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We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-
purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired
by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was
designed for execution on GPUs from the start (Anderson et al., 2008). The software supports short-
ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning
algorithm. We are able to demonstrate equivalent or superior scaling on up to 3375 GPUs in Lennard-
Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA
capabilities in recent GPU generations provide better performance in full double precision calculations.
For arepresentative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node
speed-up of 12.5x.
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1. Introduction

Graphics processing units (GPUs), massively parallel processors
with thousands of compute cores, represent a disruptive technol-
ogy shift in simulation hardware. Molecular dynamics (MD) sim-
ulations once requiring tens or hundreds of CPU cores are now
routinely performed on the researcher’s desktop workstation using
only a single GPU. All major MD software packages now take ad-
vantage of single-GPU acceleration, and some of them offer multi-
GPU capabilities. However, as many-GPU clusters and petascale
class supercomputers such as Titan (18,688 GPUs) and Blue Wa-
ters (4,200 GPUs) are becoming a mainstay of scientific computing,
making efficient use of these powerful resources is key to produc-
tivity.

HOOMD-blue, which was the first general-purpose molecular
dynamics code written exclusively for NVIDIA GPUs [1], is ex-
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tended to run efficiently on thousands of GPUs in parallel. To-
day, many, if not all major molecular dynamics codes support
GPU acceleration, including AMBER [2], LAMMPS [3-6], GROMACS
[7], NAMD [8,9], CHARMM [10], DL_POLY [11], ACEMD [12],
Desmond [13], Espresso [ 14], and Folding@Home [10]. Since these
codes were designed with CPUs in mind, they take advantage of
GPUs at different levels of efficiency. In most of these codes, only
the dominant compute-intensive part of the algorithm has been
ported to the GPU. The advantage of such an approach is that it of-
fers significant speed-up vs. a single CPU core without the need to
rewrite a legacy application. However, it also means that the code
does not take maximum advantage of the GPU if the particle data
structures are not GPU-optimized and data needs to be copied back
and forth between the CPU and the GPU. Codes designed exclu-
sively for the GPU include Fen-Zi [15] or HALMD [16], which im-
plement only a limited feature set. HOOMD-blue is unique among
all these codes. It uses completely device-resident data structures,
all simulation work is performed on the GPU so that the CPU merely
acts as a driver for the GPU, and it offers a rich feature set for
general-purpose particle-based simulations [17].

The first HOOMD releases up to 0.11.3 are highly-tuned for
single-GPU performance and do not support multi-GPU runs.
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Reducing latency is one of the biggest challenges in developing
a code scalable to many GPUs. Data transferred between GPUs
moves over the PClexpress bus (PCle), whose bandwidth (up to
16 GB/s) and latency (several ps) is much slower than on-board
GPU memory (250 GB/s, ~100 ns). Communicating over PCle adds
latency that is not present in single-GPU runs. In the strong scaling
limit of increasing the number of GPUs P at constant number N
of particles, the work N/P performed by each GPU decreases to
the point where it is too small to fully utilize the device. Finally,
whenever possible, communication should be overlapped with
computation to mask latency.

In developing HOOMD-blue 1.0 with MPI spatial domain de-
composition, we addressed these challenges and here we demon-
strate scaling on over 3000 GPUs. We show that strong scaling
speed-ups in excess of 50x are attainable on the Titan supercom-
puter, and weak scaling holds over three orders of magnitude in
system size. We compare HOOMD-blue to three other implemen-
tations of molecular dynamics (LAMMPS-GPU [5], LAMMPS USER-
MESO [6] and LAMMPS-Kokkos [ 18]) on GPUs and show significant
advances in scaling over these implementations. Moreover, we ex-
amine the efficiency of CUDA-aware MPI and demonstrate superior
performance of GPUDirect RDMA [ 19], in combination with a high-
performance MPI implementation, MVAPICH2 2.1 [20], for some
use cases.

The remainder of the paper is organized as follows. In Section 2,
we give an overview of the research areas within soft condensed
matter physics in which we expect the GPU-based domain decom-
position approach to be helpful, followed by a description of the
capabilities of the present HOOMD-blue version in Section 3. Sec-
tion 4 presents a detailed description of the new communication
algorithm. In Section 5 we further discuss how we optimized the
code for strong scaling on many GPUs. We show results for weak
and strong scaling of a Lennard-Jones (L]) benchmark in Section 6.
We show scaling data for a polymer brush system with various
short-ranged force fields in Section 7. Subsequently we discuss the
efficiency of GPUDirect RDMA for strong scaling (Section 8). In Sec-
tion 9, we discuss a different benchmark system, DPD. We conclude
(Section 10) with an outlook on future enabling technologies for
GPU-based MD.

2. Scientific applications

HOOMD-blue’s modular and compartmentalized, yet easy-to-
use design allows customizability and flexibility for a wide range
of applications, as exemplified by the over 80 published works
that use this software to date [21]. Previously, the software has
been used for single-GPU simulations, and for weakly coupled
parallel tempering simulations. Here, we report on how its features
have been enabled with MPI spatial domain decomposition, and
give examples of soft condensed matter research where such
functionality may be useful, such as polymer systems and complex
fluids.

Simulations of coarse-grained, bulk polymeric liquids are used
for detailed investigations into the thermodynamic properties of
model materials. In those studies, long polymer chains are re-
quired to reduce discretization effects. Large simulation unit cells
are necessary because of the scale separation between a monomer
and the polymer coil, and to simulate many such coils (radii of
gyration). Typically, bulk polymer liquids or melts have a ho-
mogeneous monomer density and often these systems are effec-
tively incompressible. Such simulations are particularly amenable
to the domain decomposition approach [22,23]. Similarly suited
are, e.g., simulations of polymer solutions [24], micelle aggrega-
tion [25], polymer brushes [26], wetting/dewetting phenomena
[27-29], and glassy polymers [30]. Heterogeneous systems, such as
micelles in implicit solvent using DPD or Brownian dynamics, are

susceptible to load imbalances [31] and may map less well onto the
domain decomposition approach.

More complex simulation scenarios include anisotropic parti-
cles, polymer nanocomposites such as tethered nanoparticles [32],
colloidal crystals [33], structure formation from isotropic pair po-
tentials [34], actively driven or self-propelled particles [35], and
biological applications [36-38]. The emergent structures of inter-
est, such as a crystal unit cell or dynamical swarms and clusters, are
often much larger than the size of the constituent building blocks
or agents, and many such units or features need to be simulated,
requiring large-scale simulations. Because of the complexity of the
interactions, these simulations tend to be more compute-intensive
and should scale well.

