
Axis-Aligned Height-Field Block Decomposition of 3D Shapes

ALESSANDRO MUNTONI, University of Cagliari and New York University

MARCO LIVESU, CNR IMATI

RICCARDO SCATENI, University of Cagliari

ALLA SHEFFER, University of British Columbia

DANIELE PANOZZO, New York University

Fig. 1. We decompose general 3D geometries into height-field blocks (left), enabling their fabrication using single pass 3-axis CNC machining (right).

We propose a novel algorithm for decomposing general 3D geometries

into a small set of overlap-free height-field blocks, volumes enclosed by a

flat base and a height-field surface defined with respect to this base. This

decomposition is useful for fabrication methodologies such as 3-axis CNC

milling, where a single milling pass can only carve a single height-field

surface defined with respect to the machine tray, but can also benefit other

fabrication settings. Computing our desired decomposition requires solving

a highly constrained discrete optimization problem, variants of which are

known to be NP-hard. We effectively compute a high-quality decomposition

by using a two-step process that leverages the unique characteristics of our

setup. Specifically, we notice that if the height-field directions are constrained

to the major axes we can always produce a valid decomposition starting

from a suitable surface segmentation. Our method first produces a compact

set of large, possibly overlapping, height-field blocks that jointly cover the

model surface by recasting this discrete constrained optimization problem

as an unconstrained optimization of a continuous function, which allows

for an efficient solution. We then cast the computation of an overlap-free,

final decomposition as an ordering problem on a graph, and solve it via a

combination of cycle elimination and topological sorting. The combined

algorithm produces a compact set of height-field blocks that jointly describe

the input model within a user given tolerance. We demonstrate our method

on a range of inputs, and showcase a number of real life models manufactured

using our technique.

CCS Concepts: · Computing methodologies → Mesh models; Mesh

geometry models;

Additional Key Words and Phrases: shape decomposition, fabrication

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.
0730-0301/2018/1-ART1 $$15.00
https://doi.org/10.1145/3204458

ACM Reference format:

AlessandroMuntoni,Marco Livesu, Riccardo Scateni, Alla Sheffer, andDaniele

Panozzo. 2018. Axis-AlignedHeight-Field Block Decomposition of 3D Shapes.

ACM Trans. Graph. 1, 1, Article 1 (January 2018), 15 pages.

https://doi.org/10.1145/3204458

1 INTRODUCTION

The advent of digital manufacturing has opened the doors to broad-

based bespoke 3D object fabrication, while simultaneously intro-

ducing numerous new geometry processing challenges. Fabrication

often requires decomposing the processed shapes into blocks that

satisfy different sets of geometric requirements [Livesu et al. 2017;

Medeiros e Sá et al. 2016]. Our work addresses one of the most

challenging decomposition problems that arise in fabrication set-

tings: height-field block decomposition. Height-field blocks are solids

bounded by a flat base and a height-field surface defined along a

direction orthogonal to, and located strictly above, this base. For

fabrication purposes the resulting blocks are required to cover the

outer surface of input model, but are not required to cover its entire

volume. We propose the first algorithm to partition a general 3D

shape into a set of height-field blocks, leaving an axis aligned void

inside.

The most significant application of height-field block decomposi-

tion is 3-axis CNCmilling (Figure 1). In its most common and easiest

to automate setting, automatic single-pass 3-axis CNC machining is

limited to fabricating height-field blocks whose base is placed on

the machining tray and whose axis is orthogonal to this tray (see

further discussion in Sections 2, 6). CNC machining methods can be

used to carve shapes from non-layerable materials such as wood or

stone. They operate across a much wider range of scales and provide

higher accuracy than 3D printing. Our decomposition algorithm

allows fabrication of general 3D shapes using this methodology.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:2 • Muntoni, A. et al

(a) (b) (c) (d) (e)

Fig. 2. From height-field segmentations to height-field solid blocks: (a) two alternative height-field segmentations defined on the boundary of a simple shape.

Top one uses arbitrary directions, the bottom is constrained to the global axes; (b) the resulting minimal solid blocks with flat base defined by each height-field

segment. Note that raising any of the bases would leave a portion of the boundary uncovered; (c) some blocks overlap in the interior of the shape (red extent);

(d) overlaps are resolved by splitting the blocks along their supporting lines, thus increasing the number of blocks; (e) the split operation produces 4 invalid

blocks out of 5 for the non axis aligned case (top right, red ovals). Inner blocks, in grey, are ignored as they are not strictly necessary to reproduce the input

boundary. Constraining the height-field directions to the global axes we can always guarantee a valid solution (proof in Appendix B)

Height-block decomposition can also benefit fabrication techniques

such as 3D printing, which requires supports when printing mod-

els with large overhangs. Eliminating supports reduces printing

time and increases surface quality [Hu et al. 2014]. Decomposing a

model into height-field blocks and printing these blocks separately

allows for support-free 3D printing. Note that both applications

only require the resulting blocks to cover the surface of the input

model, and can often benefit from a decomposition that results in

an interior voids due to obtained material savings.

Problem Statement. A height-field block decomposition of an in-

put mesh should assign each point on the surface to a corresponding

height-field block, covering the input surface. Blocks should never

overlap and should remain strictly inside the input surface (see inset).

Additionally, to reduce manufacturing time

and to facilitate easy assembly the number of

blocks should be small and tiny blocks should

be avoided. Based on these requirements, our

algorithm’s goal can be formulated as com-

puting a decomposition that satisfies the con-

straints above while simultaneously minimiz-

ing the number of blocks and maximizing the

size of the smallest block. While this specific problem setting has not

been investigated before, closely related problems such as minimal

pyramidal decomposition, or covering a volume by non-overlapping

height-field blocks [Hu et al. 2014; Fekete and Mitchell 2001], have

been shown to be NP-hard and have no known exact or approximate

polynomial time solutions. To obtain a pyramidal decomposition

within an acceptable computation time Hu et al. [2014] significantly

relax the height-field constraints and consider only a finite set of

possible height-field orientations. In our setting such unbounded

relaxation is not possible, since the identified constraints are critical

for manufacturing. Our major observation is that we can always

guarantee a valid solution by restricting the set of possible block

base and side face orientations to the major axis directions. We use

this observation to develop an algorithm that is guaranteed to ob-

tain valid decompositions that satisfy the height-block constraints

exactly or up to a specified tolerance and can be computed within a

feasible time frame. As shown by our results, our algorithm robustly

produces decompositions with acceptable, even if sub-optimal, block

counts for a range of complex geometries. Our framework supports

additional fabrication-motivated constraints: users can limit block

sizes to ensure that each block fits into the machining chamber,

or limit block height to reduce local thickness and introduce inner

cavities to save material (Figure 6).

Contribution. Our core contribution is a computational solution

to both exact and controlled height-field decomposition. We demon-

strate the practical applicability of our algorithm on 5 fabricated

results, four milled (Figures 1 and 12) and one 3D printed (Figure 14),

and compare our method against potential alternatives (Figures 3

and 15). To ensure replicability of our results and to accelerate

adoption of our technique, we provide a reference open-source

implementation of our algorithm in the supplemental material.

2 RELATED WORK

Our work fits into the highly active domain of geometry processing

for digital fabrication [Livesu et al. 2017; Medeiros e Sá et al. 2016].

Many of these techniques require decomposing models prior fabri-

cation based on different criteria. We complement these methods

by providing a new decomposition technique that strictly satisfies

constraints that arise in contexts such as 3-axis CNC milling and

overhang-free printing. Below we review the related decomposition

technologies.

Surface Segmentation. Numerous method had been proposed for

segmenting a surface model into charts that meet some prescribed

requirement [Shamir 2008]. The general frameworks they employ

are focused on surface features, and do not consider volumetric

constraints. While they can potentially be modified to use height-

field approximation as a desired chart property, they allow for no

obvious extension to address our volumetric constraints such as

block overlap avoidance.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Axis-Aligned Height-Field Block Decomposition of 3D Shapes • 1:3

(a) (b) (c) (d) (e)

Fig. 3. Segmenting the input surface into height-field charts (a) [Herholz

et al. 2015] does not account for possible intersections between the height

blocks they induce. Resulting pairwise intersections visualized in (b,c). Com-

bined intersection volume shown in (d,e).

