
Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes

NICO SCHERTLER, TU Dresden

DANIELE PANOZZO, New York University

STEFAN GUMHOLD, TU Dresden

MARCO TARINI, Università degli Studi di Milano and ISTI - CNR

(a) (b) (c) (d)

Fig. 1. Our method takes as input a semi-regular quad-dominant mesh (a ś singularities marked with spheres) and produces a global parametrization. For that

purpose, we evaluate the effect of singularities on the mesh topology with the help of fenced regions (b). We use this information to calculate a Generalized

Motorcycle Graph (c), whose patches serve as rectangular domains for the parametrization (d). The parametrizations of adjacent patches are aligned to

each other on a majority of cuts (see close-up), which allows to make them invisible in texturing applications. The rectangular shape of patches in the 2D

parametric domain allows highly efficient packing of the texture.

We introduce a practical pipeline to create UV T-layouts for real-world

quad dominant semi-regular meshes. Our algorithm creates large rectan-

gular patches by relaxing the notion of motorcycle graphs and making it

insensitive to local irregularities in the mesh structure such as non-quad

elements, redundant irregular vertices, T-junctions, and others. Each surface

patch, which can contain multiple singularities and/or polygonal elements,

is mapped to an axis-aligned rectangle, leading to a simple and efficient

UV layout, which is ideal for texture mapping (allowing for mipmapping

and artifact-free bilinear interpolation). We demonstrate that our algorithm

is an ideal solution for both recent semi-regular, quad-dominant meshing

methods, and for the low-poly meshes typically used in games and movies.

Additional Key Words and Phrases: Texture Mapping, Motorcycle Graph,

Parametrization

ACM Reference format:

Nico Schertler, Daniele Panozzo, Stefan Gumhold, and Marco Tarini. 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes. ACM

Trans. Graph. 37, 4, Article 155 (August 2018), 16 pages.

DOI: 10.1145/3197517.3201389

This work was partially supported by project 03ZZ0516A of the German Federal
Ministry of Education and Research (BMBF), NSF CAREER award 1652515, MIUR
project "DSURF" (PRIN 2015B8TRFM), a gift from Adobe Research, and a gift from
NTopology.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2018 ACM. 0730-0301/2018/8-ART155 $15.00
DOI: 10.1145/3197517.3201389

1 INTRODUCTION

Quad-dominant semi-structured meshes, i.e. meshes that are pre-

dominantly composed of quadrilateral faces and regular vertices, are

ubiquitous in computer graphics: they are the de-facto standard in

the visual effects and computer animation industry and are also of-

ten used in most interactive applications. However, clean structured

meshes are expensive to create. The number of irregular vertices is

often too large and most pipelines do not support common small

imperfections, requiring manual cleaning. This slows down existing

content creation pipelines and prevents the direct usage of scanned

models since reconstruction methods rarely create models adhering

to these strict guidelines, even after an automatic cleanup.

We propose a practical way to make imperfect polygonal meshes

more directly usable in downstream applications, by allowing the

computation of a valid UV-layout robust to redundant irregular

vertices as well as to quad mesh imperfections such as small holes,

non-quadrilateral faces, T-junctions, small handles and tunnels, and

non two-manifold configurations.

Our main contribution is the definition of a generalization of

Motorcycle Graphs (MCG) [Eppstein et al. 2008]: our construction

is identical on clean, highly regular quad meshes but gracefully

handles imperfections and redundant irregular vertices (Section 1.1),

always producing a valid segmentation into rectangular UV patches.

The key idea is to identify a set of regions on the mesh which are

to be considered equivalent to completely regular and clean grids

for the purpose of the MCG algorithm, in spite of imperfections.

Likewise, other regions will be treated as if containing one iso-

lated irregular vertex, again disregarding the more complex actual

configuration of the local meshing.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:2 • Schertler, N. et al.

The induced patch decomposition is used to define a global pa-

rametrization targeted for texture mapping applications. The UV

layouts are easy to pack, avoid interpolation (or MIP-mapping) arti-

facts at cuts, and are directly usable in real-time rendering pipelines

without any manual cleanup.

We applied our algorithm to hundreds of scanned and hand-made

models, demonstrating its robustness and practical applicability.

1.1 Motivations: Imperfect Quad-Dominant Meshes

Meshes that are purely quadrilateral, extremely regular, and

free from imperfections are ideal, since they are maximally mal-

leable to all kinds of processing. Unfortunately, they are also very

challenging to create ś either manually (by modelling artists) or by

automatic approaches (e.g. remeshing range scanned data).

Amuchmore common case is that of semi-regular, quad dominant

meshes, often also coming with additional local imperfections. We

will refer to this class of meshes as imperfect (quad-dominant) meshes.

Specifically, these meshes feature one or more of:

Higher number of irregular vertices. In an ideal case, irregular

(non valence 4) vertices are justified by the geometric shape of the

surface, i.e., they are found in correspondence with high curvature

regions. Imperfect meshes, in contrast, feature many more irregu-

lar vertices serving many other purposes, for example to control

tessellation density or to orient edge along certain directions. Redun-

dant irregular vertices are also introduced by suboptimal automatic

quad-remeshing algorithms.

Non quadrilateral faces. Quad-dominant meshes present occa-

sional triangular or pentagonal elements (and at times other poly-

gons too). These elements are often introduced by re-meshing algo-

rithms and modelling artists alike.

Other meshing imperfections. Small holes (missing data), topolog-

ical noise (unwanted small handles/tunnels), jagged (rather than

straight) boundaries, T-junctions, or local lack of two-manifoldness

are common in range scanned surfaces, in procedural meshes, and

in many manually modeled meshes.

Imperfect meshes can be directly captured [Schertler et al. 2017],

produced by means of remeshing [Jakob et al. 2015], or directly mod-

eled (compare e.g. [Denning et al. 2011]). They are the majority of

the meshes available in online repositories (e.g. [TurboSquid 2018]).

They represent an intermediate case between perfectly structured

meshes, which are difficult to construct, and irregular structures,

such as irregular triangle meshes or range scans, which are diffi-

cult to process. Our algorithm exploits their regularity to provide a

high-quality output, but it reliably tolerates local imperfections.

1.2 Method Overview

Our method takes as input a semi-regular, but potentially imperfect,

quad meshM and produces a parametrization ofM over a set of 2D

rectangular patches, which are then packed tightly into one texture.

Objectives. Because we target texture mapping, we strive to limit

the number of patches and therefore the amount of texture cuts,

which are a source of rendering artifacts, memory overheads, and

(a) Original Motorcycle Graph (b) Generalized Motorcycle Graph

Fig. 2. The original Motorcycle Graph (left) results in a heavy over-

segmentation of the bouddha with 385 patches. Our Generalized formula-

tion can extract a T-layout with only 24 patches.

other complications in textures [Tarini et al. 2017]. In many scenar-

ios, it is also desirable to preserve the original mesh connectivity,

(e.g. to preserve geometry features, respect the modeller’s choice of

edge placement, etc.), although it is usually acceptable to refine a

small number of faces locally, introducing a few additional edges,

to represents cuts at these edges.

We partition the mesh into a small number of rectangular patches

and we parametrize each patch over an axis-aligned 2D rectangle.

In other words, we extract a coarse T-layout from the original mesh

(Section 3). Subsequently, we determine the parametric size of each

2D rectangle (Section 4), and construct a distortion-minimizing pa-

rametrization, i.e. a mapping from each patch into the corresponding

2D parametric rectangle. Finally, the 2D rectangles are packed into

one unified texture domain (Section 5).

The coarse quad-layout construction is the core part of our ap-

proach, which is a generalization of Motorcycle Graphs. On a highly

regular, imperfection-free, pure quad mesh, an MCG will automati-

cally and robustly produce good, coarse quad-layouts. Unfortunately,

MCGs are not applicable in the presence of imperfect or non pure

quad meshes, producing excessively fine-grained partitions if the

input is not highly regular everywhere. Our generalization (see

Section 3) bypasses these limitations (see Figure 2).

2 RELATED WORK

Surface parametrization is the task of constructing an injective map-

ping between a given input surface S and a (typically) flat parametric

domain D. Global surface parametrization is required when S is not

topologically equivalent to a disk. In this case, cuts are introduced

to split the surface into topological disks and to reduce distortion.

Global surface parametrization has been extensively studied in the

last three decades: we focus on the most closely related approaches,

and we refer to [Floater and Hormann 2005] for an overview.

The intended application of our global parametrizations is to

serve as UV-maps for texture mapping. This application imposes

specific objectives, which are subtly different from those commonly

considered for remeshing applications.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:3

2.1 Parametrizations for Texture Mapping

In texture mapping, cuts cause rendering artifacts known as texture

bleeding, which are due to bilinear interpolation and MIP-mapping.