3. Characterization of HOOMD-blue

HOOMD-blue is a general-purpose code, though it primarily
targets soft-matter and coarse-grained simulations. Many other
specialized MD codes are available for all-atom models. As a
general-purpose MD code, HOOMD-blue is highly customizable
and comes with many features, most of which have been enabled
in MPI mode. All of HOOMD-blue’s capabilities are available both
on the GPU and the CPU, including MPI domain decomposition, and
the CPU can be used when no GPU is available or for testing pur-
poses. Here we briefly describe the features that have been ported
to the MPI version. Existing functionality from previous versions
has been fully preserved in single GPU/core runs. Utilizing the MPI
functionality does not require any changes to existing job scripts.

HOOMD-blue is driven by Python simulation scripts. In multi-
GPU/core simulations, multiple Python interpreters on different
MPI ranks process the same input script. The main simulation en-
gine is written in CUDA and C++. In HOOMD-blue 1.0, full double
precision is available per compile-time option. HOOMD-blue ver-
sion 1.0 is optimized for Kepler generation GPUs and also runs on
the previous generation, Fermi. HOOMD-blue is optimized for each
new generation of GPUs as it becomes available. Auto-tuning is
used to automatically optimize GPU kernel execution parameters
at runtime (see also Section 5.2).

We needed to update a majority of the classes in HOOMD-
blue to support MPI, including the file I/O classes, integrators,
pair and bond potentials, and analyzer classes. File I/O-classes in-
clude the initialization and saving of checkpoints through HOOMD-
blue’s XML file format, and output of simulation trajectories,
using CHARMM's DCD file format. Integrators include NVE
(constant energy), NVT (isothermal-isochoric), NPH (isoenthalpic-
isobaric) and NPT (isothermal-isobaric) ensembles, which
implement the Velocity-Verlet or the symplectic Martyna-Tobias-
Klein update equations [39,40] for maximum ensemble stability.
Langevin dynamics and DPD [41] are supported as well. Supported
pair potentials include L], DPD, Gaussian, Morse, Yukawa and tabu-
lated potentials. For molecular simulations (with covalent bonds),
bond potentials, i.e. harmonic, FENE and tabulated bonds, and
also harmonic and tabulated angle and dihedral potentials, were
updated. Different forms of external potentials, such as constant
forces and periodically modulated forces, are now supported as
well.

4. Implementation of the communication algorithm

Refs. [1] and [42] describe the general data layout and GPU ker-
nel implementation. We focus on a description of the communica-
tion capabilities in this work.
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4.1. General strategy

We implement domain decomposition in HOOMD-blue within
the existing CUDA/C++/Python framework. The single-GPU version
of HOOMD-blue does not transfer any significant data between
the host and the device during simulation. In the multi-GPU ver-
sion, data transfer occurs at instants of communication on every
time step. Communication is an optional feature in HOOMD-blue,
and does not compromise the performance of the highly optimized
single-GPU code path. HOOMD-blue runs the single-GPU code path
when executed on one MPI rank, which results in apparently low
scaling efficiency when executing on two MPI ranks, since this
additionally activates the communication routines. However, the
communication routines are designed to perform well on many, up
to several thousands, of GPUs. Communication occurs only along
the necessary dimensions, i.e. the dimension along which the do-
main is split into sub-domains, and the usual minimum image con-
vention for periodic boundaries is employed along the other di-
mensions. The domains are decomposed according to a minimum
interface-area rule.

HOOMD-blue can optionally take advantage of CUDA-aware
MPI libraries (by enabling the compilation setting ENABLE_MPI_
CUDA = ON). At the time of writing, this includes MVAPICH2
(version 1.9 and later), and OpenMPI (version 1.7 and later). We
exploit these features to optimize the communication of ghost par-
ticles because that is the largest communication bottleneck. Given
a GPU device memory address, the MPI library can then implement
any hardware- (or software) based optimizations to accelerate data
transfer between the GPU and a second GPU or the network inter-
face card (NIC), including RDMA-accelerated peer-to-peer copying
and GPUDirect RDMA [43].

4.2. Domain decomposition

Domain decomposition and inter-node communication in
HOOMD-blue 1.0 follow the same basic approach as in the
LAMMPS [3] molecular dynamics simulator: a spatial domain de-
composition on a regular one-, two or three-dimensional processor
grid is employed, and boundary (or so called ‘ghost’) particles are
communicated to compute the short-ranged pair forces' (Fig. 1).
Particle migration transfers ownership of particles between neigh-
boring domains and occurs with every rebuild of the neighbor list.
Neighbor list builds occur when particles move more than half of
the buffer length to guarantee correct force computations. The sum
of cut-off and buffer length sets the width of the ghost layer, which
becomes invalid when the neighbor list is rebuilt. Between neigh-
bor list builds, particles may move beyond the boundaries of the
local domain without migration. Positions (and, depending on the
force field, velocities or orientations) of ghost particles are updated
every time step, which requires communication.

4.3. GPU-based communication algorithm

The core of HOOMD-blue’s new MPI capabilities is the commu-
nication algorithm, which features a number of optimizations to
reduce unnecessary device-host data transfers, and in particular
allows sending/receiving particle data directly to/from the device-
side data structures. The basic particle packing and unpacking rou-
tines are fully implemented on the GPU.

1 The current version of HOOMD-blue supports only short-ranged molecular
dynamics force fields in multi-GPU mode.

Fig. 1. Domain decomposition with ghost particles and periodic boundary
conditions. Shaded regions at the domain boundaries correspond to ghost particle
layers. Short-ranged pair forces require a neighbor cut-off distance r., and a buffer
length ryug, and their sum defines the ghost layer width.

4.3.1. Particle migration

Particle data is stored in a structure of dense arrays for optimal
execution of communication kernels on the GPU. When particles
are migrated, the particle data is reordered by first removing parti-
cles that leave the domain, which creates holes in the arrays. These
are removed using a stream compaction based on the scan prim-
itive [44]. Subsequently new particles are added at the end of the
arrays. Even though the simultaneous reordering of the GPU arrays
for position, velocity, acceleration, etc. is a relatively expensive op-
eration, it is performed only infrequently, typically every 5-20 time
steps when the neighbor list needs to be rebuilt.

