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Fig. 1. A selection of the ten thousand meshes in the wild tetrahedralized by our novel tetrahedral meshing technique.

We propose a novel tetrahedral meshing technique that is unconditionally
robust, requires no user interaction, and can directly convert a triangle soup
into an analysis-ready volumetric mesh. The approach is based on several
core principles: (1) initial mesh construction based on a fully robust, yet
efficient, filtered exact computation (2) explicit (automatic or user-defined)
tolerancing of the mesh relative to the surface input (3) iterative mesh im-
provement with guarantees, at every step, of the output validity. The quality
of the resulting mesh is a direct function of the target mesh size and allowed
tolerance: increasing allowed deviation from the initial mesh and decreas-
ing the target edge length both lead to higher mesh quality.

Our approach enables “black-box” analysis, i.e. it allows to automatically
solve partial differential equations on geometrical models available in the
wild, offering a robustness and reliability comparable to, e.g., image pro-
cessing algorithms, opening the door to automatic, large scale processing
of real-world geometric data.
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1 INTRODUCTION

Triangulating the interior of a shape is a fundamental subroutine
in 2D and 3D geometric computation.

For two-dimensional problems requiring meshing a domain, ro-
bust and efficient software for constrained Delaunay triangulation
problem has been a tremendous boon to the development of robust
and efficient automatic computational pipelines, in particular ones
requiring solving PDEs. Robust 2D triangulations inside a given
polygon boundary are also an essential spatial partitioning useful
for fast point location, path traversal, and distance queries.

In 3D, the problem of robustly triangulating the interior of a
given triangle surface mesh is just as well, if not more, motivated.
While tremendous progress was made on various instances of the
problem, it is far from solved by existing methods. While pipelines
involving 3D tetrahedralization of smooth implicit surfaces are quite
mature, pipelines using meshes as input either are limited to sim-
ple shapes or routinely fallback on manual intervention. The user
may have to “fix” input surface meshes to cajole meshers to suc-
ceed due to unspoken pre-conditions, or output tetrahedral meshes
must be repaired due to failure to meet basic post-conditions (such
as manifoldness). Existing methods typically fail too often to sup-
port automatic pipelines, such as massive data processing for ma-
chine learning applications, or shape optimization. In many cases,
while meshing may succeed, the size of the output mesh may be
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prohibitively expensive for many applications, because a method
lacks control between the quality of approximation of the input
surface and the size of the output mesh. Even when such controls
are present, hard-to-detect features of the input mesh may not be
preserved.

In this paper, we propose a new approach to mesh domains that
are represented (often ambiguously) by arbitrary meshes, with no
assumptions on mesh manifoldness, watertightness, absence of self-
intersections etc. Rather than viewing mesh repair as a separate
preprocessing problem, we recognize the fact, that “clean” meshes
are more of an exception than a rule in many settings.

The key features of our approach, based on careful analysis of
practical meshing problems, and shortcomings of existing state of
the art solutions are:

e We consider the input as fundamentally imprecise, allowing
deviations from the input within user-defined envelope of
size €;

e We make no assumptions about the input mesh structure,
and reformulate the meshing problem accordingly;

e We follow the principle that robustness comes first (i.e., the
algorithm should produce a valid and, to the extent possi-
ble, useful output for a maximally broad range of inputs),
with quality improvement done to the extent robustness con-
straints allow.

e While allowing deviations from the input, which is critical
both for quality and performance, we aim to make our algo-
rithm conservative, using the input surface mesh as a start-
ing point for 3D mesh construction, rather than discarding
its connectivity and using surface sampling only.

Our method is explicitly designed to output floating point coordi-
nates, but at the same time is strictly closed under rationals allowing
it to fit neatly into robust, exact rational computational geometry
pipelines.

We empirically compare both the performance and robustness of
state-of-the-art methods and our novel method on a large database
of 10 thousand models from the web [Zhou and Jacobson 2016].
To foster replicability of results, we release a complete reference
implementation of our algorithm, all the data shown in the paper,
and scripts to reproduce our results.

Our method —while slower— demonstrates a significant improve-
ment in robustness and quality of the results on a number of quality
measures, when applied to meshes found in the wild.

2 RELATED WORK

Tetrahedral mesh generation has remained a perennial problem,
both for computational geometers and practitioners in graphics,
physics and engineering ([Carey 1997; Cheng et al. 2012; Owen
1998]). We are specifically interested in methods that are constrained
to output a 3D tetrahedral mesh whose 2D surface closely matches
an input surface. We categorize related work with respect to the
high-level methodology employed. We place special emphasis on
methods with reproducible results thanks to their openly acces-
sible implementations. One confusion during comparisons is that
most existing software implements multiple algorithms, triggered
discretely (and somewhat discreetly) by input flags or parameters
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(e.g., TETGEN or CGAL). Our comparisons are done in best faith
and using default parameters where applicable; when controls sim-
ilar to the ones used in our method are available, we tried to choose
them in a similar way.

Background Grids. In 3D, a regular lattice of points is trivial to
tetrahedralize (e.g., using either five, six, or 12 tetrahedra per cube).
To tetrahedralize the interior of a solid given its surface, grid-based
methods fill the ambient space with either a uniform grid or an
adaptive octree. Grid cells far from the surface can be tetrahedral-
ized immediately and efficiently using a predefined, combinatorial
stencil, with excellent quality. Trouble arises for boundary cells.

Molino et al. [2003] propose the red-green tetrahedron refine-
ment strategy, while cells intersecting the domain boundary are
pushed into the domain via physics-inspired simulation. Alterna-
tively, boundary cells can be cut into smaller pieces [Bronson et al.
2012]. Labelle & Shewchuck [2007] snap vertices to the input sur-
face and cut crossing elements. This method provides bounds on
dihedral angles and a proof of convergence for sufficiently smooth
(bounded curvature) isosurface input. Doran et al. [2013] improves
this method to detect and handle feature curves, providing an open
source implementation, QUARTET [Bridson and Doran 2014] with
which we thoroughly compare. Average element quality tends to be
good: for volumes with high volume-to-surface ratio, most of the
mesh will be filled by the high-quality stencil. Near the boundary,
grid-based methods struggle to simultaneously provide parsimony
and element quality: either the surface is far denser than the inte-
rior making volume gradation difficult to control or the surface is
riddled with low-quality elements.

