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Abstract—This paper investigates the phase retrieval problem,
which aims to recover a signal from the magnitudes of its linear
measurements. We develop statistically and computationally
efficient algorithms for the situation when the measurements
are corrupted by sparse outliers that can take arbitrary values.
We propose a novel approach to robustify the gradient descent
algorithm by using the sample median as a guide for pruning
spurious samples in initialization and local search. Adopting
a Poissonlossandareshapedquadraticloss,respectively,
we obtain two algorithms termed median-truncated Wirtinger
flowandmedian-reshaped Wirtinger flow,bothofwhichprovably
recover the signal from a near-optimal number of measurements
when the measurement vectors are composed of independent
and identically distributed Gaussian entries, up to a logarithmic
factor, even when a constant fraction of the measurements is
adversarially corrupted. We further show that both algorithms
are stable in the presence of additional dense bounded noise. Our
analysis is accomplished by developing non-trivial concentration
results of median-related quantities, which may be of independent
interest. We provide numerical experiments to demonstrate the
effectiveness of our approach.

Index Terms—Median, high dimensional estimation, phase
retrieval, nonconvex problem, linear convergence.

I. INTRODUCTION

PHASE retrieval is a classical problem in signal processing,optics and machine learning that has a wide range of
applications such as X-ray crystallography [22], astronomical
imaging, and TeraHertz imaging[48]. Mathematically,itis
formulated as recovering a signalx∈RnorCnfrom the
magnitudes of its linear measurements:

yi=|⟨ai,x⟩|
2,i=1,...,m, (1)

wheremis the total number of measurements, andai∈R
n

orCnis theith known measurement vector,i=1,...,m.
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Phase retrieval is known to be notoriously difficult due to the
quadratic form of the measurements. Classical methods [23],
though computationally simple, lack rigorous performance
guarantees.
There has been, however, a recent line of work that suc-

cessfully develops provably accurate algorithms for phase
retrieval, in particular for the case when the measurement
vectorsai’s are composed ofindependent and identically
distributed(i.i.d.) Gaussian entries. Broadly speaking, two
classes of approaches have been proposed based on convex and
nonconvex optimization techniques, respectively. Using the
lifting trick, the phase retrieval problem can be reformulated
as estimating a rank-one positive semidefinite (PSD) matrix
X=xxTfrom linear measurements[4], for which convex
relaxations into semidefinite programs have been studied [7],
[10], [17], [20], [37], [58]. In particular, Phaselift [10] per-
fectly recovers the signal with high probability as long as the
number of measurementsmis on the order ofn.However,
the computational complexity of Phaselift is at least cubic
inn,whichbecomesexpensivewhennis large. Very recently,
another convex relaxation named PhaseMax has been proposed
in the natural parameter space without lifting [3], [25], [28],
resulting in a linear program that can handle large problem
dimensions as long asmis on the order ofn.
Another class of approaches aims to find the signal that

minimizes a loss function based on certain postulated noise
model, which often results in a nonconvex optimization prob-
lem due to the quadratic measurements. Despite nonconvexity,
it is demonstrated in [9], [49], and [41] that the so-called
Wirtinger flow (WF) algorithm, based on gradient descent,
works remarkably well: it converges to the global optima
when properly initialized using the spectral method. Several
variants of WF have been proposed thereafter to further
improve its performance, including the truncated Wirtinger
flow (TWF) algorithm [14], the reshaped Wirtinger flow
(RWF) algorithm [63], and the truncated amplitude flow (TAF)
algorithm [59]. Notably, TWF, RWF and TAF are shown to
converge globally at a linear rate as long asmis on the order
ofn,andattainϵ-accuracy withinO(mnlog(1/ϵ))flops using
aconstantstepsize.1

A. Outlier-Robust Phase Retrieval

The aforementioned algorithms are evaluated based on
theirstatisticalandcomputationalperformances: statistically,
we wish the sample complexitymto be as small as possible;

1Notation f(n)= O(g(n))orf(n) g(n)means that there exists a
constantc>0suchthat|f(n)|≤c|g(n)|.
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computationally, we wish the run time to be as fast as possible.
As can be seen, existing WF-type algorithms are already
near-optimal both statistically and computationally. This paper
introduces a third consideration, which is therobustness to out-
liers,wherewewishthealgorithmcontinuestoworkwelleven
in the presence of outliers that may take arbitrary magnitudes.
This bears great importance in practice, because outliers arise
frequently from the phase imaging applications [61] due to
various reasons such as detector failures, recording errors, and
missing data. Specifically, suppose the set ofmmeasurements
are given as

yi=|⟨ai,x⟩|
2+ηi,i=1,···,m, (2)

whereηi∈RorCfori=1,...,mare outliers that can
take arbitrary values. We assume that outliers are sparse with
no more thansmnonzero values, i.e.,∥η∥0≤ sm,where
η={ηi}

m
i=1∈R

m orCm.Here,sis a nonzero constant,
representing the faction of measurements that are corrupted
by outliers.
The goal of this paper is to develop phase retrieval algo-
rithms with both statistical and computational efficiency, and
provable robustness to even a constant proportion of outliers.
To the best of our knowledge, before the appearance of the
current article, none of the existing algorithms meet all of
the three considerations simultaneously. The performance of
WF-type algorithms is very sensitive to outliers which intro-
duce anomalous search directionswhen their values are exces-
sively deviated. While a form of Phaselift [26] is robust
to a constant portion of outliers, it is computationally too
expensive.

B. Median-Truncated Gradient Descent

Anaturalideaistorecoverthesignalasasolutiontothe
following loss minimization problem:

min
z

1

2m

m

i=1

ℓ(z;yi) (3)

whereℓ(z,yi)is postulated using the negative likelihood of
Gaussian or Poisson noise model. Since the measurements are
quadratic inx,theobjectivefunctionisnonconvex.Wecon-
sider two choices ofℓ(z;yi)in this paper. The first one is the
Poisson loss function of|aTiz|

2employed in TWF [14], which
is given by

ℓ(z;yi)=|a
T
iz|
2−yilog|a

T
iz|
2. (4)

The second one is thereshaped2quadratic loss of|aTiz|
employed in RWF [63], which is given by

ℓ(z;yi)= |aTiz|−
√
yi
2
. (5)

It has been argued in [63] that the loss function (5) resembles
more closely to a quadratic function than the Wirtinger flow
loss used in [9], which results in a more amenable curvature
for the convergence of the gradient descent algorithms.

2It is called “reshaped” in order to distinguish it from the quadratic loss
of|aTiz|

2used in [9].

In the presence of outliers, the signal of interest may no
longer be the global optima of (3). Therefore, we wish to
only include the clean samples that are not corrupted in the
optimization (3), which is, however, impossible as we do
not assume anyaprioriknowledge of the outliers. Our key
strategy is to prune the bad samples adaptively and iteratively,
using a gradient descent procedure that proceeds as follows:

z(t+1)=z(t)−
µ

m
i∈Tt+1

∇ℓ(z(t);yi). (6)

wherez(t)denotes thetth iterate of the algorithm,∇ℓ(z(t);yi)
is the gradient ofℓ(z(t);yi),andµis the step size, for
t=0,1,....Ineachiteration,onlyasubsetTt+1of data-
dependent and iteration-varying samples contributes to the
search direction. But how to select the setTt+1?Notethat
the gradient of the loss function typically contains the term
yi−|a

T
iz
(t)|2 (for TWF) or

√
yi−|a

T
iz
(t)|(for RWF),

which measures the residual using the current iterate. With
yibeing corrupted by arbitrarily large outliers, the gradient
can deviate the search direction from the signal arbitrarily.
Inspired by the utility ofmedianto combat outliers in robust
statistics [30], we prune samples whose gradient components
∇ℓ(z(t);yi)are much larger than thesample medianto control
the search direction of each update. Hiding some technical
details, this gives the main ingredient of ourmedian-truncated
gradient descentupdate rule,3i.e., for each iteratet≥0:

Tt+1:= {i:|yi−|a
T
iz
(t)|2|

≤αhmed({|yi−|a
T
iz
(t)|2}mi=1)},for TWF, (7)

Tt+1:= {i:|
√
yi−|a

T
iz
(t)|

≤α′hmed({|
√
yi−|a

T
iz
(t)|}mi=1)},for RWF,(8)

whereαhandα
′
hare some given algorithm parameters and

med(·)denotes the sample median. The robust property of
median lies in the fact that the median cannot be arbitrarily
perturbed unless the outliers dominate the inliers [30]. This is
in sharp contrast to the sample mean, which can be made
arbitrarily large even by a single outlier. Thus, using the
sample median in the truncationrulecaneffectivelyremove
the impact of outliers. Finally, there still left the question of
initialization, which is critical to the success of the algorithm.
We use the spectral method, i.e., initialize z(0)by a proper
rescaling of the top eigenvector of a surrogate matrix

Y=
1

m
i∈T0

yiaia
T
i, (9)

where againT0includes only a subset of samples whose values
are not excessively large compared with the sample median of
the measurements, given as

T0={i:yi≤αy·med({yi}
m
i=1)}, (10)

whereαyis an algorithm parameter. Putting things together
(the update rule (6) and the initialization (9)), we obtain two
new median-truncated gradient descent algorithms, median-
TWF and median-RWF, based on applying the median trun-
cation strategy for the loss functions used in TWF and RWF,

3Please see the exact form of the algorithms in Section II.
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respectively. The median-TWFandmedian-RWFalgorithms
do not assume a priori knowledge of the outliers, such as
their existence or the number of outliers, and therefore can
be used in an oblivious fashion. Importantly, we establish the
following performance guarantees.
Main Result (Informal): For the Gaussian measurement
model, with high probability, median-TWF and median-RWF
recover all signalxup to the global sign at a linear rate of
convergence, even with a constant fraction of outliers, as long
as the number of measurementsmis on the order ofnlogn.
Furthermore, the reconstruction is stable in the presence of
additional bounded dense noise.
Statistically, the sample complexity of both algorithms is

near-optimal up to a logarithmic factor, and to reassure, they
continue to work even when outliers are absent. Computa-
tionally, both algorithms converge linearly, requiring a mere
computational cost ofO(mnlog 1/ϵ)to reachϵ-accuracy.
More importantly, our algorithms now tolerate a constant
fraction of arbitrary outliers, without sacrificing performance
otherwise.
To establish the performance guarantees, we first show that
the initialization is close enoughto the ground truth, and then
that within the neighborhood of the ground truth, the gradients
satisfy certainRegularity Condition[9], [14] that guarantees
linear convergence of the descent rule, as long as the fraction
of outliers is small enough and the sample complexity is
large enough. As a nonlinear operator, the sample median
is much more difficult to analyze than the sample mean,
which is a linear operator and many existing concentration
inequalities are readily applicable. Therefore, considerable
technical efforts are devoted to develop novel non-asymptotic
concentrations of the sample median, and various statistical
properties of the sample median related quantities, which may
be of independent interest.
Finally, we note that while median-TWF and median-
RWF share similar theoretical performance guarantees, their
empirical performances vary under different scenarios, due to
the use of different loss functions. Their theoretical analyses
also have significant difference that worth separate treatments.
While we only consider the loss functions used in TWF and
RWF in this paper, we believe the median-truncation technique
can be applied to gradient descent algorithms for solving other
problems as well.

C. Related Work

Our work is closely related to the TWF algorithm [14],
which is also a truncated gradient descent algorithm for
phase retrieval. However, the truncation rule in TWF is based
on the sample mean, which is very sensitive to outliers.
In [27], [41], [46], and [62], the problem of phase retrieval
under outliers is investigated, but the proposed algorithms
either lack performance guarantees or are computationally too
expensive. A modified PhaseMax was proposed to deal with
sparse outliers [27], which also achieves exact recovery with
aconstantfractionofoutliersbyapplyingourinitialization
step.
The adoption of median in machine learning is not unfa-
miliar, for example,K-median clustering [13] and resilient

data aggregation for sensor networks [56]. Our work here
further extends the applications of median to robustifying high-
dimensional estimation problems with theoretical guarantees.
Another popular approach in robust estimation is to use the
trimmed mean [30], which has found success in robustifying
sparse regression [16], subspace clustering [46], etc. However,
using the trimmed mean requires knowledge of an upper bound
on the number of outliers, whereas median does not require
such information.
Developing non-convex algorithms with provable global
convergence guarantees has attracted intensive research inter-
est recently. A partial list of these studies include phase
retrieval [66], [9], [14], [42], [51], [59], matrix comple-
tion [67], [19], [24], [29], [31]–[33], [52], [65], low-rank
matrix recovery [18], [35], [38], [44], [54], [60], [64], robust
PCA [43], [62], robust tensor decomposition [1], dictionary
learning [2], [50], community detection [5], phase synchro-
nization [6], blind deconvolution [34], [36], joint align-
ment [15], shallow neural networks [68], etc. Our algorithm
provides a new instance in this list that emphasizes robust
high-dimensional signal estimation under minimal assump-
tions of outliers.

D. Paper Organization and Notations

The rest of this paper is organized as follows. Section II
describes the proposed two algorithms, median-TWF and
median-RWF, in details and their performance guarantees.
Section III presents numericalexperiments. Section IV pro-
vides the preliminaries and the proof road map. Section V
provides the proofs for median-TWF and Section VI provides
the proofs of median-RWF, respectively. Finally, we conclude
in Section VII. Supporting proofs are given in the Appendix.
We adopt the following notations in this paper. Given a
set of numbers{yi}

m
i=1,thesample medianisdenotedas

med({yi}
m
i=1).Theindicatorfunction1A = 1iftheevent

Aholds, and1A=0otherwise.Foravectory,∥y∥denotes
thel2norm. For two matrices,A≼BifB−Ais a positive
semidefinite matrix.