Height-Field Surface Segmentation. Starting with the early work

by Cook et al [1984], a number of height-field based surface seg-

mentation techniques were proposed for efficient support of normal

and displacement mapping during rendering. While adequate for

this task they are poorly suited for our needs. First, they tend to

segment shapes into large numbers of charts, e.g. Doget et al. [2000]

use over 1500 height-fields to represent a human head. Such counts

make fabrication unfeasible. More important, like general surface

segmentation techniques these methods have no obvious extension

to the volumetric setup, i.e. no obvious way to avoid or resolve over-

laps between resulting blocks (Figure 2). The problem is particularly

acute in 3D since generic segment boundaries are rarely planar

and thus most induced blocks would have large interior overlaps,

(Figure 3).

Decomposition for 3D Printing. Multiple methods have been pro-

posed for decomposing shapes into parts to ensure that each com-

ponent is small enough to fit into the printing chamber during 3D

printing [Song et al. 2016, 2015; Yao et al. 2015; Alemanno et al.

2014; Luo et al. 2012; Hao et al. 2011; Medellín et al. 2007]. Shape

decomposition is also used to ensure quality prints in terms of sur-

face finish [Wang et al. 2016], to minimize the amount of material

used [Vanek et al. 2014], and to achieve better mechanical properties

[Hildebrand et al. 2013]. Our problem setting is distinct from those

addressed by these methods, with only minimal overlap in problem

setting or methodology.

Volumetric Decomposition. Computational geometry research has

addressed a number of problems which bear strong similarities

to our setting. Any convex volumetric decomposition can clearly

be converted into a height-field block decomposition by splitting

convex parts into two along an equator plane, separating faces

with up and down pointing normals. Unfortunately, computing a

minimal size exact convex decomposition is known to be NP-hard

[Chazelle 1984; Tor and Middleditch 1984]. While practical surface-

based approximate convex decomposition methods exist [Kraevoy

et al. 2007], they do not produce a convex volume decomposition, as

they do not prevent the convex hulls of the computed charts from

overlapping, and do not prevent the height-field blocks induced by

the charts from intersecting. Approximate volumetric convex de-

composition, e.g. [Attene et al. 2008; Lien and Amato 2007], relaxes

the convexity requirements to obtain a smaller number of parts; sep-

arating these parts along the equator may result in non-height-field

blocks. Thus neither method is suitable for our needs as we require

strict height-field constraint enforcement. Pyramidal decomposition

aims to decompose an entire volume into height-field blocks, or

pyramids. Fekete and Mitchell [2001] proved that both the 3D ver-

sion of this problem and the 2D version on polygons with holes are

NP-hard. To the best of our knowledge no known exact polynomial

time solutions exist.

Height-field Decomposition for Fabrication. A number of papers

specifically address height-field decomposition for fabrication.

Base
Complex

?

Alemanno et al. [2014] propose a user assisted

method for decomposing 3D shapes into height-

field blocks. Their method is driven by a manually

crafted inner structure, which describes the bases

and the orientations of each block, fully defining

the block decomposition. Overlaps between pairs

of blocks, are resolved using an interlocking zipper pattern, where

regions shared by multiple blocks are expected to satisfy the height-

field requirement for both blocks. This assumption does not hold

unless special care is taken in the construction of the inner base

structure (see inset). Our approach algorithmically computes the

inner structure and automatically resolves such configurations if

and when they occur (Section 4.3).

Hu et al. [2014] propose an algorithm for approximate pyrami-

dal decomposition and advocate using it for 3D printing. As they

observe, a height-field block (or pyramid) can be printed standing

on its base, thus maximizing its stability and ensuring that no sup-

port structures are needed to sustain it during fabrication. Since,

as observed earlier, exact pyramidal decomposition is NP-hard to

compute, they opt for only weak enforcement of height-field con-

strains and have no direct control on how far the results deviate

from a desired approximation accuracy (Figure 15). The method is

therefore unsuited for settings, such as 3-axis milling, where the

height-field constraint needs to be strictly satisfied. Our algorithm

can enforce both strict and fixed accuracy height-field constraints

(Section 5).

Herholz et al. [2015] decompose free-form shapes into a set of

approximate height-field surface charts for milling and molding.

Candidate height-field directions are sampled from the Gaussian

sphere with a saliency-based approach. As-rigid-as-possible defor-

mation is used to enforce the height-field condition on the charts

when violated. The method produces segmentations that induce

overlapping height-field blocks (Figure 3). In their milling examples

the authors resort to a manual process to hollow-out the back sides

of each part to produce overlap-free shell parts. By using height-field

blocks we remove the need for such manual backside processing

and guarantee overlap avoidance.

Gao et al. [2015] propose a multi-directional 3D printing system

that allows to fabricate an object around a cuboidal shell, using its six

facets as printing beds. The method is only suitable for genus zero

objects which can be segmented into six axis aligned approximate

height-field blocks. While the algorithm seeks for a solution that

minimizes the overhang angle it cannot guarantee that the resulting

angles will be below any specific threshold. Our framework can

provide both strictly height-field blocks and blocks with strictly

constrained overhang angles regardless of topology (Figures 14, 13).

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 • Muntoni, A. et al

Construction Sequences/Stability. Our formulation of overlap reso-

lution (Section 4.3) and inner void generation (Section 5) are inspired

by earlier works on construction and assembly sequences, e.g. [Wu

et al. 2016; Attene 2015; Hildebrand et al. 2012; Schwartzburg and

Pauly 2013; Cignoni et al. 2014; Skouras et al. 2015; Lo et al. 2009;

Xin et al. 2011; Song et al. 2012; Deuss et al. 2014; Zhang et al. 2016]

and static/dynamic equilibrium [Bächer et al. 2014; Prévost et al.

2013; Musialski et al. 2015; Wang and Whiting 2016; Musialski et al.

2016], respectively. However, the constraints and optimization goals

we address are distinctly different, with none of these approaches

directly applicable to our needs.

3 PROBLEM SETTING AND OVERVIEW

Formal Problem Statement. We can formulate height-block de-

composition as a semi-volumetric partition of an input geometry

into blocks that satisfy the following requirements:

(1) Base: each block B has a flat polygonal base b

(2) Axis: each block has an axis orthogonal to its base;

(3) Height-Field: each block has a height-field geometry with

respect to its axis - i.e. for any pointp inside the block B, the

line segment between p and the perpendicular projection

p′ of p onto the base b lies entirely inside B. Moreover the

block is located strictly to one side of its base. The block is

bounded by its top surface, the base and optional side faces

orthogonal to the base.

(4) Size Limit: the size of each block is smaller than the build

volume of the machine used to fabricate the components;

(5) Coverage: the top, or height-field, surfaces of the blocks

jointly cover the input surface;

(6) Non-overlapping: blocks do not overlap;

(7) Complexity: the overall number of blocks is small, and each

block contains as few thin features as possible.

We jointly refer to our first four constraints as block-fabrication

constraints. They define the properties each individual block should

satisfy. The block size can be further restricted along the height-field

axis, as the block’s height affects the amount of material used, and

reducing it shortens fabrication time and saves costs. The coverage

and non-overlap conditions are necessary to assemble the target

model from these blocks. We refer to a block decomposition which

satisfies all six conditions as valid. The last criterion, while not

mandatory, is important for real-life fabrication since an excessive

number of blocks would make assembly too cumbersome to attempt,

and thin features make the blocks fragile.

Algorithm. To obtain the desired decomposition we need to solve

a highly constrained discrete-continuous optimization problem over

a very large search space, the variables of which are: the number of

blocks, the direction associated with each block, and the location and

geometry of their bases. The key observation behind our framework

is that if we initialize our height-field blocks via intersections of the

input model with axis aligned boxes, then we can always produce

a valid decomposition via a finite set of boolean operations (proof

in Appendix B). Specifically, given such a set of blocks that jointly

cover the input surface, we can split them along the planes of their

bounding boxes (Figure 2, bottom). This splitting process allows

for trivial overlap elimination via duplicated block removal. The re-

sulting set of sub-blocks satisfies all our requirements. In particular,

each sub-block is an intersection of a rectangular box with a section

of the input surface a priori constrained to be a height-field, i.e. a

height-field block. Note that using the same process on non-axis

aligned blocks would not produce the desired result (Figure 2, top).

This hypothetical splitting process provides a robust height-field

decomposition of the input, but will clearly generate a large number

of blocks. In practice, rather than performing all such splits at once,

we perform a more restricted set of Boolean operations that use

a subset of the box bounding planes, and seek to minimize the

number of blocks produced. Our process preserves the height-field

property of each individual block and terminates once all overlaps

are removed. Thus, in the worst case it produces the same block

set as the basic splitting algorithm, but in practice its outputs are

drastically more compact.