These artifacts can be greatly reduced by replicating texels; this,

however, costs GPU memory and leaves residual artifacts due to

a mismatch in the texel grid, which are especially notable under

extreme magnification. Therefore, cuts can be tolerated but are

undesirable. Construction methods seek a good trade-off between

the amount of cuts and of distortion, either implicitly [Lévy et al.

2002; Smith and Schaefer 2015; Tarini 2016], or, in one recent case,

by minimizing an energy explicitly accounting for both [Poranne

et al. 2017]. Our approach offers a similar trade-off. In addition, our

cuts are always axis-aligned in parametric space, miminizing the

GPU memory overhead for texel replications. Optionally, most of

them can be made invisible, in the following sense.

Cut Invisibility. For a special class of cuts, which we call invisible,

rendering artifacts are completely negated by texel replications.

This was first explicitly observed in [Ray et al. 2010], but was also

exploited in approaches like [Carr et al. 2006; Tarini et al. 2004]. In

[Liu et al. 2017] a wider generalization of invisible cuts is offered,

but this comes at the cost of limiting the assigned texel values.

Invisible cuts also avoid artifacts introduced by MIP-mapping up

to a prescribed level k . It is sufficient for the parametrization to be

computed for the resolution of MIP-map level k , and then up-scaled

to the highest resolution level 0.

Alternatives to Global Parametrizations. Although surface para-

metrizations are the standard approach to texture mapping, a long-

lasting trend is to try to bypass its construction altogether, for exam-

ple by endowing eachmesh element with its own parametric domain

[Burley and Lacewell 2008; Yuksel 2017]. Similarly, parametrizations

are sometimes computed and stored volumetrically, bypassing the

complications traditionally associated to cuts [Tarini 2016]. The

reader is referred to [Tarini et al. 2017] for a gallery of other alter-

native approaches to texture mapping. These techniques, however,

require changes of the standard real-time rendering pipeline, the

asset production pipeline, or both.

2.2 CoarseQuad Layouts

Our parametric domain D is defined as the union of 2D rectangles,

one for each patch. Global parametrizations in this class are enticing

because 2D rectangles can be efficiently packed in a global texture

sheet (in addition to the advantages given by axis-aligned patch

boundaries).

The problem of producing a coarse quadrilateral layout over a

surface has been extensively studied; we refer the reader to a survey

[Bommes et al. 2013, Section 3.2] and a tutorial [Campen 2017].

Existing works are motivated by different purposes, such as regu-

lar quad-remeshing (each patch is subdivided into a regular quad

grid e.g. [Campen et al. 2015]), construction of higher-order approx-

imations (each patch represents one element of a quad control mesh

for subdivision of parametric surfaces, e.g. [Panozzo et al. 2011]),

detecting isomorphisms between meshes (isomorphic meshes share

the same patch layout, e.g. [Eppstein et al. 2008]), or, like in our

case, surface parametrization (each patch serves as one parametri-

zation domain, e.g. [Bommes et al. 2009]). The objectives include

topological correctness, domain coarseness, good patch shape, and

alignment of patch boundaries to feature lines and/or curvature

directions.

Existing solutions include drastically different approaches, for

example based onMorse-Smale complexes [Ling et al. 2014], 3Dmor-

phing into piecewise axis-aligned surfaces [Fu et al. 2016], iterative

coarsening of an initially densely tessellated quad mesh [Panozzo

et al. 2011], following an internal skeleton [Usai et al. 2015], casting

the problem as a coarse remeshing [Bommes et al. 2013], or trac-

ing of boundary lines over the surface [Campen and Zorin 2017;

Razafindrazaka and Polthier 2017].

Our approach falls in the latter category but has the following

differences.

Input differences. Competing tracing-based approaches focusmainly

on two types of input surface representation:

Irregular triangular meshes with an accompanying cross field

[Campen et al. 2015; Pietroni et al. 2016; Ray and Sokolov 2014].

In this case, the challenge is to robustly trace straight lines over a

piecewise linear, irregularly sampled surface. This requires extreme

care during the implementation, often with sophisticated algorithms

devoted to the sub-problems. Also, an accompanying cross field is

required, which is not always available. E.g., manually editedmeshes

do not have one. Finally, the quality of the cross field is crucial:

in particular, the amount of singularities will heavily affect layout

coarseness. In [Campen and Kobbelt 2014], an initial parametrization

and user-drawn sketches mimic a cross field and act as a guidance

for tracing lines, sharing similar challenges.

Highly regular pure quad meshes. This class of meshes sim-

plifies processing; tracing becomes simply a straight traversal of

mesh edges across regular vertices, as exploited in [Eppstein et al.

2008; Tarini et al. 2011], allowing for simple, efficient, and robust

implementations. Unfortunately, this class of meshes is rare and

difficult to automatically generate. The methods are very sensitive

by construction to redundant irregular vertices and other potential

problems (Section 1.1). In contrast, our method has fewer assump-

tions on the input and is able to process imperfect input surfaces

(Sec. 1.1).

Output differences. Existing tracing-based approaches can be cat-

egorized into two groups according to the desired output:

Conforming quad layouts, i.e. layouts that are free from T-

junctions [Campen et al. 2012; Fu et al. 2016; Usai et al. 2015]. In

this case, 2D rectangles have side-to-side adjacency relationships,

which is challenging to achieve. The resulting layout tends to be

much less coarse [Daniels et al. 2008]. On the other hand, this

provides advantages for remeshing purposes [Bommes et al. 2013].

To simplify their computation, field alignment is often sacrificed in

exchange for this property [Bommes et al. 2011; Campen et al. 2012;

Razafindrazaka et al. 2015; Tarini et al. 2011].

T-layouts, i.e. layouts with T-junctions [Campen et al. 2015;

Campen and Zorin 2017; Eppstein et al. 2008; Myles et al. 2010;

Pietroni et al. 2016], where two rectangular domains may share

only a part of an edge. The ability to insert T-junctions enlarges the

solution space, allowing for coarser layouts with milder distortion.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:4 • Schertler, N. et al.

Our approach, being a generalization of [Eppstein et al. 2008], tar-

gets T-layouts. This choice is justified by our application context.

Other common applications for T-layouts include T-splines and T-

NURCCS [Campen and Zorin 2017; Myles et al. 2010; Pietroni et al.

2016].

T-layout with scaling. We further increase the flexibility of

our layout by allowing the transition functions (i.e. the functions

mapping the two sides of a cut to each other in parametric space)

to include small integer scaling factors ≥ 1 (Section 4). This change

dramatically increases the solution space, while not introducing

any downside for texture mapping (Section 2.1). Our formulation

for parametric sizes is thus analogous to [Campen and Zorin 2017],

but our context does not require to enforce loop conditions around

vertices. This allows for non-degenerate solutions even in otherwise

unsolvable configuration such as the one shown in [Campen and

Zorin 2017, Fig.6] or [Karciauskas et al. 2017, Fig.2].

2.3 Relationship to Field-Aligned Remeshing Approaches

A class of field-guided methods construct a semi-regular quad mesh

driven by two related but distinct fields defined on the surface, which

are often computed in cascading order [Jakob et al. 2015; Ray et al.

2006; Schertler et al. 2017]. In [Jakob et al. 2015], they are termed

RoSy and PoSy field. The RoSy field is a tangent vector field that

determines the local orientations of the edges, whereas the PoSy

field is a position field that determines the positions of elements in

parametric space. Each field comes with its own set of singularities:

a cross-field singularity will produce a single irregular vertex in

the final quad mesh. Conversely, a positional-field singularity will

be translated in either a small configuration of irregular vertices,

non quadrilateral elements, or a T-junction. Our approach can be

understood as a way to classify these cases solely analyzing the

final mesh. The latter cases will be embedded inside irregular fenced

regions, and the former in regular ones. It could be argued that

this observation implies that a better solution would be to base the

analysis on the fields that produced the input mesh. Our motivation

for relying solely on the final mesh instead is based on a better

generality and a wider applicability, also considering that imperfect

quad-dominant meshes have different origins (see Sec. 1.1).

2.4 Relationship to Mesh Optimization Approaches

Our method is reminiscent of mesh optimization approaches, which

change the connectivity of an input quad-mesh striving to reduce

the number of its irregular vertices (among other objectives). For

example, [Peng et al. 2011] presents a set of local connectivity oper-

ators to relocate configurations of irregular vertices, which can be

combined to bring closer and then cancel pairs of irregular vertices

of opposite valence excess, such as a valence 3 with a valence 5. In

[Verma and Suresh 2015, 2016], local patches containing irregular

vertices are identified and individually remeshed more regularly;

these patches resemble our proposed fenced region. With respect to

any approach in this category, important differences stem from our

targeted application: in our case, we do not to change the original

mesh but only define a parametrization with controlled resolution

jumps for it. Local changes of the connectivity of a quad mesh re-

quire to respect scrupulous conditions to limit domino effects, which

would otherwise propagate over the entire structure (see [Daniels

Fig. 3. A Motorcycle Graph is calculated by spawning motorcycles at edges

of singularities (left) and tracing them (middle) until they all collide (right).

et al. 2008]), whereas we can afford to be more aggressive. For exam-

ple, our algorithm will consider one of our fenced region containing

a single 3-5 pair of irregular vertices as regular, which does not

complexify the T-layout, whereas any quad-mesh optimization ap-

proach cannot simplify this configuration in isolation. Informally

speaking, our valence cancellation effect is, therefore, more similar

to the singular-point cancellation experienced when smoothing a

cross-field (e.g. [Jakob et al. 2015]).