II. ALGORITHMS ANDPERFORMANCEGUARANTEES

We consider the following model for phase retrieval, where
the measurements are corrupted by not only sparse arbitrary
outliers but also dense bounded noise. Under such a model,
the measurements are given as

yi=|⟨ai,x⟩|
2+wi+ηi,i=1,···,m, (11)

where x∈Rnis the unknown signal,4ai∈R
nis the

ith measurement vector composed ofi.i.d.Gaussian entries
distributed asN(0,1),andηi ∈ R fori= 1,...,m
are outliers with arbitrary values satisfying∥η∥0 ≤ sm,
wheresis the fraction of outliers, andw={wi}

m
i=1is the

bounded noise satisfying∥w∥∞ ≤c∥x∥
2for some universal

constantc.
It is straightforward that changing the sign of the signal
does not affect the measurements. The goal is to recover the

4We focus on real signals here, but our analysis can be extended to complex
signals.
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signalx,uptoaglobalsigndifference,fromthemeasurements
y={yi}

m
i=1and the measurement vectors{ai}

m
i=1.Tothisend,

we define the Euclidean distance between two vectors up to a
global sign difference as the performance metric,

dist(z,x):=min{∥z+x∥,∥z−x∥}. (12)

We propose two median-truncated gradient descent algo-
rithms, median-TWF in Section II-A and median-RWF in
Section II-B, based on different choices of the loss functions.
This leads to applying the truncation based on the sample
median of yi−|a

T
iz|
2 m

i=1
in median-TWF, and the sample

median of
√
yi−|a

T
iz|

m

i=1
in median-RWF. Section II-C

provides the theoretical performance guarantees of median-
TWF and median-RWF, which turn out to be almost the
same at the order level except the choice of constants. The
empirical comparisons of median-TWF and median-RWF are
demonstrated in Section III.

A. Median-TWF Algorithm

In median-TWF, we adopt the Poisson loss function of
|aTiz|

2employed in TWF [14], given as

ℓ(z):=
1

2m

m

i=1

|aTiz|
2−yilog|a

T
iz|
2 . (13)

Algorithm 1 Median Truncated Wirtinger Flow
(Median-TWF)

Input:y={yi}
m
i=1,{ai}

m
i=1;

Parameters:thresholdsαy,αh,αl,andαu,stepsizeµ;
Initialization:Letz(0)=λ0̃z,whereλ0= med(y)/0.455
andz̃is the leading eigenvector of

Y:=
1

m

m

i=1

yiaia
T
i1{|yi|≤α2yλ20}

. (14)

Gradient loop:fort=0:T−1do

z(t+1)=z(t)−
µ

m
i∈Et

|aTiz
(t)|2−yi

aTiz
(t)

ai, (15)

where

Et:=iαl∥z
(t)∥≤|aTiz

(t)|≤αu∥z
(t)∥and

|yi−|a
T
iz
(t)|2|≤αh

|aTiz
(t)|

∥z(t)∥
med{|yi−|a

T
iz
(t)|2|}mi=1 .

OutputzT.

The median-TWF algorithm, as described in Algorithm 1,
gradually eliminates the influence of outliers on the way of
minimizing (13). Specifically, it comprises an initialization
step and a truncated gradient descent step.
1.Initialization: Asin(14), weinitializez(0)by the

spectral method using a truncated set of samples, where the
threshold is determined bymed({yi}

m
i=1).Aswillbeshownin

Section IV-B, as long as the fraction of outliers is not too large
and the sample complexity islarge enough, our initialization

is guaranteed to be within a small neighborhood of the true
signal.
2.Gradient loop:foreachiteration0≤t≤T−1, median-
TWF uses an iteration-varying truncated gradient given as

∇ℓtr(z
(t))=

1

m
i∈Et

|aTiz
(t)|2−yi

aTiz
(t)

ai (16)

In order to remove the contribution of corrupted samples,
from the definition of the setEt(see Algorithm 1), it is
clear that samples are truncatedif their measurement residuals
evaluated using the current iterate are much larger than the
sample median. Moreover, in order to better control the
search direction, samples are also truncated if the quantity
|aTiz|is outside some confidence interval. The median-TWF
algorithm closely resembles the TWF algorithm, except that
the truncation is guided by the sample median, rather than the
sample mean.
We set the step size in median-TWF to be a fixed small con-

stant, i.e.,µ=0.4. The rest of the parameters{αy,αh,αl,αu}
are set to satisfy

ζ1:=max E ξ
21
|ξ|<
√
1.01αl or|ξ|>

√
0.99αu

,

E 1
|ξ|<
√
1.01αlor|ξ|>

√
0.99αu

,

ζ2:=E ξ
21{|ξ|>0.248αh},2(ζ1+ζ2)+ 8/πα−1h <1.99,

αy≥3, (17)

whereξ∼ N(0,1).Forexample,wecansetαl= 0.3,
αu=5,αy=3andαh=12, and consequentlyζ1≈0.24
andζ2≈0.032.

B. Median-RWF Algorithm

In median-RWF, we adopt the reshaped quadratic loss
function of|aTiz|employed in RWF [63], given as

R(z)=
1

2m

m

i=1

√
yi−|a

T
iz|

2
, (18)

which has been shown to be advantageous over other loss
functions for phase retrieval [63].
Similarly to median-TWF, the median-RWF algorithm as
described in Algorithm 2, gradually eliminates the influence
of outliers on the way of minimizing (18). Specifically,
it also comprises an initialization step and a truncated gradient
descent step.
1.Initialization:weinitializeinthesamemannerasin
median-TWF (Algorithm 1).
2.Gradient loop:foreachiteration0≤t≤T−1, median-
RWF uses the following iteration-varying truncated gradient:

∇Rtr(z
(t))=

1

m
i∈E′t

aTiz
(t)−

√
yi
aTiz

(t)

|aTiz
(t)|

ai, (19)

From the definition of the setE′t(see Algorithm 2), samples
are truncated by the sample median of gradient components
evaluated at the current iteration. We set the step size in
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Algorithm 2 Median Reshaped Wirtinger Flow
(median-RWF)

Input:y={yi}
m
i=1,{ai}

m
i=1;

Parameters:thresholdα′h,andstepsizeµ;
Initialization: Same as median-TWF (see Algorithm 1).
Gradient loop:fort=0:T−1do

z(t+1)=z(t)−
µ

m
i∈E′t

aTiz
(t)−

√
yi
aTiz

(t)

|aTiz
(t)|

ai,(20)

where

E′t:=i
√
yi−|a

T
iz
(t)|

≤α′h·med
√
yi−|a

T
iz
(t)|

m

i=1
.

OutputzT.

median-RWF to be a fixed small constant, i.e., µ = 0.8.
Compared with median-TWF, the truncation rule is much
simpler with fewer parameters. We simply set the truncation
thresholdα′h=5. It is possible that including a criteria on
|aTiz|as in the definition ofEtmay further improves the
performance, but we wish to highlight that, in this paper,
the simple truncation rule is already sufficient to guarantee
both robustness and efficiency of median-RWF.

C. Performance Guarantees

In this section, we characterize the performance guarantees
of median-TWF and median-RWF, which turn out to be very
similar though the proofs in fact involve quite different tech-
niques. To avoid repetition, we present the guarantees together
for both algorithms. We note that the values of constants in
the results can vary for median-TWF and median-RWF.
We first show that median-TWF/median-RWF performs

well for the noise-free model in the following proposition,
which lends support to the model with outliers. This also
justifies that we can run median-TWF/median-RWF without
having to know whether the underlying measurements are
corrupted.
Proposition 1 (Exact Recovery for the Noise-Free Model):

Suppose that the measurements are noise-free, i.e.,ηi=0
andwi=0for i=1,···,minthemodel(11).Thereexist
constantsµ0>0,0<ρ,ν<1and c0,c1,c2>0such that
if m≥c0nlognandµ≤µ0,thenwithprobabilityatleast
1−c1exp(−c2m),median-TWF/median-RWFyields

dist(z(t),x)≤ν(1−ρ)t∥x∥,∀t∈N (21)

simultaneously for allx∈Rn\{0}.
Proposition 1 suggests that median-TWF/median-RWF

allows exact recovery at a linear rate of convergence as long
as the sample complexity is on the order ofnlogn,whichis
in fact slightly worse, by a logarithmic factor, than existing
WF-type algorithms (TWF, RWF and TAF) for the noise-
free model. This is a price due to working with the nonlinear
operator of median in the proof, and it is not clear whether it
is possible to further improve the result. Nonetheless, as the

median is quite stable as long as the number of outliers is
not so large, the following main theorem indeed establishes
that median-TWF/median-RWF still performs well even in the
presence of a constant fraction of sparse outliers with the same
sample complexity.
Theorem 1 (Exact Recovery With Sparse Arbitrary
Outliers): Suppose that the measurements are corrupted
by sparse outliers, i.e.,wi= 0for i= 1,···,minthe
model(11).Thereexistconstantsµ0,s0>0,0<ρ,ν<1
and c0,c1,c2> 0such that if m≥ c0nlogn, s< s0,
µ≤µ0,thenwithprobabilityatleast1−c1exp(−c2m),
median-TWF/median-RWF yields

dist(z(t),x)≤ν(1−ρ)t∥x∥,∀t∈N (22)

simultaneously for allx∈Rn\{0}.
Theorem 1 indicates that median-TWF/median-RWF admits

exact recovery forallsignals in the presence of sparse
outliers with arbitrary magnitudes even when the number of
outliers scales linearly with the number of measurements,
as long as the sample complexity satisfiesm nlogn.
Moreover, median-TWF/median-RWF converges at a lin-
ear rate using a constant step size, with per-iteration cost
O(mn)(note that the median can be computed in linear
time [53]). To reachϵ-accuracy, i.e., dist(z(t),x)≤ϵ,only
O(log 1/ϵ)iterations are needed, yielding the total com-
putational cost asO(mnlog 1/ϵ),whichishighlyefficient.
Empirically in the numerical experiments in Section III,
median-RWF converges faster and tolerates a larger fraction
of outliers than median-TWF, which can be due to the use of
the reshaped quadratic loss function.
We next consider the model when the measurements are

corrupted by both sparse arbitrary outliers and dense bounded
noise. Our following theorem characterizes that median-
TWF/median-RWF is stable to coexistence of the two types
of noises.
Theorem 2 (Stability to Sparse Arbitrary Outliers and

Dense Bounded Noises): Consider the phase retrieval prob-
lem given in(11)in which measurements are corrupted by
both sparse arbitrary and dense bounded noises. There exist
constantsµ0,s0>0,0<ρ<1and c0,c1,c2>0such
that if m≥c0nlogn, s<s0,µ≤µ0,thenwithprobability
at least1−c1exp(−c2m),median-TWFandmedian-RWF
respectively yield

dist(z(t),x)
∥w∥∞

∥x∥
+(1−ρ)t∥x∥,∀t∈N, (23)

dist(z(t),x) ∥w∥∞+(1−ρ)
t∥x∥,∀t∈N (24)

simultaneously for allx∈Rn\{0}.
Theorem 2 immediately implies the stability of median-
TWF/median-RWF when the measurements are only corrupted
by dense bounded noise.
Corollary 1: Consider the phase retrieval problem in which
measurements are corrupted only by dense bounded noises,
i.e.,ηi=0for i=1,···,minthemodel(11).Thereexist
constantsµ0>0,0<ρ<1and c0,c1,c2>0such that
if m≥c0nlogn,µ≤µ0,thenwithprobabilityatleast
1−c1exp(−c2m),median-TWFandmedian-RWFrespectively
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yield

dist(z(t),x)
∥w∥∞

∥x∥
+(1−ρ)t∥x∥,∀t∈N, (25)

dist(z(t),x) ∥w∥∞+(1−ρ)
t∥x∥,∀t∈N (26)

simultaneously for allx∈Rn\{0}.
With both sparse arbitrary outliers and dense bounded
noises, Theorem 2 and Corollary 1 imply that median-
TWF/median-RWF achieves the same convergence rate
and the same level of estimation error as the model with
only bounded noise. In fact, together with Theorem 1
and Proposition 1, it can be seen that applying median-
TWF/median-RWF does not require the knowledge of the
existence of outliers. When there do exist outliers, median-
TWF/median-RWF achieves almost the same performanceas
if outliers do not exist.

III. NUMERICALEXPERIMENTS

In this section, we provide numerical experiments to demon-
strate the effectiveness of median-TWF and median-RWF,
which corroborate our theoretical findings.

A. Exact Recovery for Noise-Free Data

We first show that, in the noise-free case, median-TWF
and median-RWF provide similar performance as TWF [14]
and RWF [63] for exact recovery. We set the parameters of
median-TWF and median-RWF as specified in Section II-A
and Section II-B, and those of TWF and RWF as suggested
in [14] and [63], respectively. Let the signal lengthntake
values from 1000 to 10000 by a step size of 1000, and the
ratio of the number of measurements to the signal dimension,
m/n,takevaluesfrom2to6byastepsizeof0.1. For each pair
of(n,m/n),wegenerateasignalx∼N(0,In×n),andthe
measurement vectorsai∼N(0,In×n)i.i.d. fori=1,...,m.
For all algorithms, a fixed number of iterationsT=500 are
run, and the trial is declared successful ifz(T),theoutputof
the algorithm, satisfies dist(z(T),x)/∥x∥≤10−8.Figure1
shows the number of successful trials out of 20 trials for
all algorithms, with respect tom/nandn.Itcanbeseen
that, as soon asmis above 4n,exactrecoveryisachieved
for all four algorithms. Around the phase transition boundary,
the empirical sample complexity of median-TWF is slightly
worse than that of TWF, which is possibly due to the ineffi-
ciency of median compared to mean in the noise-free case [30].
Interestingly, the empirical sample complexity of median-RWF
is slightly better than RWF because the truncation rule used
in median-RWF allows sample pruning that improves the
performance.5

B. Exact Recovery With Sparse Outliers

We next examine the performance of median-TWF and
median-RWF in the presence of sparse outliers. We com-
pare the performance of median-TWF and median-RWF
with TWF [14], Robust-WF [12], RobustPhaseMax [27] and

5The original RWF in [63] does not have sample truncation.

Fig. 1. Sample complexity of median-TWF, TWF, median-RWF, and
RWF for noise-free data: the gray scale of each cell(n,m/n)indicates the
number of successful recovery out of 20 trials. (a) median-TWF. (b) TWF.
(c) Median-RWF. (d) RWF.