We initialize and constrain the height-blocks to be inside the

model by using a volume-aware block growth process. We first

compute a dense set of maximal size valid height-field blocks that

jointly cover the surface of the input model without intersecting

it (Figure 4b). We avoid redundant and costly intersection tests by

reformulating the computation of each block as an unconstrained

continuous optimization problem that we efficiently solve. We

extract from this set a minimal subset that covers the entire input

surface while keeping the overlaps between the selected blocks

small (Figure 4c). Given this compact set of blocks, we perform a

sequence of Boolean operations that remove all overlaps and jointly

ensure that the resulting blocks retain the height-field property

and can be assembled to form the desired output (Section 4.3). In

computing the sequence we seek to minimize the number of blocks

produced and to maximize the smallest feature size as much as

possible, to avoid the creation of fragile components that might

break during fabrication. The combined algorithm strictly enforces

all manufacturing constraints, while producing decompositions into

small number of blocks and preserving the input surface geometry.

4 METHOD

4.1 Initialization

The orientation of the input may impact the height-field block de-

composition. We fix this degree of freedom by maximizing the

alignment between the surface normals and the global axes, that is

computing the rotation matrix R that minimizes:

argmin
R

∑
f ∈F Af ∥R(nf)∥1

∑
f ∈F Af

,

with nf denoting face normals, and Af face areas. Similarly to

[Gao et al. 2015], we solve this problem with a RANSAC approach,

sampling the Gauss sphere with spherical Fibonacci and selecting

the orientation that performs best. Although not optimal (Section 6),

this initialization significantly impacts the final results. Across all

the models shown in the paper, when compared with a random

initialization, obtaining up to 8 times less blocks.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Axis-Aligned Height-Field Block Decomposition of 3D Shapes • 1:5

(a) (b) (c) (d) (e)

Fig. 4. Overview: (a) input; (b) dense set of axis aligned maximal height height-field blocks (height-field blocks along the horizontal direction in green, blocks

along the vertical direction in blue); (c) minimal block covering of the shape; (d) final blocks after overlap removal (with boundaries of original intersections

demarcated); (e) resulting blocks, laid for fabrication.

4.2 Partition into Overlapping Height-Field Blocks

The goal of this stage is to compute a set of individually valid height-

field blocks that jointly cover the input surface, where each block

is constrained to be an intersection of the input model and an axis

aligned rectangular box. To produce a compact final decomposition

we seek to minimize the number of blocks in this covering set. A

greedy approach to generating such a set would be to start from a

seed block, maximally grow it until it cannot be further extended

without violating our constraints, and then add more blocks using a

similar process until coverage is achieved. This approach is heavily

dependent on the strategy used to compute seed blocks, and can re-

sult in drastically larger numbers of blocks than necessary. Instead,

we use a more conservative, if more time consuming, strategy where

we first compute a large set of maximal blocks that cannot be further

extended without violating our block-fabrication constraints, and

then select a minimal subset of them that satisfies our coverage

constraint. We avoid time-consuming brute-force evaluation of fab-

rication constraints by precomputing valid solution spaces for block

extension and constraining block computation to these spaces. This

two stages process provides a suitable starting point for our overlap

resolution system (Figure 4b). An advantage of this approach is

that the initial maximal blocks can be computed entirely in parallel,

allowing for a trivial speedup. While other strategies could be used

to grow the initial maximal blocks, we found our solution to be

simple to implement and robust.

4.2.1 Maximal Height-Field Block Set. We desire a set of maximal

size axis aligned bounding boxes that provide a good starting point

for selecting a compact subset that covers the entire model.

Problem Setting. The input to this stage is a closed, intersection-

free, triangle meshS = (V,F), whereV is the set of its vertices and

F the set of faces. The output of this stage is a set B of axis aligned

boxes, where the geometry of each b ∈ B is encoded via the posi-

tions of its extrema corners (ones with the smallest and largest coor-

dinate values). A box b is valid if its intersection with the input shape

is a valid height-field block. We note that for closed volumes, this

requirement can be recast as requiring the angle between the out-

ward pointing normal of any input shape triangle fully or partially

inside the box and the milling direction associated with the block to

be acute. Evaluating this condition explicitly and repeatedly during

maximal box computation can be prohibitively

expensive. Below we describe an efficient way to

sidestep such explicit evaluations.

Initialization. To ensure complete coverage,

we initialize the set B with the bounding boxes

of all the mesh triangles. Since each triangle can

be part of at most three outward oriented height-

field surfaces, we create seed bounding boxes

associated with only these three orientations. In

general normal directions on a surface change

gradually, thus we expect each of these boxes to

be valid, i.e. only overlap triangles which satisfy

the acute angle constrain vis a vis our three initial axis directions.

Section 4.5 discusses a pre-process which can be applied to the

models to enforce this condition, if not satisfied a priori.

Expansion. We seek to maximize the coverage provided by each

box while satisfying validity conditions. The validity testing can be

reduced to two conditions. First, and most important, we need to

test whether the expanded box overlaps with any triangles whose

normals point in the opposite direction to the box’s axis. Second,

we must at all times ensure that the dimensions of the box does

not exceed the dimensions of the milling machine processing vol-

ume. A naive approach to block computation would be to grow

each box using small steps, e.g. adding one triangle at a time, ter-

minating growth if and when the validity constraints are violated.

However, the first test in particular can be quite time consuming,

and repeatedly performing it for each box at each expansion step

can be prohibitively computationally expensive for large models.

Instead of testing constraints directly, we define a valid solution

space for box expansion and constrain our maximization problem to

this space. The solution spaces are defined independently for each

of our six orientations and are reused for all blocks which share this

orientation. They are formulated so as to simultaneously prevent

constraint violation and enable easy continuous optimization of

coverage maximization.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 • Muntoni, A. et al

Fig. 5. Example scalar fields for maximal height-field block computation.

Left column: The field is infinite next to triangles with normal opposite to

the selected axis direction, negative in the areas whose coverage we seek

to maximize, and zero elsewhere. Middle column: Defining maximal block

height (distance from surface to block base) translates into specifying an

infeasible (infinite field value) region inside the model, where the distance to

the surface is above this maximal height value. Note that the infeasible inner

region is computed using an isotropic distance field, hence it is computed

once and used for all axis directions. Right column: by relaxing the height-

field criterion (i.e., testing against 90◦+ overhang instead of 90◦) we can

generate quasi height-field blocks with controlled overhang angles, useful

for 3D printing.

Solution space. We define a set of volumetric scalar fields, one for

each milling direction m, that smoothly encode an energy function

we seek to minimize for all corresponding boxes. We represent each

field using a regular grid defined over a bounding cube of the input

model (we set grid spacing to the average mesh edge length). The

field is designed to be infinite outside the valid region with respect

to the axis of interest, negative in the areas whose coverage we seek

to maximize, and zero elsewhere (see Figure 5), and is specified as

follows:

• ∞ on vertices of grid cells that contain triangles whose

normals form obtuse angles with the milling direction;

• -1 on vertices of grid cells that contain only triangles whose

normals form acute angles with the milling direction;

• 0 on all other vertices.

• optional:∞ on grid vertices that are further from the bound-

ary than our maximal height threshold

In case of conflicts (i.e., grid vertices having incident cells contain-

ing both obtuse and acute angles with the milling direction) we

break ties by considering the lowest value we obtained. We assign

continuous values within each cell by using tricubic interpolation.

The energy of a box is then defined as the integral of the scalar field

s inside the box:

E(b) =

∭

b

s dV

which can be represented as the sum of the integrals over all cells of

the regular grid that intersect the box. Each one of these integrals

can be evaluated in closed form; we provide the derivation of this

integral and of its derivatives in Appendix A. Note that any box

b with E(b) , ∞ by construction satisfies our block-fabrication

constants, with the exception of maximal size which is discussed in

the next paragraph.

Optimization. We simultaneously grow all boxes to cover as much

of the input surface as possible, while still keeping them valid. The

boxes are expanded by minimizing E, subject to additional hard

constraints that limit the size of the boxes to prevent them from

growing beyond our maximal size threshold, and constrain the ini-

tial seed triangle associated with each box to remain inside this

box. Both sets of constraints can be expressed as linear inequalities

with respect to the position and dimension of the box Cb ≤ d, lead-

ing to the following non-linear optimization with linear inequality

constraints:

argmin
b

E(b) (1)

s .t .Cb ≤ d (2)

We convert this constrained optimization into an unconstrained

one using logarithmic barriers, and minimize it using BFGS with

bisection line search. The optimization is stopped when the energy

at the current iteration is smaller than∞ and its difference to the

energy at the previous iteration is smaller than 10−6.