In LAMMPS, the exchange with the neighboring domains is re-
duced to six communication calls, including exchanges along the
east-west, north-south, and up-down directions, which is the
minimum required in three spatial dimensions [3]. The approach
bundles several smaller messages into fewer large messages, to
increase communication bandwidth utilization. For GPU imple-
mentation, however, this is a disadvantage, since it introduces
data-dependency between the exchanges, as the receive buffers
for particles from, say, an eastern neighbor need to be scanned for
particles that must be forwarded in the next exchange in the north
direction. In particular, an extra device-host copy and a kernel call
between every exchange is incurred which increases latency. We
determine that simultaneously communicating with all 26 neigh-
bors using non-blocking MPI calls performs better in all cases. The
MPI library can optimally pipeline between those transfers.

To limit data transferred over PCle, we pack the buffer of par-
ticles to send on the GPU in a device-gather operation. The data,
which represents only a small subset of particles in a thin slab near
the boundary of every domain, is copied to the host and the host
buffer is then passed to the MPI library. Receiving particles work
analogously. We generally use mapped and pinned memory for
host buffers to obtain higher bandwidth and compute-data trans-
fer overlap. In some circumstances, however, non-mapped (explic-
itly staged) memory is faster. We evaluate the performance of both
modes at run time and select the fastest using auto-tuning (see Sec-
tion 5.2).
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Ghost particle exchange:

1. Mark ghost atoms for sending

2. In one kernel, determine destination ranks for every ghost particle and
write out (particle index, destination rank) pairs into a ghost particle
list where a particle index can occur multiple times, using the load-
balancing ’expand’ operation

3. sort list by destination rank and determine start and end indices of every
rank

4. gather particle positions (velocities, ..) of ghost atoms according to

ghost particle list into send buffer

Fig. 2. Ghost particle exchange optimized using load-balancing search [44].

4.3.2. Ghost particle exchange

Ghost particles are exchanged after particle migration. They are
appended to the particle data arrays and remain valid until the next
exchange. A ghost particle can be simultaneously a neighbor in up
to three domains—one ‘face’ neighbor, one ‘edge’ neighbor and one
‘corner’ neighbor. The same particle needs to be copied into up
to three output buffers. While this represents a straight-forward
operation to do on the CPU, efficient parallel replication of ghost
particles on the GPU requires a more elaborate implementation.
We implement particle replication as summarized in Fig. 2. First,
a set of flags (a bitfield) is initialized for every particle that indi-
cate which neighboring directions the ghost particle is supposed
to be sent to (such as: north-west). Second, the algorithm counts
the number of neighboring boxes the particle is replicated to and
writes pairs of particle index and destination rank for every repli-
cation into an intermediate buffer. Multiple destination ranks can
map to the same particle index, so multiple output elements are
generated per input element. To implement such an operation ef-
ficiently using an atomics-free algorithm, i.e. an algorithm which
does not rely on random ordering of parallel read/write accesses
to the same location, we turn to the load-balancing search or ‘ex-
pand’ algorithm within the ModernGPU framework [44]. We adapt
this routine to perform both the expansion of particle indices and
the determination of neighbor ranks in a single kernel call. Sub-
sequently, output elements are sorted by destination rank (using
the MergeSort algorithm [44]), and the begin and end indices for
each destination rank are found using vectorized binary search and
mark the boundaries of the send buffer. These optimizations re-
sulted in significant speed-up of the ghost exchange over an im-
plementation that involves many different kernel calls (e.g. using
Thrust [45]).

4.3.3. Overlapping communication and computation and other
optimizations

We evaluated two possible strategies for overlapping commu-
nication and computation, (i) splitting the force computation into
particles with local- and nonlocal neighbors, and (ii) overlapping
collective MPI calls with computation.

In the first approach, the force computation for every local
particle is split into the forces due to local particles, and forces due
to ghost particles. The computation of forces due to interactions
with local particles can be overlapped with the communication of
ghost particles, after the completion of which the forces due to
ghost particles are computed in a separate kernel call. However,
because this approach requires two (instead of one) invocations of
the force kernel, it incurs launch overhead for the extra kernel. We
tested this approach and find that is more expensive than a non-
overlapping, single-kernel approach.

In the second approach, forces are always computed using the
current particle neighbors, before the results of the neighbor list
distance check are known. Since the distance check requires a
global synchronization (an MPI collective), this synchronization
can now be performed simultaneously with the force computa-
tion. When the distance check returns positive, the precomputed
force must be discarded, particles migrated, and then correct forces
computed. For typical benchmarks where particle migration occurs
every 5-20 time steps, the proposed scheme results in better per-
formance. Because theoretically, situations can occur in which per-
formance is adversely affected, in particular for short neighbor list
rebuild intervals, the performance difference is measured at run-
time and compute/communication overlap is auto-tuned.

Afurther optimization of the communication pattern is to group
global synchronization calls and neighborhood communication
into different phases of the time step. Examples for global synchro-
nization include broadcast of parameters during NVT integration,
or MPI reduction calls for computation of thermodynamic proper-
ties such as kinetic energy and virial. Call-back slots are provided in
the communication algorithm for different HOOMD classes to opt-
in to the optimized execution pattern, to the extent this is possible
given data-dependencies. The grouping improves performance be-
cause it mitigates the effect of load imbalances, and global synchro-
nization occurs only at one instant during the time step, instead of
being interleaved with computation or neighborhood communica-
tion.

Because our communication algorithm does not make use of
atomic operations, it is fully deterministic, i.e. the simulation
results are bit-wise reproducible (e.g. for debugging). However,
HOOMD-blue’s cell list algorithm uses atomic operations, and
overall execution is therefore non-deterministic. We stress that
non-determinism arises here as a side-effect of parallel execution
(that can sometimes be avoided), due to the non-associativity of
floating point operations at finite numerical precision. Since MD
integrators are affected by numerical precision in the same way,
lack of determinism does not imply degraded stability in a ther-
modynamic sense.

As a minor optimization, we map the Cartesian rank index to a
logical MPI rank, so as to group spatial domains of the decomposi-
tion together that are executed on the same physical node. For the
neighborhood exchanges this reduces inter-node communication,
which is more expensive than intra-node communication.

4.3.4. Bonded forces

In HOOMD-blue 1.0, two-particle bonds, three-particle angles
and four-particle dihedrals and impropers are treated as instan-
tiations of a generic C++ class template, BondedGroup, to avoid
code duplication for different types of particle groups with small
numbers of members. For simplicity, we refer to a ‘bonded group’
as a bond in what follows, implying that the description applies
to angles, dihedrals and impropers in an analogous way. A bond is
simply an unordered pair of particle IDs, together with a bond type
number.

