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Abstract— This paper investigates the phase retrieval problem,
which aims to recover a signal from the magnitudes of its linear
measurements. We develop statistically and computationally
efficient algorithms for the situation when the measurements
are corrupted by sparse outliers that can take arbitrary values.
‘We propose a novel approach to robustify the gradient descent
algorithm by using the sample median as a guide for pruning
spurious samples in initialization and local search. Adopting
a Poisson loss and a reshaped quadratic loss, respectively,
we obtain two algorithms termed median-truncated Wirtinger
flow and median-reshaped Wirtinger flow, both of which provably
recover the signal from a near-optimal number of measurements
when the measurement vectors are composed of independent
and identically distributed Gaussian entries, up to a logarithmic
factor, even when a constant fraction of the measurements is
adversarially corrupted. We further show that both algorithms
are stable in the presence of additional dense bounded noise. Our
analysis is accomplished by developing non-trivial concentration
results of median-related quantities, which may be of independent
interest. We provide numerical experiments to demonstrate the
effectiveness of our approach.

Index Terms—Median, high dimensional estimation, phase
retrieval, nonconvex problem, linear convergence.

I. INTRODUCTION

HASE retrieval is a classical problem in signal processing,

optics and machine learning that has a wide range of
applications such as X-ray crystallography [22], astronomical
imaging, and TeraHertz imaging [48]. Mathematically, it is
formulated as recovering a signal x € R" or C" from the
magnitudes of its linear measurements:

yi = lai, x))%, i=1,...,m, (1)

where m is the total number of measurements, and a; € R"
or C" is the ith known measurement vector, i = 1,...,m.
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Phase retrieval is known to be notoriously difficult due to the
quadratic form of the measurements. Classical methods [23],
though computationally simple, lack rigorous performance
guarantees.

There has been, however, a recent line of work that suc-
cessfully develops provably accurate algorithms for phase
retrieval, in particular for the case when the measurement
vectors a;’s are composed of independent and identically
distributed (i.i.d.) Gaussian entries. Broadly speaking, two
classes of approaches have been proposed based on convex and
nonconvex optimization techniques, respectively. Using the
lifting trick, the phase retrieval problem can be reformulated
as estimating a rank-one positive semidefinite (PSD) matrix
X = xxT from linear measurements [4], for which convex
relaxations into semidefinite programs have been studied [7],
[10], [17], [20], [37], [58]. In particular, Phaselift [10] per-
fectly recovers the signal with high probability as long as the
number of measurements m is on the order of n. However,
the computational complexity of Phaselift is at least cubic
in n, which becomes expensive when n is large. Very recently,
another convex relaxation named PhaseMax has been proposed
in the natural parameter space without lifting [3], [25], [28],
resulting in a linear program that can handle large problem
dimensions as long as m is on the order of n.

Another class of approaches aims to find the signal that
minimizes a loss function based on certain postulated noise
model, which often results in a nonconvex optimization prob-
lem due to the quadratic measurements. Despite nonconvexity,
it is demonstrated in [9], [49], and [41] that the so-called
Wirtinger flow (WF) algorithm, based on gradient descent,
works remarkably well: it converges to the global optima
when properly initialized using the spectral method. Several
variants of WF have been proposed thereafter to further
improve its performance, including the truncated Wirtinger
flow (TWF) algorithm [14], the reshaped Wirtinger flow
(RWF) algorithm [63], and the truncated amplitude flow (TAF)
algorithm [59]. Notably, TWE, RWF and TAF are shown to
converge globally at a linear rate as long as m is on the order
of n, and attain e-accuracy within Q(mn log(1/€)) flops using
a constant step size.!

A. Outlier-Robust Phase Retrieval

The aforementioned algorithms are evaluated based on
their statistical and computational performances: statistically,
we wish the sample complexity m to be as small as possible;

INotation f(n) = O(g(n)) or f(n) < g(n) means that there exists a
constant ¢ > 0 such that [f(n)| = c|g(n)|.
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computationally, we wish the run time to be as fast as possible.
As can be seen, existing WF-type algorithms are already
near-optimal both statistically and computationally. This paper
introduces a third consideration, which is the robustness to out-
liers, where we wish the algorithm continues to work well even
in the presence of outliers that may take arbitrary magnitudes.
This bears great importance in practice, because outliers arise
frequently from the phase imaging applications [61] due to
various reasons such as detector failures, recording errors, and
missing data. Specifically, suppose the set of m measurements
are given as

yi=Wai, )P +mi, i=1,---,m, (2)

where 7, € R or C for i = 1,...,m are outliers that can
take arbitrary values. We assume that outliers are sparse with
no more than sm nonzero values, i.e., ||g]lo < sm, where
n = {n:}L; € R™ or C™. Here, s is a nonzero constant,
representing the faction of measurements that are corrupted
by outliers.

The goal of this paper is to develop phase retrieval algo-
rithms with both statistical and computational efficiency, and
provable robustness to even a constant proportion of outliers.
To the best of our knowledge, before the appearance of the
current article, none of the existing algorithms meet all of
the three considerations simultaneously. The performance of
WF-type algorithms is very sensitive to outliers which intro-
duce anomalous search directions when their values are exces-
sively deviated. While a form of Phaselift [26] is robust
to a constant portion of outliers, it is computationally too
expensive.

B. Median-Truncated Gradient Descent

A natural idea is to recover the signal as a solution to the
following loss minimization problem:

1 ] i - .
mzm%;f(z,y,) (3)

where £(z, y;) is postulated using the negative likelihood of
Gaussian or Poisson noise model. Since the measurements are
quadratic in x, the objective function is nonconvex. We con-
sider two choices of £(z; y;) in this paper. The first one is the
Poisson loss function of Ea?zfz employed in TWF [14], which
is given by

(4)

The second one is the I’eshﬂpedz quadratic loss of |a?z|
employed in RWF [63], which is given by
i 2

ez ) = (1af 21— 3) - 5)

It has been argued in [63] that the loss function (5) resembles
more closely to a quadratic function than the Wirtinger flow
loss used in [9], which results in a more amenable curvature
for the convergence of the gradient descent algorithms.

o]
£(z; yi) = |al z|* — yiloglal z|2.

21t is called “reshaped” in order to distinguish it from the quadratic loss
of ia;frz|2 used in [9].
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In the presence of outliers, the signal of interest may no
longer be the global optima of (3). Therefore, we wish to
only include the clean samples that are not corrupted in the
optimization (3), which is, however, impossible as we do
not assume any a priori knowledge of the outliers. Our key
strategy is to prune the bad samples adaptively and iteratively,
using a gradient descent procedure that proceeds as follows:

e+ _ (0 _ H# ©. v
2 =20 = > e 3. (6)

i€Ti4

where z() denotes the fth iterate of the algorithm, V£(z*); y;)
is the gradient of £(zY; vi), and g is the step size, for
t = 0,1,.... In each iteration, only a subset T, of data-
dependent and iteration-varying samples contributes to the
search direction. But how to select the set T;1;? Note that
the gradient of the loss function typically contains the term
|vi — laf 21| (for TWF) or |/3; —|a]z|| (for RWF),
which measures the residual using the current iterate. With
v; being corrupted by arbitrarily large outliers, the gradient
can deviate the search direction from the signal arbitrarily.
Inspired by the utility of median to combat outliers in robust
statistics [30], we prune samples whose gradient components
Ve O y:) are much larger than the sample median to control
the search direction of each update. Hiding some technical
details, this gives the main ingredient of our median-truncated
gradient descent update rule,? ie., for each iterate t > 0:

Toyt = {i : yi — laf 2%
< apmed({|y; — lal 2|2} )}, for TWF,

Trpr = {i : | /% — lal 29
< apmed({l/3 — lal z1)™L)), for RWF, (8)

(7

where aj, and a;? are some given algorithm parameters and
med(-) denotes the sample median. The robust property of
median lies in the fact that the median cannot be arbitrarily
perturbed unless the outliers dominate the inliers [30]. This is
in sharp contrast to the sample mean, which can be made
arbitrarily large even by a single outlier. Thus, using the
sample median in the truncation rule can effectively remove
the impact of outliers. Finally, there still left the question of
initialization, which is critical to the success of the algorithm.
We use the spectral method, i.e., initialize z(®) by a proper
rescaling of the top eigenvector of a surrogate matrix

1 T
Y=—73 viaia],

icTh

)

where again Tj includes only a subset of samples whose values
are not excessively large compared with the sample median of
the measurements, given as

To={i:yi <ay-med({yi}i-))}, (10)

where a, is an algorithm parameter. Putting things together
(the update rule (6) and the initialization (9)), we obtain two
new median-truncated gradient descent algorithms, median-
TWF and median-RWF, based on applying the median trun-
cation strategy for the loss functions used in TWF and RWE,

3Please see the exact form of the algorithms in Section IL.
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respectively. The median-TWF and median-RWF algorithms
do not assume a priori knowledge of the outliers, such as
their existence or the number of outliers, and therefore can
be used in an oblivious fashion. Importantly, we establish the
following performance guarantees.

Main Result (Informal): For the Gaussian measurement
model, with high probability, median-TWF and median-RWF
recover all signal x up to the global sign at a linear rate of
convergence, even with a constant fraction of outliers, as long
as the number of measurements m is on the order of nlogn.
Furthermore, the reconstruction is stable in the presence of
additional bounded dense noise.

Statistically, the sample complexity of both algorithms is
near-optimal up to a logarithmic factor, and to reassure, they
continue to work even when outliers are absent. Computa-
tionally, both algorithms converge linearly, requiring a mere
computational cost of O(mnlogl/e) to reach e-accuracy.
More importantly, our algorithms now tolerate a constant
fraction of arbitrary outliers, without sacrificing performance
otherwise.

To establish the performance guarantees, we first show that
the initialization is close enough to the ground truth, and then
that within the neighborhood of the ground truth, the gradients
satisfy certain Regularity Condition [9], [14] that guarantees
linear convergence of the descent rule, as long as the fraction
of outliers is small enough and the sample complexity is
large enough. As a nonlinear operator, the sample median
is much more difficult to analyze than the sample mean,
which is a linear operator and many existing concentration
inequalities are readily applicable. Therefore, considerable
technical efforts are devoted to develop novel non-asymptotic
concentrations of the sample median, and various statistical
properties of the sample median related quantities, which may
be of independent interest.

Finally, we note that while median-TWF and median-
RWF share similar theoretical performance guarantees, their
empirical performances vary under different scenarios, due to
the use of different loss functions. Their theoretical analyses
also have significant difference that worth separate treatments.
While we only consider the loss functions used in TWF and
RWF in this paper, we believe the median-truncation technique
can be applied to gradient descent algorithms for solving other
problems as well.

C. Related Work

Our work is closely related to the TWF algorithm [14],
which is also a truncated gradient descent algorithm for
phase retrieval. However, the truncation rule in TWF is based
on the sample mean, which is very sensitive to outliers.
In [27], [41], [46], and [62], the problem of phase retrieval
under outliers is investigated, but the proposed algorithms
either lack performance guarantees or are computationally too
expensive. A modified PhaseMax was proposed to deal with
sparse outliers [27], which also achieves exact recovery with
a constant fraction of outliers by applying our initialization
step.

The adoption of median in machine learning is not unfa-
miliar, for example, K-median clustering [13] and resilient
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data aggregation for sensor networks [56]. Our work here
further extends the applications of median to robustifying high-
dimensional estimation problems with theoretical guarantees.
Another popular approach in robust estimation is to use the
trimmed mean [30], which has found success in robustifying
sparse regression [16], subspace clustering [46], etc. However,
using the trimmed mean requires knowledge of an upper bound
on the number of outliers, whereas median does not require
such information.

Developing non-convex algorithms with provable global
convergence guarantees has attracted intensive research inter-
est recently. A partial list of these studies include phase
retrieval [66], [9], [14], [42], [51], [59], matrix comple-
tion [67], [19], [24], [29], [31]-[33], [52]. [65], low-rank
matrix recovery [18], [35], [38], [44], [54], [60], [64], robust
PCA [43], [62], robust tensor decomposition [1], dictionary
learning [2], [50], community detection [5], phase synchro-
nization [6], blind deconvolution [34], [36], joint align-
ment [15], shallow neural networks [68], etc. Our algorithm
provides a new instance in this list that emphasizes robust
high-dimensional signal estimation under minimal assump-
tions of outliers.