Heuristic Pruning. The collection of maximal height blocks ex-

tracted using this basic procedure is highly redundant. To improve

performance we reduce the set of processed boxes as follows. First,

instead of considering all three valid directions for each seed triangle,

we only use the milling direction closest to its normal. Second, we

seed (and grow) boxes at random triangles, evenly distributed over

the surface, and stop seeding new boxes as soon as the entire surface

is completely covered, i.e. as soon as all the triangles of the surface

have been assigned to at least one height block. While this heuristic

could in theory lead to inferior results, they work well in practice,

as we demonstrate in Figure 6 (bottom part), where we compare

the results obtained with and without pruning. The difference in

quality is negligible, but the heuristics reduce the computation cost

from 47 to 2 minutes.

4.2.2 Minimal Covering. After maximally expanding all block

boxes, we compute a minimal subset of them which entirely covers

the surface. Computing such a set amounts to solving the classical

minimal set cover problem, known to be NP-complete [Cormen

et al. 2001]. We obtain a solution by casting it as an integer linear

programming problem:

argmin 1T x (3)

s .t .
∑

i

xi ai ≥ 1 (4)

xi ∈ {0, 1} (5)

where xi is the i-th entry of x, a vector of binary variables that

indicates if the box ai is kept in the minimal covering. ai is a binary

vector with as many entries as the faces of the input, and where

a value of 1 indicates that the corresponding face is contained in

the box. We use an off-the-shelf solver (http://www.gurobi.com/)

to obtain a solution. While in theory the runtime for this step can

be exponential, in practice the solver converges to a solution in

minutes (Table 1).

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Axis-Aligned Height-Field Block Decomposition of 3D Shapes • 1:7

Fig. 6. Users can balance block count with the amount of material necessary

for fabrication. If height is unconstrained (top) blocks are free to expand and

cover the whole volume. If height is constrained (bottom-left) blocks become

thinner, leaving a void in the interior and requiring less time and material

to be fabricated. Specifically, the 2 height-field blocks on top require 35%

more material than the 6 at the bottom-left model on bottom left to be

fabricated. Bottom-Right: a decomposition with height constraints and with

no heuristic pruning. The difference in quality is negligible, but the pruning

reduces the computation cost from 47 to 2 minutes.

4.3 Overlap Resolution

Given the set of height-field blocks produced by the minimal cover-

ing, we seek to resolve the overlaps between them with a minimal

increase in the number of blocks and without introducing thin frag-

ile features.

Single Pair. Before addressing the general case, we consider over-

lap resolution on an individual pair of blocks b1 and b2 (Figure 7).

The overlap between the blocks can always be eliminated by sub-

tracting one block from another, e.g. b2 from b1. In all but some

special cases, which we will discuss later, such a subtraction keeps

the number of blocks constant. Post-subtraction, the block b1 \ b2
may no longer satisfy the validity constraints (Figure 7a). Depending

on the configuration, reversing the order and computing b2 \ b1
may result in two valid blocks, but it is not guaranteed. In many

instances, no order can produce a valid result (Figure 7c). Invalid

blocks created by subtraction have multiple bases - i.e. polygons

orthogonal to the milling direction. Each such block bi \ bj can be

therefore converted into a set of valid blocks by splitting it along one

or more of the planes it shares with block bj , such that each such

base defines a separate block. While this solution is guaranteed to

work, we want to minimize the number of such splitting operations.

The basic overlap resolution method for two blocks b1 and b2 can

be hence formulated as follows: (1) if only one of the two differences

is valid use this difference to form a solution (Figure 7a); (2) if both

b1\b2 and b1\b2 are valid blocks, perform the subtraction operation

that maximizes the smallest output block (Figure 7b); (3) otherwise,

split one of the difference blocks to obtain valid sub-blocks, selecting

the refinement that maximizes the smallest output block (Figure 7c).

Multi-Block. We extend this framework to the multi-block sce-

nario by casting overlap resolution as finding a sequence of sub-

traction operations that minimizes the number of splits required to

ensure output validity. When splitting is unavoidable, we prioritize

split operations that avoid producing very small blocks.

We represent the relation between adjacent height-field blocks

using a directed graph whose vertices represent blocks; each graph

edge represents a subtraction order dependency between its end

vertices. More formally, we introduce an edge from b1 to b2 if and

only if the difference b2 \ b1 is not a valid height block. Note that it

is possible to have two opposite edges connecting the same pair of

vertices if both subtraction orders produce invalid blocks (Figure 7c).

Cycles in this graph exactly correspond to scenarios where splitting

cannot be avoided. To obtain the desired subtraction order, if the

initial graph contains cycles, we first transform it into a directed

acyclic graph (DAG) by breaking all the cycles (and splitting the

associated blocks). We then produce a valid subtraction order by

computing an optimal topological order on this acyclic graph. The

overall complexity of this step is O(|s |(n + e)(c + 1)), where |s | is

the number of splits, n is the number of vertices, e is the number of

edges, and c is the number of cycles.

Reduction to a DAG. To break cycles in the graph we iteratively

select an edge b1 → b2 on each cycle and split b2 \ b1 along the

height-field direction of b2, generating two ormore non-overlapping

valid blocks. We are sure that they are valid relying on a simple

assumption: cutting a block with any plane containing the milling

direction keeps requirements Axis, Base, and Height-Field in both

sub-blocks. The vertices corresponding to the generated sub-blocks,

denoted b2,1, . . . , b2,n , are then added to the graph. Note that each

sub-block’s vertex can at most inherit the edges of its parent, exclud-

ing b1 → b2 (since there is no intersection between b2,1 and b2,2

and neither of them intersects b1). As a consequence, if the block

b2 participated in n cycles, its sub-blocks can participate at most in

n − 1 cycles. This observation guarantees that each refinement step

reduces the total number of cycles that graph vertices participate in,

and consequently ensures that the reduction process terminates in a

finite number of steps, producing a DAG. We detect all the cycles in

the graph using Johnson’s algorithm [Cormen et al. 2001]. Among

all the edges participating in a loop, we give priority to the one that

maximizes the size of the smallest height block created. The splitting

algorithm stops when a DAG is obtained. Note that while it is guar-

anteed to succeed, this splitting strategy may produce sub-optimal

height-field decompositions with more blocks than necessary (see

Figure 8).

Topological Sorting. We produce a valid subtraction sequence

by computing an optimal topological order on the resulting DAG.

Producing a linear ordering of a DAG’s vertices such that for every

directed edge bi → bj , bi comes before bj is a classical problem

in graph theory. Note that our directed edges encode pathological

splitting orders, we therefore aim to find an inverse topological

sorting of the DAG vertices (i.e., for every directed edge bi → bj ,

bj should come before bi). We pre-process the DAG by inverting

the orientation of each directed edge (i.e., transforming the roots in

leaves, and vice versa) and performing topological sorting. Among

all the possible orderings, we favor the one that maximizes the size

of the smallest height-field block. To do so, we use Kahn’s iterative

algorithm [Kahn 1962], prioritizing the vertices associated with the

smallest blocks. In short, the algorithm works as follows: at each

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 • Muntoni, A. et al

Fig. 7. Different block processing orders result in different decompositions: (a) independently on the processing order, two valid height blocks are produced;

(b) processing the block b1 before the block b2 produces two valid height-fields, inverting the order one block is not a height-field; (c) no valid solution exists,

independently on the processing order. In the latter case, splitting one of the boxes allows for a valid processing order.

b
0

b
1

b
2

b
3

b
0

b
1

b
2

b
3

b
0

b
3

b
2

b
1

Fig. 8. Our cycle splitting strategy may produce sub-optimal height-field

decompositions containing more pieces than necessary. Left: a set of axis-

aligned boxes jointly covering the surface. Middle: the resulting conflict

graph encoding pathological subtraction orders. A loop is present, meaning

that at least one box will be split to produce a DAG (Section 4.3). Right: a

valid decomposition into four height-field blocks. This solution does not

correspond to any box subtraction order, and therefore cannot be produced

by our algorithm.

iteration we find the roots of the graph (vertices with no incoming

edges Ð if the graph is a DAG at least one root always exists); we

order them from the smallest to the biggest block, and use this order

to perform the subtraction, removing their corresponding vertices

from the DAG. We repeat the process, iteratively looking for new

roots until all the vertices in the DAG have been processed (Figure 9).