Delaunay. The problem of tetrahedralizing a set of points is very
well studied [Cheng et al. 2012; Sheehy 2012]. Efficient, scalable
[Remacle 2017] algorithms exist to create Delaunay meshes.

When the input includes surface mesh constraints, the challenge
is to extend the notion of a Delaunay mesh in a meaningful way.
In two dimensions, constrained Delaunay methods provide a sat-
isfactory solution. In contrast to 2D, the situation in 3D is imme-
diately complicated by the fact that there exist polyhedra that can-
not be tetrahedralized without adding extra interior Steiner vertices
[Schonhardt 1928].

The simple and elegant idea of Delaunay refinement [Chew 1993;
Ruppert 1995; Shewchuk 1998] is to insert new vertices at the cen-
ter of the circumscribed sphere of the worst tetrahedron measured
by radius-to-edge ratio. This approach guarantees termination and
provides bounds on radius-edge ratio. This approach has been ro-
bustly implemented by many [Jamin et al. 2015; Si 2015], and, in our
experiments, proved to be consistently successful. However, robust-
ness problems immediately appear if the boundary facets have to
be preserved.

More importantly, even in situations when the method is guar-
anteed to produce a mesh with bounded radius-to-edge ratio, it
does not —unlike the 2D case— guarantee that quality measures rel-
evant for applications are sufficiently good. The notorious “sliver”
tetrahedra satisfy the radius-to-edge ratio criteria. Thus, unavoid-
ably, Delaunay refinement needs to be followed by various mesh
improvement heuristics: exudation [Cheng et al. 2000], Lloyd re-
laxation [Du and Wang 2003], ODT relaxation [Alliez et al. 2005],



or vertex perturbation [Tournois et al. 2009]. Our approach also re-
lies on a variational-type mesh improvement (Section 3.2). Conform-
ing Delaunay tetrahedralization [Cohen-Steiner et al. 2002; Murphy
et al. 2001] splits input boundary by inserting additional Steiner
points, until all input faces appear as supersets of element faces.
Even with additional assumptions on the input, this process may
require impractically many additional points and tetrahedra. In con-
trast, constrained Delaunay tetrahedralization [Chew 1989; Shewchuk
2002a; Si and Gértner 2005; Si and Shewchuk 2014] proposes to re-
lax the Delaunay requirement for boundary faces so fewer Steiner
points are needed. The popular open source software TETGEN [Si
2015] is based on constrained Delaunay tetrahedralization, enforc-
ing inclusion of input faces in the mesh.

Restricted Delaunay tetrahedralization [Boissonnat and Oudot 2005;
Cheng et al. 2008] completely resamples the input surface to obtain
better tet quality while generating a good approximation of the do-
main boundary at the same time. The software DELPSC and CGAL
3D tetrahedral meshing module [Dey and Levine 2008; Jamin et al.
2015] is based on this approach. Engwirda [2016] uses an advanc-
ing front method as a refinement and point placement strategy for
constructing a restricted Delaunay mesh.

Variations of these methods are difficult to implement robustly,
as in their original form they require exact predicates that go be-
yond the typically available set, so a careful reduction to the ro-
bustly implementable operations is needed. This may account for a
percentage of failures that we observe.

A conceptual feature of many restricted Delaunay meshers (us-
ing meshes as input) is that they do not allow any slack on the
boundary geometry, thus requiring heavy refinement in certain
cases to achieve acceptable quality, for any target tetrahedron size.
However, tetrahedra incident at features are invariably excluded
from quality improvement.

In contrast, our algorithm by design, admits practical robust im-
plementation, and, also by design, allows the surface to change
within user-specified bounds, which greatly reduces unnecessary
over-refinement due to surface irregularities.

The state-of-the-art method based on restricted Delaunay refine-
ment, [Jamin et al. 2015], is highly robust for important classes of
inputs (smooth implicit surfaces) and yields high-quality meshes.
However, as we demonstrate in the results section, if the input is
polygonal, it cannot be easily reduced to the problem of meshing
an implicit surface, due to nonsmoothness, and the need for fea-
ture preservation. Currently, [Jamin et al. 2015] and related meth-
ods preserve features using the protection ball method: spheres are
placed on feature points and weighted Delaunay meshing and re-
finement are performed, treating ball radii as point weights. This
approach requires explicit detection and representation of feature
lines; in its current form, it results in reduction of robustness and
in some cases over refinement.

Variational meshing. The duality between Delaunay meshes and
Voronoi diagrams, leads to a variational or energy-minimizing view
of the meshing problem. Centroidal Voronoi Tessellation energy
minimizers can leverage Lloyd’s algorithm of BFGS optimization
to produce regular or adaptive meshes with well spaced vertices
[Du and Wang 2003], though this does not guarantee good element
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quality [Eppstein 2001]. An alternative is to minimize the “Optimal
Delaunay Triangulation” energy [Alliez et al. 2005; Chen and Xu
2004], for better element quality. These algorithms require an initial
starting point (which cannot be generated starting from noisy input
geometry), in order to stay near any input surface constraints. Our
method is designed to generate this valid starting point, and it then
uses a variant of these methods, which is designed to work with a
hybrid kernel, to improve quality.

Other variational mesh improvement methods exist [Gargallo-
Peiré et al. 2013; Klingner and Shewchuk 2007; Misztal and Beerentzen
2012], but all require and depend heavily on the initial base mesh.
In contrast, we propose a complete meshing algorithm. Our first
step generates a base mesh that complements our choice of mesh
improvement strategy later on. The result is unprecedented robust-
ness and element quality.