AltGD [45]. Specifically, Robust-WF is based on hard
thresholding and requires knowing the fractionsof outliers
so that samples corresponding tos̃mlargest values in the
measurements or gradients are removed, wheres̃=1.2sas
suggested in [12]. We note that AltGD [45] uses our robust
initialization strategy.
We fix the signal lengthn=32 and the number of measure-
mentsm=8n.Leteachmeasurementyibe corrupted with
probabilitys∈[0,0.4]independently, where the corruption
valueηi∼U(−ηmax/2,ηmax/2)is randomly generated from
auniformdistribution. Figure 2 shows the success rate of
exact recovery over 100 trials as a function ofsat different
levels of outlier magnitudesηmax/∥x∥

2=0.1,1,10,100, for
the six algorithms median-TWF, median-RWF, Robust-WF,
RobustPhaseMax, TWF and AltGD.
From Figure 2, it can be seen that median-TWF and median-

RWF allow exact recovery as long assis not too large for all
levels of outlier magnitudes, without assuming any knowledge
of the outliers, which validates our theoretical analysis. Empir-
ically, median-RWF can tolerate a larger fraction of outliers
than median-TWF. This could be due to the fact that the lower-
order objective adopted in median-RWF reduces the vari-
ance and allows more stable search direction. Unsurprisingly,
TWF fails quickly even with a very small fraction of outliers.
No successful instance is observed for TWF whens≥0.02
irrespective of the value ofηmax.Robust-WF,evenknowing
the number of outliers, still does not exhibit a sharp phase
transition, and in general underperforms the proposed median-
TWF and median-RWF. Moreover, RobustPhaseMax, which
employs linear programming with slack variable to handle
outliers, does not perform well in these experiments either.
AltGD performs well when the values of the outliers are small
as can be seen in Figure 2 (a), and deteriorates as the outliers
have larger values as can be observed in Figure 2 (b)-(d).

C. Stable Recovery With Sparse Outliers and Dense Noise

We now examine the performance of median-TWF and
median-RWF in the presence of both sparse outliers and
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Fig. 2. Success rate of exact recovery with respect to the fraction of sparse outliers for median-TWF, median-RWF, Robust-WF, RobustPhaseMax and TWF
at different levels of outlier magnitudes. (a)ηmax=0.1∥x∥

2.(b)ηmax=∥x∥
2.(c)ηmax=10∥x∥

2.(d)ηmax=100∥x∥
2.

Fig. 3. The relative error with respect to the iteration count for median-TWF, median-RWF and TWF with both dense noise and sparse outliers, and TWF
with only dense noise. In (a) and (b), the dense noiseis generated uniformly at different levels. (a)wmax=0.01∥x∥

2.(b)wmax=0.001∥x∥
2.

dense bounded noise. The entries of the dense bounded noise
termware generated independently fromU(0,wmax).The
entries of the sparse outlier are then generated asηi∼∥w∥·
Bernoulli(0.1)independently. Figure 3(a) and Figure 3(b)
depict the relative error dist(z(t),x)/∥x∥with respect to the
iteration countt,whenwmax/∥x∥

2=0.001 and 0.01 respec-
tively. In the presence of sparse outliers, it can be seen that
both median-TWF and median-RWF clearly outperforms TWF
under the same situation, and acts as if the outliers do not
exist by achieving almost the same accuracy as TWF without

outliers. Moreover, the relative error of the reconstruction
using median-TWF or median-RWF has 10times gain from
Figure 3(a) to Figure 3(b) aswmaxshrinks by a factor of 10,
which corroborates Theorem 2 nicely. Furthermore, it can
be seen that median-RWF converges faster than the other
algorithms, due to the improved curvature of using low-order
objectives, corroborating the result in [63]. On the other
hand, median-TWF returns more accurate estimates, due to
employing more delicate truncation rules that may help reduce
the noise.
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Fig. 4. The relative error with respect to the iteration count for median-TWF,
median-RWF and TWF with both Poisson noise and sparse outliers, and TWF
with only Poisson noise.

We also consider the case when the measurements are
corrupted by both Poisson noiseand outliers, modeling photon
detection in optical imaging applications. We generate each
measurement asyi∼Poisson(|⟨ai,x⟩|

2),fori=1,···,m,
which is then corrupted with probabilitys=0.1byoutliers.
The entries of the outlier are obtained by first generating
ηi∼∥x∥

2·U(0,1)independently, and then rounding it
to the nearest integer. Figure 4 depicts the relative error
dist(z(t),x)/∥x∥with respect to the iteration countt,where
median-TWF and median-RWF under both outliers and Pois-
son noise have almost the same accuracy as, if not better than,
TWF under only the Poisson noise.
Finally, we consider the case with the noise generated from
aGaussianmixturemodel(GMM).Theprobabilitydensity
function of the two-term GMM is given by

p(w)=

2

i=1

ci
√
2πσi

exp−
w2

2σ2i
, (27)

whereci∈[0,1]andσ
2
iare the fraction and the variance of

theith term, respectively, andc1+c2=1. This can model the
scenario of outliers embedded in Gaussian background noise
ifσ22≫σ

2
1andc2≪c2.WedefinetheSNRas

SNR:=10 log10
EA∥Ax∥

4

Ew∥w∥2
. (28)

Then we have SNR=10 log10
3∥x∥4

iciσ
2
i

for measurementsA

consisting ofai∼ N(0,In×n)andw ∼ p(w)in (27).
In our experiment, we set the signal dimensionn= 100
and the number of measurementsm=800, and setσ22=
10000σ21,c2=0.1. We let SNR vary from 10 dB to 100 dB
and record the relative error of the signals recovered by the
five algorithms, i.e., median-TWF, median-RWF, Robust-WF,
RobustPhaseMax, TWF and AltGD.
From Figure 5, we see that the relative errors
achieved by our algorithms are significantly lower than
RobustPhaseMax [27] and slightly lower than Robust-
WF [12]. We also note that median-TWF performs slightly
better than median-RWF. This is because for the model (11),
median-RWF requires the square root ofyi(see equation (20))
which produces extra multiplicative noise. We also observe

Fig. 5. The relative error with respect to SNR for median-TWF, median-
RWF, Robust-WF, RobustPhaseMax and TWF with two Gaussian noises.

that AltGD achieves as good (or perhaps slightly better)
MSE-SNR performance as the median based algorithms under
the model with the Gaussian mixture noises.

IV. PRELIMINARIES ANDPROOFROADMAP

Broadly speaking, the proofs for median-TWF and median-
RWF follow the same roadmap. The crux is to use
the statistical properties of the median to show that the
median-truncated gradients satisfy the so-called Regularity
Condition[9], which guarantees the linear convergence of the
update rule, provided the initialization provably lands in a
small neighborhood of the true signal.
We first develop a few statistical properties of median

that will be useful throughout our analysis in Section IV-A.
Section IV-B analyzes the initialization that is used in both
algorithms. We then state the definition of Regularity Condi-
tion in Section IV-C and explain how it leads to the linear
convergence rate. We provide separate detailed proofs for two
algorithms in Section V and Section VI, respectively, because
they involve different bounding techniques that may be of
independent interest due to different loss functions.
At high level, we first prove the performance guarantees

of median-TWF and median-RWF for the noise-free case
(Proposition 1) by showing the regularity condition holds for
the truncated gradient, which uses the concentration properties
of the sample median. We then extend to the corrupted
case (Theorem 1) by observing that similar bounds hold for
order statistics near the median. The main challenge lies in
developing the concentration properties of the sample median
and applying them to establish the regularity condition.

A. Properties of Median

We start by the definitions of the quantile of a population
distribution and its sample version.
Definition 1 (GeneralizedQuantile Function): Let 0 <
p< 1.Foracumulativedistributionfunction(CDF)F,
the generalized quantile function is defined as

F−1(p)=inf{x∈R:F(x)≥p}. (29)

Fo r s i m p l i c i t y, d e n o t eθp(F)= F
−1(p)as the p-quantile

of F. Moreover for a sample sequence{Xi}
m
i=1,thesample



ZHANGet al.: MEDIAN-TRUNCATEDNONCONVEXAPPROACHFORPHASERETRIEVALWITHOUTLIERS 7295

p-quantileθp({Xi})meansθp(̂F),whereF̂istheempirical
distribution of the samples{Xi}

m
i=1.

Remark 1: We note that the median med({Xi}) =
θ1/2({Xi}),andweusebothnotationsinterchangeably.
Next, we show that as long as the sample size is large
enough, the sample quantile concentrates around the popu-
lation quantile (motivated from [11]), as in Lemma 1.
Lemma 1: Suppose F(·)is cumulative distribution function

(i.e., non-decreasing and right-continuous) with continuous
density function F′(·).Assumethesamples{Xi}

m
i=1are i.i.d.

drawn from F. Let0<p<1.Ifl<F′(θ) <Lforallθin
{θ:|θ−θp|≤ϵ}, then

|θp({Xi}
m
i=1)−θp(F)|<ϵ (30)

holds with probability at least1−2exp(−2mϵ2l2).
Proof: See Appendix A.
Lemma 2 bounds the distance between the median of two

sequences.
Lemma 2: Given a vectorX=(X1,X2,...,Xn),reorder
the entries in a non-decreasing manner

X(1)≤X(2)≤...≤X(n−1)≤X(n).

Given another vectorY=(Y1,Y2,...,Yn),then

|X(k)−Y(k)|≤∥X−Y∥∞, (31)

holds for all k=1,...,n.
Proof: See Appendix B.
Lemma 3, as a key robustness property of median, suggests

that in the presence of outliers, one can bound the sample
median from both sides by neighboring quantiles of the
corresponding clean samples.
Lemma 3: Considerclean samples{̃Xi}

m
i=1.Ifafraction

s(s< 1
2)ofthemarecorruptedbyoutliers,oneobtains

contaminated samples{Xi}
m
i=1which contain sm corrupted

samples and(1−s)mcleansamples.Thenforaquantilep
such that s<p<1−s, we have

θp−s({̃Xi})≤θp({Xi})≤θp+s({̃Xi}).

Proof: See Appendix C.
Finally, Lemma 4 is related to bound the value of the

median, as well as the density at the median for the product of
two possibly correlated standard Gaussian random variables.
Lemma 4: Let u,v∼N(0,1)which can be correlated with
the correlation coefficient|ρ|≤1.Letr=|uv|,andψρ(x)
represent the density of r . Denoteθ1

2
(ψρ)as the median of r,

and the value ofψρ(x)at the median asψρ(θ1/2).Thenfor
allρ,

0.348<θ1/2(ψρ)<0.455,

0.47<ψρ(θ1/2)<0.76.

Proof: See Appendix D.

B. Robust Initialization With Outliers

Considering the model that the measurements are corrupted
by both bounded noise and sparseoutliersgivenby(11),

we show that the initialization provided by the median-
truncated spectral method in (14) is close enough to the ground
truth, i.e., dist(z(0),x)≤δ∥x∥.
Proposition 2: Fixδ>0andx∈Rn,andconsiderthe
model given by(11).Supposethat∥w∥∞ ≤c∥x∥

2for some
sufficiently small constant c> 0and that∥η∥0≤sm for
some sufficiently small constant s. With probability at least
1−exp(− (m)),theinitializationgivenbythe median-
truncated spectral method obeys6

dist(z(0),x)≤δ∥x∥, (32)

provided that m>c0nforsomeconstantc0>0.
Proof: See Appendix D.

C. Regularity Condition

Once the initialization is guaranteed to be within a small
neighborhood of the ground truth, we only need to show that
the truncated gradient (16) and (19) satisfy theRegularity
Condition(RC)[9],[14],whichguaranteesthegeometriccon-
vergence of median-TWF/median-RWF once the initialization
lands into this neighborhood.
Definition 2: The gradient ∇ℓ(z)is said to satisfy the
Regularity ConditionRC(µ,λ,c)if

⟨∇ℓ(z),z−x⟩≥
µ

2
∥∇ℓ(z)∥2+

λ

2
∥z−x∥2 (33)

for allzobeying∥z−x∥≤c∥x∥.
The aboveRCguarantees that the gradient descent update
z(t+1) = z(t)−µ∇ℓ(z)converges to the true signalx
geometrically [14] ifµλ<1. We repeat this argument below
for completeness.

dist2(z−µ∇ℓ(z),x)

≤∥z−µ∇ℓ(z)−x∥2

=∥z−x∥2+∥µ∇ℓ(z)∥2−2µ⟨z−x,∇ℓ(z)⟩

≤∥z−x∥2+∥µ∇ℓ(z)∥2−µ2∥∇ℓ(z)∥2−µλ∥z−x∥2

=(1−µλ)dist2(z,x).

V. PROOFS FORMEDIAN-TWF

We first show that ∇ℓtr(z)in (16) satisfies theRCfor
the noise-free case in Section V-A, and then extend it to the
model with only sparse outliers in Section V-B, thus together
with Proposition 2 establishing the global convergence of
median-TWF in both cases. Section V-C proves Theorem 2
in the presence of both sparse outliers and dense bounded
noise.

A. Proof of Proposition 1

We consider the noise-free model. The central step to
establish theRCis to show that the sample median used in
the truncation rule of median-TWF concentrates at the level
∥z−x∥∥z∥as stated in the following proposition.