Note that the inverse of the resulting topological sorting can also

be used to generate illustrated instructions that describe a valid

assembly sequence, though we do not guarantee that a globally

valid assembly sequence always exists (Section 6).

4.4 Improving Blocks Size and Shape

A shortcoming of the method described so far is that it does not ex-

plicitly prevent the generation of tiny blocks or blocks with narrow

protruding features, which could potentially break during fabrica-

tion (due to the stress induced by the milling tip) or during assembly.

Such features are usually generated when performing Boolean oper-

ations between blocks with close-by faces with similar orientation.

We describe here a greedy twofold strategy that has no theoretical

guarantees but that in our experiments successfully removes narrow

features, leading to the formation of well shaped height blocks.

Block Snapping and Shrinking. We process the blocks selected

by the minimal covering (Section 4.2.2), aiming to minimize the

number of intersections between blocks before starting the overlap

resolution (Section 4.3). First, we consider all pairs of face-adjacent

blocks, that is blocks with same orientation faces for which the

Fig. 9. Conflicts between intersecting blocks are encoded in a directed

graph. An edge bi → bj means that bj \bi is not a height-field. If the graph

is acyclic we are guaranteed that, without splitting any box, subtracting

blocks using an inverse topological order would produce a valid height-field

block decomposition. If the graph contains cycles, we reduce it to a DAG by

iteratively removing edges (and splitting the blocks accordingly). Among all

the possible inverse topological orders, we select the one that maximizes

the size of the smallest height-field block.

distance between these faces is less than a fixed amount (the de-

fault is one grid unit, the user can choose to change it). We sort all

the candidate pairs according to these distances, and adjust their

dimensions reducing the distance to zero, making them perfectly

face-adjacent. We then consider the remaining set of intersecting

blocks, and try to shrink them in order to avoid overlaps. Note that

shrinking blocks may leave some portion of the surface uncovered,

we therefore apply block shrinking if and only if complete surface

covering is preserved. These steps result in a conflict graph with

less arcs and typically less cycles, thus reducing the number of splits

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Axis-Aligned Height-Field Block Decomposition of 3D Shapes • 1:9

b
0

b
1

b
2

b
1
,b

0
,b

2
Processing order:

b
0
,b

2
,b

1
Processing order:

WEAK

Fig. 10. Left: a portion of surface is covered with three blocks: b0, b1, b2.

Note that any processing order would produce three valid height blocks.

Right: processing b1 after b0, b2 produces a narrow feature (top). We detect

such configurations and locally modify the processing order: giving higher

priority to b1 produces a better height block decomposition (bottom).

necessary to reduce it to a DAG. On average, using this strategy we

decreased the number of box splits by 50%.

Modified Processing Order. If, by processing the blocks in the

order computed in Section 4.3, we generate a tiny height-block or a

narrow feature, we rollback the operation andmodify the processing

order, giving the current block higher priority w.r.t. all the blocks

it overlaps (Figure 10). This maximizes the size of the sub-blocks

derived from such height-block and typically reduces the number

of narrow features produced. We automatically detect small blocks

by measuring their volume [Zhang and Chen 2001], and detect tiny

features by measuring the distance between pairs of block side and

base edges. More advanced approaches [Zhou et al. 2013] could be

used instead but in our experiments this was not necessary since

all the thin features were detected by the two criteria above.

Post Processing. The boolean processing may result in adjacent

blocks with same height-field direction. To reduce block count we

merge them into a single block, either by raising the base of the

lower block along the height-field direction, or by lowering the base

of the higher block. The condition for performing the first operation

is that there are no surface triangles in between the old and the new

base. The condition for performing the second operation is more

complex: we need to make sure that the new block doesn’t intersect

any other block in the decomposition, and that it still satisfies the

height-field constraint. After moving one of the two bases, we merge

the two blocks. This post-processing typically merges one or two

pairs of blocks.

4.5 Faithfulness vs Complexity

Enforcing strict fabrication constraints on highly detailed models

often results in an excessive number of height-field blocks. For

practical applications, exact fidelity to the input can often be sac-

rificed to reduce block count and facilitate easier fabrication. We

provide an optional mechanism that allows users to reduce recon-

struction accuracy, or faithfulness, in exchange for a lower block

count. We note that smoother, or less detailed, models typically

require significantly fewer height-field blocks to reconstruct than

their detailed counterparts. We consequently achieve our target

using a two step procedure that removes high-frequency surface

details before the decomposition, and reintroduces the removed

details into each block subject to preserving the fabrication con-

straints (Figure 11). To remove high-frequency details from the input

shape we use the low-pass filter proposed in [Taubin 1995]. After

computing the height-field block decomposition we reintroduce the

high-frequency details using a variation of the Laplacian surface

reconstruction framework [Sorkine 2006], enriched with height-

field constraints that ensure that the vertices assigned to each block

remain above its base with respect to the milling direction and that

no triangle flips its orientation. Specifically, after the block decom-

position of the smooth geometry is computed, every vertex vi is

assigned to a block bvi , which has a milling direction mvi . We then

reintroduce the details by minimizing the following energy:

argmin ∥∆v − δ ∥2s .t . (6)

vi ∈ bvi (7)

nt (v) ·mt ≥ 0 (8)

where δi =
1

|Ni |

∑
vj ∈Ni

(vi − vj) are the differential coordinates

of the original mesh [Sorkine 2006], and nt is the normal of the

triangle t . Equation 7 ensures that every vertex is constrained to

stay above the block’s base and can be modeled with a set of linear

inequality constraints. Equation 8 prevents triangle normals from

flipping and is a quadratic condition on the vertex positions. We

minimize this energy using coordinate descent, by optimizing one

vertex at a time and freezing the others. The per-vertex optimization

is solved with Newton iterations and it typically converges within

5 iterations, recovering most of the details of the input meshes (Fig-

ure 11). Specifically, the average distance between the two models,

measured with Metro [Cignoni et al. 1998], is less than 1 × 10−4

times the bounding box diagonal.

Initialization Constraints. Given an input mesh, we assume that

bounding boxes of individual triangles define valid height blocks.

This condition can be violated in two scenarios. In the first case the

top or outer surface defined by the intersection of the box and the

input model may not be a height-field. This situation can only occur

on meshes with high-frequency features, and it is solved using our

high-frequency removal preprocess. Initial blocks can, in theory,

intersect the input surface. This situation can only occur if the mesh

triangle size is larger than the local feature size. Such situations can

always be avoided by refining the mesh using one or more rounds

of one-to-four triangle subdivision.

Fig. 11. To keep the number of height-field blocks low we trade faithfulness

for complexity. Specifically, given a detailed model we run our method on

a pre-filtered version with no high frequencies (left). We then maximally

restore the details while preserving the height-field property everywhere

(middle, right). This strategy allowed us to reduce the number of height-field

blocks from 14 to 7.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 • Muntoni, A. et al

Fig. 12. A gallery of decompositions computed with our algorithm and fabricated in wood using a 3-axis milling machine.

5 RESULTS

Throughout the paper we demonstrate a range of models decom-

posed into height-field blocks using our approach, ranging from

relatively simple (Spiky cube) to highly complex (Chinese lion, Lion

vase) and from relatively smooth (Kitten) to highly detailed (Buddha,

Bimba). All our output decompositions are fabrication ready and

strictly satisfy all validity conditions. The number of blocks in our

decompositions varies from single digits (Moai, Max Planck) to 63

for Fertility.

Milled Results. We milled four objects from solid blocks of two

different woods: pinewood and beechwood; the former is softer and

easier tomill while producing less detailed results, the latter is harder

and needs a longer milling time but leads to more detailed models.

We milled Moai (Figure 12) and MaxPlanck (Figure 1) from the

pinewood blocks; Buddha and Egyptian Statue from the beechwood

blocks (Figure 12). Moai was milled with a Roland Modela MDX40,

while MaxPlanck, Buddha and Egyptian statue have been milled

with a Stepcraft-2/840 Desktop CNC System. The milling paths have

been automatically generated from our height block decompositions

using Autodesk Fusion 360 (https://www.autodesk.com/products/

fusion-360/overview). Moai is assembled from 12 blocks and is 27

centimeters tall; MaxPlanck from 8 blocks and is 22

centimeters tall; Buddha from 8 blocks and is 19 cen-

timeters tall (we skipped the curved base since the

model does not stay straight with it); the Egyptian

Statue from 11 blocks and is 32 centimeters tall. They

have been assembled using wood glue, as shown in

the video sequences provided as additional material.