D. Paper Organization and Notations

The rest of this paper is organized as follows. Section IT
describes the proposed two algorithms, median-TWF and
median-RWF, in details and their performance guarantees.
Section III presents numerical experiments. Section IV pro-
vides the preliminaries and the proof road map. Section V
provides the proofs for median-TWF and Section VI provides
the proofs of median-RWF, respectively. Finally, we conclude
in Section VII. Supporting proofs are given in the Appendix.

We adopt the following notations in this paper. Given a
set of numbers {y;};",, the sample median is denoted as
med({y;}i”,). The indicator function 14 = 1 if the event
A holds, and 14 = 0 otherwise. For a vector y, || y| denotes
the /> norm. For two matrices, A < B if B — A is a positive
semidefinite matrix.

II. ALGORITHMS AND PERFORMANCE GUARANTEES

We consider the following model for phase retrieval, where
the measurements are corrupted by not only sparse arbitrary
outliers but also dense bounded noise. Under such a model,
the measurements are given as

)m"s

(11)

where x € R” is the unknown sigﬁal,4 a; € R" is the
ith measurement vector composed of i.i.d. Gaussian entries
distributed as N(0,1), and ; € R for i = 1,...,m
are outliers with arbitrary values satisfying |yllo < sm,
where s is the fraction of outliers, and w = {w;}} , is the
bounded noise satisfying ||w|jec < c]x |* for some universal
constant c.

It is straightforward that changing the sign of the signal
does not affect the measurements. The goal is to recover the

yi = @i, X)) +wi+n, i=1,---

4We focus on real signals here, but our analysis can be extended to complex
signals.
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signal x, up to a global sign difference, from the measurements
¥y = {yi}iL, and the measurement vectors {a;}i-,. To this end,
we define the Euclidean distance between two vectors up to a
global sign difference as the performance metric,

dist(z, x) := minf|lz + x|, [[z — x||}. (12)

We propose two median-truncated gradient descent algo-
rithms, median-TWF in Section II-A and median-RWF in
Section I1-B, based on different choices of the loss functions.
This leads to applying the truncation based on the sample
median of {|y; — |} z|*|};_, in median-TWF, and the sample
median of{| /3 — |alz||};_, in median-RWE. Section II-C
provides the theoretical performance guarantees of median-
TWF and median-RWF, which turn out to be almost the
same at the order level except the choice of constants. The
empirical comparisons of median-TWF and median-RWF are
demonstrated in Section IIL

A. Median-TWF Algorithm

In median-TWF, we adopt the Poisson loss function of
||:;f3rz|2 employed in TWF [14], given as

0@ = 5- Y (1o 2P~ yitoglalzP).  (13)
=1

Algorithm 1 Median Truncated Flow

(Median-TWF)
Input: y = {y;}‘,’-’;,, {ﬂi}:’”:ﬁ
Parameters: thresholds ay, aj, a;, and a,, stepsize u;

Initialization: Let z\© = 19z, where 19 = \/med(y)/0.455

and Z is the leading eigenvector of

Wirtinger

1 « T
Y= —3 yidia] Ly <2z (14
i=1 ’
Gradient loop: fort =0: T — 1 do
T ()2 _ 5.
ey By lET oy
g =20 - =3 T (15)
icE; i

where
E; := ["‘ﬂzltsz)n < |afz®| < a,[1z®|jand

laT z(0))
1vi — 1a] 20| < &) Siirlmed({1y; — la] 2O Py, ) ).

Output z7.

The median-TWF algorithm, as described in Algorithm 1,
gradually eliminates the influence of outliers on the way of
minimizing (13). Specifically, it comprises an initialization
step and a truncated gradient descent step.

1. Initialization: As in (14), we initialize z(® by the
spectral method using a truncated set of samples, where the
threshold is determined by med({y;}/_ ;). As will be shown in
Section I'V-B, as long as the fraction of outliers is not too large
and the sample complexity is large enough, our initialization

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 11, NOVEMBER 2018

is guaranteed to be within a small neighborhood of the true
signal.

2. Gradient loop: for each iteration 0 < f < T —1, median-
TWF uses an iteration-varying truncated gradient given as

1 - laf 202 — i
Ve @)= =3 — i

(16)
T
i€k, % z®

In order to remove the contribution of corrupted samples,
from the definition of the set E; (see Algorithm 1), it is
clear that samples are truncated if their measurement residuals
evaluated using the current iterate are much larger than the
sample median. Moreover, in order to better control the
search direction, samples are also truncated if the quantity
|afz| is outside some confidence interval. The median-TWF
algorithm closely resembles the TWF algorithm, except that
the truncation is guided by the sample median, rather than the
sample mean.

We set the step size in median-TWF to be a fixed small con-
stant, i.e., # = 0.4. The rest of the parameters {ay, a;, a;, a,}
are set to satisfy

¢ =max [E [‘lellﬂm/mw or |f|>~/W“"]]’

& [l[|cf|<mmor |:|>mau]] ]

Hi=E [;’21{|§|>0.248a,,}], 21 + ) + /3w < 1.99,
(17)

a\"231

where & ~ AN(0,1). For example, we can set a; = 0.3,
ay, = 3,ay =3 and a; = 12, and consequently {1 =~ 0.24
and {7 ~ 0.032.

B. Median-RWF Algorithm

In median-RWF, we adopt the reshaped quadratic loss
function of |af'z| employed in RWF [63], given as
1« r_\2
R@ = 5= (V% —lal2)", (18)

i=
which has been shown to be advantageous over other loss
functions for phase retrieval [63].

Similarly to median-TWF, the median-RWF algorithm as
described in Algorithm 2, gradually eliminates the influence
of outliers on the way of minimizing (18). Specifically,
it also comprises an initialization step and a truncated gradient
descent step.

1. Initialization: we initialize in the same manner as in
median-TWF (Algorithm 1).

2. Gradient loop: for each iteration 0 < f < T —1, median-
RWF uses the following iteration-varying truncated gradient:

1 7 alz")
VR (z") = = > | af 9 - i a;, (19)

T (1)
ik} |a‘z I

From the definition of the set E; (see Algorithm 2), samples
are truncated by the sample median of gradient components
evaluated at the current iteration. We set the step size in
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Algorithm 2 Flow

(median-RWF)

Input: y = {yi}/;, (@i}l

Parameters: threshold aj,, and step size y;
Initialization: Same as median-TWF (see Algorithm 1).
Gradient loop: fort =0: T — 1 do

(t+1) _ ) H T _(t) “?Zm
el _EZ a;z —\/y_;m ai, (20)

- ’
icE;

Median Reshaped  Wirtinger

where
| /3 — laf 29|
< aj, -med ({37 - a7z}, ) }.

Output z7.

median-RWF to be a fixed small constant, i.e., g = 0.8.
Compared with median-TWF, the truncation rule is much
simpler with fewer parameters. We simply set the truncation
threshold & = 5. It is possible that including a criteria on
|afz| as in the definition of E, may further improves the
performance, but we wish to highlight that, in this paper,
the simple truncation rule is already sufficient to guarantee
both robustness and efficiency of median-RWF.

C. Performance Guarantees

In this section, we characterize the performance guarantees
of median-TWF and median-RWF, which turn out to be very
similar though the proofs in fact involve quite different tech-
niques. To avoid repetition, we present the guarantees together
for both algorithms. We note that the values of constants in
the results can vary for median-TWF and median-RWE.

We first show that median-TWF/median-RWF performs
well for the noise-free model in the following proposition,
which lends support to the model with outliers. This also
justifies that we can run median-TWF/median-RWF without
having to know whether the underlying measurements are
corrupted.

Proposition 1 (Exact Recovery for the Noise-Free Model):
Suppose that the measurements are noise-free, i.e., i = 0
and w; =0 fori =1,--- ,m in the model (11). There exist
constants po > 0, 0 < p,v < 1 and cp, c1,c2 > 0 such that
if m = co nlogn and pu < po, then with probability at least
1 — c1 exp(—c2 m), median-TWF/median-RWF vields

dist(z"), x) <v(1 - p)'||x|l, VieN 1)

simultaneously for all x € R™\{0}.

Proposition 1 suggests that median-TWF/median-RWF
allows exact recovery at a linear rate of convergence as long
as the sample complexity is on the order of nlogn, which is
in fact slightly worse, by a logarithmic factor, than existing
WF-type algorithms (TWE, RWF and TAF) for the noise-
free model. This is a price due to working with the nonlinear
operator of median in the proof, and it is not clear whether it
is possible to further improve the result. Nonetheless, as the
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median is quite stable as long as the number of outliers is
not so large, the following main theorem indeed establishes
that median-TWF/median-RWF still performs well even in the
presence of a constant fraction of sparse outliers with the same
sample complexity.

Theorem 1 (Exact Recovery With Sparse Arbitrary
Outliers): Suppose that the measurements are corrupted
by sparse outliers, ie., w; = 0 fori = 1,--- ,m in the
model (11). There exist constants pg, s > 0, 0 < p,v < 1
and cp,c1,c2 > 0 such that if m > ¢ nlogn, s < sg,
4 < po, then with probability at least 1 — ¢y exp(—c2 m),
median-TWF/median-RWF yields

dist(z\), x) <v(1 —p)'|x|l, VteN (22)

simultaneously for all x € R™\{0}.

Theorem 1 indicates that median-TWF/median-RWF admits
exact recovery for all signals in the presence of sparse
outliers with arbitrary magnitudes even when the number of
outliers scales linearly with the number of measurements,
as long as the sample complexity satisfies m =2 nlogn.
Moreover, median-TWF/median-RWF converges at a lin-
ear rate using a constant step size, with per-iteration cost
O(mn) (note that the median can be computed in linear
time [53]). To reach e-accuracy, i.e., dist(z®), x) < ¢, only
O(log1/e) iterations are needed, yielding the total com-
putational cost as O(mnlog1/e), which is highly efficient.
Empirically in the numerical experiments in Section III,
median-RWF converges faster and tolerates a larger fraction
of outliers than median-TWF, which can be due to the use of
the reshaped quadratic loss function.

We next consider the model when the measurements are
corrupted by both sparse arbitrary outliers and dense bounded
noise. Our following theorem characterizes that median-
TWFEF/median-RWF is stable to coexistence of the two types
of noises.

Theorem 2 (Stability to Sparse Arbitrary Outliers and
Dense Bounded Noises): Consider the phase retrieval prob-
lem given in (11) in which measurements are corrupted by
both sparse arbitrary and dense bounded noises. There exist
constants pup,s0 > 0, 0 < p < 1 and cg,c1,c2 > 0 such
that if m = cq nlogn, s < so, p < po, then with probability
at least 1 — cyexp(—cz m), median-TWF and median-RWF
respectively vyield

llwlloo
llx|
dist(z),x) S Vlwleo + (1 — p)'llx|l, VteN (24)

simultaneously for all x € R™\{0}.

Theorem 2 immediately implies the stability of median-
TWFEF/median-RWF when the measurements are only corrupted
by dense bounded noise.

Corollary 1: Consider the phase retrieval problem in which
measurements are corrupted only by dense bounded noises,
ie, i =0fori =1,---,m in the model (11). There exist
constants pg > 0, 0 < p < 1 and ¢y, c1,c2 > 0 such that
if m = co nlogn, p < po, then with probability at least
1—cy exp(—c2 m), median-TWF and median-RWF respectively

dist(z"), x) < +(1—p)lxll, VteN, (23)
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vield

w
dist(z,x) S TS 4 (1= p) sl Ve e,

lwlleo + (1 —p)' x|, VteN

(25)

dist(z""), x) < (26)

simultaneously for all x € R™\{0}.

With both sparse arbitrary outliers and dense bounded
noises, Theorem 2 and Corollary 1 imply that median-
TWF/median-RWF achieves the same convergence rate
and the same level of estimation error as the model with
only bounded noise. In fact, together with Theorem 1
and Proposition 1, it can be seen that applying median-
TWEF/median-RWF does not require the knowledge of the
existence of outliers. When there do exist outliers, median-
TWF/median-RWF achieves almost the same performance as
if outliers do not exist.

III. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments to demon-
strate the effectiveness of median-TWF and median-RWF,
which corroborate our theoretical findings.

A. Exact Recovery for Noise-Free Data

We first show that, in the noise-free case, median-TWF
and median-RWF provide similar performance as TWF [14]
and RWF [63] for exact recovery. We set the parameters of
median-TWF and median-RWF as specified in Section II-A
and Section II-B, and those of TWF and RWF as suggested
in [14] and [63], respectively. Let the signal length n take
values from 1000 to 10000 by a step size of 1000, and the
ratio of the number of measurements to the signal dimension,
m /n, take values from 2 to 6 by a step size of 0.1. For each pair
of (n,m/n), we generate a signal x ~ N (0, I,,5,), and the
measurement vectors @; ~ N(0, I,y,) iid. fori =1,...,m.
For all algorithms, a fixed number of iterations T = 500 are
run, and the trial is declared successful if z(ﬂ, the output of
the algorithm, satisfies dist(z'"), x)/|x|| < 10~%. Figure 1
shows the number of successful trials out of 20 trials for
all algorithms, with respect to m/n and n. It can be seen
that, as soon as m is above 4n, exact recovery is achieved
for all four algorithms. Around the phase transition boundary,
the empirical sample complexity of median-TWF is slightly
worse than that of TWEF, which is possibly due to the ineffi-
ciency of median compared to mean in the noise-free case [30].
Interestingly, the empirical sample complexity of median-RWF
is slightly better than RWF because the truncation rule used
in median-RWF allows sample pruning that improves the
performance.5

B. Exact Recovery With Sparse Outliers

We next examine the performance of median-TWF and
median-RWF in the presence of sparse outliers. We com-
pare the performance of median-TWF and median-RWF
with TWF [14], Robust-WF [12], RobustPhaseMax [27] and

S5The original RWF in [63] does not have sample truncation.
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Fig. 1.  Sample complexity of median-TWFE, TWF, median-RWF, and
RWF for noise-free data: the gray scale of each cell (n, m/n) indicates the
number of successful recovery out of 20 trials. (a) median-TWF. (b) TWF.
(c) Median-RWF. (d) RWE

AlItGD [45]. Specifically, Robust-WF is based on hard
thresholding and requires knowing the fraction s of outliers
so that samples corresponding to §m largest values in the
measurements or gradients are removed, where § = 1.2 5 as
suggested in [12]. We note that AltGD [45] uses our robust
initialization strategy.

We fix the signal length n = 32 and the number of measure-
ments m = 8n. Let each measurement y; be corrupted with
probability s < [0, 0.4] independently, where the corruption
value #; ~ U(—#max/2, max/2) is randomly generated from
a uniform distribution. Figure 2 shows the success rate of
exact recovery over 100 trials as a function of s at different
levels of outlier magnitudes fmax/ | %]|* = 0.1, 1, 10, 100, for
the six algorithms median-TWF, median-RWF, Robust-WF,
RobustPhaseMax, TWF and AItGD.

From Figure 2, it can be seen that median-TWF and median-
RWF allow exact recovery as long as s is not too large for all
levels of outlier magnitudes, without assuming any knowledge
of the outliers, which validates our theoretical analysis. Empir-
ically, median-RWF can tolerate a larger fraction of outliers
than median-TWE. This could be due to the fact that the lower-
order objective adopted in median-RWF reduces the vari-
ance and allows more stable search direction. Unsurprisingly,
TWTF fails quickly even with a very small fraction of outliers.
No successful instance is observed for TWF when s > 0.02
irrespective of the value of #max. Robust-WF, even knowing
the number of outliers, still does not exhibit a sharp phase
transition, and in general underperforms the proposed median-
TWF and median-RWFE. Moreover, RobustPhaseMax, which
employs linear programming with slack variable to handle
outliers, does not perform well in these experiments either.
AltGD performs well when the values of the outliers are small
as can be seen in Figure 2 (a), and deteriorates as the outliers
have larger values as can be observed in Figure 2 (b)-(d).

C. Stable Recovery With Sparse Outliers and Dense Noise

We now examine the performance of median-TWF and
median-RWF in the presence of both sparse outliers and
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Fig. 2. Success rate of exact recovery with respect to the fraction of sparse outliers for median-TWF, median-RWF, Robust-WF, RobustPhaseMax and TWF
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The relative error with respect to the iteration count for median-TWF, median-RWF and TWF with both dense noise and sparse outliers, and TWF

with only dense noise. In (a) and (b), the dense noise is generated uniformly at different levels. (a) wmax = 0,Ol[|x||2. (b) wmax = 0.001 ||x||2.

dense bounded noise. The entries of the dense bounded noise
term w are generated independently from (0, wmax). The
entries of the sparse outlier are then generated as n; ~ ||w|| -
Bernoulli(0.1) independently. Figure 3(a) and Figure 3(b)
depict the relative error dist(z(*), x)/||x| with respect to the
iteration count f, when wmay/||x||2 = 0.001 and 0.01 respec-
tively. In the presence of sparse outliers, it can be seen that
both median-TWF and median-RWF clearly outperforms TWF
under the same situation, and acts as if the outliers do not
exist by achieving almost the same accuracy as TWF without

outliers. Moreover, the relative error of the reconstruction
using median-TWF or median-RWF has 10times gain from
Figure 3(a) to Figure 3(b) as wmax shrinks by a factor of 10,
which corroborates Theorem 2 nicely. Furthermore, it can
be seen that median-RWF converges faster than the other
algorithms, due to the improved curvature of using low-order
objectives, corroborating the result in [63]. On the other
hand, median-TWF returns more accurate estimates, due to

employing more delicate truncation rules that may help reduce
the noise.
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Fig. 4. The relative error with respect to the iteration count for median-TWEF,
median-RWF and TWF with both Poisson noise and sparse outliers, and TWF
with only Poisson noise.

We also consider the case when the measurements are
corrupted by both Poisson noise and outliers, modeling photon
detection in optical imaging applications. We generate each
measurement as y; ~ Poisson(|{a,',x)i2), fori= L vv,m;
which is then corrupted with probability s = 0.1 by outliers.
The entries of the outlier are obtained by first generating
ni ~ |lx]|? - U(0,1) independently, and then rounding it
to the nearest integer. Figure 4 depicts the relative error
dist(z,'(‘r ). x)/|lx|| with respect to the iteration count f, where
median-TWF and median-RWF under both outliers and Pois-
son noise have almost the same accuracy as, if not better than,
TWF under only the Poisson noise.

Finally, we consider the case with the noise generated from
a Gaussian mixture model (GMM). The probability density
function of the two-term GMM is given by

2 2
=5 exp (_w_“)
= 7 b

o V2mo; 20;
where ¢; € [0, 1] and a? are the fraction and the variance of
the ith term, respectively, and ¢ +c¢2 = 1. This can model the

scenario of outliers embedded in Gaussian background noise
if 07 > o and ¢; < ¢2. We define the SNR as

EallAx|*
0 Eyllw)?

p(w) (27)

SNR := 10log (28)

Then we have SNR = 10log, —“—"—a- for measurements A
consisting of a; ~ N(0, I,,x,,) and w ~ p(w) in (27).
In our experiment, we set the signal dimension n = 100
and the number of measurements m = 800, and set 07 =
10000012, ¢z = 0.1. We let SNR vary from 10 dB to 100 dB
and record the relative error of the signals recovered by the
five algorithms, i.e., median-TWF, median-RWF, Robust-WF,
RobustPhaseMax, TWF and AltGD.

From Figure 5, we see that the relative errors
achieved by our algorithms are significantly lower than
RobustPhaseMax [27] and slightly lower than Robust-
WF [12]. We also note that median-TWF performs slightly
better than median-RWF. This is because for the model (11),
median-RWTF requires the square root of y; (see equation (20))
which produces extra multiplicative noise. We also observe
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RWF, Robust-WF, RobustPhaseMax and TWF with two Gaussian noises.

that AItGD achieves as good (or perhaps slightly better)
MSE-SNR performance as the median based algorithms under
the model with the Gaussian mixture noises.

I'V. PRELIMINARIES AND PROOF ROADMAP

Broadly speaking, the proofs for median-TWF and median-
RWF follow the same roadmap. The crux is to use
the statistical properties of the median to show that the
median-truncated gradients satisfy the so-called Regularity
Condition [9], which guarantees the linear convergence of the
update rule, provided the initialization provably lands in a
small neighborhood of the true signal.

We first develop a few statistical properties of median
that will be useful throughout our analysis in Section I'V-A.
Section IV-B analyzes the initialization that is used in both
algorithms. We then state the definition of Regularity Condi-
tion in Section I'V-C and explain how it leads to the linear
convergence rate. We provide separate detailed proofs for two
algorithms in Section V and Section VI, respectively, because
they involve different bounding techniques that may be of
independent interest due to different loss functions.

At high level, we first prove the performance guarantees
of median-TWF and median-RWF for the noise-free case
(Proposition 1) by showing the regularity condition holds for
the truncated gradient, which uses the concentration properties
of the sample median. We then extend to the corrupted
case (Theorem 1) by observing that similar bounds hold for
order statistics near the median. The main challenge lies in
developing the concentration properties of the sample median
and applying them to establish the regularity condition.

A. Properties of Median

We start by the definitions of the quantile of a population
distribution and its sample version.

Definition 1 (Generalized Quantile Function): Let 0 <
p < 1. For a cumulative distribution function (CDF) F,
the generalized quantile function is defined as

P (p)=inf{x eR: F(x) = p}. (29)

For simplicity, denote 0,(F) = F~'(p) as the p-quantile

of F. Moreover for a sample sequence {X;}' |, the sample
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p-quantile 8,({X;}) means (-)p(f? ), where F is the empirical
distribution of the samples {X;}' .

Remark 1: We note that the median med({X;}) =
612({X;}), and we use both notations interchangeably.

Next, we show that as long as the sample size is large
enough, the sample quantile concentrates around the popu-
lation quantile (motivated from [11]), as in Lemma 1.

Lemma 1: Suppose F(-) is cumulative distribution function
(i.e., non-decreasing and right-continuous) with continuous
density function F'(-). Assume the samples {X;}7 | are i.id.
drawn from F. Let 0 < p < 1. Ifl < F'(@) < L for all § in
{0:10 —8,| <€), then

[0 ({ X)) — 0p(F)| <€ (30)
holds with probability at least 1 — 2 exp(—2me?l?).
Proof: See Appendix A. |
Lemma 2 bounds the distance between the median of two
sequences.
Lemma 2: Given a vector X = (X1, X2,...,X,), reorder
the entries in a non-decreasing manner
X=X =...=X@p-1n =Xpun-
Given another vector Y = (Y, Ya,...,Y,), then
Xy — Yyl = 1 X — Y loo, (31)

holds for all k =1, ..., n.
Proof: See Appendix B. |

Lemma 3, as a key robustness property of median, suggests
that in the presence of outliers, one can bound the sample
median from both sides by neighboring quantiles of the
corresponding clean samples.

Lemma 3: Consider clean samples {X; " . If a fraction
5 (5 = % ) of them are corrupted by outliers, one obtains
contaminated samples {X;} , which contain sm corrupted
samples and (1 — s)m clean samples. Then for a quantile p
such that s < p < 1— s, we have

Op—s(1Xi)) < 0,({Xi)) < Oprs({Xi)).

Proof: See Appendix C. |
Finally, Lemma 4 is related to bound the value of the
median, as well as the density at the median for the product of
two possibly correlated standard Gaussian random variables.
Lemma 4: Let u,v ~ N (0, 1) which can be correlated with
the correlation coefficient |p| < 1. Let r = |uv|, and y,(x)
represent the density of r. Denote 0y (w,) as the median of r,
and the value of w,(x) at the median as y,(01,2). Then for
all p,

0.348 < Oy2(wp) < 0.455,
0.47 < w,(61/2) < 0.76.

Proof: See Appendix D. |

B. Robust Initialization With Outliers

Considering the model that the measurements are corrupted
by both bounded noise and sparse outliers given by (11),
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we show that the initialization provided by the median-
truncated spectral method in (14) is close enough to the ground
truth, ie., dist(z(@, x) < d||x].