3 GENERALIZED MOTORCYCLE GRAPHS

For completeness, we first recap the original Motorcycle Graph

(MCG) algorithm, first proposed in [Eppstein et al. 2008]. MCG is

originally motivated by the task of providing a canonical partition-

ing of quad meshes with shared connectivity, toward the goal of

finding an isomorphisms between them. However, we will be using

it to construct a parametrization intended for texture mapping.

3.1 The Original Motorcycle Graph (MCG)

The idea of Motorcycle Graphs is to trace particles (called motorcy-

cles) along the edges of a two-manifold, pure-quad mesh until they

collide with another motorcycle or the trail thereof (see Figure 3). A

motorcycle is spawned at each edge around each irregular vertex

(i.e. non valence 4 internal vertex) going outward, and traced across

edges, going straight in a topological sense (i.e., it always proceeds

to the opposite edge). Motorcycles are traced in parallel, interleaving

advancement steps of each motorcycle over an edge, while mark-

ing traversed edges and vertices. A motorcycle terminates as soon

as it reaches a vertex already traversed by any motorcycle. When

all motorcycles are terminated, the set of all traversed edges parti-

tions the mesh into regions (or patches) which are guaranteed to be

topologically rectangular and to be fully regular internally.

There are two kinds of collisions: head-on collisions (which are

rare) between twomotorcycles coming from (topologically) opposite

directions; and lateral collisions, where one motorcycle hits the trail

of a second motorcycle traveling in an (topologically) orthogonal

direction. In head-on collisions, both motorcycles are terminated;

in lateral collisions, only the first motorcycle is terminated, and a

T-junction is formed in the final layout.

In a variation of this algorithm, also introduced in [Eppstein et al.

2008], fewer than v motorbikes are spawned around an irregular

vertex of valence v , as long as at least one is spawned at each two

consecutive edges around that vertex. Therefore, only two motorcy-

cles may be emanated from a valence-3 vertex, and only three from

a valence-5 or valence-6 vertex. In Figure 3, the motorcycles which

are prevented by this variation are indicated by blue marks. This

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:5

Fig. 4. The intuition behind our generalization. Left, first row: several examples of imperfect connectivities that are commonly encountered in semi-regular

quad-dominant meshes: a triangular element, a pentagonal element, a hole (note also the non-two-manifold vertex in the middle), a T-junction, a pair of

irregular vertices (valences 3 and 5), a configuration of four irregular vertices (with valences 3,3,5, and 5). Left, second row: concealing the imperfections

visually reveals how none of the the imperfections affect the overall regularity of the mesh away from them. For the purpose of our algorithm, these areas will

be considered regular to all effects. Right, first row: a similar situation arises when a irregular valence 3 vertex, which changes the flow of a surrounding

areas (left), is accompanied by a few connectivity defects, such as a T-junction (middle) or a triangular element. Right, second row: concealing the zones

shows how the three configurations have indistinguishable effects on the edge directions away from them. For the purposes of our algorithm, the three cases

will be treated identically. The concealed parts represent the fenced regions.

results in fewer patches being produced (i.e., in a coarser layout),

while maintaining the guarantees on the rectangular shape and in-

ternal regularity of the patches. This variation is directly applicable

also to our generalization of MCG, so we adopt it.

The algorithm is easily extensible to open meshes. We adopt this

formulation, which is equivalent to the original one: a boundary

vertex is considered irregular when its edge-valence is not equal to

3; we allow only motorbikes spawned on boundary edges to travel

over boundary vertices; other motorbikes are terminated just before

reaching any boundary vertex. This will cause the entire boundary

of the mesh to be eventually traced by motorbikes.

Benefits. In spite of its simplicity, the original Motorcycle Graph

algorithm has many desirable properties when applied to clean

meshes: it is fully automatic and reliable; it produces coarse quad

layouts, which are useful in many contexts, such as serving as a

parametrization domain for low-distortion, artifact-free, efficiently

packed texture mapping. In other words, an MCG is a straightfor-

ward way to exploit the high regularity of a pure quad mesh. It

exemplifies the ease of parametrization of such meshes, which is

among the main motivations making these kind of meshes sought

after.

Limited Applicability. In spite of all its benefits, the concept of

Motorcycle Graphs will not work well, or at all, when applied to the

commonly encountered quad-dominant semi-structuredmeshes (see

Section 1.1), even when they present few and sparse imperfections.

There are several reasons for this.

First, a large number of irregular vertices results in an explosion

of the number of patches.

Second, MCG only targets pure-quad meshes and breaks in pres-

ence of even a single pentagonal or triangular element. This problem

can be addressed by one iteration of topological Catmull-Clark sub-

division, which turns every polygonal mesh into a pure quad mesh.

However, this introduces many additional irregular vertices, exac-

erbating the former problem, and increases the complexity of the

model by an average factor of four.

Lastly, MCG does not allow for other imperfections either. MCG

will treat small holes as legitimate mesh boundaries (rather than

just incomplete data), causing additional irregular vertices, again

exacerbating the first problem. Similarly, small handles/tunnels are

considered as legitimate surface features (instead of meshing arti-

facts), resulting in a large number of irregular vertices. An open

mesh with jagged (rather than straight) boundaries will also be

treated as having a large number of irregular vertices. The presence

of T-junctions or of non two-manifold vertices are not dealt with

by MCG.

The effect of these problems propagates across the mesh. This

means that the final quad layout, even if it can be constructed, will

lack coarseness also in the clean parts.

3.2 Generalizing MCG: Main Intuition

The basic idea of MCG is to spawnmotorcycles at irregular areas and

propagate them across regular areas. This concept can be applied in

spite of the above listed local defects of the quad mesh connectivity.

For the purpose of the algorithm, an area can be considered regu-

lar as soon as it is assimilable to a regular grid, that is, if it does not

disrupt the regular 2D grid pattern away from it. This can be the

case even if the area is not tessellated as a completely regular grid.

See Figure 4 (left) for examples. No motorcycle needs be spawned

in such areas, and other motorcycles will traverse this area as if it

was regular.

The only potential effect outside an area of this kind is a change of

grid density around it. Many applications, such as texture mapping,

are fairly tolerant to the small variations of densities, which result

in only moderate parametrization distortions. The combined effect

of multiple such cases can either cancel out or accumulate beyond

the final application tolerance. We deal with the latter case in a

subsequent phase by splitting the final rectangular regions (trading

distortion for a marginal decrease of the coarseness of the layout).

Similarly, the locations which spawn off motorcycles are not iden-

tified by the immediate 1-star around a vertex but by regions that

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:6 • Schertler, N. et al.

have a large-scale effect on the edge orientations of their surround-

ings. See Figure 4 (right) for examples.

We turn this intuition into an algorithm by introducing the con-

cept of fenced regions.

3.3 Fenced Regions

Metaphorically, we fence-in any problematic configuration breaking

mesh regularity and cleanness, such as irregular vertices, holes, T-

junctions, et cetera. A fenced region is defined as a contiguous

region of a mesh (a collection of faces) that hosts one or multiple

such configurations but is nonetheless to be treated either as entirely

regular (regular fenced regions) or as containing a single irregular

vertex (irregular fenced regions).

Classification of Fenced Regions. The fence, i.e. the boundary of a

fenced region, is a collection of mesh edges and vertices. A fenced

region is valid if all the vertices on the fence are regular; we will

be only using valid fenced regions. A valid fenced region can be

classified as regular or irregular solely according to its boundary,

regardless of its interior, as follows.

Each vertex on a fence can be classified according to the number of

its outward edges (edges that are outside the fenced region): convex

vertices have two, straight vertices have one, and concave have

none. We then define the valence v of the fenced region as the sum

of turns over all boundary vertices, i.e. +1 for convex vertices, ±0

for straight vertices, and −1 for concave vertices. Equivalently, the

valence of a fenced region is given by

v = ne − nv ,

where ne is the total count of outward edges and nv is the number

of vertices on the fence, but not on the mesh boundary. Analogously

to mesh vertices, a fenced region is regular if v = 4, and irregular

otherwise.

We also define degenerate fenced regions, having no faces, zero

area, and consisting of a single irregular vertex. A degenerate fenced

region is always valid, and its valence is defined as the one of that

vertex.

3.4 Generalizing MCG: Overall Algorithm

Our generalized algorithm produces a patch layout as follows.