Bond data structures are dynamic, and bonds can be added
or removed during the simulation using the python scripting
interface. Also, in MPI simulations, bonds are stored locally
and are migrated between domains together with the particles,
which ensures @(N/P) memory and compute scaling for bonds.
We developed an efficient communication algorithm for bonded
particles. Remarkably, our algorithm does not explicitly require
specifying a maximum bond-length, which would otherwise be
used to simplify the treatment of ghost particles, because bond
neighbors would be treated in the same way as non-bonded
neighbors by simply widening the ghost layer to the maximum
bond length. For long or very floppy bonds, this would result in
the communication of too many non-bonded neighbors.
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Bond migration:

1. (compute) Mark particles that leave the local domain for sending (also
used for particle migration)

2. (communicate) For all particles leaving the domain that are members of
incomplete bonds, update neighbors with destination processor rank

3. (communicate) For all particles leaving the domain and members of
bonds, copy bonds to destination rank

4. (compute) Prune bonds that have no local members
Bonded ghost particle exchange:

6. (communicate) Using the table constructed or updated in step 2, ex-

change ghost particles with neighbors

Fig. 3. Communication of bonded groups (bonds, angles and dihedrals).

In our algorithm (summarized in Fig. 3), bond migration occurs
directly before particle migration, but after local particles have
been identified that leave the domain. The difference between
the two steps, besides the difference in the data objects that
are communicated, is that particles are uniquely local to a single
domain but bonds can span two domains. If a bond is split because
one of its members migrates to a neighboring domain, the bond
is stored simultaneously in both processors’ data structures, and
a bond is only removed from a processor’s storage if none of its
particle members are local anymore. At the time the system is
initialized, bonds are distributed onto processors.

The issue of correct force computation is a little more involved,
because it is necessary to exchange ghost particles with a
neighboring domain if they share a split bond. However, the
sending processor does not know a-priori where to send the ghost
particles, since the bond can span any of the processor boundaries.
In particular, the fact that a bond member is in the proximity
of a boundary does not imply that the bond actually spans that
boundary. To account for this issue, it is necessary to keep track
of the processor ranks that share the bond, using a data structure
to store all processor ID’s that own any member particles. This
data structure is initialized at the beginning of the simulation
using a broadcast operation between neighbors. It is then updated
with every particle migration, by exchanging information with the
processors that own other bond members. Hence, bond migration
consists of two communication steps, where in the first step we
propagate the IDs of particles that leave their domain to the
neighboring processors, allowing them to update their rank tables,
and in the second step we actually migrate (or replicate) the bonds.

Using current information about bond member ownership, it
is straightforward to identify the neighbors with which ghost
particles have to be exchanged in order to compute the bond
force. Particles are marked for sending in a specific direction,
e.g. up-north-west, based on that information. Subsequently,
these ghost particles are treated the same way as nonbonded ghost
particles, see Section 4.3.2.

Communication only occurs between neighboring domains, so
bonds cannot span more than two domains, and because of the
periodic boundary conditions bond lengths are limited to half the
local domain size.

5. Optimizations for strong scaling

Ideal N /P scaling of a multi-processor simulation of N particles
on P GPUs not only requires low-latency communication routines,
but also that all parts of the computation exhibit, linear N/P
scaling. As the workload N/P on a single GPU decreases with

for all particle i in groups of w parallel threads do:

1. Look up cell neighbors of particle i

2. Iterate over cell neighbors k with a stride of w (block thread j < w
processes neighbor with offset j)

. Set is_neighbor = 1 if particle is a neighbor (r < r.y)

. o = jth element of w-wide exclusive prefix sum over has_neighbor

n = result of reduction (j + 1th element of prefix sum)

A~ W

. If is neighbor > 0, write neighbor index k into neighbor list at posi-
tionn_tot +n
7.ntot +=n

8. Store n_tot

Fig. 4. Neighbor list algorithm using w cooperative threads per particle.

increasing numbers of processors at constant total system size
N in the strong scaling limit, optimal kernel launch parameters
for the pair potential kernels change. These low-level parameters
define how the Single-Instruction-Multiple-Threads (SIMT) model
maps onto the GPU workload. In previous versions of HOOMD-blue
one particle was mapped onto one GPU thread, which ceases to be
efficient at low numbers of particles (N/P < 20,000) because the
GPU is underutilized. Therefore, we now assign multiple threads to
a particle [46].

5.1. Force computation with a cooperative thread array

Instead of processing all particle neighbors in a single loop
per thread, we iterate over nonbonded particle neighbors using
an array of w cooperative threads. The parameter w must be
less than or equal to 32 in the current GPU generation because
this is the number of threads that are executed in a warp and
can communicate with the warp shuffle instruction. In HOOMD-
blue 1.0, both the neighbor list and the force computation kernels
therefore take w as an additional input parameter, which controls
the size of the block. Here, w = 2™ is a power of two, and if m < 5
a single warp is split into multiple segments.

The pseudo-code for the neighbor list algorithm is shown in
Fig. 4. The algorithm runs in parallel in blocks of width w, and
loops through the cell neighbors of every particle in a strided
fashion (with offset equal to the offset of the thread in the block),
to compute the neighbors that are within the cut-off distance. The
final result is obtained by compacting all neighbor particle indices
into one (output) row of the neighbor list, using intra-warp stream
compaction. Threads of a warp segment communicate with each
other via the fast __shf1 intrinsic (on Kepler).

Similarly, for the force computation the work for particle i
is parallelized over its neighbors, processing w elements of its
neighbor list in parallel, again in a strided fashion. Each of these
threads contributes to the total force on particle i. After the partial
forces have been computed by the w threads, an intra-warp
floating point reduction is applied to total up the particle force,
which then is written to global memory.

5.2. Autotuner

Both the neighbor list and the force computation kernels now
depend on w, in addition to the thread block size, which is another
parameter in the SIMT execution model equal to the number of
threads that share the same thread-local memory. However, the
block size is only relevant for performance. Because we now have
two parameters to tune, it is no longer practical to manually select
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Fig.5. Time tep = fjoop/Msteps in individual parts of the algorithm foraN = 64,000
Lennard-Jones liquid benchmarkon P = 1. .. 16 K20X GPUs, showing contribution
of pair force, neighbor list and dominant communication (ghost update) routines.
Inset: Contribution of the migration, ghost exchange and update phases to overall
time spent in communication. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

the optimal parameters out of 160 = 32 x 5 (block size b =
n x 32b < 1024 [47], and w = 2™ with m < 5) possible
combinations. Moreover, the optimal parameters may change in
a single simulation, as a function of density or the pair potential
parameters.