Proposition 2: Fix é > 0 and x € R", and consider the
model given by (11). Suppose that ||W|ls < cllx|l? Jor some
sufficiently small constant ¢ > 0 and that ||n|lo < sm for
some sufficiently small constant s. With probability at least
1 — exp(—Q(m)), the initialization given by the median-
truncated spectral method obeys®

dist 29, x) < é||x|, (32)

provided that m > co n for some constant cg > 0.
Proof: See Appendix D.

C. Regularity Condition

Once the initialization is guaranteed to be within a small
neighborhood of the ground truth, we only need to show that
the truncated gradient (16) and (19) satisfy the Regularity
Condition (RC) [9], [14], which guarantees the geometric con-
vergence of median-TWF/median-RWF once the initialization
lands into this neighborhood.

Definition 2: The gradient V£(z) is said to satisfy the
Regularity Condition RC(u, 4, c) if

A
(VE(@),z —x) = % IVe@)I* + 51z —x|? (33)

for all z obeying ||z — x|| < c|x]|.

The above RC guarantees that the gradient descent update
20D = 20 _ 4Ve(z) converges to the true signal x
geometrically [14] if uA < 1. We repeat this argument below
for completeness.

dist?(z — uVE(Z), x)
< llz — uVe(x) — x|
= llz — x| + |uVEQI* — 2 (z — x, VE(z))
< llz —xI* + |uVE@I* — L2 IVE@)I* — pdllz — x|
= (1 — pA)dist?(z, x).

V. PROOFS FOR MEDIAN-TWF

We first show that V{;,(z) in (16) satisfies the RC for
the noise-free case in Section V-A, and then extend it to the
model with only sparse outliers in Section V-B, thus together
with Proposition 2 establishing the global convergence of
median-TWF in both cases. Section V-C proves Theorem 2
in the presence of both sparse outliers and dense bounded
noise.

A. Proof of Proposition 1

We consider the noise-free model. The central step to
establish the RC is to show that the sample median used in
the truncation rule of median-TWF concentrates at the level
|z — x||/lz]| as stated in the following proposition.

6Notation f(n) = Q(g(n)) or f(n) Z g(n) means that there exists a
constant ¢ > 0 such that [f(n)| = c|g(n)|.
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Proposition 3: If m > co nlogn, then with probability at
least 1 — ¢1 exp(—cam),

m

0.6l1zlllz — x| < bb.s9, b0 ({|1a7 %12 — 17 2P|} )

=< lzliliz — I, (34)

holds for all z, x satisfying ||z — x| < 1/11]z].
Proof: Detailed proof is provided in Appendix A. |

We note that a similar property for the sample mean has
been shown in [14] as long as the number m of measurements
is on the order of n. In fact, the sample median is much
more challenging to bound due to its non-linearity, which also
causes slightly more measurements compared to the sample
mean.

Then we can establish that (V{,.(z),z —x) is lower
bounded on the order of ||z — x||2, as in Proposition 4, and
that ||V£,(z)| is upper bounded on the order of ||z — x||, as
in Proposition 5.

Proposition 4 (Adapted Version of [15, Proposition 2]):
Consider the noise-free case y; = |af.t§2 Jori=1,--- . m,
and any fixed constant € > 0. Under the condition (17),
if m > o nlogn, then with probability at least
1 —c exp(—cze_zm),

(Ve (2), 2 —x) > (35)
{19921 + @)~ VB/ma;! — e} Iz —xI* G6)

holds uniformly overall x,z € R" satisfying

_ 2
lz—x) gmin[i,ﬂ,ﬂ,—vggﬁ(“” ] 37)
Izl 11" ap 6 2a,+ao

where cg,c1.c2 > 0 are some universal constants, and
&1, 82, a1, ay and oy, are defined in (17).

The proof of Proposition 4 adapts the proof of [15, Proposi-
tion 2], by properly setting parameters based on the properties
of sample median. For completeness, we include a short
outline of the proof in Appendix B.

Proposition 5: ([15, Lemma 7]) Under the same condition
as in Proposition 4, if m > c¢o n, then there exist some
constants c¢1,c2 > 0 such that with probability at least
1 — ¢y exp(—c2 m),

IVE- @) < (146)-2/1.02+2/asllz —x]|  (38)
holds uniformly overall x,z € R" satisfying
— 1 V9873(a;)?
le—xl _ (1 @ @ J983a) ] -
Izl 11" ap” 6 20, +a

where & can be arbitrarily small as long as m/n sufficiently
large, and aj, a, and ay are given in (17).
Proof: See the proof of [15, Lemma 7]. |
With these two propositions and (17), RC is guaranteed by
setting

o 19921+ ) — BT
BB 0 L AR -+ D)
+u-4(1+6)2- (1.02+2/ay)

<2 [1.99 —2(01 + ) — /8/za! —e} _
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B. Proof of Theorem 1

We next consider the model (11) with only sparse outliers.
It suffices to show that V£;,.(z) continues to satisfy the RC.
The critical step is to bound the sample median of the
corrupted measurements. Lemma 3 yields

01, ({l(a] x)* — (@] 2)*}) < 6, ({Iyi — (a] *I))
<8 ({I(af x)* — @] )}
(40)
For simplicity of notation, we let h := z — x. Then for

the instance of s = 0.01, by Proposition 3, we have with
probability at least 1 — 2 exp(—£2(m)),

06lzllikll < 6 (lyi — (@] 2)*1) < lzlllkl. (1)

Based on the definition of set E; in Algorithm 1, we introduce
two events’:

& = {aillzll < la] 2l < aulizl}, (“2)

T
|la; z]

& = [zy,- — |al 21| < apmed(|y; — |aT zﬂ}w}. (43)

To differentiate from Sé', we further define ?é =

|(@] x)* — (a] 2)*| < anmed {|yi —(a] 2)*|} l—T]%T—l] We then
have

Vit (z)
_ l - (a;rz)z_yia.l 1.
N m a.Tz : Siﬁc‘,'i

i=l i
1 i (al'z)
@

veleang, (z)

I (@2’—yi, @ —@x* )
;Z T g - g CRpAf s

T T
ieg . HE %%

2—(&?.‘)2".1 & _._|_
Gitging

T
a;z

Vexiraf, (z}

Choosing € small enough, it is easy to verify that
Propositions 4 and 5 are still valid on V‘I“”{,’,,,(z). Thus, one
has

(Veleang, (2), hy > {]_99—2((14—(2)—\{8,!;1-(;;' _e} Ik,
|vemen@)| < a1+ - 2/T02F 27anlinl.

We next bound the contribution of V¢*'"4¢,,(z). Introduce
q — [Qh ey qm]T, Whﬂre

- (ﬂ,rz)z—)’;l -
Gi=\—" 1, l&ng

T )2 T )2
(a; 2)* — (ai x) Lo Ve
T,  &ing) test

%
7Since the analysis is on one step of the algorithm, the iterate ¢ is omitted
for simplicity.
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It can be seen that |g;| < 2ay||lt]]. Thus ||g|| < /sm-2ay||k||,
and

1
[vetrati @] = — |aTq| <201 +9)vFanlnl,
1
(V" @), )| < 1B - “;vm’“fn(z)
< 2(1 + d)v/sapllh|?,
where A =[ay,..., am]T. Then, we have

— (VL (2), )

> (veleang,, (2), ) — |(Vrti, 2), )|
> (1.99 - 2(1+¢2) — vBmag ' —€ = 201+6)san) kI,
and

IVEr @) =

velene, @) + |Vt @)

< 2(1 +6) (,/1.02 2 an + \/Ea;,) k). (44)

Therefore, the RC is guaranteed if x, 4, € are chosen properly
and s is sufficiently small.

C. Proof of Theorem 2

We consider the model (11), and split our analysis of the
gradient loop into two regimes.

o Regime 1: csiz]l > || > c3lphe.

contraction by each gradient step is given by

In this regime, error

dist (z — gV, (2), x) < (1 — p)dist(z, x).

It suffices to justify that V¢£,.(z) satisfies the RC. Denote
¥i := (al x)?> + w;. Then by Lemma 3, we have

o s (- o)
Oy {3 — el 7]}
Moreover, by Lemma 2 we have

9%4—5 [ ?* . (a?Z)ZI} g-‘rs {
o 5 oo |

Assume that s = 0.01. By Proposition 3, if c3 is sufficiently
large (i.e., c3 > 100), we still shave

A
3
)
Q

—(afZ)QH <

IA

@) - @ 2|} | < Iwilw,

(a2 = @[ 27|} < lwile.

0.6llx — zlllzll < med {|y; — @ 27|} < llx —zllizl @5)
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recall & =
apmed {|(a]l 2)? — yi| ltﬁalflul} Then,

(a; T2 — Yi
— z —a, lgrnsl

Furthermore, (@f2)? <

{|(a] x)? -

Vi (2) =
a Z
(@l 2)? — (alx)?
L W
x%S
(a] z)2 (a] x)
e Z @ilging
!ES a <
1 w; 1
S —a;
Tk E‘né“
miSa;iz
vneise g, (z)
Z (a 3)2 - yla 1
G — i S'ﬂg'
IES a z
(a! z)2 (a T x)?
——Z ailgingi,
ieS

where we use V4"¢,,(z) to denote the first two terms and
vextrap, (z) to denote the last two terms. We note that all the
proof arguments for Propositions 4 and 5 are also valid for
veleanp, (z), and hence

(veteanty, 2), 1) = 1.99 — 2(a1+62)—B/ma
|[vmen@)| < a0+ - 2/T02+ 27amlnl.

Next, we turn to control the contribution of the noise. Let
D; = =7-1¢i i, and then we have
Wi = AT Engy

—¢ inI2,

A 1 1 Ti
[|V"‘-"”fr,(z)||=|[;A’"w < [—=a" %‘
< (1 +)bllos < (1 + 512l ”“‘h”;ﬁ

when m/n is sufficiently large. Given the regime condition
2] = c;,lﬁ'—”[”lﬁ we further have

(+5)

IV™5¢t,, (2)|| < 7],

(1 +5)

[(vo<tur ), m)| < | —= k)%

V""”“'fu(z) | < ===

We next bound the contribution of V¢*"4¢,.(z). Introduce
q=1Iq1,...,qml", where

(@ oy
Gi=\Tr lng

@’ —@o? ) .
alz L

Then |gi| < 2ay||h|, and ||q]| < /sm -2a;||k||. We thus have

1
Ilvurmgtr(z) ” — E HATq | <2(1+ a)ﬁﬂh ||,
|(Ve_\’fra€"(z), k” & ||h[|' Hvexi‘!"afrr(z)” EZ(]_—FJ)VGH}I ||h||2
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Putting these together, one has

(VEir(2), h)
¥ (Vceean L0 @), h)_ I(me 2 @), h)’ (Vg (z), )

> (1.99 — 201+ &) — 8/ma; ! —€

— (1 +0)(1/(e3a}) +245an) ) 1%, (46)
and
IV, @)l
< vt @ + vt @ + Ve, )

< (1+9) (2 1.02+2/ah+lK(C3a§)+2ﬁah) lkll. (47)

The RC is guaranteed if p, 4, € are chosen properly, ¢3 is
sufficiently large and s is sufficiently small.

e Regime 2: Once the iterate enters this regime with
k] < ﬁllll%}lﬂ each gradient iterate may not reduce the
estimation error. However, in this regime each move size
1V, (z) is at most O(||w||ao/|1z]])- Then the estimation error
cannot increase by more than 412 with a constant factor.

Izl
Thus one has

llwllco
el

dist (z — uVe4,(z),x) < cs

for some constant cs. As long as ||[w||x /llx||* is sufficiently
small, it is guaranteed that q%nnﬂ =< c4||lx|. If the iterate
jumps out of Regime 2, it falls into Regime 1.

VI. PROOFS FOR MEDIAN-RWF

We first show that VR;,(z) in (19) satisfies the RC for
the noise-free case in Section VI-A, and then extend it to the
model with only sparse outliers in Section VI-B, thus together
with Proposition 2 establishing the global convergence of
median-RWF in both cases. Section VI-C proves Theorem 2 in
the presence of both sparse outliers and dense bounded noise.

