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1. Introduction

There has been a steady growth of computational resources
available to the scientific community [1]. The fastest supercom-
puters today offer petascale performance through hundreds of
thousands of CPU cores with dedicated coprocessors or graphics
processing units (GPUs) as accelerators. Whereas in the past most
atomistic molecular simulations were restricted to no more than
a few hundred particles over nanosecond time scales, modern
computing architectures and simulation techniques have enabled
simulations of millions of particles [2] and up to millisecond [3]
time scales. In particular, molecular dynamics (MD) methods have
emerged as powerful tools for large-scale molecular simulations
for two important reasons: (1) the MD algorithm is highly paral-
lel and so easily adapted for supercomputing, and (2) many highly
optimized and flexible simulation packages are readily available to
researchers. In the past two decades, significant time and resources
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have been devoted to the development of such MD packages, in-
cluding GROMACS [4], LAMMPS [5], and NAMD [6], among many
other commercial and open-source options. These packages pro-
vide robust MD implementations for massively parallel computers.
A more recent addition is HOOMD-blue [7], which was developed
and optimized for GPUs, and has a single GPU performance one or-
der of magnitude faster than a single CPU [8].

Despite these advances in hardware and software, MD simula-
tions of soft matter remain challenging because there is typically a
large disparity in length and time scales between components. For
example, colloidal particles (nanometers to micrometers in diam-
eter) in solution are separated in size by several orders of magni-
tude from an atomistic description of the molecular solvent. MD
simulations retaining full atomistic detail of the solvent can be-
come intractable because many solvent atoms must be included
to model only a few colloidal particles. Moreover, the time scales
associated with the degrees of freedom of the solvent are generally
much shorter than the relatively slow motion of the larger colloids.
This means that these simulations require very short MD time steps
to faithfully capture the dynamics of the solvent, and many such
steps are required to observe any appreciable dynamics of the col-
loids.

The MD algorithm in its simplest form consists of two
basic steps: (1) calculation of the forces on all particles and
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(2) integration of Newton's equations of motion. The force
calculation is by far the most computationally expensive part of
the MD algorithm. In particular, the calculation of nonbonded
pair interactions between particles typically dominates the force
calculation. In the simplest MD implementation, the forces
between all possible pairs of the N total particles in the simulation
are evaluated, leading to O(N?) scaling.

To reduce the number of force pairs evaluated, the interaction
potential between particles of types i and j is typically truncated at
a radial cutoff distance r;; where the force has decayed sufficiently
so that truncation does not significantly influence the properties
of interest. A neighbor (Verlet) list storing a list of particles that
are within the cutoff is then created for each particle [9]. The pair
forces only need to be computed for the particles in the neighbor
list, which is a small subset of N for each particle. The neighbor list
can be rebuilt less frequently than every MD step if a small buffer
width is added to ry;, trading wasted pair force distance checks with
the frequency of rebuilding the neighbor list, which accelerates the
calculation compared to evaluating all possible force pairs at every
step. However, the force calculation is ultimately still O(N?) if the
neighbor list is built by simply checking the distances between all
particle pairs.

Acceleration structures reduce the computational cost of
building the neighbor list by restricting the neighbor search for
each particle to a subset of the particles in the system. The most
commonly employed acceleration structure in general-purpose
MD codes is the cell list. A typical cell list spatially bins particles
into uniformly sized cells in O(N) [9]. Distance checks must only
be performed for particles that are in neighboring cells, effectively
reducing the cost of computing the neighbor list to O(Nm), where
m is the average number of particles in a cell (usually m <« N).
The cell width is typically determined by the largest cutoff radius
between all pairs so that 27 cells must be checked for each particle
in three-dimensional simulations.

The cell list is extremely efficient in simulations that have
nearly equal pair force cutoffs and a uniform particle distribution
between the cells. However, performance degrades significantly in
colloidal systems due to the large disparity in interaction lengths.
Many unnecessary distance checks are performed for particles
with short interaction ranges when the cell width is based on the
largest cutoff, schematically illustrated in Fig. 1. The cell width is
based on the largest cutoff rgg. The solvent particles with cutoff
raa must check the same number of cells (particles) as the colloids
with the larger cutoff rgg. However, unlike the colloids, the solvent
particles reject many of these particles from their neighbor lists.