First, we determine all the fenced regions (Sec. 3.6). Then, we

perform the analogue of the standard MCG algorithm:

(1) spawn motorcycles at irregular fenced regions (Sec. 3.7);

(2) trace the motorcycles in parallel across the mesh (including

across regular and irregular fenced regions), until each is

terminated by a collision (Sec. 3.8);

(3) extract patches of the resulting graph (Sec. 3.9).

Finally, we post-process patches by splitting a few in order to al-

leviate excessive distortion. To ensure global consistency (i.e. to

produce a pure rectangular layout) we need to enforce topological

consistency conditions within steps 1 and 2 as described below. One

merit of our approach is that these sub-problems are local and the

size of their instances is limited, allowing for easy solutions.

Before the algorithm is run, we pre-process the input mesh (Sec-

tion 3.5). This simplifies the formulation (and implementation) by

reducing the number of cases which must be accounted for.

3.5 Preprocessing

Virtual refinement. We consider any T-junction as one extra cor-

ner of a polygon (e.g. a quad with a T-junction as a pentagon), and

we perform one global iteration of topological Catmull-Clark sub-

division. This subdivision is only temporary: edges introduced by

the subdivision are tagged as łCCž, and dissolved after the T-layout

has been extracted, except the few ones that have been traversed by

motorcycles. All subsequent phases of the algorithm strive to avoid

routing motorcycles across CC edges, therefore the subdivision is

almost completely reverted in practical cases; (in our experiments,

the final mesh has an increased edge count by less than 1% in aver-

age). While not strictly necessary, this step offers practical benefits:

it turns non-quadrilateral polygons and non conforming vertices

into irregular vertices, reducing the number of cases which need

to be dealt with, thus simplifying the implementation; it increases

the number of regular vertices so that more valid fenced regions

can be identified; and it provides more edges for the navigation of

motorcycles (although they are used only as a last resort). Unless the

input mesh is already conforming (T-junction free) and pure-quad,

we always performed this step in our examples.

Virtual boundary expansion. According to our def-

inition, an irregular boundary vertex cannot be part

of any valid fenced region (except degenerate ones)

because only regular vertices are allowed on the

fences. Instead of modifying the definition to include

boundary cases, we virtually pad the boundary with

one layer of faces (dotted lines in the inset) by adding an outward

edge to each vertex on the boundary (thick line). The new boundary

is completely regular and original boundary irregular vertices are

pushed into the interior. This padding is kept entirely implicit and

the mesh is not actually modified. See Fig. 5 for an example of the

effect of this on the overall algorithm.

3.6 Identification of Fenced Regions

In this step, we identify fenced regions that encapsulate all irregular

points and defects while ensuring that each area is smaller than

a maximal size Tmax . Tmax is the only parameter of our method

and has an intuitive interpretation: it represents the area size of the

largest feature which is to be ignored by the layout; higher values

trade layout coarseness for parametric distortions. We always used

Tmax = 20 times the average face area.

Within these requirements, we would ideally like the number of

irregular fenced regions to be minimized as this results in coarser

layouts (see Figure 4). We design a heuristic to seek this objective,

which we describe below. Crucially, this always produces a valid

solution (at worst, the initialization). Figure 7 shows an example of

the output.

Initialization. Initially, we encapsulate all irregular vertices in a

minimal set of non-degenerate fenced regions (and, if necessary, a

few degenerate ones). To do so, we initialize a fenced region for each

irregular vertexvi from its one-ring. Figure 6 (a) shows this starting

point for a single irregular vertex. If another irregular vertex vj lies

on its boundary, then the fenced region is invalid. In this case, we

expand the region by including the one-ring of vj . This is repeated

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:7

Fig. 5. Above: with the original MCG algorithm, many small patches are

in presence of a jugged boundary, as in this example. Below: an example

of the application of the Generalized MCG for the same input mesh. The

boundary is first (virtually) expanded (left); five fenced regions (four regular,

plus one degenerate of valence 3) are identified (middle), and a single patch

with an open boundary is created covering the boundary (right). CC edges

are not shown.

(a) (b) (c) (d)

Fig. 6. Four steps in the iterative fenced region identification process. (a) an

invalid fenced region is seeded from the one-ring of the marked irregular

vertex; (b) the fenced region is expanded until it becomes valid; (c-d) two

valid irregular fenced regions are merged into a single regular one.

until either the fenced region is valid or its area exceeds Tmax . In

the latter case, we dissolve the entire region and create a degenerate

fenced region around each irregular vertex inside it. The result of

this iterative expansion is shown in Figure 6 (b).

Merging by expansion. Next, we try to merge irregular fenced

regions into fewer, regular ones. This procedure consists in progres-

sively expanding irregular fenced regions in parallel and merging

the ones which come into contact with each other (if possible). More

specifically, we perform a sequence of atomic growing operations,

each consisting in the expansion of one irregular, (non-degenerate)

fenced region over one neighboring face, such that the new area

does not exceed Tmax . At every iteration, we pick the available op-

eration where the face is geometrically closest to the starting point

of fenced region. If the selected face already belongs to a different

fenced region, then, instead of expanding the area, we test if the two

areas can be merged. The merge is only performed if the summed

area does not exceed Tmax . Note that the merged region can then

be regular and, if so, it is never expanded again. Faces surrounding

degenerate fenced regions are never considered for expansion. Once

there are no available operations left, this phase is over. Figure 6 (d)

shows the result of merging the two fenced regions from Figure 6 (c).

Fig. 7. One example of the results of fenced region identification phase. All

singularities (left) are covered by fenced regions. Green overlays correspond

to regular fenced regions, orange ones to fenced regions with valence < 4,

and blue ones to fenced regions with valence > 4 (CC edges are not shown).

Shrinking back. Finally, we undo all the expansions that did not

result into merging of fenced regions. Each fenced region is shrunk

by iteratively testing and removing faces adjacent to the boundary. A

removal is rejected if it causes loss of validity (that is, if an irregular

vertex lies on the new border) or if it changes the disk-topology of

the region.

3.7 Spawning Motorcycles

For every irregular fenced region of valence v , we spawn v motor-

cycles and immediately trace each of them to an exit position on

the boundary of the containing fenced region (in reality, a subset of

motorcycles are omitted, so as to coarsen the resulting layout, see

Section 3; for exposition purposes, we ignore this detail here).

For a degenerate fenced region consisting of a single irregular

vertex, this is done trivially: a motorcycle is spawned along each of

the v edges stemming out of that vertex.

For non-degenerate fenced regions, we need to pick one common

internal starting position, exit positions for each motorcycle, and

routes from the former to the latter.

To do so in a valid way, we first partition the fence edges ac-

cording to their topological orientation, which is an index from 0 to

v −1. We pick an arbitrary edge and assign its orientation to 0. Then

we navigate counter-clockwise around the fence, accumulating the

turns (modulo v), and assigning to each traversed edges the accu-

mulated orientation (see Figure 8 for an example). This algorithm is

well-defined because vertices on a fence are always regular.

Consistency Conditions. One consistency requirement is that each

motorcycle leaves the fenced region traversing an edge with a differ-

ent orientation. This condition is not sufficient (cf. Figure 8-left): an

additional requirement is that the motorcycles are spawned around

the starting position in the same counter-clockwise order as their

exit orientation (see Figure 8-right).

Searching for a solution. We now need to pick the starting and exit

position in accordance to the above constraints. Because the fenced

region is small, we can quickly consider all the possibilities, as fol-

lows. We trace paths backward, from every potential exit position

towards the inside (when an irregular internal vertex is reached, the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:8 • Schertler, N. et al.

0
1
2

Fig. 8. A valence 3 fenced region with two alternative initializations for mo-

torcycles. Fence edges are colored according to their topological orientation

(from 0 to 2). Left: breaking the ordering requirement results in an invalid,

non quadrilateral layout. Right: an initialization respecting it.

0
1
2

0 turns

valid exit

(a) (b)

Fig. 9. Determination of valid exit points for a motorcycle entering a fenced

region according to our consistency conditions. (a) The motorcycle can leave

the fenced region if the path between entry and exit along the fence has

a total of zero turns. (b) The motorcycle entering through an edge with

orientation 0 can collide with a motorcycle that entered through an edge

with orientation 1.

path tracing direction is not determined and all alternatives are ex-

plored). In this way, we quickly identify internal vertices capable of

reaching a valid set of exit positions. Among the available solutions,

we choose the one maximizing an ad hoc geometric fitness, defined

as a measure combining straightness of paths; see the supplemental

material for details.

Fallback strategy. In rare cases, no valid initialization exists (e.g.

this happens with fenced regions with extreme valences lacking an

internal vertex with sufficiently high valence or for fenced regions

with many missing internal elements). If this happens, we simply

dissolve the fenced region and create a degenerate fenced region

for each contained singularity (which are valid unconditionally).