A. Proof of Proposition 1

The central step to establish the RC is to show that the
sample median used in the truncation rule of median-RWF
concentrates on the order of ||z —x|| as stated in the following
proposition.

Proposition 6: If m > cq nlogn, then with probability at
least 1 — c1 exp(—cam),

0.5z — x| < 0.9, 0051 ({[1a7 2 — 1af x|} )

m
i=1
< 0.8]]z — x|l (48)

holds for all z, x satisfying ||z — x| < 1/11]z]|.

Proof: See Appendix A. |
Next we give a bound on the left hand side of RC.
Proposition 7 (Adapted Version of [15, Proposition 2]):

Consider the noise-free measurements y; = |afxf and any
fixed constant € > 0. If m > co nlogn, then with probability
at least 1 — ¢y exp(—cam),

(VRir(z),2 —x) > {088 —¢{ —¢p — €} llz —x]*>  (49)
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1
= 70
where cq, €1, c2 > 0 are some universal constants, and (1’ ) ;’2’
are given by

holds uniformly over all x,z € R" satisfving JI%L[ <

=1 —mm[E[‘le{szus Tt bzl

E[I[EZG.S«/L{)M;‘ S l]}
2
& = B[E e 0.5/0904;)]

for some & ~ N(0,1) and o, = 5.
Proof: See Appendix B. |

Proposition 7 indicates that (VR (z),z —x) is lower
bounded by ||z — x[|2 with some positive constant coefficient.
In order to prove the RC, it suffices to show that ||V R (2)||
is upper bounded by the order of ||z — x| when z is within
the neighborhood of true signal x.

Proposition 8: ([ 15, Lemma 7]) If m > co n, then there
exist some constants c1,cy > 0 such that with probability at
least 1 — ¢y exp(—ca2 m),

VR ()l < (1.8 +d)Iz — x| (50)
holds uniformly over all x, z € R" satisfying ||x —z|| < -ﬁ-”xu
where & can be arbitrarily small as long as co sufficiently
large.

Proof: See Appendix C. |

With the above two propositions, RC is guaranteed by
setting u < uo = Z(L;_;l;]j(&e) and A+ - (1.8 +6) <
20088 — ] — g5 —e).

B. Proof of Theorem 1

We consider the model (11) with only outliers, i.e., y; =
I{a,',x)l2 + i fori = 1,---,m. It suffices to show that
VR (z) satisfies the RC. The critical step is to lower and
upper bound the sample median of the corrupted measure-
ments. Lemma 3 yields

0y, (Ulla] x| —lal zl1}) < 6,({1 /3 — la] zII}))
<0y, (lla] x| — lafz]]}. (51

For the simplicity of notation, we let # := z — x. Then for
the instance of s = 0.01, Proposition 6 yields that if m >
co nlogn, then

0.5kl < 01 ({1Vyi — la z|1}) < 0.8] k] (52)
holds with probability at least 1 — 2 exp(—Q (m)).

Based on the definition of set E} in Algorithm 2, we intro-
duce events®

i ”,/y—,— |a{z|| < af, - med ”,/y—,— [a{z|”]. (53)

8 Again, we drop the iterate ¢ subscript or superscript for simplicity.
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Differentiating from T, we further define 7' :=

{|laT x| — |al z|| < a}med {| /77 — |al z||}}. We then have
VR (z)
m
- az('“ 2l - V%) @il
i=1
1 m
:EZ(M z| = )a,lT,
i=1
V.!'c.!ea.r.l"_.'zr (Z}
Z ((|a zZ| — ) 17i— (|aITz| . [a?x|) lz—r,-) aiis
=5

Vestra Ry, (3)

We note that all the proof arguments for Propositions 7
and 8 are also valid to V¢4 R, (z). Thus, one has

<Vc£ean'}z”(z), h) > (0_88 — 4']" = Cé' = f) IIhEJZ,
Vdea"Rtr(Z)" < (]8 - ())Ilh Il

We next bound the contribution of V*'"*R;,(z). Introduce
q=1Iq1,...,qml", where

gi = ((1a] 21 — 30)17s — (1a] 2l — la] x)17:) 1ies),
and then |g;| < 1.6a,||k||. Thus, ||g|| < «/sm - 1.6ay||k|, and

” VexrraR”(z)" = % ||ATq
[(VexrraR"(z), h)l

< 1.6(1 + 8)/say||R,
7]l - | V¥R (2) |
1.6(1 + 8)/5aj, |12,

am]r. Then, we have

A

[A

where A =[aq, ...,
(VR:r (2), h) > (vcfm’!a,,(z), h) — |(ve=raR,, (2), h)|
> (0.88 — ¢ — (5 —€—1.6(1+0)/5ay,) 1k,
and
IR @I < |V Ry @] + [V Rer @)
< (1.8+J+ L.6(1 + d)+/say,) l|k].

Therefore the RC is guaranteed if x, A are chosen properly,
d is chosen sufficiently small and s is sufficiently small.

C. Proof of Theorem 2

‘We consider the model (11) with outliers and bounded noise.
We split our analysis of the gradient loop into two regimes.

e Regime 1: c4(|z|| = [[k]| = c3/]||w]oc. In this regime,
error contraction by each gradient step is given by

dist (z — p VR (2), x) < (1 — p)dist(z, x).

It suffices to justify that VR,.(z) satisfies the RC. Denote
¥i == (a] x)? + w;. Then by Lemma 3, we have

o5 -] < ol
= 9%_‘_5 { \/ﬁ— la?zl”.

(54)

7299

Moreover, by Lemma 2 we have

Oy {|V5 — 10 21|} =0y, {[1a 21 — 10 21|} | < V0o,
oy {|V5 - a7z} -0y {f1a7x1 - 1]} < V.

Assume that s = 0.01. By Proposition 6, if ¢3 is sufficiently
large (i.e., c3 > 100), we still have

0.5kl <med || — lafzl|} <081ml. 53

Furthermore, recall 7* := {||al x| — |a! z|]| < a}med(||a]

— /Yil}}. Then,

Il

L EM DM

VR () = — 3 (la] 2l = V3F) @ity

1
m !
1 T i o
; (|a- zl—[avx|)a, Ti

+— Z(w 2|~ lafx) aily,

ieS
- —Z(,/_ lal x|)a; 17
=)
VIIOHER‘ { }
+ — Z(|a zZl — )a 1
1ES
1
—— " (1] 2l —la] x1) ailz,
m <
ies

where we use V9" R,,(z) to denote the first two terms and
VeIraR, . (z) to denote the last two terms. All the proof argu-
ments for Propositions 7 and 8 are also valid for veeass R (z),
and thus we have

(Ve Rer 2, 1) = (088 — i — 3 — ) P,
|V Ry @) < a8+ Byl

Next, we turn to control the contribution of the noise. Let
w; = (/i — ia x|)17i. Then |w;| < +/|w;i| and we have

: 1
V™SR, (2)]| = H;AT:E:

|7

a
|
< (1+)Blloo < (1 +8)y/Twlles,

when m/n is sufficiently large. Given the regime condition
k] = c34/Twlec, We further have

(+)

IV™5e R, (2)|| < Ik,

(+5)

(v Rar (), )| <

v"‘""?z,,(z)" Il < ——{ln %

We next bound the contribution of V*'"*R,,.(z). Introduce
q=1q1,...,4nl", where

= ((a] 21 = 3)t7s — (@l 2l — la] ¥D1z:) Lyes).
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Then |gi| < 1.6a; ||k, and ||q|| < /sm - 1.6a}||k|. We thus
have
1
[V R @) = — |aTq| < 160 +8) Vil
(V4R (2), B)| < 11| | V" Rer(2) |
< 1.6(1+ )v/5aj, |11 ]%.
Putting these together, one has

(VR (2), h)
> (Ve Ry, @), h) = |( V7 Rer 2), )|
— [V Ry, ), h)|
> (088 —¢{ — ¢ — e — (1 +0)(1/c3 — 1.6/sa})) 11|12,
and

"VRM'(Z)”
VcieanfR'"(z)" g Vnoise'R”(z) 'l + ” VExImR”(Z) II

< (1.84++(1+0)-(1/c3+ 1.6y/5ay)) I 1]l. (56)

Thus, the RC is guaranteed if z, 4, € are chosen properly,
co, c3 are sufficiently large and s is sufficiently small.

e Regime 2: Once the iterate enters this regime with ||k <
c3+/]Tw(, each gradient iterate may not reduce the estimation
error. However, in this regime each move size p VR, (z) is at
most O(y/[[w]loo). Then the estimation error cannot increase
by more than /[[w[[ with a constant factor. Thus one has

dist (z — uVR(2), x) < es5vl|wlleo (37)

for some constant ¢s. As long as /[|w||o is sufficiently small,
it is guaranteed that cs+/||w||ec < c4|x|. If the iterate jumps
out of Regime 2, it falls into Regime 1.

[A

A

=

VII. CONCLUSION AND DISCUSSION

In this paper, we propose provably effective approaches,
median-TWF and median-RWEF, for phase retrieval when the
measurements are corrupted by sparse outliers that can take
arbitrary values. Our strategy is to apply gradient descent
with respect to carefully chosen loss functions, where both
the initialization and the search directions are pruned by the
sample median. We show that both algorithms allow exact
recovery even with a constant proportion of arbitrary outliers
for robust phase retrieval using a near-optimal number of
measurements up to a logarithmic factor. We also show our
algorithms perform well for phase retrieval problem under
sparse corruptions by extensive experiments. We anticipate
that the technique developed in this paper will be useful
for designing provably robust algorithms for other inference
problems under sparse corruptions. Recently, [39] studied the
low-rank matrix recovery from random linear measurements
and applied the median approach to resist sparse corruptions.

At last, we would like to discuss several points related
with this work. As the reader may notice, our algorithms are
applicable to both the complex case and the real case but the
proof of performance guarantee is developed for the real case.
One key difference in the analysis lies in the fact that sgn(-) for
the real case becomes phase(-) for the complex case, which
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takes continuous values and requires very different analysis
technique. Two recent papers [57] and [47] have made some
progress along this direction but are not sufficient to establish
the bounds for our purpose. We leave the further elaborative
investigation as future work.

In order to establish the performance guarantee of our
algorithms, we assume the measurement vectors are composed
of i.i.d. Gaussian entries. This assumption brings convenience
for the proof but does not fit the practical application well.
Another interesting direction is to consider the non-i.i.d.
measurement vectors like the Fourier basis measurements in
the coded diffraction patterns [8] and the circulant measure-
ment in convolutional phase retrieval [47]. These structured
measurements require much less memory and also less compu-
tations via fast Fourier transform. It is interesting to study the
robustness of the under these non-i.i.d. scenarios and analyze
the performance of our median-approach.

APPENDIX A
PROOF OF PROPERTIES OF MEDIAN

A. Proof of Lemma 1
For simplicity, denote 6, := 8,(F) and 8, := O (X1 ))-
Since F’ is continuous and positive, for an ¢, there exists

a constant d; such that P(X < 0, —€) = p — d;, where
d) € (el, eL). Then one has

P(dp <b,—¢) @ P(Z lixi<0,—c) = Pm)
i=1
] m
= P(; D 1ixi<6p-e = (p— 1) +‘5l)

i=1
b
{5) exp(—2m5|2) < exp(—Zmézlz),

where (a) is due to the definition of the quantile function
in (29) and (b) is due to the fact that l[x,-ﬁgp_d ~
Bernoulli(p — d1) i.i.d., followed by the Hoeffding inequality.
Similarly, one can show for some &; € (e/,€L),

P (ép > 0, + e) < exp(—2mc5%) < exp(—2m6212).

Combining these two inequalities, one has the conclusion.

B. Proof of Lemma 2
It suffices to show that

Xy — Yyl < Lo | X;—Yi|, Ye=1,---,n. (58)

Case 1: k = n, suppose X,y = X; and Y(,) = ¥;,i.e, X; is
the largest among {X;}]_, and Y; is the largest among {¥7}}_,.
Then we have either X; < X; < Y; or ¥; < ¥; < X;. Hence,

[ Xy — Yl = |X; — Y] < max{|X; — Yi, |[X; — ¥;]}.