A general solution to this problem has been successfully
deployed in LAMMPS [10]. The standard cell list is extended so that
the cell width is based on the shortest cutoff and each particle type
searches a different “stencil” of adjacent cells based on the largest
cutoff radius. Distances to each cell in the stencil are precomputed
so that a particle distance check can be skipped for many of the
searched particles. This stenciled cell list method was reported
to give speedups of nearly 100x for a colloidal solution with a
20:1 ratio in diameter compared to a standard cell list in LAMMPS.
However, simulations of colloidal systems with such large size
disparity are still extremely computationally intensive, requiring
hundreds of CPU cores to obtain reasonable performance [10].

In this article, we explore two parallel algorithms for efficiently
building neighbor lists in colloidal systems on the GPU: one
based on stenciled cell lists and one based on a hierarchical tree
acceleration structure. To our knowledge, the stenciled cell list
algorithm [ 10] has not been previously implemented and tested on
the GPU. In graphics processing, hierarchical tree data structures
are used for performance-critical neighbor searches [11]. One
such tree structure, the bounding volume hierarchy (BVH), has
previously been used to generate neighbor lists between large
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Fig. 1. Cell list needed to determine the neighbors of solvent (A) and colloid
(B) particles when the bin size is based on the largest cutoff length rgg. The pair
interaction ranges are illustrated for each particle type. The shaded areas indicate
the cells that each particle must search.

macromolecules on the CPU [12,13]. However, these prior studies
did not extend their approach to general-purpose molecular
simulations, did not address size disparity between different
particle types, and did not discuss implementation of the algorithm
on GPUs.

In Section 2, we present and compare parallel algorithms for the
stenciled cell list and BVH. Technical details of the implementation
of these algorithms within the HOOMD-blue simulation package
are described in Section 3. Systematic performance benchmarks for
the algorithms are reported in Section 4.

2. Algorithms

2.1. Stenciled cell list

The stenciled cell list [10] is a straightforward extension of
the standard cell list, and is illustrated in Fig. 2. All particles are
binned into a cell list of nominal cell width Ap;,. The maximum
cutoff radius is determined for each particle type, and a stencil is
computed from the list of offsets to neighboring cells that have
a nearest separation distance within that cutoff. For example, the
solvent particle has a stencil radius corresponding to rag, and the
list of offsets in 2D is (0, 0), (+1, +2), (+2, —1), .. .. The colloid
has a stencil radius rgg. All the cells included in the stencils are
shaded and outlined with a solid line.

Because the stencil size is set by the maximum cutoff radius per
type, many particles that will not be included in the neighbor list
must still be iterated over for shorter ry;. In Fig. 2, both the solvent
particle and colloid have the same effective stencil size for the
given cutoffs. However, extra distance checks can be eliminated
by precomputing the minimum distance to each cell in the stencil.
For a particle of a given type, if the minimum distance to the
nearest cell is greater than the pairwise cutoff, that particle can
be skipped without distance checking or reading its position. The
solvent particle only needs to distance check particles of type A
inside the cells indicated by the dashed line corresponding to raa,
and all particles of type A can be skipped in the other cells in the
stencil.

The neighbor list is then built as described in Algorithm 1. A
given particle looks up the appropriate stencil of cells based on
its particle type (line 4). Each member of the stencil is iterated
over (line 5), and each offset from the stencil is converted into a
neighbor cell based on the current cell of the particle, including
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Fig. 2. Schematic illustration of a stenciled cell list with A, = raa. Solid outlines
of shaded areas indicate cells included in the stencil. The area marked by the dashed
line around the solvent particle marks the cells in that stencil that are inside ra.
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wrapping through the periodic boundaries (line 6). Particle i then
iterates through all potential neighboring particles in the cell.
Initially, only the type of neighbor particle j and its actual cutoff (for
example, raa Or 1ag) are read into memory (line 9). If the minimum
distance to the nearest cell is greater than the cutoff, particle j
can be skipped without a distance check (line 10). Otherwise, a
distance check is performed, and the particle is saved if it is a
neighbor (lines 11-13).

Algorithm 1 Stenciled cell neighbor list

1: for each particle 0 < i < N in parallel
2: X; < particle position

3: ¢; < particle cell

4 S <« stencil for type of i
5: for eachsin S do

6: C < WRAP(C; + S)
7.
8
9

d < minimum distance to ¢
for each particle jin c do
rj < cutoff between types of i and j

10: if d > r; then continue

11: X; < position of j

12: if [WRAP(X; — x;)| < r;; then
13: ADDNEIGHBOR(j)

Although reducing the cell width can significantly reduce the
number of distance checks performed, there is an associated
penalty due to the additional data that is accessed for each cell. As
the cell width shrinks, more cells must be accessed, and each cell
contains fewer particles on average so that some cells may even
become empty. The number of particles in these cells must still be
read regardless of occupancy. In the original CPU implementation
in LAMMPS [10], the optimal A, was found to be half the
minimum cutoff distance, or Api, = raa/2. It is unclear if this will
be the optimal value for GPUs, and we will discuss the effect of Api,
in Section 4.