3.8 Tracing Motorcycles

A motorcycle travels straight until a collision occurs. A collision is

detected when a motorcycle reaches a vertex that has been traversed

by any motorcycle before. Outside fenced regions, traversed vertices

are always regular, and motorcycles are routed normally (as in

original MCG).

Inside fenced regions, the path can visit irregular vertices, making

routing non-unique. Our solution is to consider all potential paths

from the entry point, and pick an admissible one. As soon as a

motorcycle steps inside a fenced region, it is routed until it either

traverses across the fenced region and exits it again, or it collides

somewhere inside it. Consistency conditions are defined differently

for these two cases, as follows.

Consistency conditions for traversals. Conceptually, in this case

the path must travel topologically straight across the patch. If the

motorcycle enters the fenced region at vertex va and exits it at

vertex vb , then the route starting at va , traveling along the fence,

and finally leaving at vb , must have a total turn count of 0 (see

Fig. 9 (a)). For regular fenced regions, both possible routes (either

clockwise or counter-clockwise) leading to valid exit positions will

have the same turn count. For irregular fenced regions, we pick the

route along the fence that does not intersect with any of the exit

positions of the initial motorcycles (see Section 3.7). This condition

is well defined because vertices on the fences are always regular by

construction.

Conditions for collisions. Inside any fenced region, collisions must

fulfill the following consistency requirement: a motorcycle entering

through an edge with orientation i can only collide with a motor-

cycle that entered through an edge with orientation i + 1 or i − 1

(modulo the valence v of the fenced region, see Fig. 9 (b)). Note that

collisions of this kind are always considered lateral (terminating

only the motorcycle being moved). Head-on collisions can never

happen in the interior of fenced regions.

Enumerating and selecting potential paths. Inside fenced regions,

a path is followed straight (in the topological sense) when passing

through regular vertices, and forks among all possibilities otherwise.

A path reaching a boundary edge inside a fenced region proceeds

over all possible vertices along the boundary of that hole. We use

Dijkstra’s algorithm to trace a path from the entering position to

any admissible end (collision or exit). The per-edge cost function

penalizes traversal of CC edges, which are usually entirely avoided.

Secondarily, it favors a geometric measure of path straightness.

Fallback Strategies. In rare cases, no consistent path can be found.

When this happens, we attempt a number of fallback strategies in

cascade. The first is to cancel the offending motorcycle completely,

remaking the arbitrary choice of which motorcycle to spawn around

its spawning vertex. This cannot be done if it would cause the re-

spawning of amotorcycle that was already canceled before. A second

strategy consists in spawning two new stopping motorcycles at the

entry point, going in the two directions orthogonal to the original

motorcycle such that the latter immediately collides and never en-

ters the fenced region (see Figure 10). It is necessary, however, that

the two stopping motorcycles have a valid route until their eventual

termination. 10 If non of the above strategies are possible, we dis-

solve the entire fenced region as a last infallible strategy. Doing so,

we substitute it with one degenerate fenced region for each irregular

vertex and restart construction of the graph. This is necessary only

very rarely for highly irregular meshes.

3.9 Patch Extraction from the Motorcyle Graph

To extract the quadrilateral patches of the Motorcycle Graph, we

trace the contour of each quadrilateral patch traversing all half-

edges bounding each patch. Then we partition the mesh-faces into

patches by a simultaneous flood-fill of all mesh faces, seeded at the

bounding half-edges.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:9

No valid route. Stopping by a pair of new motorcy-

cles (green)

Fig. 10. One fallback strategy for a motorcycle that cannot be routed across

a fenced region: We prevent its entry by spawning orthogonal stopping

motorcycles.

Fig. 11. After the T-layout is extracted, the Catmull-Clark subdivision per-

formed as a prepossessing (see Sec. 3.5) is almost completely reverted by

redissolving the introduced CC edges (not shown in this wireframe). CC

edges which are part of patch boundaries (see zoom-in) cannot be removed

but are rare by design.

This algorithm also deals correctly with rare cases

in which a small bridge or tunnel connects two dis-

tinct quadrilateral patches (see inset). This can hap-

pen when a motorcycle traversed a fenced region

featuring internal topological noise, which was pur-

posely considered equivalent to a regular region. In

our experimentation, this occurred with one dataset

(the David head), out of several hundreds we tested.

3.10 Subdivision Reversal

After extracting the patches, we can revert the initial

Catmull-Clark subdivision in all places by simply dissolving CC

edges that are not traversed by any motorcycle. Because our algo-

rithm avoids traversal of CC whenever possible, most CC edges can

be dissolved.

Figure 11 shows the result for an example mesh, where almost

the entire subdivision can be reverted.

4 CHOOSING PARAMETRIC SIZES

Once the layout is constructed, the next task is to determine the

sizes of each rectangle in parametric space.

Fig. 12. An example of a T-layout. Letters from a to w: variables assigned to

half-arc lengths.

In the original MCG for clean pure-quad meshes, this step simply

consists in counting the number of edges on the boundary of the

rectangular regions (relying on the assumptions that edges approxi-

mately share the same length). By construction, the opposite sides

of each rectangle will amount to the same edge count.

In our setup, this is not the case as regular fenced regions can

affect the tessellation density inside a the patch (e.g. via T-junctions

or configurations of irregular vertices). We determine the parametric

lengths as follows.

4.1 Problem Formulation

We consider a graph where nodes are vertices of the final layout,

including T-junctions. Each side of each rectangle is made up of one

or multiple consecutive arcs of this graph (see Fig. 12).

Similarly to [Campen and Zorin 2017], we formulate the problem

by assigning one strictly positive length variable to each half-arc

and solving for them by optimizing an objective function that mea-

sures isometry under consistency conditions that ensure rectangular

patches in parameter domain as well as invisible cuts along patch

boundaries. In our case, the variables are lengths expressed in num-

ber of texels and must thus be integer.

Arc Length Estimation. In a first step, we estimate the actual size

of each side of the rectangular patches in 3D. This is simply done by

summing the edge lengths across all edges. For a more accurate esti-

mation, we trace additional internal paths parallel to the measured

side inside the half-arc’s patch (as described in Section 3.8) and

average their estimated lengths. As a result, the target length of a

half-arc is the average height or width of the according patch. When

the lengths of the sides or the internal motorcycles are drastically

different, we trigger a horizontal or vertical split of the patch in

order to reduce distortions (see 4.5). A target length estimation is

assigned to each arc by distributing the estimated length of each

side proportionally to the extent of the arc.

Objective Function. Our objective function is simply a measure of

isometry, i.e. the preservation of lengths along the arcs. We compute

a target length for each half-arc (see above) and we enforce the

actual parametric length to match it in the least square sense. Target

lengths are multiplied by a global scaling factor given by
√

NT /A,

whereA is the total area of the inputmesh andNT is the approximate

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:10 • Schertler, N. et al.

Fig. 13. A toy example illustrating an invisible seam construction in our

framework. Top left: a rectangular domain 3×2 and one 6×2; the parametric

lengths of the two matching sides (dotted lines) were made to match with

an integer factor of ×2. Bottom left: the two domains are sampled by texels

over a regular grid of 4 and 7 × 3 respectively (sizes are increased by one,

to account for the borders), and then packed side to side in one texture,

with no additional space necessary in between. Right: the distribution of

texels in 3D space is consistent with bilinear interpolation, preventing any

visual discontinuity artifact to appear along the cut. In this example, values

of texels (A,E), (B,G), (C, I) and (D,K) are made to match, while values

of texels F , H, J are set as the average of (E,G), (G, I), (I, J) respectively;

in total, there are four distinct, fully unconstrained texel values along the

border, on a total of 11 stored texels. No other texel is required in order to

avoid bleeding or discontinuity artifact. See Figure 20 for an example of an

actual rendering.

requested number of texels (e.g. 1.6 · 107 for a full resolution 4k × 4k

texture).

4.2 Consistency Constraints

For Rectangles. As the patches should be rectangles in parametric

space, the sum of assigned half-arc lengths on the opposite sides of

each rectangle must be equal. For example, for the top rectangle in

Figure 12, we impose b = д + i and d = e .

For Arcs. If the lengths of all pairs of matching half-arcs (for exam-

ple, a = b, c = d etc. in Figure 12) are equal, the parametrization is

seamless in the classical sense of [Bommes et al. 2009].With the repli-

cation of a few texel values, interpolation artifacts can be avoided

completely, making cuts invisible (see Figure 20). Unfortunately, as

observed in [Campen and Zorin 2017], enforcing equal lengths of

matching half-arcs together with rectangle constraints can result in

a global system which admits only very few and heavily distorted

solutions or even none at all (for strictly positive variables). In our

scenario, we can relax these constrains in two different ways as

described below.

4.3 Relaxing the System

Invisible Cuts. We borrow from [Ray et al. 2010] the observation

that if a transition function at a cut includes an integer scaling, then

the cut is still invisible (see Fig. 13). In practice, we found that we

can limit the integer multiplier to ×1 and ×2. In other words, we

allow an occasional ×2 resolution jump across a cut, so to relax the

global system. Such jumps are necessary only for a tiny minority of

the cuts.