Case 2: k = 1, suppose that X(;) = X; and Y1) = ¥;.
Similarly

[X(1y — Yyl = |1X; — ¥;| <max{|X; — Y;|, |X; — ¥;[}.

Case 3: 1 < k < n, suppose that X;) = X;, Yq) =¥, and
without loss of generality assume that X; < ¥; (if X; = Y;,
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0= [X@) — Yyl < max; |X; — V| holds trivially). We show
the conclusion by contradiction.

Assume [X 4y —¥)| > max; |X; — ¥;|. Then one must have
Y; <Yjand X; > X; and i # j. Moreover for any p < k
and g > k, the index of X(,) cannot be equal to the index of
Y(4): otherwise the assumption is violated.

Thus, all ¥(4) for ¢ > k must share the same index set with
X(p) for p > k. However, X ;, which is larger than X; (thus
if X;j = X(), then k" > k), shares the same index with Y,
where Y; = ¥(). This yields contradiction.

C. Proof of Lemma 3

Assume that sm is an integer. Since there are sm corrupted
samples in total, one can select at least [(p —s)m] clean
samples from the left p portion of ordered contaminated sam-
ples {61/m((Xi)), 02/m ({Xi}), - , Op({X;})}. Thus one has the
left inequality. Furthermore, one can also select out at least
[(1 — p—s)m] clean samples from the right 1 — p portion
of ordered contaminated samples {0,({X;}),---,01({X;})}.
One has the right inequality.

D. Proof of Lemma 4

First we introduce some general facts for the distribution
of the product of two correlated standard Gaussian random
variables [21]. Let u ~ AN(0,1), v ~ N(0,1), and their
correlation coefficient be p € [—1, 1]. Then the density of
uv is given by

_ 1 px |x|
#0= e () 10 (725). x40

where Kp(-) is the modified Bessel function of the second
kind. Thus the density of r = |up| is

(x)= L ex Pz +exp| — PE
. a1 p2 . L=yl " 1—p?
x|
-Kp (m) s X =0, (59)

for |p| < 1. If |p| = 1, r becomes a X12 random variable, with
the density

1
Wipl=1(x) = x V2 exp(—x/2), x> 0.
2z

It can be seen from (59) that the density of r only relates to
the correlation coefficient p € [—1, 1].

Let 61/2(w,) be the 1/2 quantile (median) of the distrib-
ution y,(x), and y,(61,2) be the value of the function y,
at the point 6y/2(y,). Although it is difficult to derive the
analytical expressions of 6y,2(w,) and ,(f1,2) due to the
complicated form of y, in (59), due to the continuity of
w,(x) and 61/2(w,), we can calculate them numerically,
as illustrated in Figure 6. From the numerical calculation,
one can see that both w,(@,2) and 6,2(y,) are bounded
from below and above for all p € [0, 1] (w,(-) is symmet-
ric over p, hence it is sufficient to consider p < [0, 1]),

satisfying

0.348 < 612(w,) < 0.455, 0.47 < y,(012) < 0.76. (60)
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Fig. 6. Quantiles and density at quantiles of y, (x) across p.
APPENDIX B
PROOF OF PROPOSITION 2
Denote y; := |¢13r.vz:|2 + w; for convenience. We first bound

the concentration of med({y;}), also denoted by Hé({y,-}).
Lemma 3 yields

0y (i) < O (yi)) <Oy, (FiD)- 61)
Moreover, Lemma 2 indicates that
0, (7)) = 05 (lal x*}) — l[woo, (62)
0y (i) < 0y (lal xPD + [wleo-  (63)
Observe that alx = a?||x|?, where @;; = alx/|x||

is a standard Gaussian random variable. Thus |d;1|* is a
x? random variable, whose cumulative distribution func-
tion is denoted as K(x). Moreover by Lemma 1, for a

small ¢, one has [9%_5({|ﬁ,-1|2}) —9%_3(1()[ <
9{.“(“&“'2})_9{,“(1()‘ < € with probability 1 —
2exp(—cme?) and ¢ is a constant around 2 x 0.472 (see
Figure 6). We note that G% (K) = 0.455 and both 9%_5(1{) and

G%H(K) can be arbitrarily close to #; (K') simultaneously as
long as s is small enough (independent of n). Thus, one has

(03, (K)—e =) Ix1% <04 (1) < (O3, KD +e+e) Ix 12,
(64)

¢ and

with probability at least 1 — exp(—cméz). For the sake of
simplicity, we introduce two new notations ¢ = 61 __(K)
and (¥ = 6%4_5(1(). Specifically for the instance of s = 0.01,
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one has {; = 0.434 and ¢* = 0.477. It is easy to see that
&% — ¢ can be arbitrarily small if s is small enough.

We next estimate the direction of x, assuming |x| = 1.
On the event that (64) holds, the truncation function has the
following bounds,

Lorsadonain/0453) = 1y, o erie)0.455)
= 1[(afx)zgag{;uﬁc)/u.z;ss}

Ly <a201(1yi))/0.455) = 1[},,-@;{,;5_6);0‘455]

= 1[(“;T-\‘)ESR_%{(S—E—C]/D.455}'

On the other hand, denote the support of the outliers as S,
and we have

1 T-
Y=—2 i) 5iliT ey <adonn((yin)/0453)
i¢S :
1
LR 2] Yiliy, <a26y (i) /0455
ieS '

Consequently, one can bound Y as

1 T T 22
Yii=— 3 aia] (@] ) YT opegd e o/0459)
igS :

1 T
ig§
1 T/ TaT
- > aia] (a x) L@l P <a2(5 +ete)/0.455)
igs
1 T
+c- = Za;ai
g8
1
e D aia] ay(C° + € +0)/0.455 =: Y,

=)

IA

where we have
E[Y(] = (1 —s)(BrxxT + poI —cI),

E[Y3] = (1 —s)(Baxx” + pal +cI) + 2 9

I
Y 0455

with

Br =B[N ey ca, sememamass) |
~ B[S 1o, ymearroms)]
b2 = B[S ey co, ememaoass) |
b3 = B[S ¢y ca, yererayonss) |
—E[¢" 1 <o, veTeraomss) |
Bs = E[E <o, srreraoass)]

where & ~ AN (0, 1).

Applying standard results on random matrices with non-
isotropic sub-Gaussian rows [55, eq. (5.26)] and noticing that
a;a?(a}rx)Elﬂa‘rxJ(c} can be rewritten as b;b] where b; :=

o £ ¢ .
a;(a; x)l{|a}’x|5c] is sub-Gaussian, one can obtain

1¥Y1 —Eill <4, IY2—-E[Y] <4 (65)
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with probability 1 —exp(—£2(m)), provided that m/n exceeds
some large constant. Furthermore, when €, ¢ and s are suffi-
ciently small, one further has ||E[Y] — E[Y]|| < J. Putting
these together, one has

Yy —(1— S)(,B[XXT + oI —cl)|| < 36. (66)

Let 79 be the normalized leading eigenvector of Y. Repeating
the same argument as in [9, Sec. 7.8] and taking J, € to be
sufficiently small, one has

distG?, x) < 4, (67)

for a given 4> 0,as long as m/n exceeds some large constant.
Furthermore let 7@ = vmed{y;} 10.4552{0) to handle cases
|x|| # 1. By the bound (64), one has
‘WEd({)ﬁ'})

i
0.455 llx1l

{s—€—cC
0.455
= — G +2e+2c
- 0.455
Thus

A

»

e+
e tE “"—1”|tr|i2

max
| 0.455

2
llx11~

S — s+ 2e+2¢
0.455
as long as s and c are small enough constants. |

dist(z(m, x) < ¢

= 1
Il +ollxll < o7l

APPENDIX C
SUPPORTING PROOFS FOR MEDIAN-TWF

A. Proof of Proposition 3

We show that the sample median used in the truncation rule
concentrates at the level ||z — x||||z|. Along the way, we also
establish that the sample quantiles around the median are also
concentrated at the level ||z — x||||z]l-

We first show that for a fixed pair z and x, (34) holds
with high probability. For simplicity of notation, we let h :=
z—x.Lletr; = ](lafrx)2 — (a?z)2|. Then r;’s are i.i.d. copies
of a random variable r, where r = |(a” x)* — (a”z)?| with
the entries of a composed of i.i.d. standard Gaussian random
variables. Note that the distribution of r is fixed once given h
and z. Let x(1) denote the first element of a generic vector x,
and x_; denote the remaining vector of x after eliminating the
first element. Let U/, be an orthonormal matrix with first row
being hTf[|hI|, a = Ujpa,and 7 = Upyz. Similarly, define U_|
and let b = Uz_,a_1. Then a(1) and b(1) are independent
standard normal random variables. We further express r as
follows.

r = |(a"2)* — (@ x)?|

= |2a"z —a h)(a h)|

|a"z — a()|lh]) @)k

= |@hTz — |hPya1)? + 2@ z_1) @) ||
|2hT z — [|RP)a)? + 2b()[1Z_1 @)1 k]l]
= |@h"z — [r|P)a()?

+2v11zl2 — Z(1)2a ()b (1) |||

Il

Il
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T
= (2 — T )20
I

Wz Y.
+2 |1 _("hmé") &(1)b(1)‘ “AAdlz

=4 |(2 cos(w) — Na(1)% +2v/1— cosZ(m)&(1)B(1)|
[zl
=: |uo| - |k]llz]|

where  is the angle between h and z, and t = |h|/
llz]l < 1/11. Consequently, u = a(1) ~ N(0,1) and 6 =
(2cos(w) —t)a(l)+2| sin(w)[f?(l) is also a Gaussian random
variable with variance 3.6 < Var(s) < 4 under the assumption
- Pl

Let v = #/,/Var(p), and then v ~ A(0, 1). Furthermore,
let r’ = |uv|. Denote the density function of r’ as w,(-) and
the 1/2-quantile point of r’ as 8y /2(y,). By Lemma 4, we have

0.47 < y,(612) < 0.76,
0.348 < O12(y,) < 0.455.

By Lemma 1, we have with probability at least

L= 2exp(—cm£2) (here ¢ is around 2 x 0.4’;’2),
0.348 — € < med({r;},) < 0.455 +e.

The same arguments carry over to other quantiles 6p.49({r;})
and 6 .s1({r;}). From Figure. 6, we observe that for p € [0, 1]

045 < Wp(60.49)s %(90.51) < 0.78,
0.34 < boas(wp), bos1(yp) <048

and then we have with probability at least 1 — 2 exp(—cmez)
(here ¢ is around 2 x 0.452),

0.34 — € < Boas({r, D), 051({rl,}) < 0.48 + €.

Hence, by multiplying by /Var(s), we have with probabil-
ity 1 — Zexp{—cmez),

(68)

(0.65 — )llz — xll1zll < med ({|(@]2)* - @] x)?I})

©O91+e)lz —xllzl,  (©9)

(0.63 - ©)llz — xllizll < oas, bos1 ({I(al 2 — (@I )?1})
< ©95+9lz—xllzl.  (70)

[A

We note that, to keep notation simple, ¢ and € may vary
line by line within constant factors.

Up to now, we prove that for any fixed z and x,
the median or neighboring quantiles of {|(a! z)? — (a] x)?|}
are upper and lower bounded by ||z — x||||z]| times constant
factors. To prove (34) for all z and x with ||z — x|| < ﬁ[|z|[,
we use the net covering argument. Still we argue for median
first and the same arguments carry over to other quantiles.

To proceed, we restate (69) as

2(afz) alh|n|\alh
med )
Izl Al Nzl J li&]

0.91 +¢)

(0.65 —¢)

I A

[A
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holds with probability at least 1 — 2exp(—cm62) for a given
pair h, z satisfying ||2]/|lz|| < 1/11.

Let 7 = €/(6n + 6m), let S; be a r-net covering the unit
sphere, £, be a r-net covering a line with length 1/11, and
set

N: = {(zo, ho, to) : (2o, ho, fo) € S; x S; x L.}, (T1)

One has cardinality bound (i.e., the upper bound on the
covering number) [N | < (1+2/7)*/(117) < (1+2/7)>"+.
Taking the union bound, we have

(0.65 — €)

[A

med ({12(a] 20) — (a] ho)tolla] hol})
(0.91 +¢€), V¥(zo, ho, to) € N

[A

(72)

with probability at least 1 — (1 + 2/7)?+1 exp(—cmez).