6Notation f(n)= (g(n))orf(n) g(n)means that there exists a
constantc>0suchthat|f(n)|≥c|g(n)|.
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Proposition 3: If m>c0nlogn, then with probability at
least1−c1exp(−c2m),

0.6∥z∥∥z−x∥≤θ0.49,θ0.51 |aTix|
2−|aTiz|

2
m

i=1

≤∥z∥∥z−x∥, (34)

holds for allz,xsatisfying∥z−x∥<1/11∥z∥.
Proof: Detailed proof is provided in Appendix A.
We note that a similar property for the sample mean has
been shown in [14] as long as the numbermof measurements
is on the order ofn.Infact,thesamplemedianismuch
more challenging to bound due to its non-linearity, which also
causes slightly more measurements compared to the sample
mean.
Then we can establish that ⟨∇ℓtr(z),z−x⟩is lower

bounded on the order of∥z−x∥2,asinProposition4,and
that∥∇ℓtr(z)∥is upper bounded on the order of∥z−x∥,as
in Proposition 5.
Proposition 4 (Adapted Version of [15, Proposition 2]):
Consider the noise-free case yi=|a

T
ix|
2for i=1,···,m,

and any fixed constantϵ> 0.Underthecondition(17),
if m > c0 nlogn, then with probability at least
1−c1exp(−c2ϵ

−2m),

⟨∇ℓtr(z),z−x⟩≥ (35)

1.99−2(ζ1+ζ2)− 8/πα−1h −ϵ∥z−x∥
2 (36)

holds uniformly overallx,z∈Rnsatisfying

∥z−x∥

∥z∥
≤min

1

11
,
αl

αh
,
αl

6
,

√
98/3(αl)

2

2αu+αl
, (37)

where c0,c1,c2 > 0are some universal constants, and
ζ1,ζ2,αl,αuandαhare defined in(17).
The proof of Proposition 4 adapts the proof of [15, Proposi-
tion 2], by properly setting parameters based on the properties
of sample median. For completeness, we include a short
outline of the proof in Appendix B.
Proposition 5: ([15, Lemma 7]) Under the same condition

as in Proposition 4, if m> c0n, then there exist some
constants c1,c2 > 0such that with probability at least
1−c1exp(−c2m),

∥∇ℓtr(z)∥≤(1+δ)·2 1.02+2/αh∥z−x∥ (38)

holds uniformly overallx,z∈Rnsatisfying

∥z−x∥

∥z∥
≤min

1

11
,
αl

αh
,
αl

6
,

√
98/3(αl)

2

2αu+αl
, (39)

whereδcan be arbitrarily small as long as m/nsufficiently
large, andαl,αuandαhare given in(17).
Proof: See the proof of [15, Lemma 7].
With these two propositions and (17),RCis guaranteed by
setting

µ<µ0:=
(1.99−2(ζ1+ζ2)−

√
8/πα−1h

2(1+δ)2·(1.02+2/αh)
,λ

+µ·4(1+δ)2·(1.02+2/αh)

<21.99−2(ζ1+ζ2)− 8/πα−1h −ϵ.

B. Proof of Theorem 1

We next consider the model (11) with only sparse outliers.
It suffices to show that∇ℓtr(z)continues to satisfy theRC.
The critical step is to bound the sample median of the
corrupted measurements. Lemma 3 yields

θ1
2−s
({|(aTix)

2−(aTiz)
2|})≤θ1

2
({|yi−(a

T
iz)
2|})

≤θ1
2+s
({|(aTix)

2−(aTiz)
2|}.

(40)

For simplicity of notation, we leth:=z−x.Thenfor
the instance ofs= 0.01, by Proposition 3, we have with
probability at least 1−2exp(− (m)),

0.6∥z∥∥h∥≤θ1
2
({|yi−(a

T
iz)
2|})≤∥z∥∥h∥. (41)

Based on the definition of setEtin Algorithm 1, we introduce
two events7:

Ei1:=αl∥z∥≤|a
T
iz|≤αu∥z∥, (42)

Ei2:= |yi−|a
T
iz|
2|≤αhmed{|yi−|a

T
iz|
2|}
|aTiz|

∥z∥
.(43)

To differentiate from Ei2, wefurtherdefineẼi2 :=

(aTix)
2−(aTiz)

2≤αhmed yi−(a
T
iz)
2 |aTiz|

∥z∥ .Wethen

have

∇ℓtr(z)

=
1

m

m

i=1

(aTiz)
2−yi

aTiz
ai1Ei1∩E

i
2

=
1

m

m

i=1

(aTiz)
2−(aTix)

2

aTiz
ai1Ei1∩Ẽ

i
2

∇cleanℓtr(z)

+

1

m
i∈S

(aTiz)
2−yi

aTiz
1Ei1∩E

i
2
−
(aTiz)

2−(aTix)
2

aTiz
1Ei1∩Ẽ

i
2
ai

∇extraℓtr(z)

.

Choosing ϵsmall enough, it is easy to verify that
Propositions 4 and 5 are still valid on∇cleanℓtr(z).Thus,one
has

⟨∇cleanℓtr(z),h⟩≥1.99−2(ζ1+ζ2)− 8/πα−1h −ϵ∥h∥
2,

∇cleanℓtr(z)≤(1+δ)·2 1.02+2/αh∥h∥.

We next bound the contribution of ∇extraℓtr(z).Introduce
q=[q1,...,qm]

T,where

qi:=
(aTiz)

2−yi

aTiz
1Ei1∩E

i
2
−
(aTiz)

2−(aTix)
2

aTiz
1Ei1∩Ẽ

i
2
1{i∈S}.

7Since the analysis is on one step of the algorithm, the iteratetis omitted
for simplicity.
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It can be seen that|qi|≤2αh∥h∥.Thus∥q∥≤
√
sm·2αh∥h∥,

and

∇extraℓtr(z)=
1

m
ATq ≤2(1+δ)

√
sαh∥h∥,

∇extraℓtr(z),h ≤∥h∥·
1

m
∇extraℓtr(z)

≤2(1+δ)
√
sαh∥h∥

2,

whereA=[a1,...,am]
T.Then,wehave

−⟨∇ℓtr(z),h⟩

≥ ∇cleanℓtr(z),h− ∇extraℓtr(z),h

≥ 1.99−2(ζ1+ζ2)− 8/πα−1h −ϵ−2(1+δ)
√
sαh∥h∥

2,

and

∥∇ℓtr(z)∥≤ ∇cleanℓtr(z)+ ∇extraℓtr(z)

≤2(1+δ) 1.02+2/αh+
√
sαh ∥h∥.(44)

Therefore, theRCis guaranteed ifµ,λ,ϵare chosen properly
andsis sufficiently small.

C. Proof of Theorem 2

We consider the model (11), and split our analysis of the
gradient loop into two regimes.
•Regime 1:c4∥z∥≥∥h∥≥c3

∥w∥∞
∥z∥.Inthisregime,error

contraction by each gradient step is given by

dist(z−µ∇ℓtr(z),x)≤(1−ρ)dist(z,x).

It suffices to justify that∇ℓtr(z)satisfies theRC.Denote
ỹi:=(a

T
ix)

2+wi.ThenbyLemma3,wehave

θ1
2−s

ỹi−(a
T
iz)
2 ≤med yi−(a

T
iz)
2

≤θ1
2+s

ỹi−(a
T
iz)
2 .

Moreover, by Lemma 2 we have

θ1
2+s

ỹi−(a
T
iz)
2 −θ1

2+s
(aTix)

2−(aTiz)
2 ≤∥w∥∞,

θ1
2−s

ỹi−(a
T
iz)
2 −θ1

2−s
(aTix)

2−(aTiz)
2 ≤∥w∥∞.

Assume thats=0.01. By Proposition 3, ifc3is sufficiently
large (i.e.,c3>100),westillshave

0.6∥x−z∥∥z∥≤med yi−(a
T
iz)
2 ≤∥x−z∥∥z∥ .(45)

Furthermore, recall Ẽi2 := (aTix)
2−(aTiz)

2 ≤

αhmed (aTiz)
2−yi

|aTiz|
∥z∥ .Then,

∇ℓtr(z)=
1

m

m

i=1

(aTiz)
2−yi

aTiz
ai1Ei1∩E

i
2

=
1

m
i/∈S

(aTiz)
2−(aTix)

2

aTiz
ai1Ei1∩E

i
2

+
1

m
i∈S

(aTiz)
2−(aTix)

2

aTiz
ai1Ei1∩Ẽ

i
2

−
1

m
i/∈S

wi

aTiz
ai1Ei1∩E

i
2

∇noiseℓtr(z)

+
1

m
i∈S

(aTiz)
2−yi

aTiz
ai1Ei1∩E

i
2

−
1

m
i∈S

(aTiz)
2−(aTix)

2

aTiz
ai1Ei1∩Ẽ

i
2
,

where we use∇cleanℓtr(z)to denote the first two terms and
∇extraℓtr(z)to denote the last two terms. We note that all the
proof arguments for Propositions 4 and 5 are also valid for
∇cleanℓtr(z),andhence

⟨∇cleanℓtr(z),h⟩≥1.99−2(ζ1+ζ2)− 8/πα−1h −ϵ∥h∥
2,

∇cleanℓtr(z)≤(1+δ)·2 1.02+2/αh∥h∥.

Next, we turn to control the contribution of the noise. Let
w̃i=

wi
aTiz
1Ei1∩E

i
2
,andthenwehave

∥∇noiseℓtr(z)∥=
1

m
ATw̃ ≤

1
√
m
AT

w̃
√
m

≤(1+δ)∥̃w∥∞ ≤(1+δ)
∥w∥∞

αl∥z∥
,

whenm/nis sufficiently large. Given the regime condition
∥h∥≥c3

∥w∥∞
∥z∥,wefurtherhave

∥∇noiseℓtr(z)∥≤
(1+δ)

c3αl
∥h∥,

∇noiseℓtr(z),h ≤ ∇noiseℓtr(z)·∥h∥≤
(1+δ)

c3αl
∥h∥2.

We next bound the contribution of ∇extraℓtr(z).Introduce
q=[q1,...,qm]

T,where

qi:=
(aTiz)

2−yi

aTiz
1Ei1∩E

i
2
−
(aTiz)

2−(aTix)
2

aTiz
1Ei1∩Ẽ

i
2
1{i∈S}.

Then|qi|≤2αh∥h∥,and∥q∥≤
√
sm·2αh∥h∥.Wethushave

∇extraℓtr(z)=
1

m
ATq ≤2(1+δ)

√
sαh∥h∥,

∇extraℓtr(z),h ≤∥h∥·∇
extraℓtr(z)≤2(1+δ)

√
sαh∥h∥

2.
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Putting these together, one has

⟨∇ℓtr(z),h⟩

≥ ∇cleanℓtr(z),h− ∇noiseℓtr(z),h− ∇
extraℓtr(z),h

≥ 1.99−2(ζ1+ζ2)− 8/πα−1h −ϵ

−(1+δ)(1/(c3α
l
z)+2

√
sαh)∥h∥

2, (46)

and

∥∇ℓtr(z)∥

≤ ∇cleanℓtr(z)+ ∇
noiseℓtr(z)+ ∇

extraℓtr(z)

≤(1+δ)2 1.02+2/αh+1/(c3α
l
z)+2

√
sαh∥h∥.(47)

TheRCis guaranteed ifµ,λ,ϵare chosen properly,c3is
sufficiently large andsis sufficiently small.
•Regime 2: Oncetheiterateentersthisregime with
∥h∥ ≤ c3∥w∥∞

∥z∥ ,eachgradientiterate maynotreducethe
estimation error. However, in this regime each move size
µ∇ℓtr(z)is at mostO(∥w∥∞/∥z∥).Thentheestimationerror
cannot increase by more than∥w∥∞∥z∥ with a constant factor.
Thus one has

dist(z−µ∇ℓtr(z),x)≤c5
∥w∥∞

∥x∥

for some constantc5.Aslongas∥w∥∞/∥x∥
2is sufficiently

small, it is guaranteed thatc5
∥w∥∞
∥x∥ ≤c4∥x∥.Iftheiterate

jumps out ofRegime 2,itfallsintoRegime 1.

VI. PROOFS FORMEDIAN-RWF

We first show that ∇Rtr(z)in (19) satisfies theRCfor
the noise-free case in Section VI-A, and then extend it to the
model with only sparse outliers in Section VI-B, thus together
with Proposition 2 establishing the global convergence of
median-RWF in both cases. Section VI-C proves Theorem 2 in
the presence of both sparse outliers and dense bounded noise.

A. Proof of Proposition 1

The central step to establish theRCis to show that the
sample median used in the truncation rule of median-RWF
concentrates on the order of∥z−x∥as stated in the following
proposition.
Proposition 6: If m>c0nlogn, then with probability at

least1−c1exp(−c2m),

0.5∥z−x∥≤θ0.49,θ0.51 |aTiz|−|a
T
ix|

m

i=1

≤0.8∥z−x∥, (48)

holds for allz,xsatisfying∥z−x∥<1/11∥z∥.
Proof: See Appendix A.
Next we give a bound on the left hand side ofRC.
Proposition 7 (Adapted Version of [15, Proposition 2]):
Consider the noise-free measurements yi=|a

T
ix|and any

fixed constantϵ>0.Ifm>c0nlogn, then with probability
at least1−c1exp(−c2m),

⟨∇Rtr(z),z−x⟩≥ 0.88−ζ′1−ζ
′
2−ϵ∥z−x∥

2 (49)

holds uniformly over allx,z∈Rnsatisfying∥z−x∥∥z∥ ≤ 1
20,

where c0,c1,c2>0are some universal constants, andζ
′
1,ζ
′
2

are given by

ζ′1:=1−min Eξ21
{ξ≥0.5

√
1.01α′h

∥z−x∥
∥x∥}

,

E1
{ξ≥0.5

√
1.01α′h

∥z−x∥
∥x∥}

ζ′2:=Eξ
21{|ξ|>0.5

√
0.99α′h}

for someξ∼N(0,1)andα′h=5.
Proof: See Appendix B.
Proposition 7 indicates that⟨∇Rtr(z),z−x⟩is lower
bounded by∥z−x∥2with some positive constant coefficient.
In order to prove theRC,itsufficestoshowthat∥∇Rtr(z)∥
is upper bounded by the order of∥z−x∥whenzis within
the neighborhood of true signalx.
Proposition 8: ([ 15, Lemma 7]) If m>c0n, then there

exist some constants c1,c2>0such that with probability at
least1−c1exp(−c2m),

∥∇Rtr(z)∥≤(1.8+δ)∥z−x∥ (50)

holds uniformly over allx,z∈Rnsatisfying∥x−z∥≤111∥x∥
whereδcan be arbitrarily small as long as c0sufficiently
large.
Proof: See Appendix C.
With the above two propositions, RCis guaranteed by

settingµ<µ0:=
2(0.88−ζ′1−ζ

′
2−ϵ)

(1.8+δ)2
andλ+µ·(1.8+δ)2<

2(0.88−ζ′1−ζ
′
2−ϵ).