Our solution is to implement an autotuner, which measures ker-
nel execution time for every parameter. The tuner sweeps through
the possible parameter combinations during the simulation, and
compares the median run time from five different kernel execu-
tions with the same parameters among different parameter sets.
After having found the value that results in the shortest execution
time, this optimal value is fixed for a predefine number of MD time
steps. The tuning typically takes between 15,000 and 20,000 steps
to complete, which in most cases represents a small fraction of the
overall number of steps. Periodically, the tuner scans through the
parameters to re-adjust the optimal parameter setting.

5.3. Scaling of compute kernels vs. communication

We analyze the performance of individual parts of the simula-
tion in Fig. 5. The main plot shows the time spent in different sub-
routines in a multi-GPU simulation as a function of the number of
GPUs. As is evident from that plot, the computationally most ex-
pensive subroutines - the neighbor list construction and the pair
force kernels - scale essentially inversely linear with the number of
GPUS, tstep ~ N/P (N = 64,000 = const.), down to (at least) 4000
particles per GPU, as a result of the optimizations for strong scaling
described in Section 5.1 and auto-tuning. However, the time spent
in communication (green curve), which occurs every time step, is
almost independent of the number of particles per GPU, imposing
constant latency every simulation time step. Particularly, we infer
from the cross-over of the two curves between P = 4...8, that
scaling must break down at fewer than ~10,000 particles per GPU,
where communication becomes the limiting step.

We further detail the contribution of the three phases of com-
munication (see Section 4.3) to the average time per step in the
inset of Fig. 5, and while all contributions depend only weakly (if
at all) on the number of particles per GPU in the regime studied
here, the dominant amount of time is spent inside the ghost update
occurring every time step. It is therefore this part of the communi-
cation that we heavily optimize, through overlap with global syn-
chronization calls (Section 4.3.3) and exploitation of CUDA-aware
MPI calls (Section 4.1 and below).

6. Scaling performance

6.1. Weak scaling

Afirst requirement for a scaling code is its capability of handling
large simulation workloads, which requires ©(N/P) memory
scaling. We perform a weak-scaling benchmark of a L] fluid on the
ORNL Titan Cray XK7, keeping the number of particles per GPU
constant at N/P = 32,000. The reasons for the choice of the rather
simple LJ benchmark, instead of benchmarking e.g. a molecular
system, are that it is (i) computationally inexpensive, and (ii) a
standard benchmark for MD. Because of (i), any performance issues
with the communication algorithm will be exposed, and because
of (ii) we can compare, e.g., to the LAMMPS software package with
its similar feature set. We perform the benchmark in the constant
temperature (NVT) ensemble with a Nosé-Hoover thermostat,
albeit one that is not completely symplectic,” and which performs
one collective synchronization for kinetic energy summation every
time step.

In particular, we simulate a fluid of up to N = 108,000,000
particles on 3375 GPUs. The system has been equilibrated from a
random initial configuration over 100,000 time steps, at packing
fraction 0.2, and with a time step of §t = 0.002 (all quantities
in self-consistent or L] units). The particles interact via the 12-6 L]
potential with ¢ = 1.0, cut off at 3.0c. The interaction parameter
is € = 1.0. The buffer length ry is determined as the value that
yields the highest number of time steps per second in a preliminary
tuning run, and the distance check criterion is applied with the
minimum frequency at which no dangerous builds are observed.
Subsequent to an auto-tuner warm-up period of 20,000 time steps,
the simulation performance we report is averaged over 10,000
steps.

The corresponding LAMMPS-GPU benchmark was performed
on the same machine, starting from the same equilibrated initial
configuration, as well as the same simulation parameters, but the
optimal configuration was determined to have a fixed buffer size
(skin length) of 0.4, and neighbor lists were rebuilt every 5 time
steps. LAMMPS-GPU performance benefits from using more than
one CPU core to drive the single GPU per node. Therefore, the
number of MPI ranks per node was varied between 1 and 16.
For every number of nodes, the fastest value of the number of
processes per node was selected. To facilitate the initialization of
such large systems, the cubic simulation box configuration was
replicated along three spatial dimensions, using LAMMPS' replicate
command, or HOOMD-blue’s system.replicate() method.

Fig. 6 shows the number of time steps per second as a function
of the number of GPUs used in the weak scaling simulation, for
HOOMD-blue and LAMMPS-GPU. Data is shown for up to the
maximum total system size we succeeded to initialize on Titan
using HOOMD-blue. Ideal weak scaling corresponds to constant
performance as a function of the number of GPUs. As expected,
the largest drop in performance for HOOMD-blue occurs when
the number of GPUs increases from one to ~8 GPUs, which
corresponds to switching from no communication to a fully three-
dimensional (2 x 2 x 2) domain decomposition. The further
decrease in performance of only about 50% over a range of over
3,000 GPUs is likely caused by increased communication latency
arising from collective MPI calls. HOOMD-blue and LAMMPS-GPU
scaling are in otherwise good qualitative agreement, indicating
the absence of major bottlenecks in either code. HOOMD-blue

2 symplectic MTK integrator for NVT was introduced in HOOMD-blue 1.0.1
for improved stability over the original Nosé-Hoover NVT thermostat, which is
deprecated in that version. The symplectic integrator requires multiple collective
synchronization calls per time step.
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Fig.7. Strong scaling of a Lj liquid benchmark with N = 10976,000 particles (single
precision) on the Titan supercomputer (Cray XK7, Oak Ridge National Laboratories).
Shown is the performance in terms of number of time steps per second (TPS) for
HOOMD-blue (circles) and LAMMPS-GPU (squares), running on P = 4...2048
GPUs. HOOMD-blue performance is optimal with 1 MPI rank per node/GPU, for
LAMMPS-GPU up to 16 CPU cores are assigned to one device. The solid line shows
ideal linear scaling.

performance is superior to that of LAMMPS-GPU by roughly a
factor of two, which impressively demonstrates the speed-up
gained by optimizing for the GPU exclusively and highlights some
present limitations of a hybrid GPU/CPU approach. The hybrid
approach used by LAMMPS relies on offloading only the compute-
intensive force computation to the GPU and on using the GPU in
a sparse fashion. In turn, for maximum performance GPU kernel
launches from several MPI ranks per node are multiplexed onto the
same GPU (using the Hyper-Q capability of NVIDIA Kepler GPUs),
which can create additional kernel launch overhead. For HOOMD-
blue, we varied the number of CPU cores assigned to a GPU and did
not find any benefit from using more than one core per GPU.

