untrusted environments. DBDetective considered an

attack where logging was disabled, DBStorageAuditor
addressed DBMS file tampering, and future work will address

tampering of the system global clock to backdate logs.
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