2.2. Bounding volume hierarchy

Although the stenciled cell list significantly improves upon the
standard cell list by skipping many distance checks, it still requires
iteration over many particles that are ultimately unnecessary
because all particles are read out of a single cell list. One possible
way to alleviate this would be to construct one cell list per type,

Fig. 3. Schematic illustration of a bounding volume hierarchy. left: Two particles
are enclosed into each leaf node, outlined in green AABBs and labeled from O to 3.
The internal nodes are labeled A to C. A query AABB is shown as a dashed box. right:
Hierarchical representation of the tree nodes. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

and to construct different stencils for each particle type on each
cell list so that only those particles that need to be checked are
actually included. However, there are two complications to doing
this. First, the construction of one cell list per type increases
memory demands, since memory must be allocated for each
cell list that spatially covers the entire simulation box. Perhaps
more significantly, separating cell lists by type will lead to lower
occupancy of cells, which increases the overhead associated with
searching the cell lists. This is especially problematic if a certain
particle type is dilute, as is often the case for colloidal systems, or
if there are many types of particles.

To address these issues in a general way, we can draw
inspiration from graphics rendering where an analogous neighbor
search problem occurs. Realistic rendering of scenes on the
computer requires the accurate projection of light. One way to do
this is to cast and trace light rays from a source onto a scene, detect
the objects that the rays reflect from, and appropriately render
the reflections. Acceleration structures are used to efficiently
determine the objects that the rays reflect from. For scenes with
non-uniform object density, tree data structures such as k-d trees,
octrees, and bounding volume hierarchies are generally favored
over cell-based structures. In this article, we have chosen to
focus on bounding volume hierarchies (BVHs). BVHs have been
demonstrated as useful accelerators for ray tracing and collision
detection in real-time rendering engines for computer gaming [ 11],
in part because they can be reconstructed very quickly for scenes
undergoing dynamic changes. Although BVHs do not always give
the fastest traversal performance compared to other types of
trees [14,15], their total performance, including both construction
and traversal time, is very competitive.

BVHs partition a system based on objects rather than space.
An object or multiple nearby objects are enclosed to form a leaf
node. Leaf nodes are then enclosed by larger bounding (“parent”)
internal nodes. In an axis-aligned bounding box (AABB) BVH, the
volume of the nodes is chosen so that all “child” objects are
enclosed in an orthorhombic box aligned to the Cartesian axes,
illustrated in the left panel of Fig. 3. Together, the nodes form a tree
hierarchy that can be traversed using a binary search algorithm
that tests for volume overlap between a query AABB and the AABBs
of the tree.

The BVH neighbor list algorithm is outlined in Algorithm 2. One
BVH is first built per particle type, and each particle is considered
a point object. The height of the BVH (and so traversal time per
particle) is O(log N), so multiple points that are nearby in space
are merged into a leaf node for more efficient traversal. Each
particle queries each tree (line 3) with a cutoff length specified
per type (line 4). Periodic boundary conditions are implemented
by translating the query AABB by the appropriate combinations of
the box dimensions, leading to a maximum of 27 queries per tree in
three dimensions (lines 5-6). However, many of these queries are
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Algorithm 2 BVH neighbor list

1: for each particle 0 < i < N in parallel

2: X; < particle position

3 for each BVH tree t do

4 rj < cutoff between types of i and t

5 for each image v do
6: a < AABB(x; + v, 1)
7
8
9

n < root node of t
while untested nodes remain do
: if a overlaps n then
10: if n is not a leaf node then

11: n < left child of n

12: else

13: for each particle j in n do
14: X; < position of j

15: if |x; — x;| < r;j then
16: ADDNEIGHBOR(j)
17: n <— next node to test

18: else

19: Mark branch inactive

20: n < next node to test

trivially rejected when the AABB is translated to a position where
it does not overlap the simulation box.