After assembly, the seams on each model have been covered with

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Axis-Aligned Height-Field Block Decomposition of 3D Shapes • 1:11

wood putty and sanded with fine grain sandpaper. This procedure

hides the seams, which are only visible in the discontinuities of the

wood pattern. We tested an alternative procedure on Moai statuette:

we covered it with water-based enamel and then polished it. The

final appearance is shown in the inset.

Height Control. By controlling the maximal height of the pro-

duced blocks users can control the amount of material necessary to

fabricate the object (Figure 6), trading material savings for increased

block count.

Internal Framework. Restricting our milling directions to the six

major axis does not only simplify the assembly of small models,

where the large overlaps can be easily covered with glue or kept

together using metal L-shaped connectors, but it also drastically

simplifies the construction of large architectural-scale objects. In

this scenario, the interior of the shape can be realized with a sup-

porting framework made of metal beams, which follows the in-

ternal edges, and is kept together with a single type of joints:

Fig. 13. Our method produces valid, compact decompositions for complex

models containing: non-trivial topology (e.g., Fertility), thin features (e.g.,

the ears of the Kitten) and large portions not aligned with the global frame

(e.g., the Chinese Lion’s body) for which manual decomposition is highly

challenging to compute, resulting in 27 blocks for the Chinese Lion, 25 for

Kitten and 63 for Fertility.

Model
Timing

Blocks Height
MHFBC MC OR B

Airplane 1′41′′ 1′′ 1′′ 9′′ 11 ∞

Batman 33′44′′ 20′′ 1′′ 54′′ 8 0.15

Bimba 25′23′′ 3′′ 0.2′′ 39′′ 16 ∞

BU (orientation) 17′40′′ 9′′ 2′′ 27′24′′ 16 0

BU (no orientation) 71′3′′ 9′′ 1′′ 23′′ 9 0

Buddha 61′37′′ 15′′ 1′′ 33′′ 8 (7 milled) 0.125

Chinese Lion 7′38′′ 3′′ 2′′ 59′′ 27 0.125

Cube Spike

2′35′′ 14′′ 0.1′′ 6′′ 2 ∞

1′19′′ 4′′ 0.1′′ 9′′ 6 0.4

47′21′′† 6′48′′ 0.1′′ 13′′ 6 0.4

David 26′27′′ 9′′ 0.2′′ 18′′ 7 0.075

Dea 31′33′′ 20′′ 0.2′′ 21′′ 7 0.075

Egea 15′56′′ 6′′ 0.1′′ 7′′ 6 0.1

Egyptian Statue 16′7′′ 6′′ 5′′ 21′′ 11 0.05

Eros 39′33′′ 10′′ 1′′ 1′1′′ 10 0.125

Fertility 15′32′′ 11′′ 32′′ 10′20′′ 63 ∞

Gentildonna 36′23′′ 9′′ 0.1′′ 20′′ 10 0.125

Kitten 21′25′′ 6′′ 2′′ 59′′ 25 0.05

Lincoln 8′23′′ 6′′ 0.6′′ 1′41′′ 14 0.125

Lion Vase 29′24′′ 8′′ 0.4′′ 14′′ 10 0.175

Max Plank 15′59′′ 10′′ 0.3′′ 14′′ 8 ∞

Moai 12′47′′ 4′′ 0.2′′ 9′′ 12 0.225

Pensatore 11′4′′ 9′′ 0.1′′ 29′′ 7 0.1

† No pruning

Table 1. Model statistics: computation time (split intoMaximal Height-Field

Block Computation (MHFBC), Minimal Covering (MC), Overlap Resolution

(OR), CSGOperations (B)); number of blocks; and the block heightmaximum

used (as percentage of model diagonal, ∞ means no height limit).

since the height blocks are axis aligned, the only possible intersec-

tions of the beams are multiples of 90 degrees. The required joints

are simple to fabricate and

reusable. A virtual example for

the Egyptian Statue is in the in-

set.

High-Frequency Models. While

our method can directly gener-

ate brute-force decompositions

for high-frequency inputs, such

decomposition would inevitably

lead to high block counts, due to the very restrictive fabrication con-

straints inherent in 3-axis CNCmilling. Our optional high-frequency

filtering algorithm (Section 4.5) leads to much simpler decompo-

sitions, while losing minimal surface details, as shown in Figure

11.

Comparison with [Hu et al. 2014]. As noted earlier, in contrast to

our framework the method of Hu et. al [2014] has no direct control

on how far its outputs deviate from the height-field or pyramidality

constraints, and demonstrate results where these constraints are far

from satisfied. To compare the two approaches, we repeat the exper-

iment proposed in Figure 23 of [Hu et al. 2014] and show the results

in Figure 15. Our method introduces less blocks to decompose the

model, and, more importantly, our blocks are millable, while the

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 • Muntoni, A. et al

Fig. 14. By relaxing the height-field constraint we can decompose an object into blocks whose top surface contains overhangs that are strictly smaller than a

printer-specific threshold. Here we show an example of a decomposition with a maximal overhang of 30 degrees for the Lion Vase dataset (left, middle). Notice

from the side view that the lion mouth contains a considerable amount of overhangs. Since the threshold we set is compatible with that of common FDM

printers, we safely printed each block without using support structures, saving time and material, and achieving better surface quality (right).

outputs of Hu et al. do not satisfy the height-field property (high-

lighted with red ovals in Figure 15) and thus can only be fabricated

with a 3D printer.

3D Printing. Our pipeline is designed to produce height-field

blocks, but, with a minor modification, becomes a powerful tool

to produce decompositions tailored for FDM 3D printers. These

printers require support material to sustain overhanging parts with

angles larger than 35-40 degrees. The support does not only in-

creases printing time and wastes material [Vanek et al. 2014], but

also lowers surface quality [Zhang et al. 2015]. Our method can be

used to decompose an object into blocks whose top surface contains

overhang that are strictly smaller than a printer-specific threshold

by simply relaxing the height-field condition in Section 4.2.1, as-

signing an infinite value to the scalar field only when triangles have

a larger overhang. We show an example of a decomposition with a

maximal overhang of 30 degrees in Figure 14 (note that this is the

only result with overhangs, all the other results are decomposed in

height-field blocks).

Implementation Details. We implemented our algorithm in C++,

using Eigen [Guennebaud et al. 2010] for linear algebra routines,

Gurobi (http://www.gurobi.com) for branch and bound, and libigl

for mesh booleans [Zhou et al. 2016; Jacobson et al. 2016]. We run

all our experiments on a workstation with a 4-cores Intel i7-4790K

processor clocked at 4.0 Ghz and 16 Gb ofmemory. Ourmethod takes

Optimal
decomposition

[Hu et al. 2014] Ours

Fig. 15. Comparisonwith [Hu et al. 2014]: pyramidal decomposition (middle)

produces ten blocks, six of which violate the height-field condition (see red

ovals). Our method (right) decomposes the shape into seven valid height-

field blocks, one more than the optimal decomposition (left). Note that

we re-oriented the model before running our method, according to the

strategy described in Section 4. For the sake of better visual comparison all

the models are shown in the same position.

Fig. 16. Our canonical orientation algorithm is not guaranteed to produce

decompositions with minimal number of height blocks. A failure example is

illustrated here: with automatic orientation the BU statue is decomposed in

16 blocks (top); with manual orientation the number of blocks goes down to

9 (bottom). Finding the orientation that minimizes the number of blocks in

the decomposition is a challenging problem that we plan to tackle in future

work.

under one hour on even the most complex model (Buddha) with the

runtime dominated by the initial maximal size block computation.

A summary of the timings and number of height-field blocks for all

our experiments is shown in Table 1 and we attach all our results

(input/output) in obj format as additional material.

6 CONCLUSIONS AND DISCUSSION

We presented an automatic and robust pipeline to decompose a

triangle mesh into a collection of non-overlapping, valid height-

field blocks, which can be directly manufactured using a 3-axis

CNC milling machine. Our method is compatible with existing

milling systems , and can be used to produce high quality real-

life replicas of complex virtual geometries in a range of sizes. Our

pipeline is automatic and robust: the only hard requirement on the

input is that it should be a closed surface. The number of blocks

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Axis-Aligned Height-Field Block Decomposition of 3D Shapes • 1:13

Fig. 17. Additional results generated using our method.

we produce is dependent on the input model complexity, and can

significantly increase for models with narrow prominent features

or high genus, resulting in objects that may be hard to assemble.