Tetrahedral meshing is a hard problem. The strategies found in
the literature span a wide range of ideas, from the use of machine
learning to predict hard cases [Chen et al. 2012] to the various ad-
vancing front methods to generate initial meshes [Alauzet and Mar-
cum 2013; Cuilliére et al. 2012; Haimes 2015]. The quality of advanc-
ing front outputs can be deceptive: problems are pushed into the in-
terior. Even if the exterior looks perfect, quality in the interior may
be arbitrarily poor. We found no reliable advanced front methods
suitable for our full-scale comparison.

Surface Envelope. Explicit envelopes have been used to guaran-
tee a bounded approximation error in surface reconstruction. Shen
et al. [2004] convert a polygon soup into an implicit representation
using a novel interpolation scheme, where a watertight e-isosurface
can be extracted for surface approximation purposes. Mandad et al.
[2015] create an isotopic surface approximation within a tolerance
volume using a modified Delaunay refinement process followed by
an envelope-aware and topology-preserving simplification proce-
dure. Our approach uses a similar, implicit, e-envelope to ensure
that the tracked surface does not move too far from the input trian-
gle soup.

3 METHOD

We start by defining our problem more precisely. As input we as-
sume a triangle soup, a user-specified tolerance €, and a desired
target edge length €. The goal is to construct an approximately con-
strained tetrahedralization, that is, a tetrahedral mesh that (1) con-
tains an approximation of the input set of triangles, within user-defined
€ of the input, (2) has no inverted elements, and (3) edge lengths be-
low user-defined bound €. Mesh quality is optimized while satisfying
these constraints. We call a mesh valid if it satisfies the first two
properties.

The resulting tetrahedralization can be used for a variety of pur-
poses; most importantly, we can use any definition of the interior
of a set of triangles to extract a tetrahedralized volume contained
“inside” the input triangle soup.

Throughout this paper, we use the term surface to refer to collec-
tions of faces, not necessarily manifold, connected, or self-intersection
free. Our algorithm tackles this problem in two distinct phases: (1)
the generation of a valid mesh, disregarding its geometric quality,
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Fig. 2. Adiagram illustrating the pipeline of our algorithm in 2D. The points of the original input segments (left) are triangulated using Delaunay triangulation
(second left). Each line segment is then split by all triangles that intersect it, constructing a BSP-tree (third left). Each of the resulting convex polygons (colored
blue) is divided into triangles by adding a point at its barycenter and connecting it to the vertices of the polygon (third from the right). Local operations are
used to improve the quality (second from the right), and finally winding number is used to filter out the elements outside of the domain (right).

representing its coordinates with arbitrary-precision rational num-
bers and (2) improvement of the geometric quality of its elements
and rounding the coordinates of the vertices to floating point num-
bers, while preserving the validity of the mesh. Decoupling these
two sub-problems is the key to the robustness of our algorithm and
it is in contrast with the majority of competing methods, which at-
tempt to directly generate a high-quality mesh.

The first phase relies only on operations closed under rational
numbers, i.e., the entire computation can be performed exactly if
the vertex coordinates are rational, sidestepping all robustness is-
sues (but increasing the computational cost). The second phase uses
a hybrid geometric kernel (inspired by [Attene 2017]), allowing us
to switch to floating point operations whenever possible to keep
the running time sensible (Section 3.4). Our algorithm is thus guar-
anteed to produce a valid mesh (Phase 1), but we cannot provide
any formal bound on its quality (Phase 2): in practice, the quality
obtained with our prototype on a dataset of ten thousand in the
wild models is high (Section 4).

Overview. The algorithm creates a volumetric Binary Space Par-
titioning (BSP) tree, containing one plane per input triangle and
storing its coordinates as exact rational numbers. By construction,
the resulting convex (but not necessarily strictly convex) cell de-
composition is conforming to the input triangle soup, and a tetra-
hedral mesh can be trivially created by independently tetrahedraliz-
ing each cell (Section 3.1). The volumetric mesh is not only created
inside the model, but also around the model, filling a bounding box
slightly larger than the input. This allows us to robustly deal with
imperfect geometry that contains gaps or self-intersections, post-
poning the inside/outside segmentation of the space to a later stage
in the pipeline. The quality of the mesh is then optimized with a set
of local operations to refine, coarsen, swap, or smooth the mesh ele-
ments (Section 3.2). These operations are performed only if they do
not break a set of invariants that ensure the validity of the mesh at
each step. The final mesh is then extracted using winding-number
filtering [Jacobson et al. 2013], which is robust to imperfect, real-
world input (Section 3.3).

3.1 Generation of a Valid Tetrahedral Mesh

The robust generation of a valid tetrahedral mesh that preserves the
faces of an original triangle soup is challenging, even ignoring any
quality consideration. Real-world meshes are often plagued by a

zoo of defects, including degenerate elements, holes, self-intersection,

and topological noise [Attene et al. 2013; Zhou and Jacobson 2016].
Even manually modeled CAD geometry cannot be exported to a
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Fig. 3. Self-intersections in the input (left) are automatically handled by
our meshing algorithm (right).

clean boundary format, since the most common modeling opera-
tions are not closed under spline representation [Farin 2002; Seder-
berg et al. 2003], unavoidably leading to small “cracks” and self-
intersections. Cleaning polygonal meshes or CAD models is a long-
standing problem, for which bullet-proof solutions are still elusive
[Attene et al. 2013]. We thus propose to use the input geometry as s,
and rely on a robust geometrical construction to fill the entire vol-
ume with tetrahedra, without committing to the exact topology or
geometry of the boundary at this stage, and postponing this chal-
lenge to a later stage in the pipeline, after all degeneracies have
been removed.