Abinary search is performed on each tree using the query AABB
(lines 8-20). The search is illustrated in the right panel of Fig. 3
for the query AABB from the left panel. The query AABB overlaps
the root node A (line 9), and so proceeds to test against internal
node B (line 11). It intersects with B, and so tests against leaf node
0, which it overlaps. A direct distance check is performed against
objects contained within leaf node O for inclusion as neighbors
(lines 13-16). Note here that no periodic wrapping of the distance
between particles is required because all periodic images of i are
considered. Traversal then proceeds to the remaining untested
nodes (line 17). The query AABB does not overlap 1, so it does not
need to distance check those objects, and proceeds to test against
C (lines 19-20). It also does not overlap C, so none of the nodes in
that branch need to be checked either. Traversal of the tree for this
image is then complete, and the neighbor search returns to line 5.

Although traversing the BVH is a relatively straightforward
parallel algorithm, efficiently generating the BVH in parallel
is much more difficult. Several parallel algorithms have been
proposed to build BVHs, differing mainly in the quality of the tree
that is constructed and the speed of the algorithm. Lauterbach et al.
introduced one parallel method to construct “linear” BVHs (LBVHs)
by ordering objects along a Z-order curve, which groups spatially
close objects near each other in the tree [16]. The sorted objects
can then be processed in parallel to determine the hierarchy of
the tree. This algorithm has been further refined [17,18] to build
“hierarchical” LBVHs that provide better construction speeds and
lower memory footprints.

These algorithms process the tree from the top down (starting
from the tree root); typically one level of the tree is processed in
parallel at a time. However, this significantly restricts parallelism
at top levels of the tree because these levels contain very few
nodes [16]. Karras developed an alternative LBVH construction
algorithm that proceeds from the bottom up and fully exploits
the parallelism of the GPU by processing all internal nodes
concurrently [ 19]. The quality of these LBVHs have been refined for
higher ray casting performance [20]. The additional cost of refining
the LBVH required casting 0(10) rays to see a significant speedup
in the overall performance. However, typical molecular dynamics
simulations contain 0(10°) particles, and so a full neighbor list
build requires only 0(10°) traversals. Accordingly, we have chosen
to implement the unrefined LBVH algorithm [19].

3. Implementation

Here we describe the implementation of the algorithms
described in Section 2 in the HOOMD-blue simulation package
[7,8,21], designed to run on NVIDIA GPUs using the CUDA
programming language. In particular, we target modern NVIDIA
GPU architectures (“Kepler” and newer) for optimization of our
design. The code for both algorithms is available in HOOMD-blue
v. 1.3 [8].

3.1. Stenciled cell list

The stenciled cell list algorithm consists of two steps: building
the cell list and stencils, followed by neighbor list generation from
the cell list. A cell list is constructed on the GPU every time the
neighbor list is built using the existing methods in HOOMD-blue.
The cell list stencil is computed on the CPU. Because it depends
only on the maximum cutoff radius of each particle and the size of
the cells, the cell stencil only needs to be recomputed when one
of these changes. Each member of the stencil is saved in a four
element structure that holds the x, y, and z offsets from a reference
cell and the minimum distance to that cell. Care is taken during the
stencil construction so that no cells are “double counted” due to
periodic boundaries when the stencil covers the entire simulation
box.

In HOOMD-blue, the standard cell list is processed to build
the neighbor list using multiple threads per particle to increase
parallelism [21]. The stenciled cell list similarly benefits from
this optimization, and so Algorithm 1 is slightly modified in our
implementation. We assign n threads per particle. Each thread
follows Algorithm 1 in a strided manner so that it only processes
every nth particle read from the cell list, effectively parallelizing
lines 8-13 of Algorithm 1. The optimal value of n is automatically
tuned at run time because the performance gained by using
multiple threads per particle varies depending on the number
of particles in the system, the number of particles per cell, and
the GPU architecture. We restrict n to be a power of 2 smaller
than the CUDA warp size so that the full neighbor list can be
aggregated efficiently using intra-warp stream compaction. The
original Algorithm 1 is recovered whenn = 1.

Significant divergence can occur in the inner loop of Algorithm
1 because randomly ordered particle types can have very different
stencil sizes to search or can search different areas of space.
In HOOMD-blue, all particle data is periodically sorted along a
space-filling curve to improve spatial locality of the data. We then
additionally sort the particle indexes by type before the neighbor
list is calculated. By applying a stable sorting algorithm, we still
preserve most of the benefits of the space-filling curve sort. During
the neighbor list build, threads operate on the particle data in this
sorted order.