6.2. Strong scaling

We measured HOOMD-blue performance for the strong scaling
of a simple L] liquid benchmark of N = 10976,000 particles (for
the benchmark script, see Appendix A) on Titan. We compared
HOOMD-blue performance to the performance of the LAMMPS-
GPU package, and the details of the simulation are otherwise the
same as for the weak scaling.

Fig. 7 shows HOOMD-blue performance, i.e. number of time
steps per second vs. number of GPUs, compared to LAMMPS-
GPU for the LJ liquid benchmark, on up to 2048 GPUs. As can
be seen, essentially ideal scaling holds up to 32 GPUs, beyond
which the scaling shows decreased efficiency. However, scaling
holds up to 1024 GPUs in this benchmark. Both HOOMD-blue
and LAMMPS-GPU scale qualitatively similarly, such that they are
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Fig. 8. Strong scaling efficiency of HOOMD-blue in a LJ liquid benchmark for
seven different total system sizes between 256,000 and 10976,000 particles (single
precision), running on at least P, up to 2048 GPUs (for the largest system size)
of Titan. Shown is the normalized performance TPS(P) Ppin/P TPS(P = Ppin) VS.
number of particles per GPU N /P.

limited by architecture-inherent communication bottlenecks in
the same way. However, as for weak scaling (Section 6.1), HOOMD-
blue achieves a roughly constant, two-fold speed-up over the
LAMMPS-GPU code, demonstrating the effectiveness of the above
optimizations.

6.3. Scaling efficiency

Only in rare circumstances, however, does the maximum
achievable performance matter; more often the compute resources
are limited and shared with other researchers. It is therefore rele-
vant to know what is the maximum number of GPUs a simulation
can be run with to reach a prescribed minimum scaling efficiency.
To this end, we compared strong scaling efficiency at various total
system sizes, for the same system as studied in Section 6.2. The re-
sult is shown in Fig. 8 for six different total system sizes between
N = 256,000 and N = 10976,000 particles, on different num-
bers of GPUs up to 2,048 GPUs. It turns out that the strong scal-
ing performance is essentially independent of the total size. With
the slight exception of the P = 1 and P = 2 data points for the
smallest system (N = 256,000), for which we expect the largest
relative amount of communication overheads, the data falls onto a
master curve obtained from plotting all results as scaling efficiency
y = TPS(P)/P TPS(P = 1) vs. number of particles N/P per GPU. In
cases where at least P, > 1 GPUs are required to hold the system
in memory, we normalize by TPS(Ppin) /Pmin-

The data in Fig. 8 shows that maximum scaling efficiency (y ~
1) is achieved for N/P > 10°. However, a very good efficiency
of 70% is already achieved with N/P ~ 200,000 particles per
GPU, which is easily reached by many medium- to large scale
simulations e.g. of polymeric liquids.

7. Polymer brush scaling benchmark

We also analyze the scaling performance of a more complex
benchmark system, a polymer brush in presence of a polymeric
solvent. Chemical details are described at the level of a united
atom model [48]. The solvent is hexane, and the tethers are oleic
acid molecules, grafted onto an immobile wall. The system is used
to study effective interactions of polymer-tethered surfaces [49].
Here we use it as a model system to study HOOMD-blue perfor-
mance under conditions that are more computationally demand-
ing than a L] liquid.

The polymer backbones are parameterized using bond, angle
and dihedral potentials, and the system is equilibrated at constant
pressure and temperature (NPT ensemble). For this benchmark, we
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Fig. 9. Benchmark for an oleic acid brush in hexane solvent. Shown is the
performance in terms of number of time steps per second vs. number of GPUs
or number of CPU sockets for three different total system sizes. Solid symbols:
GPU benchmark at different total system sizes, open symbols: CPU benchmark at
N = 430,080. Because of memory limitations, the smallest number of GPUs for the
system of 1720,320 particles is 32, and because of the minimum size required for
the subdomain in a spatial domain decomposition, the largest number of nodes in
the CPU benchmark is eight. Solid lines show ideal linear scaling.

replicate the initial configuration along the wall (or x-y) dimension
using system.replicate(), to produce three different total system
sizes (numbers of polymeric particles) of N = 107,520, 430,080
and 1720,320. Detailed parameters of the benchmark, which
was run on Blue Waters, are documented in the supplementary
information Appendix A. As shown in Fig. 9, the performance (time
steps/second) scales approximately linearly with the number of
GPUs, up to a maximum number of GPUs that increases with total
system size. For example, for the system of 430,080 polymer beads,
saturation sets in at 32 GPUs, corresponding to 13,440 particles per
GPU. For this system, very good scaling is observed and a maximum
speed-up of a factor ~32 over single-GPU execution is achieved,
which shows that the speed-ups obtained in the L] benchmarks are
robust and transferable to more complex interaction models.

Moreover, we compare the GPU to CPU performance of
HOOMD-blue running on the 16 CPU cores of Blue Waters’ XK7
nodes (1 AMD 6276 Interlagos CPU, 16 integer scheduling units,
nominal clock speed 2.3 GHz), for the N = 430,080 benchmark.
The strong scaling data for time steps per second vs. number of
nodes is shown in Fig. 9, open symbols, and demonstrates an aver-
age speed-up of a factor of TPS(n GPUs) /TPS(n CPUs) & 12.5.

8. Strong scaling with GPUDirect RDMA

8.1. Technological background

Since rapid developments in GPU hardware have out-paced the
speeds at which system architecture, and particularly PCle, can
transfer data (16 GB/s peak bandwidth in PCle generation 3), this
has generated pressure on the development of latency-optimized
technologies for GPU-to-GPU communication, either over a PCle
switch, with two GPUs connected to the same switch, or via
the intermediate of a network interface card (NIC) for Infiniband
connected to the same PCle segment. The first generation
implementation of a hardware-accelerated communication path
for GPUs was GPUDirect v1 [51], which eliminates unnecessary
buffer copies within host memory for staging data to the NIC. To
use GPUDirect, it is essentially only required that the send/receive
buffers are page-locked, which enables fast access by the network
card. However, with GPUDirect v1, the data still needs to be
available in host memory, making it necessary to copy the data to
and from there for sending and receiving.