B. Proof of Theorem 1

We consider the model (11) with only outliers, i.e., yi=
|⟨ai,x⟩|

2+ηifori= 1,···,m.Itsufficestoshowthat
∇Rtr(z)satisfies theRC. The critical step is to lower and
upper bound the sample median of the corrupted measure-
ments. Lemma 3 yields

θ1
2−s
({||aTix|−|a

T
iz||})≤θ1

2
({|
√
yi−|a

T
iz||})

≤θ1
2+s
({||aTix|−|a

T
iz||}. (51)

For the simplicity of notation, we leth:=z−x.Thenfor
the instance ofs=0.01, Proposition 6 yields that ifm>
c0nlogn,then

0.5∥h∥≤θ1
2
({|
√
yi−|a

T
iz||})≤0.8∥h∥ (52)

holds with probability at least 1−2exp(− (m)).
Based on the definition of setE′tin Algorithm 2, we intro-

duce events8

Ti:=
√
yi−|a

T
iz|≤α

′
h·med

√
yi−|a

T
iz| .(53)

8Again, we drop the iteratetsubscript or superscript for simplicity.
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Differentiating from Ti, we further define T̃i :=

|aTix|−|a
T
iz|≤α

′
hmed

√
yi−|a

T
iz| .Wethen have

∇Rtr(z)

=
1

m

m

i=1

|aTiz|−
√
yi ai1Ti

=
1

m

m

i=1

|aTiz|−
√
yi ai1̃Ti

∇cleanRtr(z)

+
1

m
i∈S

|aTiz|−
√
yi1Ti− |a

T
iz|−|a

T
ix|1̃Tiai

∇extraRtr(z)

.

We note that all the proof arguments for Propositions 7
and 8 are also valid to∇cleanRtr(z).Thus,onehas

∇cleanRtr(z),h≥ 0.88−ζ′1−ζ
′
2−ϵ∥h∥

2,

∇cleanRtr(z)≤(1.8+δ)∥h∥.

We next bound the contribution of∇extraRtr(z).Introduce
q=[q1,...,qm]

T,where

qi:= |a
T
iz|−

√
yi1Ti− |a

T
iz|−|a

T
ix|1̃Ti 1{i∈S},

and then|qi|≤1.6α
′
h∥h∥.Thus,∥q∥≤

√
sm·1.6α′h∥h∥,and

∇extraRtr(z)=
1

m
ATq ≤1.6(1+δ)

√
sα′h∥h∥,

∇extraRtr(z),h ≤∥h∥·∇extraRtr(z)

≤1.6(1+δ)
√
sα′h∥h∥

2,

whereA=[a1,...,am]
T.Then,wehave

⟨∇Rtr(z),h⟩≥ ∇
cleanRtr(z),h− ∇extraRtr(z),h

≥ 0.88−ζ′1−ζ
′
2−ϵ−1.6(1+δ)

√
sα′h∥h∥

2,

and

∥∇Rtr(z)∥≤ ∇cleanRtr(z)+ ∇extraRtr(z)

≤ 1.8+δ+1.6(1+δ)
√
sα′h∥h∥.

Therefore theRCis guaranteed ifµ,λare chosen properly,
δis chosen sufficiently small andsis sufficiently small.

C. Proof of Theorem 2

We consider the model (11) with outliers and bounded noise.
We split our analysis of the gradient loop into two regimes.
•Regime 1:c4∥z∥≥∥h∥≥c3

√
∥w∥∞.Inthisregime,

error contraction by each gradient step is given by

dist(z−µ∇Rtr(z),x)≤(1−ρ)dist(z,x). (54)

It suffices to justify that∇Rtr(z)satisfies theRC.Denote
ỹi:=(a

T
ix)

2+wi.ThenbyLemma3,wehave

θ1
2−s

ỹi−|a
T
iz| ≤med

√
yi−|a

T
iz|

≤θ1
2+s

ỹi−|a
T
iz|.

Moreover, by Lemma 2 we have

θ1
2+s

ỹi−|a
T
iz|−θ1

2+s
|aTix|−|a

T
iz| ≤ ∥w∥∞,

θ1
2−s

ỹi−|a
T
iz|−θ1

2−s
|aTix|−|a

T
iz| ≤ ∥w∥∞.

Assume thats=0.01. By Proposition 6, ifc3is sufficiently
large (i.e.,c3>100),westillhave

0.5∥h∥≤med
√
yi−|a

T
iz| ≤0.8∥h∥. (55)

Furthermore, recallT̃i:= {||aTix|−|a
T
iz||≤α

′
hmed{||a

T
i

z|−
√
yi|}}.Then,

∇Rtr(z)=
1

m

m

i=1

|aTiz|−
√
yi ai1Ti

=
1

m
i/∈S

|aTiz|−|a
T
ix|ai1Ti

+
1

m
i∈S

|aTiz|−|a
T
ix|ai1̃Ti

−
1

m
i/∈S

(
√
yi−|a

T
ix|)ai1Ti

∇noiseRtr(z)

+
1

m
i∈S

|aTiz|−
√
yi ai1Ti

−
1

m
i∈S

|aTiz|−|a
T
ix|ai1̃Ti,

where we use∇cleanRtr(z)to denote the first two terms and
∇extraRtr(z)to denote the last two terms. All the proof argu-
ments for Propositions 7 and 8 are also valid for∇cleanRtr(z),
and thus we have

∇cleanRtr(z),h≥ 0.88−ζ
′
1−ζ

′
2−ϵ∥h∥

2,

∇cleanRtr(z)≤(1.8+δ)∥h∥.

Next, we turn to control the contribution of the noise. Let
w̃i=(

√
yi−|a

T
ix|)1Ti.Then|̃wi|<

√
|wi|and we have

∥∇noiseRtr(z)∥=
1

m
ATw̃ ≤

1
√
m
AT

w̃
√
m

≤(1+δ)∥̃w∥∞ ≤(1+δ)∥w∥∞,

whenm/nis sufficiently large. Given the regime condition
∥h∥≥c3

√
∥w∥∞,wefurtherhave

∥∇noiseRtr(z)∥≤
(1+δ)

c3
∥h∥,

∇noiseRtr(z),h ≤ ∇noiseRtr(z)∥h∥≤
(1+δ)

c3
∥h∥2.

We next bound the contribution of ∇extraRtr(z).Introduce
q=[q1,...,qm]

T,where

qi:=(|a
T
iz|−

√
yi)1Ti−(|a

T
iz|−|a

T
ix|)1̃Ti 1{i∈S}.
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Then|qi|≤1.6α
′
h∥h∥,and∥q∥≤

√
sm·1.6α′h∥h∥. Wethus

have

∇extraRtr(z)=
1

m
ATq ≤1.6(1+δ)

√
sα′h∥h∥,

∇extraRtr(z),h ≤∥h∥∇extraRtr(z)

≤1.6(1+δ)
√
sα′h∥h∥

2.

Putting these together, one has

⟨∇Rtr(z),h⟩

≥ ∇cleanRtr(z),h− ∇noiseRtr(z),h

− ∇extraRtr(z),h

≥ 0.88−ζ′1−ζ
′
2−ϵ−(1+δ)(1/c3−1.6

√
sα′h)∥h∥

2,

and

∥∇Rtr(z)∥

≤ ∇cleanRtr(z)+ ∇noiseRtr(z)+ ∇extraRtr(z)

≤ 1.8+δ+(1+δ)·(1/c3+1.6
√
sα′h)∥h∥. (56)

Thus, theRCis guaranteed ifµ,λ,ϵare chosen properly,
c0,c3are sufficiently large andsis sufficiently small.
•Regime 2:Oncetheiterateentersthisregimewith∥h∥≤
c3
√
∥w∥∞,eachgradientiteratemaynotreducetheestimation

error. However, in this regime each move sizeµ∇Rtr(z)is at
mostO(

√
∥w∥∞).Thentheestimationerrorcannotincrease

by more than
√
∥w∥∞ with a constant factor. Thus one has

dist(z−µ∇Rtr(z),x)≤c5 ∥w∥∞ (57)

for some constantc5.Aslongas
√
∥w∥∞ is sufficiently small,

it is guaranteed thatc5
√
∥w∥∞ ≤c4∥x∥.Iftheiteratejumps

out ofRegime 2,itfallsintoRegime 1.

VII. CONCLUSION ANDDISCUSSION

In this paper, we propose provably effective approaches,
median-TWF and median-RWF, for phase retrieval when the
measurements are corrupted by sparse outliers that can take
arbitrary values. Our strategyistoapplygradientdescent
with respect to carefully chosen loss functions, where both
the initialization and the search directions are pruned by the
sample median. We show that both algorithms allow exact
recovery even with a constant proportion of arbitrary outliers
for robust phase retrieval using a near-optimal number of
measurements up to a logarithmic factor. We also show our
algorithms perform well for phase retrieval problem under
sparse corruptions by extensive experiments. We anticipate
that the technique developed in this paper will be useful
for designing provably robust algorithms for other inference
problems under sparse corruptions. Recently, [39] studied the
low-rank matrix recovery from random linear measurements
and applied the median approach to resist sparse corruptions.
At last, we would like to discuss several points related

with this work. As the reader may notice, our algorithms are
applicable to both the complex case and the real case but the
proof of performance guarantee is developed for the real case.
One key difference in the analysis lies in the fact that sgn(·)for
the real case becomes phase(·)for the complex case, which

takes continuous values and requires very different analysis
technique. Two recent papers [57] and [47] have made some
progress along this direction but are not sufficient to establish
the bounds for our purpose. We leave the further elaborative
investigation as future work.
In order to establish the performance guarantee of our

algorithms, we assume the measurement vectors are composed
of i.i.d. Gaussian entries. This assumption brings convenience
for the proof but does not fit the practical application well.
Another interesting direction is to consider the non-i.i.d.
measurement vectors like the Fourier basis measurements in
the coded diffraction patterns [8] and the circulant measure-
ment in convolutional phase retrieval [47]. These structured
measurements require much less memory and also less compu-
tations via fast Fourier transform. It is interesting to study the
robustness of the under these non-i.i.d. scenarios and analyze
the performance of our median-approach.

APPENDIXA
PROOF OFPROPERTIES OFMEDIAN

A. Proof of Lemma 1

For simplicity, denoteθp:=θp(F)andθ̂p:=θp({Xi}
m
i=1).

SinceF′is continuous and positive, for anϵ,thereexists
aconstantδ1such thatP(X≤θp−ϵ)= p−δ1,where
δ1∈(ϵl,ϵL).Thenonehas

P θ̂p<θp−ϵ
(a)
=P

m

i=1

1{Xi≤θp−ϵ}≥pm

=P
1

m

m

i=1

1{Xi≤θp−ϵ}≥(p−δ1)+δ1

(b)
≤exp(−2mδ21)≤exp(−2mϵ

2l2),

where (a) is due to the definition of the quantile function
in (29) and (b) is due to the fact that1{Xi≤θp−ϵ} ∼
Bernoulli(p−δ1)i.i.d., followed by the Hoeffding inequality.
Similarly, one can show for someδ2∈(ϵl,ϵL),

P θ̂p>θp+ϵ ≤exp(−2mδ
2
2)≤exp(−2mϵ

2l2).

Combining these two inequalities, one has the conclusion.

B. Proof of Lemma 2

It suffices to show that

|X(k)−Y(k)|≤max
l
|Xl−Yl|,∀k=1,···,n. (58)

Case 1: k=n,supposeX(n)=XiandY(n)=Yj,i.e.,Xiis
the largest among{Xl}

n
l=1andYjis the largest among{Yl}

n
l=1.

Then we have eitherXj≤Xi≤YjorYi≤Yj≤Xi.Hence,

|X(n)−Y(n)|=|Xi−Yj|≤max{|Xi−Yi|,|Xj−Yj|}.

Case 2: k=1, suppose thatX(1)= XiandY(1)=Yj.
Similarly

|X(1)−Y(1)|=|Xi−Yj|≤max{|Xi−Yi|,|Xj−Yj|}.

Case 3:1<k<n,supposethatX(k)=Xi,Y(k)=Yj,and
without loss of generality assume thatXi<Yj(ifXi=Yj,
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0=|X(k)−Y(k)|≤maxl|Xl−Yl|holds trivially). We show
the conclusion by contradiction.
Assume|X(k)−Y(k)|>maxl|Xl−Yl|.Thenonemusthave

Yi<YjandXj>Xiandi̸= j.Moreoverforanyp<k
andq>k,theindexofX(p)cannot be equal to the index of
Y(q);otherwisetheassumptionisviolated.
Thus, allY(q)forq>kmust share the same index set with
X(p)forp>k.However,Xj,whichislargerthanXi(thus
ifXj=X(k′),thenk

′>k), shares the same index withYj,
whereYj=Y(k).Thisyieldscontradiction.

C. Proof of Lemma 3

Assume thatsmis an integer. Since there aresmcorrupted
samples in total, one can select at least⌈(p−s)m⌉clean
samples from the leftpportion of ordered contaminated sam-
ples{θ1/m({Xi}),θ2/m({Xi}),···,θp({Xi})}.Thusonehasthe
left inequality. Furthermore, one can also select out at least
⌈(1−p−s)m⌉clean samples from the right 1−pportion
of ordered contaminated samples{θp({Xi}),···,θ1({Xi})}.
One has the right inequality.