BSP-Tree Approach. We build an exact BSP subdivision, using
infinite-precision rational coordinates, and only relying on opera-
tions closed under this representation. An illustration of the pipeline
in 2D is shown in Figure 2: we use a 2D illustration since it is dif-
ficult to visualize the effect of operations on tetrahedral meshes
in a static figure. In contrast to the surface-conforming Delaunay
tetrahedralization [Si 2015], for which designing a robust imple-
mentation is challenging (Section 2), the unconstrained version can
be robustly implemented with exact rational numbers [Jamin et al.
2015]. We thus create an initial, non-conforming tetrahedral mesh



M, whose vertices are the same as the input triangle soup, using
the exact rational kernel in CGAL [Jamin et al. 2015].

The generated tetrahedral mesh does not preserve the input sur-
face, making it unusable for most downstream applications. To en-
force conformity, we use an approach inspired by [Joshi and Ourselin
2003], but designed to guarantee a valid output. We consider each
triangle of the input triangle soup as a plane, and intersect it with
all the tetrahedra in M that contain it. In other words, we con-
sider each tetrahedron as the root of a BSP cell, and we cut the cell
using all the triangles of the input geometry intersecting it. This
computation can be performed entirely using rational coordinates,
since intersections between planes are closed under rationals, en-
suring robustness and correctness even for degenerate input. This
polyhedral mesh is converted into a tetrahedral mesh taking ad-
vantage of convexity of the cells: we triangulate its faces, add a
vertex at the barycenter, and connect it to all the triangular faces
on the boundary. Since the only operation necessary is an average
of vertex positions, the barycenter can be computed exactly with
rationals. As long as at least four input vertices are linearly indepen-
dent, then all convex cells will be non-degenerate, i.e., the resulting
tetrahedra connected to the barycenter will also be non-degenerate
(though perhaps poor quality). The output mesh is valid and exactly
conforming to the input triangle soup. Self-intersections in the in-
put are naturally handled by this formulation: they are explicitly
meshed, splitting the corresponding triangles accordingly (Figure
3).

3.2 Mesh Improvement

Given a valid tetrahedral mesh represented using rational numbers,
we propose an algorithm to improve its quality, and round its ver-
tices to floating point positions, while preserving its validity. We
follow the common greedy optimization pipeline based on local
mesh improvement operations [Dunyach et al. 2013; Faraj et al.
2016; Freitag and Ollivier-Gooch 1997], but with four important dif-
ferences:

(1) We explicitly prevent inversions using exact predicates (Va-
lidity Invariant 1).

(2) We track the surface mesh during the operations, and we
only allow operations that keep them within an e distance
from the input triangle mesh (inspired by a similar criteria
used for surface meshing by [Hu et al. 2017]) (Validity Invari-
ant 2).

(3) We directly penalize bad elements in all shapes using a con-
formal energy which has been recently introduced for mesh
parametrization [Rabinovich et al. 2017].

(4) We use a hybrid geometric kernel to reduce the computa-
tion time while ensuring correctness and termination, using
floating point whenever possible and relying on exact coor-
dinates only where it is strictly necessary.

Invariant 1: Inversions. We disallow every operation introducing
inverted tetrahedra whose orientation is negative, using the exact
predicates in [Bronnimann et al. 2017] for both rational and float-
ing point coordinates. This ensures an output without inversions,
since the algorithm starts from an inversion-free tetrahedral mesh
produced by our BSP-tree construction (Section 3.1).

Tetrahedral Meshing in the Wild
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Fig. 4. An oversized € (TI:O’ with b being the bounding box diagonal) cre-
ates a tetrahedral mesh (2nd row) that fails to capture the features of the
input triangle mesh (1st row). Reducing € to ﬁ and ﬁ increases the
geometric fidelity (3rd and 4th row).

Invariant 2: Input Surface Tracking and Envelope. By construc-
tion, the tetrahedral mesh produced in Section 3.1 contains an exact
representation of all input triangles, in the form of a collection of
faces of the tetrahedra. That is, the tetrahedral mesh contains one
(or more) tetrahedra whose faces exactly match any given input tri-
angle. We call this collection of faces the embedded surface, and all
operations performed on the tetrahedral mesh keeps track of it.

To bound the geometric approximation error introduced during
the mesh improvement procedure, we only accept operations that
keep the faces of the embedded surface at a distance smaller than
a user-defined e. Intuitively, this can be depicted as an envelope of
thickness € built around the input triangle soup. We ensure that the
embedded surface is always contained in the envelope at all times
by disallowing any operation breaking this invariant (Figure 4).

Quality Measure. As a measure of quality to optimize, we use the
3D conformal energy recently explored in [Rabinovich et al. 2017],
which is well-correlated with many common measures of quality
(we evaluate the results on a number of measures). It is expressed
as:

T
&= tr(J; J¢) (1)

reT det(J:) 3

where J; is the Jacobian of the unique 3D deformation that trans-
forms the tetrahedron t into a regular tetrahedron. This energy is
oblivious to isotropic scaling, but naturally penalizes needle-like el-
ements, flat and fat elements, slivers, and prevents inversions since
it diverges to infinity as an element approaches zero volume. It is
also differentiable [Rabinovich et al. 2017], and can be efficiently
minimized using Newton or Quasi-Newton iterations [Kovalsky
et al. 2016; Rabinovich et al. 2017].
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Edge Spliting

Fig. 5. Overview of the local mesh improvement operations. For face swap-
ping, our algorithm uses 3-2, 4-4, 5-6 bistellar flips [Freitag and Ollivier-
Gooch 1997], where 3-2 flip is illustrated here.

Fig. 6. Alow quality triangle mesh exported from a CAD model with Open-
Cascade (top) is automatically converted into a high-quality tetrahedral
mesh by our algorithm (bottom), without requiring any manual cleanup.