We next argue that (72) holds with probability 1 — ¢
exp(—e2 mez) for some constants ¢y, ¢y as long as m = ¢p
(2 log e Yn log n for sufficiently large constant cg. To prove
this claim, we first observe

(1+2/7)>"*! < exp(2n(log(n + m) + log 12 + log(1/€)))
= exp(2n(logm)).

We note that once € is chosen, it is fixed in the whole proof
and does not scale with m or n. For simplicity, assume that
€ < 1/e. Fix some positive constant ¢’ < ¢ — ¢p. It then
suffices to show that there exists a large constant cg such that
if m=> f:g(e_2 log E_])n log n, then

2nlogm < c'me?. (73)

For any fixed n, if (73) holds for some m and m > 2/c)e2n,
then (73) always holds for larger m, because

2nlog(m + 1) = 2nlogm + 2n(log(m + 1) — logm)
2n 1
= 2nlogm + o log(1 + ;)

[ A

2
2?1103:3'14——"1
m

< cme? + '€ = c'(m+1)é.

Next, for any n, we can always find a constant ¢ such that
(73) holds for m = C{](E_2 logé_])n logn. Such ¢y can be
easily found for large n. For example, co = 4/c’ is a valid
option if

@/c'Y(e *loge Hnlogn < n?. (74)

Moreover, since the number of n that violates (74) is finite,
the maximum over all such cq serves the purpose.
Next, one needs to bound

)med ([|2(afzg} - (afho)follﬂ?hui])
—med ({12 2) — @I wylial m}) |

for any [z —zoll <7,z — 2ol <7 and ||t —fo|l < =.
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By Lemma 2 and the inequality ||x|— |y|| < |x—y|, we have
|med ({12 z0) — @] hoolla] hol})

— med ([iz(afz) - (afh)fllﬂf"”}) |

| A

max | (2(a] z0) — (a] ho)to) (a] ho)

IE

= (2(a§"z) — (@’ h)r) @’n)|

[A

max | (2(a] 20) — (a] ho)to) (@] ho)

~ (2@]2) - @ 'mx) @ o)

+ max | (2(a] 2) ~ @l hyr) (@] ho)

~ (2@]2) ~ @) @I m)|

< o (o e )

ig[m]

+ max |2(a3"z) » (afh)r‘ ja (ho — h)|
ie[m]

[A

max [la;[|*(3 + f)r + max [la;[|*@2 + 1)z
ig[m] ig[m]

[A

max [|a;||2(5 + 2t)z
ie[m]

On the event E; := Ik

show that
|med ({12(a] 20) — (@l hoYolla] ho})
—med ([IZ(a,Tz) — (a?"*)f[l“?"”}) |

< 6(m+n)r <e.

{max;cpm) lla;||* < m +n}, one can

(75)

We claim that E; holds with probability at least 1 —
mexp(—m /8) if m > n. This can be argued as follows. Note
that [|a;||? Z @i (Jr) where a;(j) is the j-th element
of a;. Hence, ||a; E|2 is a sum of n i.i.d. X] random variables.
Applying the Bernstein-type inequality [55, Corollary 5.17]
and observing that the sub-exponential norm of X]z is smaller
than 2, we have

]P{ua,- 12> m —|—n} < exp(—m/8). (76)

Then a union bound concludes the claim.

Further note that (72) holds on an event E7, which has
probability 1 — ¢jexp(—c2 me?) as long as m = «cp
(e 2log %)n logn. On the intersection of E; and E», inequal-
ity for 6% (i.e., median) in (34) holds. Such net covering
arguments can also carry over to show that inequalities of
Op49 and fpsy in (34) also hold for all x and z obeying
Ilx —zll < Flizll-

B. Proof of Proposition 4

The proof adapts that of [14, Proposition 2]. We outline the
main steps for completeness. Observe that for the noise-free
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case, yi = (afr)z. We obtain
(a]2)* — (@] x)?

Vi (2) = — L a4l

! m § a:rz ! glngz

Lo i (aTh)2
= E 22(&5 h)aflc‘,‘inc‘,'i = z ﬂ'; S'ﬂs'
=
an

One expects the contribution of the second term in (77) to be
small as |[k]/||z] decreases.
For each i, we introduce two new events

& = (| @] x)? - @] 2| < 0.6aln] - 1a] 21},
& = (|(@l'x)? = @[ 2| < 1.0a 111 - 1a z1).

One the event that Proposition 3 holds, the following inclusion
property

EcEck (78)
is true for all i, where Eé is deﬁn_ed in (43). IIt is easier to work
with these new events because £;’s (resp. £}’s) are statistically
independent across i for any fixed x and z. To further decouple
the quadratic inequalities in &3 and 5' into linear inequalities,
we introduce two more events and state their properties in the
following lemma.
Lemma 5: ([15, Lemma 3]) For any y > 0, define

Di := {|@ x? — @ 27| <y Inllal 2, (79)
. |aTh|

PR, oo L O T I 80
’ [ 7] —”] o
; Th 2aly

it 5% G _ 81
?’ [nhn il 5?} &

On the event &; - defined in Algorithm 1, the quadratic inequal-
ity specifying D‘ imphcates that aTh belongs to two intervals
centered amund 0 and 2“: Z rfspectwefy i.é; D;,] and ’D;,z
The following inclusion property holds

(D""y nE{) U ('D‘*% nS{)
= s
c D} néj < (D' néf)u (D).
(82)

Specifically, following the two inclusion properties (78)
and (82), we have

2840812 Dyl UDIHNE (83)

where the parameters y3, y4 are given by

y3 = 0.248a;, and y4:= ap.
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Further using the identity (77), we have the following lower
bound

Vfrr(Z) h)
T .

= _Z(“ h)? Leinpil
m Th|3

e

The three terms in (84) can be bounded following [15,
Lemmas 4-6], which concludes the proof.

Tp3
|a; k|

’D,}_" o S Zl Tlv;}fns{-
=

(84)
la; z|

lal z|

APPENDIX D
SUPPORTING PROOFS FOR MEDIAN-RWF

A. Proof of Proposition 6
Observe that
lai hl,
12alx +alhn|,

: T I s
(il ff (a,%r)(a}z) > 0;

if (a; x)(a; z) <0.
The following lemma states that [(a x)(a z) < 0} are rare
events when ||x — z| is small. Hence, med({[ia x| —
|a z||}iL;) can be viewed as med({|arh|}’" ;) with a small
perturbation.

Lemma 6: If m > co n, then with probability at least

1 — ¢y exp(—cam),

m

1
— > V@l vyl <o) < 005

i=1

(85)

holds for all z, x satisfying ||z — x|| < 111-||x|t.
Proof: See Appendix D. |
By Lemma 3 and Lemma 6, we have

0p_0.0s ({lﬂ?hl}) <6bp (“'“Ex[ - |afz||})

< Op400s ((la] 1)) (86)

for all x and z satisfying ||x — z|| < ﬁ]|z|[ with high
probability.

For the model (2) with a fraction s of outliers, due to
Lemma 3, we have that

0y _,(|la; [ x| - la] ZI|}) < 0, ({IVyi = la] zI1})
26 ,,@ la] z|[}).
Combining with (86), we obtain that

Bo.as—s({la] k|}) < 011y — la; [ ZII}) < Gosss({la] hl}).
(88)

jaf x| — (87)

Next it suffices to show that #y45_;, 60,55+s({|afh|}) are on
the order of ||| for small s.

Let a; |afh|f|[hﬂ. Then aG;’s are i.i.d. copies of a
folded standard Gaussian random variable (i.e., || where
& ~ N(0,1)). We use ¢(-) to denote the density of folded
standard Gaussian distribution.
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For s = 0.01, we calculate that

@(Bpaq) = 0.67, ¢(Op.45) = 0.67,
¢ (6oss) = 0.60, ¢(b.s6) =0.59,
Oo.44(¢) = 0.58, 6p45(¢) = 0.6,

O.ss(¢) = 0.76, 6ys6(¢) = 0.78.

By Lemma 1, the sample quantiles concentrate on popula-
tion quantiles. Thus, for any fixed pair (x, 2),

0.6 — )|kl < 612({|lal x| —
< (0.76 + )| k||,

lal zI|}))
(89)
holds with probability at least 1 — Zexp(—cme_z).

Following the argument of net covering similarly to that in
Appendix VII-A, the proposition is proved.

B. Proof of Proposition 7

The proof adapts the proof of [15, Proposition 2]. We outline
the main steps for completeness. Observe that for the noise-
free case, y; = |afx1. We obtain

T
a-:
| }Z| )a;l;r.'

VR (z) = % Z ((a,?"z) — |a] x| -

= —Z(a ha;lqi +— Z(a z+a; x)a,l:p
i¢B IEB

(90)

where B := {i : (alx)(aTz) < 0}. If [|k]/|lx|| is small
enough, the cardinality of B is small and thus one expects
the contribution of the second term in (90) to be negligible.

We note that events 7* (53) are not statistically independent.
To remove such dependency, we introduce two new series of
events

Ti = {|1a? x1 - la] zl| < 0.5} 11}, o1
P {‘;a?ﬂ _ |a§"z|| < 0.8 |Ih]]}. (92)

Due to Proposition 6, the following inclusion property
TicT cT (93)

holds for all i, where 7" is defined in Algorithm 2. It is easier
to work with these new events because Tl*"s (resp. ’}; ’s) are
statistically independent for any fixed x and z. Because of the
inclusion property (93), we have

1
(VRir (@), ) = — %(a?h)glz‘

1
2: T T T y
—E |a5z+a5x|-|a5h|l:1—2;.
ieB

(94)

Under the condition i ¢ B, we have T} {|a?h|
0.5a; ||k|]}. Under the condition i € B, we have 7} =
{|{a¥x +alz| < 0.8a}||k||}. For convenience, we introduce
two parameters y; = 0.5a; and y> = 0.8a;.
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We next bound the two terms in (94) respectively. For the
first term, because of the inclusion B C {i : [a?.ﬂ < ]airh]},
we have

1 Fpndy o - 1 T 12
;Z(ﬂ; h) g = ;Z(as BY“ 1107 <y iy
i¢B i¢B

%

1, 7,2
— 2 @ <y iy YT x> 1aT
i=1

1 m T 2
e 3 GO HIE PSS P S

i=1

IV

A simpler version of [15, Lemma 4] gives that if m > ¢ n,
with probability at least 1 — ¢y exp(—c2 me?)

1 c T 72
— 2@ B o<y T ity

i=1

> (1 —¢—g—olhl® (95

holds for all h < R", where {f = 1 — min{E
2 F o 5
l¢ lffsz‘ﬂH}]’ E[liézmﬂH]]} and ¢; = E[¢

11> v095,,3] for € ~ N(0,1).

For the second term, we have

1 1
—> lafz+aix|-|al hilg < p2lhl— 3 |al k]
icB icB

I v,
< nallbll— > 1a] Bt arays  (96)
i=1
where the second inequality is due to the inclusion property
Bcli:lalx| < |alhl}.
Lemma 7: For any € > 0, if m > co ne 2loge™!, then
with probability at least 1 — C exp(—c1€2 m),

l m
= Z] laf B - Lo 4 ariy < @12+ ) B (O7)
=

holds for all non-zero vectors x,h € R" satisfying ||h| <
2!5|[x|[. Here, cg, c1, C > 0 are some universal constants.

Proof: See Appendix E. |
Thus, putting together (95), (96) and Lemma 7 concludes the
proof.

C. Proof of Proposition 8

This proof adapts the proof of [15, Lemma 7]. Denote
v; := (a] z —|al x|sgn(a] z)) 17:. Then

1
VR (z) = —ATv,
m

where A is a matrix with each row being a? and v is a
m—dimensional vector with each entry being v;. Thus, for
sufficiently large m/n, we have

vl
Jm
where the last inequality is due to the spectral norm bound
[[A] < /m(1+ &) following from [55, Th. 5.32].