D. Proof of Lemma 4

First we introduce some general facts for the distribution
of the product of two correlated standard Gaussian random
variables [21]. Letu∼ N(0,1),v∼ N(0,1),andtheir
correlation coefficient beρ∈[−1,1].Thenthedensityof
uvis given by

φρ(x)=
1

π 1−ρ2
exp

ρx

1−ρ2
K0

|x|

1−ρ2
, x̸=0,

whereK0(·)is the modified Bessel function of the second
kind. Thus the density ofr=|uv|is

ψρ(x)=
1

π 1−ρ2
exp

ρx

1−ρ2
+exp−

ρx

1−ρ2

·K0
|x|

1−ρ2
,x>0,(59)

for|ρ|<1. If|ρ|=1,rbecomes aχ21random variable, with
the density

ψ|ρ|=1(x)=
1
√
2π
x−1/2exp(−x/2), x>0.

It can be seen from (59) that the density ofronly relates to
the correlation coefficientρ∈[−1,1].
Letθ1/2(ψρ)be the 1/2quantile(median)ofthedistrib-

utionψρ(x),andψρ(θ1/2)be the value of the functionψρ
at the pointθ1/2(ψρ).Althoughitisdifficulttoderivethe
analytical expressions ofθ1/2(ψρ)andψρ(θ1/2)due to the
complicated form ofψρin (59), due to the continuity of
ψρ(x)andθ1/2(ψρ), wecancalculatethemnumerically,
as illustrated in Figure 6. From the numerical calculation,
one can see that bothψρ(θ1/2)andθ1/2(ψρ)are bounded
from below and above for allρ∈[0,1](ψρ(·)is symmet-
ric overρ,henceitissufficienttoconsiderρ∈[0,1]),
satisfying

0.348<θ1/2(ψρ)<0.455,0.47<ψρ(θ1/2)<0.76.(60)

Fig. 6. Quantiles and density at quantiles ofψρ(x)acrossρ.

APPENDIXB
PROOF OFPROPOSITION2

Denoteỹi:= |a
T
ix|
2+wifor convenience. We first bound

the concentration ofmed({yi}),alsodenotedbyθ1
2
({yi}).

Lemma 3 yields

θ1
2−s
({̃yi})<θ1

2
({yi})<θ1

2+s
({̃yi}). (61)

Moreover, Lemma 2 indicates that

θ1
2−s
({̃yi})≥θ1

2−s
({|aTix|

2})−∥w∥∞, (62)

θ1
2+s
({̃yi})≤θ1

2+s
({|aTix|

2})+∥w∥∞. (63)

Observe that aTix= ã
2
i1∥x∥

2, whereãi1 = aTix/∥x∥
is a standard Gaussian random variable. Thus|̃ai1|

2is a
χ21 random variable, whose cumulative distribution func-
tion is denoted asK(x). MoreoverbyLemma1,fora

smallϵ,onehas θ1
2−s
({| ̃ai1|

2})−θ1
2−s
(K) < ϵand

θ1
2+s
({| ̃ai1|

2})−θ1
2+s
(K) < ϵ with probability 1−

2exp(−cmϵ2)andcis a constant around 2×0.472(see
Figure 6). We note thatθ1

2
(K)=0.455 and bothθ1

2−s
(K)and

θ1
2+s
(K)can be arbitrarily close toθ1

2
(K)simultaneously as

long assis small enough (independent ofn). Thus, one has

θ1
2−s
(K)−ϵ−c∥x∥2<θ1

2
({yi})<θ1

2+s
(K)+ϵ+c∥x∥2,

(64)

with probability at least 1−exp(−cmϵ2).Forthesakeof
simplicity, we introduce two new notationsζs:=θ1

2−s
(K)

andζs:=θ1
2+s
(K).Specificallyfortheinstanceofs=0.01,
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one hasζs=0.434 andζ
s=0.477. It is easy to see that

ζs−ζscan be arbitrarily small ifsis small enough.
We next estimate the direction of x,assuming∥x∥=1.

On the event that (64) holds, the truncation function has the
following bounds,

1{yi≤α2yθ1/2({yi})/0.455}≤1yi≤α2y(ζs+ϵ)/0.455

≤1
(aTix)

2≤α2y(ζ
s+ϵ+c)/0.455

1{yi≤α2yθ1/2({yi})/0.455}≥1yi≤α2y(ζs−ϵ)/0.455

≥1
(aTix)

2≤α2y(ζs−ϵ−c)/0.455
.

On the other hand, denote the support of the outliers asS,
and we have

Y=
1

m
i/∈S

aia
T
iỹi1{(aTix)2≤α2yθ1/2({yi})/0.455}

+
1

m
i∈S

aia
T
iyi1{yi≤α2yθ1/2({yi})/0.455}.

Consequently, one can boundYas

Y1:=
1

m
i/∈S

aia
T
i(a

T
ix)

21{(aTix)2≤α2y(ζs−ϵ−c)/0.455}

−c·
1

m
i/∈S

aia
T
i≼Y

≼
1

m
i/∈S

aia
T
i(a

T
ix)

21{(aTix)2≤α2y(ζs+ϵ+c)/0.455}

+c·
1

m
i/∈S

aia
T
i

+
1

m
i∈S

aia
T
iα
2
y(ζ
s+ϵ+c)/0.455=:Y2,

where we have

E[Y1]=(1−s)(β1xx
T+β2I−cI),

E[Y2]=(1−s)(β3xx
T+β4I+cI)+sα

2
y

(ζs+ϵ)

0.455
I,

with

β1:=Eξ
41{|ξ|≤αy

√
(ζs−ϵ−c)/0.455}

−Eξ21{|ξ|≤αy
√
(ζs−ϵ−c)/0.455}

β2:=Eξ
21{|ξ|≤αy

√
(ζs−ϵ−c)/0.455}

β3:=Eξ
41{|ξ|≤αy

√
(ζs+ϵ+c)/0.455}

−Eξ21{|ξ|≤αy
√
(ζs+ϵ+c)/0.455}

β4:=Eξ
21{|ξ|≤αy

√
(ζs+ϵ+c)/0.455}

whereξ∼N(0,1).
Applying standard results on random matrices with non-

isotropic sub-Gaussian rows [55, eq. (5.26)] and noticing that
aia
T
i(a

T
ix)

21{|aTix|≤c}
can be rewritten asbib

T
iwherebi:=

ai(a
T
ix)1{|aTix|≤c}

is sub-Gaussian, one can obtain

∥Y1−E[Y1]∥ ≤δ,∥Y2−E[Y2]∥ ≤δ (65)

with probability 1−exp(− (m)),providedthatm/nexceeds
some large constant. Furthermore, whenϵ,candsare suffi-
ciently small, one further has∥E[Y1]−E[Y2]∥ ≤δ.Putting
these together, one has

∥Y−(1−s)(β1xx
T+β2I−cI)∥≤3δ. (66)

Letz̃(0)be the normalized leading eigenvector ofY.Repeating
the same argument as in [9, Sec. 7.8] and takingδ,ϵto be
sufficiently small, one has

dist(̃z(0),x)≤δ̃, (67)

for a giveñδ>0, as long asm/nexceeds some large constant.
Furthermore letz(0)= med{yi}/0.455̃z

(0)to handle cases
∥x∥ ̸=1. By the bound (64), one has

med({yi})

0.455
−∥x∥2

≤max
ζs−ϵ−c

0.455
−1,

ζs+ϵ+c

0.455
−1 ∥x∥2

≤
ζs−ζs+2ϵ+2c

0.455
∥x∥2.

Thus

dist(z(0),x)≤
ζs−ζs+2ϵ+2c

0.455
∥x∥+δ̃∥x∥≤

1

11
∥x∥

as long assandcare small enough constants.

APPENDIXC
SUPPORTINGPROOFS FORMEDIAN-TWF

A. Proof of Proposition 3

We show that the sample median used in the truncation rule
concentrates at the level∥z−x∥∥z∥.Alongtheway,wealso
establish that the sample quantiles around the median are also
concentrated at the level∥z−x∥∥z∥.
We first show that for a fixed pair zandx,(34)holds
with high probability. For simplicity of notation, we leth:=
z−x.Letri=|(a

T
ix)

2−(aTiz)
2|.Thenri’s are i.i.d. copies

of a random variabler,wherer=|(aTx)2−(aTz)2|with
the entries ofacomposed of i.i.d. standard Gaussian random
variables. Note that the distribution ofris fixed once givenh
andz.Letx(1)denote the first element of a generic vectorx,
andx−1denote the remaining vector ofxafter eliminating the
first element. LetUhbe an orthonormal matrix with first row
beinghT/∥h∥,̃a=Uha,and̃z=Uhz.Similarly,defineUz̃−1
and letb̃=Uz̃−1ã−1.Theña(1)andb̃(1)are independent
standard normal random variables. We further expressras
follows.

r=|(aTz)2−(aTx)2|

=|(2aTz−aTh)(aTh)|

=|(2̃aTz̃−ã(1)∥h∥)(̃a(1)∥h∥)|

=|(2hTz−∥h∥2)̃a(1)2+2(̃aT−1̃z−1)(̃a(1)∥h∥)|

=|(2hTz−∥h∥2)̃a(1)2+2̃b(1)∥̃z−1∥̃a(1)∥h∥|

=|(2hTz−∥h∥2)̃a(1)2

+2 ∥z∥2−z̃(1)2̃a(1)̃b(1)∥h∥|



ZHANGet al.: MEDIAN-TRUNCATEDNONCONVEXAPPROACHFORPHASERETRIEVALWITHOUTLIERS 7303

= 2
hTz

∥h∥∥z∥
−
∥h∥

∥z∥
ã(1)2

+2 1−
hTz

∥h∥∥z∥

2

ã(1)̃b(1)·∥h∥∥z∥

=: (2cos(ω)−t)̃a(1)2+2 1−cos2(ω)̃a(1)̃b(1)

·∥h∥∥z∥

=: |ũv|·∥h∥∥z∥

whereωis the angle betweenhandz,andt= ∥h∥/
∥z∥<1/11. Consequently,u= ã(1)∼N(0,1)andṽ=
(2cos(ω)−t)̃a(1)+2|sin(ω)|̃b(1)is also a Gaussian random
variable with variance 3.6<Var(̃v) <4undertheassumption
t<1/11.
Letv=̃v/Var(̃v),andthenv∼N(0,1).Furthermore,

letr′=|uv|.Denotethedensityfunctionofr′asψρ(·)and
the 1/2-quantile point ofr′asθ1/2(ψρ).ByLemma4,wehave

0.47<ψρ(θ1/2)<0.76,

0.348<θ1/2(ψρ)<0.455.

By Lemma 1, we have with probability at least
1−2exp(−cmϵ2)(herecis around 2×0.472),

0.348−ϵ<med({r′i}
m
i=1)<0.455+ϵ.

The same arguments carry over to other quantilesθ0.49({r
′
i})

andθ0.51({r
′
i}).FromFigure.6,weobservethatforρ∈[0,1]

0.45<ψρ(θ0.49),ψρ(θ0.51)<0.78,

0.34<θ0.49(ψρ),θ0.51(ψρ)<0.48

and then we have with probability at least 1−2exp(−cmϵ2)
(herecis around 2×0.452),

0.34−ϵ<θ0.49({r
′
m}),θ0.51({r

′
m})<0.48+ϵ. (68)

Hence, by multiplying by Var(̃v),wehavewithprobabil-
ity 1−2exp(−cmϵ2),

(0.65−ϵ)∥z−x∥∥z∥≤med |(aTiz)
2−(aTix)

2|

≤(0.91+ϵ)∥z−x∥∥z∥, (69)

(0.63−ϵ)∥z−x∥∥z∥≤θ0.49,θ0.51 |(aTiz)
2−(aTix)

2|

≤(0.95+ϵ)∥z−x∥∥z∥. (70)

We note that, to keep notation simple, candϵmay vary
line by line within constant factors.
Up to now, we prove that for any fixed zandx,
the median or neighboring quantiles of|(aTiz)

2−(aTix)
2|

are upper and lower bounded by∥z−x∥∥z∥times constant
factors. To prove (34) for allzandxwith∥z−x∥≤111∥z∥,
we use the net covering argument. Still we argue for median
first and the same arguments carry over to other quantiles.
To proceed, we restate (69) as

(0.65−ϵ)≤med
2(aTiz)

∥z∥
−
aTih

∥h∥

∥h∥

∥z∥

aTih

∥h∥

≤(0.91+ϵ)

holds with probability at least 1−2exp(−cmϵ2)for a given
pairh,zsatisfying∥h∥/∥z∥≤1/11.
Letτ=ϵ/(6n+6m),letSτbe aτ-net covering the unit

sphere,Lτbe aτ-net covering a line with length 1/11, and
set

Nτ={(z0,h0,t0):(z0,h0,t0)∈Sτ×Sτ×Lτ}. (71)

One has cardinality bound (i.e., the upper bound on the
covering number)|Nτ|≤(1+2/τ)

2n/(11τ) < (1+2/τ)2n+1.
Taking the union bound, we have

(0.65−ϵ)≤med |2(aTiz0)−(a
T
ih0)t0||a

T
ih0|

≤(0.91+ϵ), ∀(z0,h0,t0)∈Nϵ (72)

with probability at least 1−(1+2/τ)2n+1exp(−cmϵ2).
We next argue that (72) holds with probability 1 −c1
exp(−c2mϵ

2)for some constantsc1,c2as long asm≥c0
(ϵ−2logϵ−1)nlognfor sufficiently large constantc0.Toprove
this claim, we first observe

(1+2/τ)2n+1≍exp(2n(log(n+m)+log 12+log(1/ϵ)))

≍exp(2n(logm)).

We note that onceϵis chosen, it is fixed in the whole proof
and does not scale withmorn.Forsimplicity,assumethat
ϵ< 1/e.Fixsomepositiveconstantc′< c−c2.Itthen
suffices to show that there exists a large constantc0such that
ifm≥c0(ϵ

−2logϵ−1)nlogn,then

2nlogm<c′mϵ2. (73)

For any fixedn,if(73)holdsforsomemandm>(2/c′)ϵ−2n,
then (73) always holds for largerm,because

2nlog(m+1)=2nlogm+2n(log(m+1)−logm)

=2nlogm+
2n

m
log(1+

1

m
)m

≤2nlogm+
2n

m
≤c′mϵ2+c′ϵ2=c′(m+1)ϵ2.