Local Operations. We use four local operations for mesh improve-
ment [Faraj et al. 2016; Freitag and Ollivier-Gooch 1997]: edge split-
ting, edge collapsing, face swapping, and vertex smoothing (Fig-
ure 5). These operations only affect a local region of the mesh, and
can thus be performed efficiently. We propose an asymmetric op-
timization scheme: coarsening and optimization operators are ap-
plied only if they improve the mesh quality, while the refinement
operator is applied until a predefined edge length (user-controlled)
isreached, or whenever a region is locked due to the lack of enough
degrees of freedom. The rationale behind this strategy is that we
want to avoid over-refinement in regions where it is not neces-
sary to improve quality, and we thus add additional vertices only to
match the user-provided density or locally if they are necessary to
improve the quality. This strategy allows us to produce high-quality
meshes even if the input surface has low quality (Figure 6).

We optimize the mesh using 4 passes: (1) splitting (refining), (2)
collapsing (coarsening), (3) swapping, and (4) smoothing. We store
a target edge length value at the vertices of the tetrahedral mesh,
initialized with the user-specified desired edge length ¢. In (1) each
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min dihedral
(degrees)

0 5 10 15 20 iterations
Fig. 7. A mesh generated with the BSP-tree approach is processed by our
iterative mesh optimization algorithm. The quality might decrease during

the iterations due to the local refinement ignoring quality, but it quickly
improves after additional passes of collapsing, swapping, and smoothing.

edge whose length is larger than % [Botsch and Kobbelt 2004; Dun-
yach et al. 2013] times the average of the target edge lengths as-
signed to its endpoints is split once, and the average is assigned to
the new vertex. After (1), the target edge length assigned to a vertex
v is divided by 2 if there is a low-quality tetrahedron (& > 8, Equa-
tion 1) within its €, ball, and multiplied by 1.5 otherwise. To en-
sure that the user-specified density is always reached, we limit the
length by the user-specified parameter ¢. To prevent unnecessary
over-refinement in problematic regions, we cap below the length
by €. In (2), we collapse an edge if its length is smaller than %. In
(3), we swap faces if they improve the quality. In (4), we smooth
all vertices individually minimizing the average of Equation 1 over
their one-ring, using Newton’s iteration. Only vertices roundable to
floats are smoothed, the others are skipped. All these operations are
performed only if they do not break any of the invariants described
above, and if they increase the mesh quality (with the exception of
(1)). In each pass, we use a priority queue to decide the orders of the
operations (longest edge first for (1) and (3) and shortest edge first
for (2)), except for (4) where the vertices are processed in random
order. For (4), we use analytic gradient and Hessian. In Figure 7, we
show the effects of the mesh improvement step.

The mesh improvement process stops when either the maximum
energy is sufficiently small (default: less than 10) or the maximum
number of iteration is reached (default: 80 iterations).

3.3 Interior volume extraction

Note that until this point, our algorithm has not attempted to de-
fine a closed surface bounding a volume: the result of the previous
stage is a construction of the approximately constrained tetrahe-
dralization, with a possibly nonmanifold, disconnected and open
embedded surface.

We use the method proposed in [Jacobson et al. 2013] to ad-
dress possible imperfections in the embedded surface, by defining
an inside-outside function that can be used to extract an interior
volume associated with the mesh.

We calculate the winding number of the centroid of each tetrahe-
dron with respect to the embedded surface. If the winding number
of the centroid of an element is smaller than 0.5, we consider it
outside of the surface and drop it before exporting the mesh. Note
that this technique must be applied only after mesh optimization



Fig. 8. Any gap or hole in the input geometry (top) is automatically filled
by our algorithm (bottom), generating an analysis-ready tetrahedral mesh.

due to numerical reasons: the computation of the winding number
cannot be performed in rational numbers and it is numerically un-
stable close to the surface (where we care the most), due to the use
of trigonometric functions.

As a result of this step, both small gaps and large surface holes
will be filled according to the induced winding number field (Fig-
ures 8 and 11). Consequently, if the input mesh has holes, our al-
gorithms produces a tetrahedral mesh whose surface is not com-
pletely inside the € envelope, since the triangles used for hole filling
may be outside.

3.4 Technical Detail

Hybrid Kernel. Implementing the mesh optimization with only
exact rational numbers to store the position of the vertices is not
practical for two reasons: (1) the size of the rational representa-
tion grows every time a vertex is modified (dramatically increas-
ing the computation time as the algorithm proceeds, especially in
the smoothing step), and (2) rational operations are not supported
directly in hardware, and are much slower than floating point oper-
ations. We implemented our algorithm using an hybrid geometric
kernel, similar in spirit and design to [Attene 2017]. For each ver-
tex, we store its coordinates in exact rational numbers only if any
of the incident tetrahedra invert after rounding its vertices to float-
ing point representation. This has two major benefits: it avoids the
growth of the rational representations, since it trims their length
as soon as it is possible to round a vertex, and reduces the memory
consumption. Note that this does not affect the correctness of the
algorithm since problematic regions containing almost degenerate
elements will continue to use an exact rational representation.

Voxel Stuffing. While guaranteed to produce a valid mesh for any
input, the algorithm described in Section 3.1 can (and will) gener-
ate poorly-shaped initial cells whose size is different from what
the user prescribed, requiring extensive cleanup in the mesh im-
provement step. To reduce running times, we found it beneficial
to preemptively add some proxy points in a regular lattice inside
the bounding box of the input triangle soup. To avoid creating de-
generate cells, we remove proxy points that are within § (6 > e,
default: § = %) from the surface. These points are passed to the
Delaunay tetrahedralization algorithm (Figure 9), producing a su-
perior starting point that requires fewer local operations to reach a
usable quality. In addition to reducing the timing in the optimiza-
tion stage, this step also localizes the BSP construction around the
input surface. We experimentally found that setting the grid edge
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Fig. 9. Voxel stuffing produces a tetrahedral mesh (middle) of quality com-
parable to a direct BSP-tree construction (right), but reduces the running
times from 3292.3 seconds to 2476.6 seconds.

Fig. 10. A heavily tessellated bridge model from Thingi10k (top, left), is
simplified by our algorithm, while keeping the surface in the envelope (top,
right), and then converted into a tetrahedral mesh (bottom).

length to 2% provides the highest benefit, with b being the length
of the diagonal of the bounding box.