With the release of GPUDirect v1, MPI stacks have been
developed (starting with MVAPICH2 1.8 and OpenMPI 1.7, and
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GPUO GPU1 NIC [ —
PCle GPUDirect P2P
GPUDirect RDMA
CPU

Fig. 10. RDMA enabled technologies for data transfer between GPUs across the PCle
bus without involving the CPU: intra-node Peer-To-Peer (red arrow) and GPUDirect
RDMA (blue arrow) [50] (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

others) that accept memory pointers for the staging buffers,
designed to relieve the application developer from having to
manually optimize staging protocols and or pipelining techniques
performance [52,53,20].

The second version of the GPUDirect technology, introduced
with Fermi generation GPUs, offers the possibility of intra-node
GPU-GPU transfer using the RDMA feature of PCle, without
involving the CPU (Fig. 10, red arrow). Using this technique, up
to 80%-90% of PCle peak bandwidth can be achieved for these
transfers. However, because peer-to-peer transfers are limited to
a single node, transfers that involve inter-node communication
e.g. over Infiniband are not optimized.

The latest generation of the GPUDirect technology, GPUDirect
RDMA (GDR), solves this problem by extending RDMA access
to the NIC and allows fast data transfer between remote GPUs,
completely offloading the CPU from the communication burden
(Fig. 10, blue arrow). All of these protocols are supported in the
MPI libraries MVAPICH2 2.0 GDR, and in OpenMPI 1.7.4 and later. In
the following, we analyze the efficiency and discuss limitations of
this advanced technology in the example of HOOMD-blue scaling
benchmarks.

8.2. GPUDirect RDMA benchmarks

The Wilkes cluster at the University of Cambridge is a large
GPU cluster designed to fully leverage GPUDirect RDMA. The
system features 128 nodes with two NVIDIA Tesla K20c GPUs for
each node, dual-rail Mellanox Connect-IB Infiniband and NVIDIA
GPUDirect RDMA software stack. The cluster is mainly being used
for academic research. We assess the performance of HOOMD-blue
on this system by running the standard L] benchmark that comes
with HOOMD-blue, with a total system size of N = 64,000 particles
(NVT, §t = 0.005, rpyf = 0.4, T = 1.2,1qt = 3.0,6 = 0 =
1.0). Fig. 11 shows the scaling behavior, both for single-precision
(upper panel) and double-precision (lower panel) builds. As can
be seen, in single precision the default version of HOOMD-blue,
which does not take advantage of CUDA-aware MPI at all, always
performs better than either CUDA-aware MPI or CUDA-aware MPI
with GPUDirect RDMA. The size of message transferred in (32 bit)
single precision, which is half of that transferred in (64 bit) double
precision, is too small to take advantage of full communication
bandwidth.

On the other hand, for double-precision mode, the lower panel
of Fig. 11 shows a performance benefit of enabling CUDA-aware
MPI on up to 4 nodes, or N/P = 16,000. More interestingly, we
observe better performance of GPUDirect RDMA than both plain
CUDA-aware MPI and host memory staging. This demonstrates the
potential benefit of GPUDirect RDMA technology in strong-scaling
applications.

Fig. 12 shows the cumulative frequency of the message size
of MPI_Irecv calls during execution of the double-precision L]



J. Glaser et al. / Computer Physics Communications 192 (2015) 97-107 105

3000 [
7 host-memory MPI o

2500 - N cuda—-aware MPI ]
F X GPUDirect RDMA

|

[ 4 host-memory MPI 7
N cuda-aware MPI

1500 [ 5% GPUDIrect ROMA ] ol

1000 - double precision ]
500 - 1
0 n n L n
2 4

1

2000

time steps/sec.

1000

500

1500 [ single precision

1 2

2000

time steps/sec.

No. of GPUs

Fig. 11. Strong scaling benchmark for a GPUDirect RDMA benchmark of N =
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Fig. 12. Distribution of message sizes for the benchmark of Fig. 11 (lower
panel). Shown is the cumulative relative frequency of message sizes in neighbor
communication (MPI_Isend/recv) in double-precision runs, for different numbers
of GPUs, obtained with the IPM tool [54]. Inset: Maximum message size in kB
as function of the number P of GPUs, in single (light shaded/yellow) and double
precision (dark shaded/blue).

benchmark, for which data is shown in Fig. 11 (bottom panel).
The distribution has multiple ‘knees’, which are characteristic
of the communication pattern described in Section 4.3.1. The
precise location of these knees depends on the details of the
domain decomposition, however the maximum message size
affects performance through various internal thresholds of the
MPI library. In the case of GPUDirect RDMA, we were able to
use maximum optimal thresholds of 32 KB, above which the MPI
library switches to default pipelined communication. Interestingly,
this limit is reached with at least eight GPUs in single precision, or
16 GPUs in double precision, for the N = 64,000 L] benchmark,
as shown in Fig. 12, inset. We confirm that for these minimum
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Fig. 13. Strong scaling of a double-precision L] liquid benchmark of N = 2097,152
particles comparing the performance of HOOMD-blue performance (with GDR or
with host memory MPI) and of LAMMPS-Kokkos (with GDR), on P = 1...8 GPUs.
Shown is performance in time steps per second vs. number of GPUs.

numbers of GPUs the GPUDirect RDMA enabled benchmarks
indeed perform superior to CUDA-aware MPI (Fig. 11), however the
effective performance is in the range of the optimized host memory
implementation.

8.3. Performance comparison to a CUDA-aware MPI enabled port of
LAMMPS

To assess whether HOOMD-blue makes optimal use of the
CUDA-aware MPI based communication protocols, we compare
against another port of LAMMPS on GPUs, LAMMPS-Kokkos, a
recent alternative to LAMMPS-GPU. The Kokkos package inside
LAMMPS is a forward looking capability with support for other
accelerators (Intel Xeon Phi), but with very limited feature support
at the moment. The package supersedes a previous port of LAMMPS
on GPUs, LAMMPS-CUDA [4]. It also offers support for CUDA-aware
MPI implementations, which makes it interesting to compare to
HOOMD-blue performance here.