IVR. @l = | ATv] <Al o] < (1 +9)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 11, NOVEMBER 2018

We next bound |v|. Let v = v + 9@, where
uf” = a?hlq‘j\gi and 0}2 = (af"x + af"z)l;r.-n,gf, where
B' := {(alx)(alz) < 0}. By triangle inequality, we have
vl < ||vm|| + ||v(2)]|. Furthermore, given m > con, by
[10, Lemma 3.1] with probability 1 — exp(—cm), we have

1 i !
—[[vD)> = = (@ h)* < (1 + 9]
m m i

By Lemma 6, we have with probability 1 — C exp(—c; m)

1.2 T
;Ilvm I> < (0.8a}|[1])* - (E Z 1[{a}’x)(a}"z)<o})
=1

< 0.8]|A|

holds, where the last inequality is due to Lemma 6. Hence,

vl
T = (Jl To+ J{ﬁ) k.

This concludes the proof.

D. Proof of Lemma 6

% T
Denote correlation p = .

- Under the condition
lz —x| = 111-[|x||, simple calculation yields 0.995 < p < 1.
It suffices to show that the result holds with high probability
for all x and z satisfying p > 0.995. Since now the claim is
invariant with the norms of x and z, we assume that both x
and z have unit length without loss of generality.

We first establish the result for any fixed x and z and then
develop a uniform bound by covering net argument in the end.
We introduce a Lipschitz function to approximate the indicator

function. Define

1, if 1 <0;
x@:={-%-1+1, ifo<t<g;
0, else;

and then x(f) is a Lipschitz function with Lipschitz

constant % In the following proof, we set 4 = 0.001.
‘We further have
¥ T
l{{alj'"x)(ar}"z)_(m = ¥ ((af- x)(a‘; Z)) = ll{a;x)(‘!'}"z)‘{ﬂ.
For convenience, we denote b; := a’x and 5,- = afz.

” i
Then (b;, b;) takes the jointly Gaussian distribution with mean
i = (0,0)T and correlation p (b; and b; have unit variance).
We next estimate the expectation of 1{{«:}’.1:)(::}’:]45} as follows.

E[l{{a;!rx)(a;—z) 45]] =P {(a?x)(a}rz) = 6}

— /f éf(rl, n)dridr, (98)
T T <

where f(71, 72) is the density of the jointly Gaussian random
variables (b;, b;). Note that E[I{{a}’.r)(a}’z)d}] is decreas-
ing on p and for the case p = 0.995 we calculate
El1y(,7 ) (4T 7)<5)] = 0.045 numerically. This implies that

Elx ((af x)(al Z))] < 0.045
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for 6 = 0.001. Furthermore, y ((a] x)(alz)) for all i are
bounded and hence sub-Gaussian. By Hoeffding type inequal-
ity for sub-Gaussian tail [55], we have

I < T T 2
P |:; E;{ ((af x)(a; z)) > (0.045 + e)] < exp(—cme”),
(99)

for some universal constant ¢, as long as p = 0.995.

We have proved so far that the claim holds for fixed x and z.
We next obtain a uniform bound over all x and z with unit
length. Let A/ be an e-net covering the unit sphere in R” and
set

Ne = {(x0, z0) : (x0,20) € N x N}.

One has cardinality bound (i.e., the upper bound on the
covering number) [N¢| < (1+2/€)?". Then for any pair (x, z)
with |lx|| = |Iz]| = 1, there exists a pair (xg, zg) € N such
that ||x —xg|| <€ and ||z — zo|| < €. Taking the union bound
for all the points on the net, we claim that

(100)

mi >4 ((a,vrro)(afzo)) <0.045+€, V(xo,20) € Ne
i=1
(101)

holds with probability at least 1 — (1 + ey exp(—cmez).
Since y(f) is Lipschitz with constant 1/4, we have

| (@)@l '2) - x (@ x0)@l20))|
< 5 |[@ )@l - @ xo @l )| o)

Moreover, by [14, Lemma 1] for all symmetric rank-2 matrices
M c Rnxn,

1

EIIA(M)III < a|M|F, (103)

holds with probability at least 1 — C exp(—cim) as long as
m > cg n for some constants C, cp, ¢1, c2 > 0. Consequently,
on the event that (103) holds, we have

% iZ::X ((a;Tx)(a,Tz)) = % gx ((a,?"xg)(af zo))‘

I < T T . T T
=m 2 |x (@)@ ) - x (@ x0)@l20))|

1 1
< 5 —lIAGz" —xoz)lli  due to (102)

m

1
< s-ellxz’ —xozgllr  due to (103)

1

< 5+ c2(lx —xoll - lzll + llz — 2oll - lIxoll) < 2c3¢/d.

On the intersection of events that (101) and (103) hold,
we have

%ZI ((a,?’x)(a,?"z)) < (0.045 + € + 2c3¢/9), (104)
i=1

for all x and z with unit length and p = 0.995. Since € can
be arbitrarily small, the proof is completed.
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E. Proof of Lemma 7
We first observe that for any y,

LyaTxi<taT ) = jaT i<y ety T La? hizy 1)

= Yol si<ytemy + YgaZ w1205 gy (105)

where the last inequality is due to the assumption Hi—’H < QIU
To establish the lemma, we set y = (.15 and denot
y' = 20y = 3. We next respectively show that

1<, 1
— 2 1l hlLyr ey < @11+ OlIRI (106)

i=l

for all x, h € R", and
1 m
T
;Z'“f 1Lt sy gy < Q01+ €)[R] (107)
i=1

for all h € R".

We first prove (106). Without loss of generality, we assume
that # and x have unit length. We introduce a Lipschitz
function to approximate the indicator functions, which is
defined as

- if [t] < y;
L@ =1 G —1tD+1, ify <|t|<y +
0, else.

Then y.(t) is a Lipschitz function with constant %. We further

have
i
Lol x1<p) = 2x(@; X) = 1T 1<y 16)- (108)

We first prove bounds for any fixed pair ki, x, and then develop
a uniform bound later on.
We next estimate the expectation of |a?h£l“arx|q+ﬂ,

oo
E[|a}"h|1“,,;x,q+3}] = //_m 171 1{jry| <y 46)
f(r1, 2)dridra, (109)

where f(z1, 72) is the density of ;wo jointly Gaussian random
variables with correlation p = Wilﬂ'ﬂx?ﬂ' # +1. We then continue
to derive

T
Ella; Bl1 a7 i<y +5)]

1 /Oo e rlz
= —— T1|expl ——
2z/1—p? J-oo 3
744 _ 2
./ exp (_(U—pr]z)) dl’zdl’[
49 20— 79

2 7 +d—pt

ek - [z1]ex 1, 2007 ox (—rz)drdr

Y e e S 1
2(1—p%)

1 =) _rlz
_E/_m[mexp £

N rH2=pn )Y o v —0-pu ).
(e (Jz(l—pz) s )

(111)

(110)
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Fig. 7. ]E[la?hll ] with respect to p.

(la] x| <y+d)

For |p| < 1, E[|a?h|1{|a3_rx|(y+5}] is a continuous function
of p. The last integral (111) can be calculated numerically.
Figure 7 plots ]E[la?k]l{la;rx|<?+§}] for y = 0.15 and
6 =0.01 over p € (—1,1). Furthermore, (110) indicates that
]E[[a?ml % STON 5] is monotonically increasing with both ¢
and J. Thus, we obtain a universal bound

T
Ella; k“[|a;=rx|4? +§}]

<0.11|jh]| for y <0.15and 6=0.01, (112)

which further implies E[jal |y (alx)] < 0.11||h| for
y < 0.15 and 6 = 0.01. Furthermore, |a§ﬂlz|xX(afx)’s
are sub-Gaussian with sub-Gaussian norm O(||k]]). By the
Hoeffding type of sub-Gaussian tail bound [55], we have

P |:$ ; |a,?rh[).’x(afx) > (0.11 +¢€) ||h ||] <€IP(—cm52),

(113)

for some universal constant c.

We have proved so far that the claim holds for a fixed
pair i, x. We next obtain a uniform bound over all x and h
with unit length. Let N be a ¢-net covering the unit sphere
in R” and set

Ne = {(xo0, ho) : (x0, ho) € N x N}.

One has cardinality bound (i.e., the upper bound on the
covering number) |[N;| < (1+2/€)?". Then for any pair (x, h)
with |lx]| = ||k|| = 1, there exists a pair (xg, ko) € N, such
that ||x —xp|| < € and ||k — hg|| < €. Taking the union bound
for all the points on the net, one can show Y(xg, hg) € N,

1 m
;Zm{hom (a}"xg) <0.11+e€, (114)
=1

holds with probability at least 1 — (1 + ¥ exp(—cmez).
Since y.(f) is Lipschitz with constant 1/, we have the
following bound

Xx (afo) — (a?rxg)| < % |a?(.r — rg)[. (115)
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Consequently, on the event that (103) holds, we have

1 « 1 «
— > 1a] bl (] x) = — " la] holxx (af xo)
i=1 i=1

1 m
— 3" |ia7 hix: (a7 x) — 1al ol z: (aTxo)|
i=1

1
2 (Jof 10|+ 5

i :
Sllh — holl + = - c2llho(x — x0)" |l < c3¢/d.

[A

[A

T T T
a; hgl |a,- X —a; X{)D

[ A

On the intersection of events that (114) and (103) hold,
we have

1 m
—>" 1T hlxx (a{xg) < (0.11 + € + 2¢c3¢/3),  (116)
m

i=1

for all x and k with unit length.

We next prove (107). Without loss of generality, we assume
that & has unit length. We introduce a Lipschitz function to
approximate the indicator functions, which is defined as

Itl, if ] > y";
(@) =13t =y +y, ifyQ—9) <] <"
0, else.

Then, y(t) is a Lipschitz function with constant ;l;. We further
have

T T
lai B oI sy iy = X0 (@i 1)
T
= la; ”lLyaThysya-sypapy- (117)

We first prove bounds for any fixed &, and then develop a
uniform bound later on.

We next estimate the expectation of !“xﬁ’]1{|a}’k|>y’{1—5]||k||]
as follows:

T

Ella; ”l1yer b=y a—sypan]
o0

:/ 171{je|>y 1=y - f(2)dT,
1o &)

1 0 2
:2-—f T ex (——)dr
2z hya—sy” T\ 2

2
= .,/=exp(—y*(1 —6)*/2) < 0.01
T

where f(r) is the density of the standard Gaussian distrib-
ution and the last inequality is given by choosing y’' = 3,
6 = 001. We note that Eflalh|ly,ry_ . syl is
monotonically increasing with J and decreasing with y'.
Furthermore, E[ y5, (a?rh)] < 0.01||k]| for ' = 3 and 6 < 0.01.

Moreover, yj (al?"h) for all i are sub-Gaussian with sub-
Gaussian norm O(||k]|). By the Hoeffding type sub-Gaussian
tail bound [55], we have

(118)

fa [%Z xn(@lh) > (0.01 +¢) [|h||] <exp(—cme?), (119)

i=1

for some universal constant c.



ZHANG et al.: MEDIAN-TRUNCATED NONCONVEX APPROACH FOR PHASE RETRIEVAL WITH OUTLIERS

We have proved so far that the claim holds for a fixed h.
We next obtain a uniform bound over all # with unit length.
Let N be an e-net covering the unit sphere in R"”. One
has cardinality bound (i.e., the upper bound on the covering
number) |N;| < (1 +2/¢)". Then for any i with unit length,
there exists a hg € N such that ||k — hg|| < €. Taking the
union bound for all the points on the net, one can show

1 m
= 2 xn(alho) <0.01+¢, VhoeN;
m

i=1

(120)

holds with probability at least 1 — (1 + 2/€)" exp(—cme?).
Consequently, we have

m

= 1
— 2 wn(@ih) — — 3 yu(aj ho)

i=1 i=1

1 m
< =" @l )~ xa(al o)
i=l1

1 m
i 2ol (1= o)
i=1

1
< gc’znh — hol| < c3€/9,

IA

S| -

where the second inequality is because y;(f) is Lipschitz
continuous with constant 1/4.

On the intersection of events that (120) and (103) hold,
we have

1 m
o Z xn(@l'h) < (0.01 + € + c3¢/9),
nia
for all k with unit length.
Putting together (116) and (121), and since € can be
arbitrarily small, the proof is completed.

(121)
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