Visible Cuts. Allowing for integer jumps already increases the

degrees of freedom drastically. We noticed that disregarding only a

few arc consistency constraints allows the system to reach a lower

distortion everywhere (and thus a smaller energy). This trade-off

is convenient, because interpolation artifacts at cuts are minor and

local. Inmost scenarios, a few visible seams can be tolerated, whereas

the gain in reduced distortion is global (in the industry standard,

cuts are very rarely invisible, see Sec. 2.1).

4.4 Solving the System

We need to solve for half-arc lengths, integer multipliers, and dis-

abled arc constraints. This makes for a mixed integer non-linear

problem, which, however, can be solved using a simple heuristic.

Multipliers. The patch graph comprises two types of cuts: Those

that are generated during patch splitting and those that are gener-

ated from the Generalized Motorcycle Graph. We observed that the

latter kind is almost never required to have multipliers other than 1

because they usually trigger a patch split otherwise. Therefore, we

set those multipliers to one and derive the remaining multipliers

from the patch splitting phase (see next section).

Arc Lengths. Given the pre-determined multipliers, the aforemen-

tioned objective function becomes a linearly constrained quadratic

function, which we solve with a commercial IQP solver [Gurobi Op-

timization 2016]. When the solver determines the model to be infea-

sible, we use its feasibility relaxation to remove the arc consistency

constraints with minimal total length that make the system feasible.

Similarly, if a solution produces an unfavorable ratio of half-arc

length and its target length (we use a threshold of 2), we remove all

consistency constraints for the arcs on the same side in the respec-

tive patch. This relaxes the system more, allowing solutions with

less distortion.

4.5 Patch Splitting

Whenever the ratio between the internal paths that are used for

patch size determination are too extreme, we split the corresponding

patch. For this, we consider each of these internal paths as cut

candidates and choose the subset that results in the least distortion as

actual cuts. During this procedure, we maintain integer multipliers

on the cuts to make it invisible. We optimize for the distortion-

minimizing cuts with an incremental rounding approach of the

respective multipliers. For details, refer to the supplemental material.

5 PARAMETRIZATION AND PACKING

In the final step, we compute the mapping from each patch on

the mesh to the corresponding axis-aligned quadrilateral domain

in texture space. This is constructed in the standard form of a UV

assignment to each mesh vertex (replicating vertices at patch bound-

aries). Any patch distortion minimization parametrization method

could be used for this purpose. We adopt Scaffold Map [Jiang et al.

2017] (initialized from a harmonic map), because it provides a good

balance between area and angle preservation, while dealing well

with open boundaries by avoiding global overlaps. The latter prop-

erty is needed for patches which include open edges. For patches

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:11

Fig. 14. Left: due to the combined effect of five regular fenced regions

(green, left), a topologically rectangular patch ends up having fairly different

geodesic length on east and west sides, resulting in a heavily distorted map

(middle, note the anisotropic quad shapes). Right: by splitting the patch

vertically, two less distorted patches can be obtained, connected by an

invisible cut associated to a resolution multiplier of 2 (cf. Figure 13).

that cannot be embedded without overlap (e.g. due to small han-

dles or non-manifold configurations), we employ a least-squares

conformal map [Lévy et al. 2002].

Boundary conditions are set as follows: (1) vertices in the interior

of patches are unconstrained, and (2) vertices mapped on a side of a

rectangle are constrained to never leave that side, but are allowed to

slide along it. This is trivially achieved by constraining either their

u or v coordinate to a constant value (the four corners, belonging

to two sides, always have both coordinates fixed).

Over all sides that are invisible cuts (see 4.2), the two copies are

constrained to slide in sync with respect of each other by enforcing

the two vertices to have the same barycentric position (in [0,1])

over the segment (a linear constraint in the texture coordinates).

The same constraint is applied to T -nodes, effectively fixing both

coordinates of the respective vertex. At this point, the system could

be solved globally. However, this requires the optimization of two

energy types at the same time (scaffold map and LSCM). We exper-

imentally observed that the global solution can be approximated

well by a simpler, local approximation. We fix both coordinates of

boundary vertices, decoupling the optimization between patches

and solving smaller systems. To overcome the inevitable distortion

introduced by fixing the positions on the boundary, we evaluate the

parametrization’s energy and make the longest patch side a visible

cut if it exceeds a user-definable threshold. Figure 15 shows how

increasing this threshold leads to less visible seams with marginally

higher parametrization distortion.

Finally, we pack all rectangular patches into a unified texture. For

each patch of sizem × n, we allocate (m + 1 × n + 1) texels (because

texels are sampled at the boundary of the rectangles ś cf. Fig 13).

Therefore, no empty texels need to be left unused between the

patches. For packing, we employ the maximal rectangles algorithm

[Jylänki 2010] (patches with open boundary are represented by

their axis aligned bounding rectangle). For the typical sizes of the

problem, this is very efficient, producing extremely tight packings

(< 5% wasted space) within tenths of milliseconds. This is one of

the benefits of a rectangular based domain.

To allow MIP-mapping up to a user-specified MIP-map level l , we

perform all previous steps for the given level. I.e., the arcs’ target

Fig. 15. Dependency of the amount of visible seams (w.r.t. the total amount

of seams) and the distortion of the parametrization (measured by the av-

erage MIPS energy per triangle; the minimum MIPS energy is 2.0) on the

user-definable parametrization energy threshold. The presented data are

medians over all models from the [Jakob et al. 2015] data set (see Table 1).

Increasing the threshold reduces the amount of visible seams and introduces

slightly more distortion. The latter series exhibits some outliers due to the

discrete nature of the underlying optimization problem.

lengths are scaled by an additional factor of 2−l . The final parame-

trization is found by scaling texture coordinates back to the finest

level using a factor of 2l . Note that this will introduce small gaps

between patches on finer levels. We share this inherent cost with

any other standard texture-mapping technique. In our setup, the

issue of MIP-mapping is alleviated, simplified, but not bypassed, by

the axis-alignment of cuts.

The resulting UV-mapped mesh can be saved and used in any

standard downstream application.

6 RESULTS

An important feature of our algorithm is that it always produces

a valid T-layout while producing a good (coarse) layout when the

input regularity can be exploited.

We verified this by successfully testing on models from six differ-

ent sources (see Table 1) without encountering a single failure case

out of more than one hundred cases. We produced the first dataset

by feeding the triangular meshes used by [Myles et al. 2014] into

the Instant Meshes algorithm [Jakob et al. 2015]. The resulting quad-

dominant meshes are characterized by a large number of irregular

vertices and occasionally holes. Other four datasets are provided

by the authors of the respective papers. The łhandmadež dataset

consists of semi-regular quad-dominant meshes hand-modeled by

professional artists, downloaded from the repository [TurboSquid

2018]. Each dataset presents a different degree of regularity and

different types of problems. Figure 16 shows one sample from each

of datasets and more are shown in Figure 22.

We compared the performance of our method with existing solu-

tions on a challenging case (Figure 17). Compared to the UV layout

produced by a commercial software (Autodesk Maya), the Gener-

alized Motorcycle Graph layout is more GPU memory efficient,

because of the superior packing efficiency, and secondarily because

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:12 • Schertler, N. et al.

Data Set Models |S |/|V | s. red. vis. s. Rv 10 Rv 90 Mv Ri 10 Ri 90 Mi

[Jakob et al. 2015] 115 1.8% 95.2% 12.0% 0.69 1.37 2.00 0.65 1.47 2.12

[Ebke et al. 2016] 4 7.1% 70.8% 21.8% 0.38 1.96 2.04 0.42 1.98 2.73

[Marinov and Kobbelt 2006] 4 7.5% 83.1% 31.4% 0.39 1.62 2.09 0.42 1.54 2.33

[Bommes et al. 2009] 7 1.4% 42.9% 7.1% 0.58 1.47 2.06 0.49 1.48 2.22

[Ray et al. 2006] 4 5.8% 61.7% 18.0% 0.68 1.65 2.04 0.64 1.84 2.16

Hand-made 10 2.7% 61.1% 19.6% 0.46 2.11 2.11 0.45 2.24 3.10

Table 1. Result statistics for models of different types. We report the number of models in the dataset, the number of singularities |S | w.r.t. the number of

mesh vertices |V |, and the relative singularity reduction due to fenced regions. Parametrization statistics are reported by the percentage of visible cuts (w.r.t.

the length of all cuts), area ratios R of the parametrization with respect to the model surface as a distortion measure , and the average MIPS energy M . We

report the distortion measures for visible seam parametrization (Rv , Mv) and invisible seam parametrization (Ri , Mi). We present the area ratios as the 10-th

and 90-th percentile as robust substitutions for minimum and maximum. All values are medians over all models in the data set. Inivisible seam parametrization

is performed with a medium parametrization energy threshold (50, cf. Fig. 15)

[Jakob et al. 2015] [Ebke et al. 2016] [Marinov and Kobbelt 2006] [Bommes et al. 2009] [Ray et al. 2006] Hand-made

Fig. 16. Examples from the data sets presented in Table 1. Visible cuts are marked with red lines.

fewer domains with straighter boundaries require fewer texel repli-

cation. Compared to the plain motorcycle graph, our method pro-

duces a layout with about 1
20 of the patches (Figure 2).