As a benchmark system we choose the double precision LJ
system benchmark supplied with the Kokkos package (NVE, N =
2097,152, 8t = 0.005, rpye = 0.3, 1t = 2.5,€¢ = o = 1.0),
with the only change that we increase the neighbor list build
frequency to every six time steps, to ensure correct computation
of forces. The corresponding HOOMD-blue simulations start from
the same fcc lattice initial configuration (thermalized at T =
1.44), additionally equilibrated over 30,000 time steps. For the
HOOMD-blue simulations we choose the optimal value of rpy
and the distance check interval by prior tuning. Fig. 13 shows
the performance of the Kokkos package, where LAMMPS is
run in device communication mode and with GPUDirect RDMA
enabled, and for different build and runtime settings of HOOMD-
blue. The agreement of single-node performance emphasizes that
both Kokkos and HOOMD-blue are essentially fully optimized
for simulations at this particle number, where they are mostly
limited by device memory bandwidth. On the other hand, on eight
nodes the GDR version of HOOMD-blue performs better than the
Kokkos package by a factor of about 1.4, which we attribute to
the optimizations of the communication algorithm described in
Section 4.3.

9. Strong scaling of a DPD benchmark

We also compare dissipative particle dynamics (DPD) perfor-
mance between HOOMD-blue and two other codes. The commu-
nication pattern differs from that of L] in two ways. Velocities of
ghost particles need to be communicated, in order to compute the
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drag term in the DPD force. Hence, twice the amount of data is com-
municated per time step. Moreover, to correctly seed per-particle-
pair random number generators [41], global particle IDs of ghost
particles additionally need to be communicated with every ghost
exchange. Recently, Tang and Karniadakis [6] presented a GPU-
optimized implementation of DPD, validated and benchmarked on
the Titan supercomputer. They demonstrate excellent strong scal-
ing properties. The software is available within LAMMPS as the
USER-MESO package [55].

Here, we compare HOOMD-blue performance on the Cray XK7
to the benchmark numbers reported in Ref. [6] (Fig. 14 therein),
for the same benchmark of N = 2000,000 particles. We also com-
pare to LAMMPS-GPU performance [56]. The simulation details
are: 5t = 0.005 at number density o = 3, and with DPD param-
eters A = 25, y = 4.5. HOOMD-blue and LAMMPS-GPU use full
double precision, the USER-MESO package is run in mixed preci-
sion: communication is performed in double precision, but node
local force evaluations are performed in single precision. As in the
previous benchmarks, HOOMD-blue performance was optimized
by tuning the value r,,¢ and the distance check period. The number
of time steps per second was measured after an additional warm-
up of 30,000 time steps, averaged over 50,000 steps. LAMMPS-GPU
and USER-MESO benchmarks were performed on Titan, HOOMD-
blue benchmarks were performed on the Blue Waters machine at
the National Center for Supercomputing Applications. Even though
this machine has the same architecture as Titan (Cray XK7), we
expect slight differences in performance, from differences in sys-
tem software and network configuration. Fig. 14 shows the num-
ber of time steps per second as a function of the number of GPUs in
strong scaling, on up to 1,024 GPUs. Performance values are max-
ima from several runs (up to 10% variability was observed for large
runs). Remarkably, the performance of HOOMD-blue parallels that
of the USER-MESO package over the whole range of numbers of
GPUs and appears to be only slightly superior (15%), but outper-
forms LAMMPS-GPU for small (<32) numbers of GPUs. However,
for larger numbers of nodes the performance between the codes is
comparable, which we attribute to the difference in communica-
tion patterns of DPD vs. L], where for DPD in double precision, an
amount of data four times larger is communicated than for L] in sin-
gle precision. The DPD benchmark is therefore less sensitive to the
latency optimizations we focus on in this contribution, and given
that it is likely bandwidth-bound, further underscores that with
GPUs the communication bandwidth of current system architec-
tures, along with various sources of latency, has become the main
limiting factor of MD performance.

10. Conclusion and outlook

We gave a detailed account of how we ported HOOMD-blue
to a distributed memory model (MPI). Because HOOMD-blue is a
fully GPU-enabled code, a particular challenge was presented by
the latency of device-to-device communication. We addressed this
challenge using a highly optimized communication algorithm. Our
communication routines are implemented on the GPU to reduce
the amount of data transferred over PCle and allow us to take
advantage of CUDA-aware MPI libraries. We also optimized for
strong scaling on thousands of GPUs, which we achieved using a
design for the neighbor list and force computation kernels based
on cooperative thread arrays and an auto-tuning algorithm.

We evaluate the performance of our code in terms of both
weak and strong scaling benchmarks, for which we compared it to
similarly optimized implementations of GPU-enabled MD, and find
HOOMD-blue performance to be equivalent or superior. HOOMD-
blue exhibits qualitatively similar scaling behavior to these other
codes, indicating that our optimizations are successful, and that
the scaling limits inherent to the underlying architecture have
been reached. We note that the GPU-centric design of HOOMD-
blue is different from other more traditional MD codes, which have
started as CPU-only codes.

In the case of GPUDirect RDMA, we find superior performance
in double precision benchmarks, demonstrating the usefulness of
the technology, especially in strong scaling situations, however
also its current limitations. To further improve strong scaling
performance, latency and bandwidth bottlenecks will have to
be reduced. Moreover, a closer integration of the GPU into the
communication path seems realistic, such as to provide the
capability of GPU kernel call-backs from MPI calls. In general,
we anticipate that future designs will tightly couple GPUs as
throughput-optimized and CPUs as latency-optimized compute
components, and optimal code performance will depend on
high-bandwidth links and unified memory space between the
processors [57], to achieve greater concurrency.

In this first 1.0 release of HOOMD-blue with MPI, we
did not enable multi-GPU support for electrostatics calculations,
rigid bodies or anisotropic particles, available only in single-
GPU simulations. We expect to implement these capabilities in
future versions. The current implementation exclusively relies on
spatial domain decomposition as a work distribution technique
and thus applies to mostly homogeneous systems, whereas
sophisticated load-balancing schemes have been implemented for
more inhomogeneous or biomolecular systems [58,59,31] on CPUs,
and they should additionally benefit from GPU acceleration.

More broadly, our study further establishes GPUs as extremely
fast engines for MD simulation compared to traditional CPU cores.
GPUs not only realize an order of magnitude speed-up over
current-generation CPUs, but they also scale very well using spatial
domain decomposition. Hence, our and comparable codes there-
fore both greatly benefit from the unprecedented performance of-
fered by these fast processors, and at the same time they push the
envelope of current system designs. Since the speed-ups presented
here rely chiefly on exploiting parallelism at various levels, i.e. by
using GPUs on the node-level, and by scaling the code up to many
nodes, we provide a very clear case for how parallelism can be the
main enabling strategy in computational physics discovery.
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