Input Simplification. The BSP-tree construction potentially intro-
duces a quadratic number of intersections with respect to the num-
ber of faces. This only happens in rare pathological cases and it
is not an issue for the majority of real-world models, but we did
find two problematic ones over ten thousand in Thingil0k [Zhou
and Jacobson 2016] (one of which is shown in Figure 10). In these
two models, this issue is sufficiently severe to make the BSP tree
mesh larger than 64GB, making our implementation crawl due to
memory swapping. We propose a preprocessing step that, while not
changing the upper bound complexity of our algorithm, resolves
this issue on all meshes we tested it with. The preprocessing tries
to: (1) collapse all manifold edges of the input triangle soup, accept-
ing the operations that do not move the surface outside of the enve-
lope and (2) improve the quality of the mesh (in terms of angles) by
flipping edges, still keeping the surface in the envelope. This proce-
dure simplifies regions with low curvature, and effectively reduces
the number of vertices introduced by the BSP tree. We were not
able to construct a synthetic case that breaks this procedure when
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Fig. 11. For an input model with open boundaries (top, left, red lines), we
add a reprojection in the smoothing step to preserve them (top, right). To
improve the surface quality, we apply Laplacian smoothing to the output
faces used to fill the open regions (bottom).

a realistic € is provided. We used this procedure for all our results,
since it improves performance also on non-pathological meshes.

Open Boundaries. If the surface contains an open boundary, us-
ing only the surface envelope is not always sufficient to ensure a
good approximation of the input triangle soup: while unlikely to
happen, the boundary is free to move anywhere inside it, poten-
tially moving away from the open boundary, while staying inside
the envelope. We address this problem, tracking the open bound-
aries and reprojecting its vertices back to it in the smoothing step
(Figure 11). We consider an edge an open boundary if only one tri-
angle is incident to it.

Envelope Test. Our algorithm heavily relies on testing whether
a triangle is contained inside the mesh envelope or not to ensure
that the embedded surface stays within the envelope during op-
timization (Section 3.2). An exact solution would be prohibitively
expensive for our purpose [Barton et al. 2010; Tang et al. 2009], and
we thus use a conservative floating point approximation. Since the
approximation error is bounded, our method guarantees that none
of the output surface points is outside the envelope.

We implicitly construct the envelope by measuring point-to-mesh
distance to the unprocessed input mesh, accelerated by an AABB
tree [Lévy 2018; Samet 2005]. To check if an embedded surface tri-
angle face is inside of the envelope, we sample this face using a
regular triangular lattice with d as the length of the lattice edge.
We also add additional samples on the edges of the face, ensuring
a maximal sampling error of d/V3 (Figure 12, left). The triangle is
considered inside if all the samples are closer than é = € — d¢,r
(derr = d/ V/3), which is a conservative envelope. Since the maxi-
mal sampling error is bounded by de, this ensures a correct result,
up to floating point rounding. This construction allows us to con-
trol the computational cost: a small d means denser sampling and
more computational cost but leads to a wider envelope, allowing
our algorithm more flexibility in relocating the vertices. Our exper-
iments showed that d = € (¢ = (1-1/V3)e) is a good compromise.
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Fig. 12. A triangle face sampled using a triangular lattice has all samples
inside the conservative é-envelope can have points outside the envelope by
at most d/V3 (left). Splitting the triangle into two changes the sampling
pattern (right), and some samples on one of its sub-faces are now outside
the conservative envelope (marked in red).

However, the discrete nature of the sampling introduces a sub-
tle problem: our envelope check is conservative, but not consistent,
i.e. reallocating samples on a face of embedded surface by editing
its vertices could make it erroneously classified as outside, since
some samples might land outside the conservative envelope é (but
not outside the user-specified envelope €) (Figure 12, right). This
could prevent the optimization algorithm for improving the qual-
ity of some regions, since operations might be rejected due to the
excessively conservative envelope check. This is a rare occurrence,
we observed it on only 3 models over 10k (0.03%).

We propose a robust, yet expensive, solution for these problem-
atic cases: observing that if there are locked elements, enlarging
€ by derr guarantees that all elements will be free to move again,
we increase the sampling density to
make enough space for enlarging the en-
velope, so that locked regions are freed ;=1 ¢ | dor [valid?
without violating the user-specified en- e
velope €. Let k an integer representing € 7 Ak <
the current stage (the initial stage is de- " valid?
noted by k = 1). In stage k: we (1) set the yes
sampling distance to di = d/k, (2) run €
the algorithm, and then (3) enlarge the
envelope for k — 1 times by de,, /k each
time during the geometric optimization l
(see inset). If a model is still invalid (i.e.
the output contains no unroundable vertex) after the geometric op-
timization in stage k, we then enter into stage k + 1, rerun the
algorithm with a denser sampling, and repeat this procedure until
it succeeds.

Across the Thingil0K dataset, 9997 models produced valid out-
puts after stage 1, and the remaining 3 models succeed after stage 2.
Since enlarging envelope gives more freedom for moving vertices
and cleaning surface, this method can also help to improve qual-
ity to some degree: we got 99.98% output tetrahedral meshes have
minimal dihedral angle larger than 1 degree with k = 2, while this
percentage is only 99.52% with k = 1.

—€—

<€

4 RESULTS

We implemented our algorithm in C++, using Eigen for linear alge-
bra routines, CGAL and GMP for rational computations. The source
code of our reference implementation is available at https://github.
com/Yixin-Hu/TetWild.
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Fig. 14. Comparison of generated mesh quality on Thingi10k dataset. For
each software, we show the distribution of 6 common quality measures of
all tetrahedra in 1000 randomly sampled meshes generated from Thingi10k
dataset. Quality measures: dihedral angle, inscribed/circumscribed sphere
radius ratio, conformal AMIPS energy, and normalized Shewchuk’s gradi-
ent error estimate factor ([Shewchuk 2002b]).