Our reference implementation and selected data sets are available

at https://github.com/NSchertler/GeneralizedMotorcycleGraph.

6.1 Applications

3D Scanning. In Figure 18, we show how Generalized Motorcycle

Graphs can close the last gap of the Online Surface Reconstruction

scanning pipeline proposed by [Schertler et al. 2017], which uses a

specialized surface format based on Mesh Colors [Yuksel et al. 2010]

to store surface information. Consequently, the model cannot be

used directly in standard applications. By rendering the colors into

a rectangular texture, which has been laid out with a Generalized

Motorcycle Graph, we can make the data available to all applications

that support textured meshes.

Figure 18 also shows that Generalized Motorcycle Graphs are

insensitive against small imperfections in the input data. The high-

lighted area on the mesh shows a non-manifold configuration in

combination with holes. While other T-layout generation methods

cannot handle these cases, Generalized Motorcycle Graphs robustly

integrate these imperfections within a large texture patch. The non-

manifold configuration prohibits the existence of an overlap-free

embedding. Since a bijective parametrization does not exist, the pa-

rametrization produced by Generalized Motorcycle Graphs includes

a small area of overlap in the problematic region and leaves the

other parts of the texture unaffected.

Other kinds of surface information can be stored in textures laid

out by Generalized Motorcycle Graphs as well. Figure 19 shows

an application to light baking, where the ambient occlusion term

calculated by a preprocess has been baked into a texture and applied

to a low-resolution model.

Cuts Invisibility. An additional benefit is the ability to make most

cuts invisible (see Section 4.2). Figure 20 shows a rendering example.

Texture Reduction. Thanks to its packing efficiency, Motorcycle

Graphs can also be beneficial to reduce the size of textures used

in video games or movies. After asset creation, textures can be

automatically resampled into a tighter texture, saving GPU memory

while reducing the occurrences of seam artifacts (Figure 21).

Remeshing. Our approach is tailored for texture mapping appli-

cations, but under certain circumstances it can be employed for

remeshing as well: we can resample each produced domain with a

regular grid (an example is shown in Figure 23). This, however, im-

plies a resampling of the vertices, which can potentially introduce er-

rors at sharp features. Furthermore, T-junctions are produced along

any cut for which the parametric lengths do not match (Sec. 4.2);

for scenarios where T-junctions can be tolerated (e.g. in hidden

parts), this application can be seen as a convenient way to sweep

out different sources of irregularity scattered across the mesh and

concentrate them at the cuts in form of T-junctions. The resulting

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:13

Input

Patches:
Texture Occupancy:

15,843 1,314
55.8%

704
97.6%

Original Motor-
cycle Graph

Generalized Motor-
cycle Graph

Maya 2017

Fig. 17. Comparison of UV-atlases automatically generated for a complex model. From left to right: input quad-dominant mesh, with 138, 290 vertices and

10, 919 singularities; partition produced by the original Motorcycle Graph (after one step of Catmull-Clark); atlas parametrization produced by Autodesk

Maya’s automatic UV-mapping tool (optimized for the number of patches); and the result of our own approach. Below: the UV-layouts of the latter two

models. Our method results in almost half the patches, and a drastically superior texture packing efficiency, with only 2.4% unused texels.

remeshings are typically much more regular, which greatly helps

for example compression (see [Sander et al. 2003]).

7 LIMITATIONS AND CONCLUDING REMARKS

Our work allows automatic and high-quality UV mapping of a class

of meshes in between fully structured and unstructured meshes,

which, we argue, has high practical importance, both in manu-

ally modeled and automatically remeshed models. Fully automatic

pipelines that produce semi-regular meshes from captured data can

benefit from Generalized Motorcycle Graphs since it extends the

automatic workflow to texturing. Manually modeled semi-regular

meshes can also take advantage of the ability to automatically con-

struct GPU memory-efficient, artifact free, high-quality UV maps.

Limitations. The main limitations of our method stem directly

from our starting choices: we target T-layouts only; our parame-

trization is not globally seamless (in the sense of [Bommes et al.

2009]), nor globally conformal (in the sense of [Campen and Zorin

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:14 • Schertler, N. et al.

OSR GMCG

Fig. 18. Parametrization by Generalized Motorcycle Graphs close the gap between meshing approaches like Online Surface Reconstruction (OSR) and many

applications that use standard textured meshes as input. OSR takes several point clouds as input (left) and produces a semi-regular mesh in a specialized

format (middle). Natural Motorcycle Graphs can generate a standard textured mesh (right) from this format. To support this application, it is imperative that

Natural Motorcycle Graphs handle imperfections in the input data (highlighted areas) and produce a practically usable texture map.

Fig. 19. Generalized Motorcycle Graphs can be used to store various surface

attributes in a texture. In this example, the ambient occlusion term of a

high-resolution surface was baked into a texture (right) for use with a

low-resolution model (left).

2017]); we need to allow for integer jumps. Also, outside the tar-

geted class of meshes, our method is either superfluous (for very

regular inputs, where the original MCG can be directly employed)

or out-performed by standard global parametrization methods (for

very irregular inputs); targeting full automatism, our method is

not designed to be steerable by the user (although it could be ex-

panded in this direction). These choices are, however, justified by

our objectives.

Reliability. Reliability is one of the main motivations behind this

work and our major strength: our approach will always produce a

valid and usable UV mapping despite the imperfections of a given

semi-structured mesh, allowing its usage in a graphics pipeline

Fig. 20. Left: without per-arc consistency constraints, bilinear texture inter-

polation produces artifacts, which are visible under extreme magnification

and reveal the presence of the texture cut. Right: enforcing per-arc consis-

tency constraints (4.2), no artifacts appear regardless of the zoom factor.

Fig. 21. Generalized Motorcycle Graphs can be used to resample and repack

textures of a hand-made model (left) to a denser texture (right). In this

example, texture occupancy increased from 64.3% to 97.9%.

without a manual cleanup. This is achieved by enforcing (local)

consistency constraints and employing infallible (local) fall-back

strategies. The assumptions on the input, i.e. quad-dominance and

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:15

Fig. 22. The first 56 models produced by [Jakob et al. 2015] used to empirically validate our method.

preponderant regularity, are exploited whenever they are fulfilled;

conversely, when they are broken, the output just gracefully down-

grades its quality (in terms of layout coarseness and distortions).

This observation also holds at both extremes of the regularity spec-

trum: for a completely clean, pure-quad, and regular mesh, our

approach is equivalent to the original motorcycle graph (hence, it is

a proper generalization of it); for a generic irregular triangle mesh

the output will still be a valid (though very dense) quad partitioning

of the mesh. At the worst, our algorithm will produce a PTex-styled

parametrization [Burley and Lacewell 2008] over a Catmull-Clark

subdivision of the input mesh. The strength of our method lies

in-between these two extrema.

ACKNOWLEDGMENTS

We thank Xifeng Gao for his help in preparing our test data sets

and Zhongshi Jiang for adapting his scaffold map code to our needs.

REFERENCES
David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.

2013. Integer-grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4, Article
98 (July 2013), 12 pages. DOI:https://doi.org/10.1145/2461912.2462014

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:16 • Schertler, N. et al.

Fig. 23. A remeshing with a Generalized Motorcycle Graph. In this example,

the number of singularities (depicted as spheres) is reduced from 351 (left)

to just 32 in the output (right).

David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global Structure Optimization
of Quadrilateral Meshes. Computer Graphics Forum 30 (2011), 375ś384. Issue 2. DOI:
https://doi.org/10.1111/j.1467-8659.2011.01868.x

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. In Com-
puter Graphics Forum, Vol. 32. Wiley Online Library, 51ś76. Issue 6.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation.
ACM Trans. Graph. 28, 3 (2009), 77.

Brent Burley and Dylan Lacewell. 2008. Ptex: Per-Face Texture Mapping for Production
Rendering. In Eurographics Symposium on Rendering 2008. 1155ś1164.

Marcel Campen. 2017. Partitioning Surfaces into Quad Patches. In EG 2017 - Tutorials,
Adrien Bousseau and Diego Gutierrez (Eds.). The Eurographics Association. DOI:
https://doi.org/10.2312/egt.20171033

Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual loops meshing: quality
quad layouts on manifolds. ACM Trans. Graph. 31, 4 (2012), 110.

Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized Global Param-
etrization. ACM Trans. Graph. 34, 6, Article 192 (Oct. 2015), 12 pages. DOI:

https://doi.org/10.1145/2816795.2818140
M. Campen and L. Kobbelt. 2014. Quad Layout Embedding via Aligned Parameterization.

Computer Graphics Forum 33, 8 (2014), 69ś81. DOI:https://doi.org/10.1111/cgf.12401
Marcel Campen and Denis Zorin. 2017. Similarity Maps and Field-Guided T-Splines: a

Perfect Couple. ACM Trans. Graph 36, 4 (2017).
Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. 2006. Rectangular

multi-chart geometry images. In Proc. of the 4th Eurographics symp. on Geom. proc.
Joel Daniels, Cláudio T. Silva, Jason Shepherd, and Elaine Cohen. 2008. Quadrilateral

Mesh Simplification. In ACM SIGGRAPH Asia 2008 Papers (SIGGRAPH Asia ’08).
Article 148, 9 pages. DOI:https://doi.org/10.1145/1457515.1409101

Jonathan D. Denning, William B. Kerr, and Fabio Pellacini. 2011. MeshFlow: Interactive
Visualization of Mesh Construction Sequences. ACM Trans. Graph. 30, 4, Article 66
(July 2011), 8 pages. DOI:https://doi.org/10.1145/2010324.1964961

Hans-Christian Ebke, Patrick Schmidt, Marcel Campen, and Leif Kobbelt. 2016. Interac-
tively Controlled Quad Remeshing of High Resolution 3DModels. ACMTrans. Graph.
35, 6, Article 218 (Nov. 2016), 13 pages. DOI:https://doi.org/10.1145/2980179.2982413

David Eppstein, Michael T Goodrich, Ethan Kim, and Rasmus Tamstorf. 2008. Motorcy-
cle graphs: canonical quad mesh partitioning. In Computer Graphics Forum, Vol. 27.
Wiley Online Library, 1477ś1486. Issue 5.

Michael S. Floater and Kai Hormann. 2005. Surface Parameterization: a Tutorial and
Survey. In Advances in Multiresolution for Geometric Modelling, Neil A. Dodgson,
Michael S. Floater, and Malcolm A. Sabin (Eds.). Springer, 157ś186.

Xiao-Ming Fu, Chong-Yang Bai, and Yang Liu. 2016. Efficient Volumetric PolyCube-Map
Construction. Computer Graphics Forum 35, 7 (2016), 97ś106.

Inc. Gurobi Optimization. 2016. Gurobi Optimizer Reference Manual. (2016). http:
//www.gurobi.com

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
field-aligned meshes. ACM Trans. Graph. 34, 6 (2015), 189.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex aug-
mentation framework for bijective maps. ACM Trans. Graph. 36, 6 (2017), 186.

Jukka Jylänki. 2010. A thousand ways to pack the bin-a practical approach
to two-dimensional rectangle bin packing. retrived from http://clb. demon.
fi/files/RectangleBinPack. pdf (2010).

Kestutis Karciauskas, Daniele Panozzo, and Jörg Peters. 2017. T-junctions in spline
surfaces. ACM Trans. Graph. 36, 5 (2017).

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3
(July 2002), 362ś371. DOI:https://doi.org/10.1145/566654.566590

Ruotian Ling, Jin Huang, Bert Jüttler, Feng Sun, Hujun Bao, and Wenping Wang. 2014.
Spectral Quadrangulation with Feature Curve Alignment and Element Size Control.
ACM Trans. Graph. 34, 1, Article 11 (Dec. 2014), 11 pages.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam Gingold. 2017. Seamless:
Seam erasure and seam-aware decoupling of shape from mesh resolution. ACM
Trans. Graph. 36, 6, Article 216 (Nov. 2017), 15 pages.

Martin Marinov and Leif Kobbelt. 2006. A Robust Two-Step Procedure for Quad-
Dominant Remeshing. In Computer Graphics Forum, Vol. 25. Wiley Online Library,
537ś546. Issue 3.

Ashish Myles, Nico Pietroni, Denis Kovacs, and Denis Zorin. 2010. Feature-aligned
T-meshes. ACM Trans. Graph. 29, 4, Article 117 (July 2010), 11 pages. DOI:https:
//doi.org/10.1145/1778765.1778854

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global param-
etrization. ACM Transactions on Graphics (TOG) 33, 4 (2014), 135.

D. Panozzo, E. Puppo, M. Tarini, N. Pietroni, and P. Cignoni. 2011. Automatic Con-
struction of Quad-Based Subdivision Surfaces Using Fitmaps. IEEE Transactions on
Visualization and Computer Graphics 17, 10 (Oct 2011), 1510ś1520.

Chi-Han Peng, Eugene Zhang, Yoshihiro Kobayashi, and Peter Wonka. 2011. Connec-
tivity Editing for Quadrilateral Meshes. ACM Trans. Graph. 30, 6, Article 141 (Dec.
2011), 12 pages. DOI:https://doi.org/10.1145/2070781.2024175

Nico Pietroni, Enrico Puppo, Giorgio Marcias, Roberto Roberto, and Paolo Cignoni.
2016. Tracing Field-Coherent Quad Layouts. In Comp. Graph. F., Vol. 35. Wiley
Online Library, 485ś496. Issue 7.

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.
2017. Autocuts: simultaneous distortion and cut optimization for UV mapping. ACM
Trans. Graph. 36, 6 (2017), 215.

Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic
Global Parameterization. ACM Trans. Graph. 25 (Oct. 2006), 1460ś1485. Issue 4. DOI:
https://doi.org/10.1145/1183287.1183297

Nicolas Ray, Vincent Nivoliers, Sylvain Lefebvre, and Bruno Levy. 2010. Invisible Seams.
Computer Graphics Forum 29 (2010). Issue 4. DOI:https://doi.org/10.1111/j.1467-8659.
2010.01746.x

Nicolas Ray and Dmitry Sokolov. 2014. Robust Polylines Tracing for N-Symmetry
Direction Field on Triangulated Surfaces. ACM Trans. Graph. 33, 3, Article 30 (June
2014), 11 pages. DOI:https://doi.org/10.1145/2602145

Faniry H. Razafindrazaka and Konrad Polthier. 2017. Optimal base complexes for
quadrilateral meshes. Computer Aided Geometric Design 52-53 (2017), 63 ś 74. DOI:
https://doi.org/10.1016/j.cagd.2017.02.012 Proc. GMP.

Faniry H Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier. 2015. Perfect matching
quad layouts formanifoldmeshes. InComputer Graphics Forum, Vol. 34.WileyOnline
Library, 219ś228. Issue 5.

P. V. Sander, Z. J.Wood, S. J. Gortler, J. Snyder, andH. Hoppe. 2003. Multi-chart Geometry
Images. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (SGP ’03). Eurographics Association, 146ś155.

Nico Schertler, Marco Tarini, Wenzel Jakob, Misha Kazhdan, Stefan Gumhold, and
Daniele Panozzo. 2017. Field-aligned online surface reconstruction. ACM Trans.
Graph. 36, 4 (2017), 77.

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.

Marco Tarini. 2016. Volume-encoded UV-maps. ACM Trans. Graph. 35, 4, Article 107
(July 2016), 13 pages. DOI:https://doi.org/10.1145/2897824.2925898

Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. 2004. PolyCube-
Maps. ACM Trans. Graph. 23, 3 (Aug. 2004), 853ś860. DOI:https://doi.org/10.1145/
1015706.1015810

Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011.
Simple Quad Domains for Field Aligned Mesh Parametrization. ACM Trans. Graph.
30, 6, Article 142 (Dec. 2011), 12 pages. DOI:https://doi.org/10.1145/2070781.2024176

Marco Tarini, Cem Yuksel, and Sylvain Lefebvre. 2017. Rethinking Texture Mapping.
In ACM SIGGRAPH 2017 Courses (SIGGRAPH ’17). Article 11, 139 pages.

TurboSquid. 2018. 3D Models for professionals. (2018). https://www.turbosquid.com
[Online; accessed 23-January-2018].

Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni. 2015.
Extraction of the quad layout of a triangle mesh guided by its curve skeleton. ACM
Trans. Graph. 35, 1 (2015), 6.

Chaman Singh Verma and Krishnan Suresh. 2015. A robust combinatorial approach
to reduce singularities in quadrilateral meshes. Procedia Engineering 124 (2015),
252ś264.

Chaman Singh Verma and Krishnan Suresh. 2016. αMST: A Robust Unified Algorithm
for Quadrilateral Mesh Adaptation. Procedia Engineering 163 (2016), 238 ś 250. 25th
International Meshing Roundtable.

Cem Yuksel. 2017. Mesh Color Textures. In High-Performance Graphics (HPG 2017). 11.
Cem Yuksel, John Keyser, and Donald H House. 2010. Mesh colors. ACM Trans. Graph.

29, 2 (2010), 15.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