Manual decomposition and independent processing of the different

parts can help reduce the block count. Our output depends on the

orientation of the model, which might lead to decompositions with

more pieces than necessary.While our orientation choice works well

for many models, manual orientation can sometimes reduce block

count (Figure 16). While we explicitly seek to avoid blocks with

small features and successfully avoid cases that lead to fabrication

failures, we are not guaranteed to produce a decomposition with

the smallest number of such blocks. We do not consider optimal cut

placement, such as avoiding seams on salient features, as in [Herholz

et al. 2015]. Preventing seam placement in certain regions could

possibly be incorporated into our minimal covering step: boxes

that only partially cover such regions can be discarded or have

lower priority. Finally, while in our practical experience we had

never encountered these problems, we provide no guarantees that

internal voids introduced by our system do not affect balance or

structural strength. An extensive FEM analysis should be performed,

and possibly directly integrated in the form-finding.

Assemblability. Being a height-field, each block can be locally

extracted with a linear motion parallel to its build direction [Attene

2015]. However, the extent of such motion may be limited by colli-

sions with nearby blocks, thus preventing assemblability. We tested

the existence of a valid assembly sequence only for the fabricated

models in Figure 1 and 12. We do not guarantee the existence of

a valid one for the other decompositions shown in the paper. In

particular, for complex models such as the ones shown in Figure 13

a valid assembly sequence may not exist.

Height-Field Blocks and Milling. There are multiple milling ma-

chine configurations. Our algorithm produces height-field blocks

that are facemillable (i.e., no undercuts are allowed). Our height-field

constraints can be relaxed for shoulder millable settings, where the

drill bit can remove material sideways, generating some undercuts

(for example to chamfer a hole) [Smid 2003]. The advantage of using

the face milling configurations is the availability of off-the shelf

milling-path computation software that can perform the path com-

putation automatically. We do not address all milling constraints,

e.g. we do not account for drill-bit thickness, as these problems are

complementary to our decomposition focus.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 • Muntoni, A. et al

ACKNOWLEDGMENTS

This work was supported in part by the NSF CAREER award IIS-

1652515, the Italian DSURF PRIN 2015 (2015B8TRFM) project, the Eu-

ropean Union’s Horizon 2020 research and innovation programme

under grant agreement No 680448 (CAxMan), a gift from Adobe,

and a gift from NTopology.

REFERENCES
Giuseppe Alemanno, Paolo Cignoni, Nico Pietroni, Federico Ponchio, and Roberto

Scopigno. 2014. Interlocking pieces for printing tangible cultural heritage replicas.
In Eurographics Workshop on Graphics and Cultural Heritage, Reinhard Klein and
Pedro Santos (Eds.). Eurographics Association, 145ś154.

Marco Attene. 2015. Shapes In a Box: Disassembling 3D Objects for Efficient Packing
and Fabrication. Computer Graphics Forum 34, 8 (2015), 64ś76.

Marco Attene, Michela Mortara, Michela Spagnuolo, and Bianca Falcidieno. 2008. Hi-
erarchical convex approximation of 3D shapes for fast region selection. Computer
graphics forum 27, 5 (2008), 1323ś1332.

Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it:
optimizing moment of inertia for spinnable objects. ACM Transactions on Graphics
(TOG) 33, 4 (2014), 96.

Bernard Chazelle. 1984. Convex Partitions of Polyhedra: A Lower Bound and Worst-
Case Optimal Algorithm. SIAM J. Comput. 13, 3 (1984), 488ś507.

Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. 2014. Field-aligned
Mesh Joinery. ACM Trans. Graph. 33, 1, Article 11 (Feb. 2014), 12 pages.

Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. 1998. Metro: measuring error
on simplified surfaces. Computer Graphics Forum 17, 2 (1998), 167ś174.

Robert L Cook. 1984. Shade trees. ACM Siggraph Computer Graphics 18, 3 (1984),
223ś231.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. 2001.
Introduction to Algorithms (2nd ed.). McGraw-Hill Higher Education.

Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-
Hornung, and Mark Pauly. 2014. Assembling Self-supporting Structures. ACM Trans.
Graph. 33, 6, Article 214 (Nov. 2014), 10 pages.

Michael Doggett and Johannes Hirche. 2000. Adaptive view dependent tessellation of
displacement maps. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware. ACM, 59ś66.

Sándor P Fekete and Joseph SB Mitchell. 2001. Terrain decomposition and layered
manufacturing. International Journal of Computational Geometry & Applications 11,
06 (2001), 647ś668.

Wei Gao, Yunbo Zhang, Diogo C Nazzetta, Karthik Ramani, and Raymond J Cipra.
2015. RevoMaker: Enabling multi-directional and functionally-embedded 3D print-
ing using a rotational cuboidal platform. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology. ACM, 437ś446.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).
Jingbin Hao, Liang Fang, and Robert E Williams. 2011. An efficient curvature-based

partitioning of large-scale STL models. Rapid Prototyping Journal 17, 2 (2011),
116ś127.

Philipp Herholz, Wojciech Matusik, and Marc Alexa. 2015. Approximating Free-form
Geometry with Height Fields for Manufacturing. Computer Graphics Forum 34, 2
(2015), 239ś251.

Kristian Hildebrand, Bernd Bickel, and Marc Alexa. 2012. Crdbrd: Shape Fabrication by
Sliding Planar Slices. Comput. Graph. Forum 31, 2pt3 (May 2012), 583ś592.

Kristian Hildebrand, Bernd Bickel, andMarc Alexa. 2013. Orthogonal slicing for additive
manufacturing. Computers & Graphics 37, 6 (2013), 669ś675.

Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. 2014. Approximate
Pyramidal Shape Decomposition. ACM Trans. Graph. 33, 6, Article 213 (2014),
12 pages.

Alec Jacobson, Daniele Panozzo, et al. 2016. libigl: A simple C++ geometry processing
library. (2016). http://libigl.github.io/libigl/.

Arthur B Kahn. 1962. Topological sorting of large networks. Commun. ACM 5, 11
(1962), 558ś562.

V Kraevoy, D Julius, and A Sheffer. 2007. Shuffler: Modeling with interchangeable parts.
The Visual Computer (2007).

Jyh-Ming Lien and Nancy M Amato. 2007. Approximate convex decomposition of
polyhedra. In Proceedings of the 2007 ACM symposium on Solid and physical modeling.
ACM, 121ś131.

Marco Livesu, Stefano Ellero, Jonàs Martínez, Sylvain Lefebvre, and Marco Attene. 2017.
From 3D models to 3D prints: an overview of the processing pipeline. Computer
Graphics Forum 36, 2 (2017), 537ś564.

Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. 2009. 3D Polyomino Puzzle. In ACM
SIGGRAPH Asia 2009 Papers (SIGGRAPH Asia ’09). ACM, New York, NY, USA, Article
157, 8 pages.

Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper:
Partitioning Models into 3D-printable Parts. ACM Trans. Graph. 31, 6, Article 129
(2012), 9 pages.

Asla Medeiros e Sá, Karina Rodriguez Echavarria, Nico Pietroni, and Paolo Cignoni.
2016. State Of The Art on Functional Fabrication. In Eurographics Workshop on
Graphics for Digital Fabrication (2016). Eurographics Associaton. http://vcg.isti.cnr.
it/Publications/2016/MRPC16

H Medellín, T Lim, J Corney, JM Ritchie, and JBC Davies. 2007. Automatic subdivision
and refinement of large components for rapid prototyping production. Journal of
Computing and Information Science in Engineering 7, 3 (2007), 249ś258.

Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif
Kobbelt. 2015. Reduced-order shape optimization using offset surfaces. ACM
Transactions on Graphics 34, 4 (2015), 102.

PrzemyslawMusialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wimmer,
and Leif Kobbelt. 2016. Non-Linear Shape Optimization Using Local Subspace
Projections. ACM Transactions on Graphics 35, 4 (2016), 87:1ś87:13.

Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013.
Make It Stand: Balancing Shapes for 3D Fabrication. ACM Transactions on Graphics
32, 4 (2013), 81:1ś81:10.

Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013.
Locally Injective Mappings. Computer Graphics Forum 32, 5 (2013), 125ś135.