Robustness and Performance. We tested our algorithm and a selec-
tion of competing methods over the entire Thingi10k dataset [Zhou
and Jacobson 2016]: we show a few examples in Figure 15, report ag-
gregate statistics in Table 2, running times in Figure 13, and output
mesh quality in Figure 14. We also report detailed statistics for all
models shown in the paper (with the exception of Figure 1) in Table
1. We selected their parameters to make the comparison as fair as
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Table 1. Statistics for the datasets in the paper.

Model Input Output
Id Fig. #V #V Angle AMIPS | Time(m)
255648 3 91550 61506 4.8/41.3 16.1/4.1 48.8
134705 4 66045 2208 5.6/41.4 11.5/4.1 3.0
134705 4 66045 11341 11.7/46.4 7.8/3.7 10.3
134705 4 66045 | 470742 10.3/47.3 11.4/3.7 168.5
114029 6 | 123565 | 118347 10.3/45.4 9.2/3.7 47.2
376252 7 | 980051 31734 11.1/45.8 8.0/3.7 10.9
62526 8 7818 25773 8.9/43.7 9.6/3.9 17.7
38416 9 | 120172 87648  10.2/46.3 8.0/3.7 44.6
996816 10 76111 12663  0.02/45.0 1625.4/4.0 747.7
48354 11 10945 21211 10.5/45.8 8.0/3.7 3.4
486859 15 14629 15011  10.0/45.3 9.3/3.7 5.3
42155 15 24646 7248 13.3/45.4 7.3/3.7 2.1
78481 15 | 298370 11385 12.7/46.4 7.9/3.7 3.9
551021 15 | 174066 51011 10.2/46.1 9.4/3.7 16.5
488049 15 23036 3574 13.0/43.2 7.8/4.0 1.3
47076 15 768 5491 9.7/44.7 9.6/3.8 1.0
964933 16 148 4991  10.0/44.5 8.3/3.8 1.2
1036403 17 87046 46220 10.5/45.1 8.1/3.8 20.3
1036403 17 87046 | 202846 12.4/50.1 7.7/3.5 162.7
252683 18 | 906835 34721 10.0/44.5 8.2/3.8 141
252683 18 | 906835 | 119087 10.1/46.4 8.0/3.7 113.4
78211 19 320 2042 11.3/34.2 9.9/4.6 0.5
78211 19 320 8661 9.3/43.5 10.1/3.9 14.2
63465 20 592 6238 14.1/44.9 8.2/3.8 0.9
76538 21 14169 10098  12.0/44.9 7.9/3.8 3.9
1065032 22 48506 27362 8.5/45.4 9.4/3.8 9.2
1036658 23 4244 3713 12.3/43.7 7.9/3.8 1.4
Bunny 24 11247 38326 7.7/43.8 9.3/3.9 7.2
Bunny 24 11247 87359 9.9/43.0 8.1/4.0 20.8
1505037 25 19218 37782 10.2/44.2 8.0/3.9 16.8

Note: From left to right: Thingi10k model ID, figure where it appears, number of
input vertices, number of output vertices, dihedral angle (min/avg), AMIPS energy
(Equation 1) (max/avg), running time in minutes.

possible, and we provide all parameters used in the additional mate-
rial. CGAL. We compared our method with [Jamin et al. 2015] in 3
scenarios: (1) CGAL with polyhedral oracle with feature protection,
(2) CGAL with polyhedral oracle without feature protection, and (3)
CGAL with implicit surface oracle. (1) and (2) are run using the stan-
dard implementation inside CGAL, enabling and disabling feature
protection (Section 2), respectively. For (3), we passed an implicit
function based on the winding number calculation, used in our fil-
tering. We provide a signed distance field as oracle (computed with
the AABB tree in [Jacobson et al. 2016]), and use the winding num-
ber [Jacobson et al. 2013] to decide its sign. In all cases, we have
observed lower robustness compared to our algorithm. The qual-
ity is slightly better for our algorithm. CGAL with the polyhedral
oracle is on average 3 to 4 times faster than our algorithm, while
CGAL with implicit oracle is much slower: nearly a third of the in-
puts timed out after 3 hours (Table 2). We show a more detailed
comparison of the quality (measured using 6 different criteria) in
Figure 16. Tetgen [Si 2015] is an order of magnitude faster than
our method, but cannot process around half of Thingi10k. It pro-
duces meshes with a quality consistently lower than ours, despite
introducing more elements. DelPSC [Dey and Levine 2008] suffers
from robustness problems, successfully processing only around 38%
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Fig. 15. Comparison with state-of-art tetrahedralization algorithms. The number close to each model is the minimal dihedral angle.
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Table 2. Comparison of code robustness and performance on the Thingi10k dataset

Software Success rate  Out of memory(>32GB) Time exceeded(>3h) Algorithm limitation Average time(s)

CGAL (explicit, w features) 57.2% 5.4% 15.7% 21.7% 160.2
CGAL (explicit, wo features) 79.0% 0.0% 0.0% 21.0% 11.7
CGAL (implicit, wo features) 55.7% 0.0% 32.6% 11.7% 997.3
TetGen 49.5% 0.1% 1.7% 48.7% 32.3

DelPSC 37.1% 0.0% 31.1% 31.7% 174.8
Quartet 87.2% 0.0% 0.0% 12.8% 15.3

MMG3D 56.2% 1.2% 10.8% 31.8% 2182.3

Ours 99.9*% 0.0% 0.1% 0.0% 360.0

Note: The maximum resource allowed for each model are 3 hours and 32GB of memory. *Our method exceeds the 3h time on 11 models. If 27 hours of maximal running time are
allowed, our algorithm achieves 100% success rate.
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Fig. 16. (Top): With the same meshing parameters (¢ = b/2000 and
¢ = b/20), CGAL’s algorithm with and without feature protection (top
row) used more than 4 and 7 times the number of tets than ours (second row
right) respectively. When using roughly the same number of tets, CGAL’s
result (second row left) struggles to preserve sharp features. (Bottom): His-
tograms of various tet quality measures for all tets generated from CGAL
and our algorithm. The dotted lines indicate the ideal quality values com-
puted on a regular tetrahedron. Note that our results (bottom row) have
better quality in all measures.

of Thingi10k. The quality is consistently lower than ours. Quartet
[Bridson and Doran 2014] is the most robust competing method,
with a success rate of 88%. It unfortunately struggles to preserve
thin features, and often uses a much higher element count than
our method.