Next, for anyn,wecanalwaysfindaconstantc0such that
(73) holds form=c0(ϵ

−2logϵ−1)nlogn.Suchc0can be
easily found for largen.Forexample,c0=4/c

′is a valid
option if

(4/c′)(ϵ−2logϵ−1)nlogn<n2. (74)

Moreover, since the number of nthat violates (74) is finite,
the maximum over all suchc0serves the purpose.
Next, one needs to bound

med |2(aTiz0)−(a
T
ih0)t0||a

T
ih0|

−med |2(aTiz)−(a
T
ih)t||a

T
ih|

for any∥z−z0∥<τ,∥z−z0∥<τand∥t−t0∥<τ.
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By Lemma 2 and the inequality|x|−|y|≤|x−y|,wehave

med |2(aTiz0)−(a
T
ih0)t0||a

T
ih0|

−med |2(aTiz)−(a
T
ih)t||a

T
ih|

≤max
i∈[m]

2(aTiz0)−(a
T
ih0)t0 (a

T
ih0)

− 2(aTiz)−(a
T
ih)t(a

T
ih)

≤max
i∈[m]

2(aTiz0)−(a
T
ih0)t0 (a

T
ih0)

− 2(aTiz)−(a
T
ih)t(a

T
ih0)

+max
i∈[m]

2(aTiz)−(a
T
ih)t(a

T
ih0)

− 2(aTiz)−(a
T
ih)t(a

T
ih)

≤max
i∈[m]

2aTi(z0−z)+ (a
T
ih0)t0−(a

T
ih)t aTih0

+max
i∈[m]

2(aTiz)−(a
T
ih)t|a

T
i(h0−h)|

≤max
i∈[m]

∥ai∥
2(3+t)τ+max

i∈[m]
∥ai∥

2(2+t)τ

≤max
i∈[m]

∥ai∥
2(5+2t)τ

On the eventE1:=maxi∈[m]∥ai∥
2≤m+n,onecan

show that

med |2(aTiz0)−(a
T
ih0)t0||a

T
ih0|

−med |2(aTiz)−(a
T
ih)t||a

T
ih|

<6(m+n)τ<ϵ. (75)

We claim that E1 holds with probability at least 1−
mexp(−m/8)ifm>n.Thiscanbearguedasfollows.Note
that∥ai∥

2= n
j=1ai(j)

2,whereai(j)is thej-th element

ofai.Hence,∥ai∥
2is a sum ofni.i.d.χ21random variables.

Applying the Bernstein-type inequality [55, Corollary 5.17]
and observing that the sub-exponential norm ofχ21is smaller
than 2, we have

P ∥ai∥
2≥m+n ≤exp(−m/8). (76)

Then a union bound concludes the claim.
Further note that (72) holds on an eventE2,whichhas

probability 1−c1exp(−c2 mϵ
2)as long asm ≥ c0

(ϵ−2log1ϵ)nlogn.OntheintersectionofE1andE2,inequal-
ity forθ1

2
(i.e., median) in (34) holds. Such net covering

arguments can also carry over to show that inequalities of
θ0.49andθ0.51in (34) also hold for allxandzobeying
∥x−z∥≤111∥z∥.

B. Proof of Proposition 4

The proof adapts that of [14, Proposition 2]. We outline the
main steps for completeness. Observe that for the noise-free

case,yi=(a
T
ix)

2.Weobtain

∇ℓtr(z)=
1

m

m

i=1

(aTiz)
2−(aTix)

2

aTiz
ai1Ei1∩E

i
2

=
1

m

m

i=1

2(aTih)ai1Ei1∩E
i
2
−
1

m

m

i=1

(aTih)
2

aTiz
ai1Ei1∩E

i
2
.

(77)

One expects the contribution of the second term in (77) to be
small as∥h∥/∥z∥decreases.
For eachi,weintroducetwonewevents

Ei3:= {(a
T
ix)

2−(aTiz)
2≤0.6αh∥h∥·|a

T
iz|},

Ei4:= {(a
T
ix)

2−(aTiz)
2≤1.0αh∥h∥·|a

T
iz|}.

One the event that Proposition 3 holds, the following inclusion
property

Ei3⊆E
i
2⊆E

i
4 (78)

is true for alli,whereEi2is defined in (43). It is easier to work
with these new events becauseEi3’s (resp.E

i
4’s) are statistically

independent acrossifor any fixedxandz.Tofurtherdecouple
the quadratic inequalities inEi3andE

i
4into linear inequalities,

we introduce two more events and state their properties in the
following lemma.
Lemma 5: ([15, Lemma 3]) For anyγ>0,define

Diγ:= {(a
T
ix)

2−(aTiz)
2≤γ∥h∥|aTiz|}, (79)

Di,1γ :=
|aTih|

∥h∥
≤γ , (80)

Di,2γ :=
aTih

∥h∥
−
2aTiz

∥h∥
≤γ . (81)

On the eventEi1defined in Algorithm 1, the quadratic inequal-
ity specifyingDiγimplicates thata

T
ihbelongs to two intervals

centered around0and2aTiz,respectively,i.e.,D
i,1
γ andD

i,2
γ.

The following inclusion property holds

Di,1γ
1+
√
2

∩Ei1 ∪ Di,2γ
1+
√
2

∩Ei1

⊆Diγ∩E
i
1⊆ Di,1γ ∩E

i
1 ∪ D

i,2
γ ∩E

i
1 .

(82)

Specifically, following the two inclusion properties (78)
and (82), we have

Di,1γ3∩E
i
1,γ3
⊆Ei3∩E

i
1⊆E

i
2∩E

i
1

⊆Ei4∩E
i
1⊆(D

i,1
γ4
∪Di,2γ4)∩E

i
1 (83)

where the parametersγ3,γ4are given by

γ3:=0.248αh,andγ4:=αh.
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Further using the identity (77), we have the following lower
bound

⟨∇ℓtr(z),h⟩

≥
2

m

m

i=1

(aTih)
21Ei1∩D

i,1
γ3

−
1

m

m

i=1

|aTih|
3

|aTiz|
1Di,1γ4∩E

i
1
−
1

m

m

i=1

|aTih|
3

|aTiz|
1Di,2γ4∩E

i
1
.(84)

The three terms in (84) can be bounded following [15,
Lemmas 4–6], which concludes the proof.

APPENDIXD
SUPPORTINGPROOFS FORMEDIAN-RWF

A. Proof of Proposition 6

Observe that

||aTix|−|a
T
iz|| =

|aTih|, if(aTix)(a
T
iz)≥0;

|2aTix+a
T
ih|, if(aTix)(a

T
iz)<0.

The following lemma states that{(aTix)(a
T
iz)<0}are rare

events when∥x− z∥is small. Hence,med({||aTix|−
|aTiz||}

m
i=1)can be viewed asmed({|a

T
ih|}

m
i=1)with a small

perturbation.
Lemma 6: If m> c0n, then with probability at least
1−c1exp(−c2m),

1

m

m

i=1

1{(aTix)(a
T
iz)<0}

<0.05 (85)

holds for allz,xsatisfying∥z−x∥< 1
11∥x∥.

Proof: See Appendix D.
By Lemma 3 and Lemma 6, we have

θp−0.05 {|a
T
ih|}≤θp |aTix|−|a

T
iz|

≤θp+0.05 {|a
T
ih|} (86)

for allxandzsatisfying∥x−z∥ ≤ 1
11∥z∥with high

probability.
For the model (2) with a fractionsof outliers, due to

Lemma 3, we have that

θ1
2−s
({|aTix|−|a

T
iz|})≤θ1

2
({|
√
yi−|a

T
iz||})

≤θ1
2+s
({|aTix|−|a

T
iz|}). (87)

Combining with (86), we obtain that

θ0.45−s({|a
T
ih|})≤θ1

2
({|
√
yi−|a

T
iz||})≤θ0.55+s({|a

T
ih|}).

(88)

Next it suffices to show thatθ0.45−s,θ0.55+s({|a
T
ih|})are on

the order of∥h∥for smalls.
Letãi=|a

T
ih|/∥h∥.Thenãi’s are i.i.d. copies of a

folded standard Gaussianrandom variable (i.e.,|ξ|where
ξ∼N(0,1)). Weuseφ(·)to denote the density of folded
standard Gaussian distribution.

Fors=0.01, we calculate that

φ(θ0.44)=0.67,φ(θ0.45)=0.67,

φ(θ0.55)=0.60,φ(θ0.56)=0.59,

θ0.44(φ)=0.58,θ0.45(φ)=0.6,

θ0.55(φ)=0.76,θ0.56(φ)=0.78.

By Lemma 1, the sample quantiles concentrate on popula-
tion quantiles. Thus, for any fixed pair(x,z),

(0.6−ϵ)∥h∥≤θ1/2({|a
T
ix|−|a

T
iz|}

m
i=1)

≤(0.76+ϵ)∥h∥, (89)

holds with probability at least 1−2exp(−cmϵ−2).
Following the argument of net covering similarly to that in
Appendix VII-A, the proposition is proved.

B. Proof of Proposition 7

The proof adapts the proof of [15, Proposition 2]. We outline
the main steps for completeness. Observe that for the noise-
free case,yi=|a

T
ix|.Weobtain

∇Rtr(z)=
1

m

m

i=1

(aTiz)−|a
T
ix|·

aTiz

|aTiz|
ai1Ti

=
1

m
i/∈B

(aTih)ai1Ti+
1

m
i∈B

(aTiz+a
T
ix)ai1Ti

(90)

whereB:= {i:(aTix)(a
T
iz) <0}.If∥h∥/∥x∥is small

enough, the cardinality ofBis small and thus one expects
the contribution of the second term in (90) to be negligible.
We note that eventsTi(53) are not statistically independent.

To remove such dependency, we introduce two new series of
events

Ti1:= {|a
T
ix|−|a

T
iz|≤0.5α

′
h∥h∥}, (91)

Ti2:= {|a
T
ix|−|a

T
iz|≤0.8α

′
h∥h∥}. (92)

Due to Proposition 6, the following inclusion property

Ti1⊆T
i⊆Ti2 (93)

holds for alli,whereTiis defined in Algorithm 2. It is easier
to work with these new events becauseTi1’s (resp.T

i
2’s) are

statistically independent for any fixedxandz.Becauseofthe
inclusion property (93), we have

⟨∇Rtr(z),h⟩≥
1

m
i/∈B

(aTih)
21Ti1

−
1

m
i∈B

|aTiz+a
T
ix|·|a

T
ih|1Ti2

.(94)

Under the conditioni/∈ B, wehaveTi1 ={a
T
ih ≤

0.5α′h∥h∥}. Undertheconditioni∈ B, wehaveT
i
2 =

{aTix+a
T
iz≤0.8α

′
h∥h∥}.Forconvenience,weintroduce

two parametersγ1=0.5α
′
handγ2=0.8α

′
h.
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We next bound the two terms in (94) respectively. For the
first term, because of the inclusionB⊆{i:|aTix|<|a

T
ih|},

we have

1

m
i/∈B

(aTih)
21Ti1

=
1

m
i/∈B

(aTih)
21{|aTih|≤γ1∥h∥}

≥
1

m

m

i=1

(aTih)
21{|aTih|≤γ1∥h∥}

1{|aTix|≥|a
T
ih|}

≥
1

m

m

i=1

(aTih)
21{|aTih|≤γ1∥h∥}

1{|aTix|≥γ1∥h∥}
.

Asimplerversionof[15,Lemma4]givesthatifm>c0n,
with probability at least 1−c1exp(−c2mϵ

2)

1

m

m

i=1

(aTih)
21{|aTih|≤γ1∥h∥}

1{|aTix|≥γ1∥h∥}

≥(1−ζ′1−ζ
′
2−ϵ)∥h∥

2 (95)

holds for all h ∈ Rn, whereζ′1 := 1− min E

ξ21
{ξ≥
√
1.01γ1

∥h∥
∥x∥}
,E1

{ξ≥
√
1.01γ1

∥h∥
∥x∥}

andζ′2 :=Eξ
2

1{|ξ|>
√
0.99γ1}

forξ∼N(0,1).
For the second term, we have

1

m
i∈B

|aTiz+a
T
ix|·|a

T
ih|1Ti2

≤γ2∥h∥
1

m
i∈B

|aTih|

≤γ2∥h∥
1

m

m

i=1

|aTih|1{|aTix|<|a
T
ih|}
, (96)

where the second inequality is due to the inclusion property
B⊆{i:|aTix|<|a

T
ih|}.

Lemma 7: For anyϵ>0,ifm>c0nϵ
−2logϵ−1,then

with probability at least1−Cexp(−c1ϵ
2m),

1

m

m

i=1

|aTih|·1{|aTix|<|a
T
ih|}
≤(0.12+ϵ)∥h∥ (97)

holds for all non-zero vectorsx,h∈Rnsatisfying∥h∥≤
1
20∥x∥.Here,c0,c1,C>0are some universal constants.
Proof: See Appendix E.

Thus, putting together (95), (96) and Lemma 7 concludes the
proof.

C. Proof ofProposition 8

This proof adapts the proof of [15, Lemma 7]. Denote
vi:=a

T
iz−|a

T
ix|sgn(a

T
iz)1Ti.Then

∇Rtr(z)=
1

m
ATv,

where Ais a matrix with each row beingaTi andvis a
m−dimensional vector with each entry beingvi.Thus,for
sufficiently largem/n,wehave

∥∇Rtr(z)∥=
1

m
ATv ≤

1

m
∥A∥·∥v∥≤(1+δ)

∥v∥
√
m

where the last inequality is due to the spectral norm bound
∥A∥≤

√
m(1+δ)following from [55, Th. 5.32].

We next bound ∥v∥. Letv = v(1)+ v(2), where
v
(1)
i = aTih1Ti\Biandv

(2)
i = (aTix+a

T
iz)1Ti∩Bi,where

Bi:= {(aTix)(a
T
iz)<0}.Bytriangleinequality,wehave

∥v∥ ≤∥v(1)∥+∥v(2)∥.Furthermore,givenm > c0n,by
[10, Lemma 3.1] with probability 1−exp(−cm),wehave

1

m
∥v(1)∥2=

1

m

m

i=1

(aTih)
2≤(1+δ)∥h∥2.