Yuliy Schwartzburg and Mark Pauly. 2013. Fabrication-aware Design with Intersecting
Planar Pieces. Computer Graphics Forum (Proceedings of Eurographics 2013) 32, 2
(2013), 317ś326.

Ariel Shamir. 2008. A survey on mesh segmentation techniques. Computer graphics
forum 27, 6 (2008), 1539ś1556.

Mélina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. 2015.
Interactive Surface Design with Interlocking Elements. ACM Trans. Graph. 34, 6,
Article 224 (Oct. 2015), 7 pages.

Peter Smid. 2003. CNC programming handbook: a comprehensive guide to practical CNC
programming. Industrial Press Inc.

Peng Song, Bailin Deng, ZiqiWang, Zhichao Dong,Wei Li, Chi-Wing Fu, and Ligang Liu.
2016. CofiFab: Coarse-to-Fine Fabrication of Large 3D Objects. ACM Transactions
on Graphics (SIGGRAPH 2016) 35, 4 (2016). Article 45.

Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive Interlocking Puzzles.
ACM Trans. Graph. 31, 6, Article 128 (Nov. 2012), 10 pages.

Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. 2015. Printing 3D objects with
interlocking parts. Computer Aided Geometric Design 35 (2015), 137ś148.

Olga Sorkine. 2006. Differential representations for mesh processing. Computer Graphics
Forum 25, 4 (2006), 789ś807.

Gabriel Taubin. 1995. Curve and surface smoothing without shrinkage. In Computer
Vision, 1995. Proceedings., Fifth International Conference on. IEEE, 852ś857.

S. B. Tor and A. E. Middleditch. 1984. Convex Decomposition of Simple Polygons. ACM
Trans. Graph. 3, 4 (Oct. 1984), 244ś265.

Juraj Vanek, JA Galicia, Bedrich Benes, R Mech, N Carr, Ondrej Stava, and GS Miller.
2014. PackMerger: A 3D print volume optimizer. Computer Graphics Forum 33, 6
(2014), 322ś332.

Lingfeng Wang and Emily Whiting. 2016. Buoyancy Optimization for Computational
Fabrication. Computer Graphics Forum 35, 2 (2016), 49ś58.

WM Wang, C Zanni, and L Kobbelt. 2016. Improved Surface Quality in 3D Printing by
Optimizing the Printing Direction. Computer Graphics Forum 35, 2 (2016), 59ś70.

Rundong Wu, Huaishu Peng, François Guimbretière, and Steve Marschner. 2016. Print-
ing Arbitrary Meshes with a 5DOF Wireframe Printer. ACM Trans. Graph. 35, 4,
Article 101 (July 2016), 101:1ś101:9 pages.

Shiqing Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong, Ying He, and Daniel Cohen-
Or. 2011. Making Burr Puzzles from 3D Models. In ACM SIGGRAPH 2011 Papers
(SIGGRAPH ’11). ACM, New York, NY, USA, Article 97, 8 pages.

Miaojun Yao, Zhili Chen, Linjie Luo, Rui Wang, and Huamin Wang. 2015. Level-set-
based Partitioning and Packing Optimization of a Printable Model. ACM Trans.
Graph. 34, 6, Article 214 (2015), 11 pages.

Cha Zhang and Tsuhan Chen. 2001. Efficient feature extraction for 2D/3D objects
in mesh representation. In Image Processing, 2001. Proceedings. 2001 International
Conference on, Vol. 3. IEEE, 935ś938.

Xiaoting Zhang, Xinyi Le, Athina Panotopoulou, Emily Whiting, and Charlie C. L.
Wang. 2015. Perceptual Models of Preference in 3D Printing Direction. ACM Trans.
Graph. 34, 6, Article 215 (Oct. 2015), 12 pages.

Yunbo Zhang, Wei Gao, Luis Paredes, and Karthik Ramani. 2016. CardBoardiZer:
Creatively Customize, Articulate and Fold 3D Mesh Models. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. ACM, 897ś907.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrange-
ments for Solid Geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016).

Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case Structural Analysis.
ACM Trans. Graph. 32, 4, Article 137 (July 2013), 12 pages.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Axis-Aligned Height-Field Block Decomposition of 3D Shapes • 1:15

A BOX-INTEGRATION OF A TRICUBIC SCALAR FIELD.

Let B be a an axis aligned box defined by its two extreme points

p = (px ,py ,pz) and q = (qx ,qy ,qz) and L a regular lattice. We

define S as the set of all the cubes (su,v,w) in the lattice L partially

or completely contained in B:

S : {su,v,w ∈ L|su,v,w ∩ B , ∅}

and we define D as the set of triplets of indexes in S :

D : {(u,v,w)|su,v,w ∈ S}

Each cube su,v,w inL is defined by its two extreme points (xm ,yn , zp)

and (xm+1,yn+1, zp+1) and to each cube we associate a set of co-

efficients a
(u,v,w)

i, j,k
for performing the tricubic interpolation inside

su,v,w . The interpolated value f in a generic (x ,y, z) point inside

su,v,w is:

f (x ,y, z) =

3∑

i=0

3∑

j=0

3∑

k=0

(
a
(u,v,w)

i, j,k
x iy jzk

)

The energy to minimize is given by the integral over B, hence the

sum of all the integrals over the cubes inside B:

min
∑

u,v,w ∈D

∫ xmax,ymax,zmax

xmin,ymin,zmin

f (x ,y, z)

where:

xmin =

{
xm if xm > px
px otherwise

xmax =

{
xm+1 if xm+1 < qx
qx otherwise

and similarly for y and z.

The parameters are the coordinates of the points defining B. To

be sure that the starting box will always cover the first primitive,

we sum to the energy a barrier function tending to +∞ when one

of the coordinates of B is too near to one of the coordinates of the

points to cover (i.e, the endpoints of a segment), and is 0 when the

coordinates are enough far from these points as in [Schüller et al.

2013].

Suppose to have a setC of points c = (cx , cy , cz) to be covered by

our box B. For each c ∈ C we will have a function for p and for q:

Φc,t (px) =




+∞ if px ≥ cx
1

д(px)
if cx − t < px < cx

0 if px ≤ cx − t

Φc,t (qx) =




0 if qx ≥ cx + t
1

д(qx)
if cx < qx < cx + t

+∞ if qx ≤ cx

and similarly for y and z, where t is 1
10 of the lattice’s edge, and д is:

д(x) =
1

t3
x3 −

3

t2
x2 +

3

t
x

Defining

Φc,t (p) = Φc,t (px) + Φc,t (py) + Φc,t (pz),

Φc,t (q) = Φc,t (qx) + Φc,t (qy) + Φc,t (qz)

we can add the barriers to the energy function to minimize:

min
∑

u,v,w ∈D

∫ xmax,ymax,zmax

xmin,ymin,zmin

f (x ,y, z)

+

∑

c ∈C

(
Φc,t (p) + Φc,t (q)

)
.

B VALID HEIGHT-BLOCK DECOMPOSITION VIA AA

BOX SPLITTING.

Let B1 and B2 be a pair of intersecting axis aligned height boxes

associate to the milling directionsm1 andm2, which are in the set

(±X ,±Y ,±Z). Since B1 and B2 are axis aligned, their intersection

BI = B1 ∩ B2 is an axis aligned box. The planes on which the six

facets of BI lie, partition both B1 and B2 into eight sub-boxes each,

namely B1.1, . . . ,B1.8 and B2.1, . . . ,B2.8. Note that, since B1 and

B2 intersect, there always exist two indices i, j ∈ [1, 8] such that

B1.i ≡ B2.j ≡ BI .

Let us now consider which milling directions, betweenm1 andm2,

could be chosen for these sub-boxes. We can observe that: (i) B1, B2
and all the sub-boxes are axis aligned, therefore the angle between

the box facets and the milling direction is either 0◦ or 90◦; (ii) each

sub-box of B1 (B1.1, . . . ,B1.8) hasm1 as candidate milling direction,

and each sub-box of B2 (B2.1, . . . ,B2.8) hasm2 as candidate milling

direction. The only exception is BI , which has bothm1 andm2 as

candidate milling directions.

From (i) and (ii) descends that any sub-box has at least one valid

milling direction with an axis aligned facet as supporting base. In

other words a valid height block decomposition obtained by splitting

the original boxes using axis aligned planes always exists. □

Note that this is true only for the special case of axis aligned

boxes and milling directions; in any other case condition (i) would

not be satisfied, as the angle between the box facets and the milling

direction may be greater than 90◦, thus violating the height-field

condition.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