Parameters. Our algorithm requires two parameters: the target
edge length ¢, which controls the density of the output mesh, and

Fig. 17. € controls the density of the output mesh. Input (top), £ = b/20
(middle) and € = b/150 (bottom).

the maximal Hausdorff distance bound e, which controls the geo-
metric faithfulness of the result. For all our experiments (except
where noted otherwise) we used £ = /20 and e = b/1000, where
b is the length of the diagonal of the bounding box of the input. The
parameter ¢ controls the mesh density directly (Figure 17), while €
does it indirectly. Prescribing a small € forces the algorithm to re-
fine more to enforce the tighter bound. Providing a larger € allows
our algorithm to get close to the user-prescribed lenghts (Figure
18).

Spatially Varying Sizing Field. By replacing the uniform target
edge length ¢ with a spatially varying function £(p), our algorithm
can be extended to create graded meshes. Figure 19 illustrates a
result with target edge length smoothly varying from coarse to fine
in a single model. Note that the output mesh quality remains high
despite the large change in the sizing field.

Surface Repair. Our algorithm can be used as an effective mesh
repair tool for closed surfaces by creating a tetrahedral mesh of
their interior, and then extracting its boundary. Self-intersections
are robustly resolved when constructing the BSP-tree, degeneracies
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Fig. 18. € bounds the maximal distance between the input and output
mesh. Input (left), e = b/1000 (middle) and e = b/3000 (right).
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Fig. 19. Example for spatially varying sizing field using background mesh.
Input (left), output tetrahedral mesh without sizing control (middle), and
output tetrahedral mesh with sizing field applied (right).

MeshFix Ours

Self-intersection (red)

Fig. 20. A self-intersecting triangle soup, is cleaned using meshfix by re-
moving the base. Our algorithm instead creates a tetrahedral mesh of its
interior, whose boundary corresponds to a clean triangle mesh of the pawn.

are removed by the mesh improvement step, surface gaps/holes are
filled based on generalized winding number, and the output surface
is trivially the boundary of a valid volume. While computationally
more expensive than alternative methods that only work on the
surface, our technique can robustly handle extremely challenging
cases. In Figure 20, we compare our method to MeshFix [Attene
2010] on a self-intersecting chess pawn.

Finite Element Method Validation. We demonstrate that our al-
gorithm can be used as a black box to solve PDEs on the entire
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Fig. 21. We test our generated tet meshes by solving a harmonic PDE using
finite element method with linear elements. For each model in Thingi10K,
we compare the computed solution with the ground truth (radial basis func-
tions with kernel 1/r centered at the red spheres). We show the absolute
max error, relative max error, and relative La error histograms (log scale)
in the bottom row.

Fig. 22. Our algorithm can be used to bootstrap quadrilateral remeshing.

Thingi10k dataset. We normalize all our output meshes to fit in the
unit cube and create an analytic volumetric harmonic function by
summing 12 radial kernels (1/r), placed randomly on a sphere cen-
tered at the origin of radius 1.5b. This function is sampled on the
boundary of the mesh and used as a boundary condition for a Pois-
son problem, solved using [Jacobson et al. 2016]. We successfully
solve this PDE over all models, and we report a sample solution
and the histograms of L? and L* errors with respect to the ana-
lytic solution evaluated on the internal nodes in Figure 21.

Structured Meshing. Structured meshing algorithms [Bommes et al.
2012] usually rely on an existing clean boundary representation of
the geometry (triangle meshes in 2D and tetrahedral meshes in 3D)
to generate a structured mesh. Our algorithm can be used to con-
vert triangle soups into meshes suitable for remeshing. We show
the examples of quadrilateral meshing using [Jakob et al. 2015] in
Figure 22 and hexahedral-dominant meshing [Gao et al. 2017] in
Figure 23.

Noise Stress-Test. We stress test our method under geometrical
noise (Figure 24), by randomly displacing its vertices using Gauss-
ian noise. Even in this extreme case our algorithm produces meshes
close to the noisy input and have a large minimal dihedral angle.
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Fig. 24. Our algorithm is robust to geometrical noise. The numbers denote
the minimal dihedral angle of output meshes.

Meshing for Multimaterial Solids. Our algorithm naturally sup-
ports the generation of tetrahedral meshes starting from multiple
enclosed surfaces by simply skipping the filtering step (Section 3.3),
as shown in Figure 25.

5 LIMITATIONS AND CONCLUDING REMARKS

Our algorithm handles sharp features in a soft way: they are present
in the output, but their vertices could be displaced, causing a straight
line to zigzag within the envelope. While this is acceptable for most
graphics applications, extending our algorithm to support exact
preservation of sharp features is an interesting research direction
that we plan to pursue. We demonstrated that our algorithm can be
used as a mesh repair tool, but it is, however, limited to closed sur-
faces: extending it to support mesh repair over shells is an interest-
ing and challenging problem. Our single threaded implementation
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Fig. 25. The volume around a complex mechanical piece is automatically
meshed by our algorithm, preserving the surface of the embedded object.

is slower than most competing methods: since most steps of our
algorithm are local, we believe that a performance boost could be
achieved by developing a parallel (and possibly distributed) version
of our approach.

To conclude, we presented an algorithm to compute approximately
constrained tetrahedralizations from triangle soups. Our algorithm
can robustly process thousands of models without parameter tun-
ing or manual interaction, opening the door to black-box process-
ing of geometric data.
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