By Lemma 6, we have with probability 1−Cexp(−c1m)

1

m
∥v(2)∥2≤(0.8α′h∥h∥)

2·
1

m

m

i=1

1{(aTix)(a
T
iz)<0}

≤0.8∥h∥2

holds, where the last inequality is due to Lemma 6. Hence,

∥v∥
√
m
≤
√
1+δ+

√
0.8∥h∥.

This concludes the proof.

D. Proof of Lemma 6

Denote correlation ρ := zTx
∥z∥∥x∥. Underthecondition

∥z−x∥≤111∥x∥, simple calculation yields 0.995<ρ≤1.
It suffices to show that the result holds with high probability
for allxandzsatisfyingρ>0.995. Since now the claim is
invariant with the norms ofxandz,weassumethatbothx
andzhave unit length without loss of generality.
We first establish the result for any fixed xandzand then
develop a uniform bound by covering net argument in the end.
We introduce a Lipschitz function to approximate the indicator
function. Define

χ(t):=

⎧
⎪⎨

⎪⎩

1, ift<0;

−1δ·t+1,if 0≤t≤δ;

0, else;

and thenχ(t)is a Lipschitz function with Lipschitz
constant1δ.Inthefollowingproof, wesetδ= 0.001.
We further have

1{(aTix)(a
T
iz)<0}

≤χ (aTix)(a
T
iz)≤1{(aTix)(a

T
iz)<δ}

.

For convenience, we denotebi:=a
T
ixandb̃i:=a

T
iz.

Then(bi,̃bi)takes the jointly Gaussian distribution with mean
µ=(0,0)Tand correlationρ(biandb̃ihave unit variance).
We next estimate the expectation of1{(aTix)(a

T
iz)<δ}

as follows.

E[1{(aTix)(a
T
iz)<δ}

]=P (aTix)(a
T
iz)<δ

=
τ1·τ2<δ

f(τ1,τ2)dτ1dτ2, (98)

wheref(τ1,τ2)is the density of the jointly Gaussian random
variables(bi,̃bi). NotethatE[1{(aTix)(a

T
iz)<δ}

]is decreas-

ing onρ and for the caseρ = 0.995 we calculate
E[1{(aTix)(a

T
iz)<δ}

]=0.045 numerically. This implies that

E[χ (aTix)(a
T
iz)]≤0.045
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forδ= 0.001. Furthermore,χ(aTix)(a
T
iz)for alliare

bounded and hence sub-Gaussian. By Hoeffding type inequal-
ity for sub-Gaussian tail [55], we have

P
1

m

m

i=1

χ (aTix)(a
T
iz)>(0.045+ϵ)<exp(−cmϵ

2),

(99)

for some universal constantc,aslongasρ≥0.995.
We have proved so far that the claim holds for fixedxandz.
We next obtain a uniform bound over all xandzwith unit
length. LetN′ϵbe anϵ-net covering the unit sphere inR

nand
set

Nϵ={(x0,z0):(x0,z0)∈N
′
ϵ×N

′
ϵ}. (100)

One has cardinality bound (i.e., the upper bound on the
covering number)|Nϵ|≤(1+2/ϵ)

2n.Thenforanypair(x,z)
with∥x∥=∥z∥=1, there exists a pair(x0,z0)∈Nϵsuch
that∥x−x0∥≤ϵand∥z−z0∥≤ϵ.Takingtheunionbound
for all the points on the net, we claim that

1

m

m

i=1

χ (aTix0)(a
T
iz0)≤0.045+ϵ,∀(x0,z0)∈Nϵ

(101)

holds with probability at least 1−(1+2/ϵ)2nexp(−cmϵ2).
Sinceχ(t)is Lipschitz with constant 1/δ,wehave

χ (aTix)(a
T
iz)−χ (a

T
ix0)(a

T
iz0)

≤
1

δ
(aTix)(a

T
iz)−(a

T
ix0)(a

T
iz0).(102)

Moreover, by [14, Lemma 1] for all symmetric rank-2 matrices
M∈Rn×n,

1

m
∥A(M)∥1≤c2∥M∥F, (103)

holds with probability at least 1−Cexp(−c1m)as long as
m>c0nfor some constantsC,c0,c1,c2>0. Consequently,
on the event that (103) holds, we have

1

m

m

i=1

χ (aTix)(a
T
iz)−

1

m

m

i=1

χ (aTix0)(a
T
iz0)

≤
1

m

m

i=1

χ (aTix)(a
T
iz)−χ (a

T
ix0)(a

T
iz0)

≤
1

δ
·
1

m
∥A(xzT−x0z

T
0)∥1 due to (102)

≤
1

δ
·c2∥xz

T−x0z
T
0∥F due to (103)

≤
1

δ
·c2(∥x−x0∥·∥z∥+∥z−z0∥·∥x0∥)≤2c3ϵ/δ.

On the intersection of events that (101) and (103) hold,
we have

1

m

m

i=1

χ (aTix)(a
T
iz)≤(0.045+ϵ+2c3ϵ/δ),(104)

for allxandzwith unit length andρ≥0.995. Sinceϵcan
be arbitrarily small, the proof is completed.

E. Proof of Lemma 7

We first observe that for anyγ,

1{|aTix|<|a
T
ih|}
≤1{|aTix|<γ∥x∥}

+1{|aTih|≥γ∥x∥}

≤1{|aTix|<γ∥x∥}
+1{|aTih|≥20γ∥h∥}

(105)

where the last inequality is due to the assumption∥h∥∥x∥≤
1
20.

To establish the lemma, we setγ = 0.15 and denote
γ′:=20γ=3. We next respectively show that

1

m

m

i=1

|aTih|1{|aTix|<γ∥x∥}
≤(0.11+ϵ)∥h∥ (106)

for allx,h∈Rn,and

1

m

m

i=1

|aTih|1{|aTih|>γ′∥h∥}
≤(0.01+ϵ)∥h∥ (107)

for allh∈Rn.
We first prove (106). Without loss of generality, we assume
thathandxhave unit length. We introduce a Lipschitz
function to approximate the indicator functions, which is
defined as

χx(t):=

⎧
⎪⎨

⎪⎩

1, if|t|<γ;
1
δ(γ−|t|)+1,ifγ≤|t|≤γ+δ;

0, else.

Thenχx(t)is a Lipschitz function with constant
1
δ.Wefurther

have

1{|aTix|<γ}
≤χx(a

T
ix)≤1{|aTix|<γ+δ}

. (108)

We first prove bounds for any fixed pairh,x,andthendevelop
auniformboundlateron.
We next estimate the expectation of|aTih|1{|aTix|<γ+δ}

,

E[|aTih|1{|aTix|<γ+δ}
]=

∞

−∞
|τ1|1{|τ2|<γ+δ}

·f(τ1,τ2)dτ1dτ2,(109)

wheref(τ1,τ2)is the density of two jointly Gaussian random

variables with correlationρ= hTx
∥h∥∥x∥≠±1. We then continue

to derive

E[|aTih|1{|aTix|<γ+δ}
]

=
1

2π 1−ρ2

∞

−∞
|τ1|exp−

τ21
2

·
γ+δ

−(γ+δ)
exp−

(τ2−ρτ1)
2

2(1−ρ2)
dτ2dτ1 (110)

=
1
√
2π

∞

−∞
|τ1|exp−

τ21
2
·

γ+δ−ρτ1√
2(1−ρ2)

−γ−δ−ρτ1√
2(1−ρ2)

exp−τ2 dτdτ1

=
1
√
8π

∞

−∞
|τ1|exp−

τ21
2

· erf
γ+δ−ρτ1

2(1−ρ2)
−erf

−γ−δ−ρτ1

2(1−ρ2)
dτ1

(111)
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Fig. 7. E[|aTih|1{|aTix|<γ+δ}
]with respect toρ.

For|ρ|<1,E[|aTih|1{|aTix|<γ+δ}
]is a continuous function

ofρ.Thelastintegral(111)canbecalculatednumerically.
Figure 7 plotsE[|aTih|1{|aTix|<γ+δ}

]forγ = 0.15 and

δ=0.01 overρ∈(−1,1).Furthermore,(110)indicatesthat
E[|aTih|1{|aTix|<γ+δ}

]is monotonically increasing with bothθ
andδ.Thus,weobtainauniversalbound

E[|aTih|1{|aTix|<γ+δ}
]

≤0.11∥h∥forγ<0.15 andδ=0.01, (112)

which further implies E[|aTih|χx(a
T
ix)]≤ 0.11∥h∥for

γ < 0.15 andδ= 0.01. Furthermore,|aTih|χx(a
T
ix)’s

are sub-Gaussian with sub-Gaussian normO(∥h∥).Bythe
Hoeffding type of sub-Gaussian tail bound [55], we have

P
1

m

m

i=1

|aTih|χx(a
T
ix)>(0.11+ϵ)∥h∥<exp(−cmϵ

2),

(113)

for some universal constantc.
We have proved so far that the claim holds for a fixed

pairh,x. Wenextobtainauniformboundoverallxandh
with unit length. LetN′ϵbe aϵ-net covering the unit sphere
inRnand set

Nϵ={(x0,h0):(x0,h0)∈N
′
ϵ×N

′
ϵ}.

One has cardinality bound (i.e., the upper bound on the
covering number)|Nϵ|≤(1+2/ϵ)

2n.Thenforanypair(x,h)
with∥x∥=∥h∥=1, there exists a pair(x0,h0)∈Nϵsuch
that∥x−x0∥≤ϵand∥h−h0∥≤ϵ.Takingtheunionbound
for all the points on the net, one can show∀(x0,h0)∈Nϵ

1

m

m

i=1

|aTih0|χx a
T
ix0 ≤0.11+ϵ, (114)

holds with probability at least 1−(1+2/ϵ)2nexp(−cmϵ2).
Sinceχx(t)is Lipschitz with constant 1/δ,wehavethe

following bound

χx a
T
ix −χx a

T
ix0 ≤

1

δ
aTi(x−x0). (115)

Consequently, on the event that (103) holds, we have

1

m

m

i=1

|aTih|χx a
T
ix −

1

m

m

i=1

|aTih0|χx a
T
ix0

≤
1

m

m

i=1

|aTih|χx a
T
ix −|a

T
ih0|χx a

T
ix0

≤
1

m

m

i=1

aTi(h−h0)+
1

δ
aTih0 a

T
ix−a

T
ix0

≤c′2∥h−h0∥+
1

δ
·c2∥h0(x−x0)

T∥F≤c3ϵ/δ.

On the intersection of events that (114) and (103) hold,
we have

1

m

m

i=1

|aTih|χx a
T
ix0 ≤(0.11+ϵ+2c3ϵ/δ),(116)

for allxandhwith unit length.
We next prove (107). Without loss of generality, we assume
thathhas unit length. We introduce a Lipschitz function to
approximate the indicator functions, which is defined as

χh(t):=

⎧
⎪⎨

⎪⎩

|t|, if|t|>γ′;
1
δ(|t|−γ

′)+γ′,ifγ′(1−δ)≤|t|≤γ′;

0, else.

Then,χh(t)is a Lipschitz function with constant
1
δ.Wefurther

have

|aTih|1{|aTih|>γ′∥h∥}
≤χh(a

T
ih)

≤|aTih|1{|aTih|>γ′(1−δ)∥h∥}
.(117)

We first prove bounds for any fixed h,andthendevelopa
uniform bound later on.
We next estimate the expectation of|aTih|1{|aTih|>γ′(1−δ)∥h∥}
as follows:

E[|aTih|1{|aTih|>γ′(1−δ)∥h∥}
]

=
∞

−∞
|τ|1{|τ|>γ′(1−δ)}·f(τ)dτ,

=2·
1
√
2π

∞

γ′(1−δ)
τexp−

τ2

2
dτ

=
2

π
exp(−γ′2(1−δ)2/2)<0.01 (118)

where f(τ)is the density of the standard Gaussian distrib-
ution and the last inequality is given by choosingγ′=3,
δ = 0.01. We note thatE[|aTih|1{|aTih|>γ′(1−δ)∥h∥}

]is

monotonically increasing with δand decreasing withγ′.
Furthermore,E[χh(a

T
ih)]≤0.01∥h∥forγ

′≥3andδ≤0.01.
Moreover, χh(a

T
ih)for alliare sub-Gaussian with sub-

Gaussian normO(∥h∥).BytheHoeffdingtypesub-Gaussian
tail bound [55], we have

P
1

m

m

i=1

χh(a
T
ih)>(0.01+ϵ)∥h∥<exp(−cmϵ

2),(119)

for some universal constantc.
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We have proved so far that the claim holds for a fixed h.
We next obtain a uniform bound over all hwith unit length.
LetNϵbe anϵ-net covering the unit sphere inR

n.One
has cardinality bound (i.e., theupperboundonthecovering
number)|Nϵ|≤(1+2/ϵ)

n.Thenforanyhwith unit length,
there exists ah0∈Nϵsuch that∥h−h0∥≤ϵ.Takingthe
union bound for all the points on the net, one can show

1

m

m

i=1

χh(a
T
ih0)≤0.01+ϵ,∀h0∈Nϵ (120)

holds with probability at least 1−(1+2/ϵ)nexp(−cmϵ2).
Consequently, we have

1

m

m

i=1

χh(a
T
ih)−

1

m

m

i=1

χh(a
T
ih0)

≤
1

m

m

i=1

χh(a
T
ih)−χh(a

T
ih0)

≤
1

δ
·
1

m

m

i=1

aTi(h−h0)

≤
1

δ
c′2∥h−h0∥≤c3ϵ/δ,

where the second inequality is becauseχh(t)is Lipschitz
continuous with constant 1/δ.
On the intersection of events that (120) and (103) hold,

we have

1

m

m

i=1

χh(a
T
ih)≤(0.01+ϵ+c3ϵ/δ), (121)

for allhwith unit length.
Putting together (116) and (121), and sinceϵcan be
arbitrarily small, the proof is completed.
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