3.2. Building LBVHs

We build LBVHs using the highly parallel algorithm of
Karras [19], which is outlined in Algorithm 3 for a single particle
type. All particle indexes are first sorted along a Z-order curve
using 30-bit Morton codes (lines 1-4) [22]. The Morton codes are
generated by placing each particle into one of 2'° bins along each
coordinate axis in the simulation box (line 2) and interleaving
the three 10-bit integers corresponding to these bins (line 3). In
order to construct one LBVH per particle type, we also prepend the
bit string representing the particle types to the Morton codes to
effectively sort first by particle type and then along the Z-order
curve. Fig. 4(a) shows a schematic of this process, where 4-bit
Morton codes are assigned in two dimensions for two particle
types. Reading in lexicographic order, the first bit corresponds
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Fig. 4. 2D example of (a) assigning 4-bit type-Morton codes and (b) sorting and
merging particles into primitive AABBs.

to the particle type, while the next 4 bits are the Morton code
representation of the bin. The type-Morton codes are efficiently
sorted using a parallel radix sort (line 4). Because radix sort is O(Nk)
where k is the number of bits to compare in the key, we restrict the
sort to the lowest 30+b bits where b is the number of bits necessary
to represent the largest type index. Fig. 4(b) shows the particles in
sorted order.

Algorithm 3 LBVH build

1: for each particle 0 < i < N in parallel
2: (x,y,2) < 3Dbinof i
3: mg(i) < MoORTONCODE(X, ¥, z)
4: SORTMORTONCODES() in parallel
5: Njear <= [N/w]
6: for each leaf node 0 < i < Njg;r in parallel
7: {p} < set of w particles in i
8: a < MERGE({p})
9:  m(i) < mo(po)
10: GENERATEHIERARCHY(m) in parallel
11: for each leaf node 0 < i < Njyr in parallel
12: n<«i
13: do
14: p < parent of n
15: s <« sibling of n
16: atomic
17: v <« times p has been visited
18: v<—v+1
19: if v = 0 then return
20: D < MERGE(n, s)
21: n<p

The number of leaf nodes in each tree is computed assuming
a constant number w particles per leaf filled in order along the Z-
order curve (line 5). Using one thread per leaf, we merge successive
sets of w particles into an AABB enclosing all the particles, and take
the Morton code of the first particle as an approximation of the
Morton code for that leaf node (lines 7-9). Schematically, this is
indicated by the indexes and boxes shown in Fig. 4(b). Although
this is not necessarily the optimal way to group particles into
leaves or to represent the spatial position of the merged AABB, it
is inexpensive and guarantees that the Morton codes remain in
lexicographic order without an additional sorting call. We found
that employing w = 4 particles per leaf gave the best traversal
times in our benchmarks (see Section 4 for benchmark details).

The tree hierarchy, defining the parent-child edges between
the nodes, is then processed using one thread per internal node
(line 10). In essence, each thread processes the Morton codes
to determine a “split position” in the leaf nodes for the current
internal node. This split identifies both the indexes of the children
of the internal node as well as whether those children are leaf
nodes or internal nodes. The reader is referred to Ref. [19] for a
detailed presentation of this algorithm.

Fig. 5. Schematic LBVH tree constructed on GPU, including bubbled AABBs and
skip ropes. Internal nodes are shaded in blue, leaf nodes are in black. A green arrow
indicates a skip rope, while a red arrow indicates termination of traversal. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Finally, the AABBs of the internal nodes are determined by pro-
cessing up from the leaf nodes using one thread per leaf (lines
11-21). Each internal node is processed by the second thread to
arrive at the node, with the arrival order determined by an atomic
counter (lines 16-19), which guarantees that the parent internal
node is processed only after its children have been processed. The
AABB of each internal node is determined by merging the AABB of
the active thread with the AABB of the active thread’s sibling, so
that the AABB of the parent node encloses both child AABBs (line
20). The active thread then iterates to the next level in the BVH
(line 21).

3.3. Traversing LBVHs

Once the LBVH is built, traversing it is a trivially parallel process,
since each particle may independently query the tree and record
its neighbor list. The most challenging part of Algorithm 2 is to
determine the next nodes to traverse or skip. One way to perform
this traversal is to explicitly manage a stack of node pointers to
test per thread. However, this can lead to large memory demands
per thread, which can be undesirable if it reduces the device
occupancy. We instead implemented a stackless traversal method
based on “ropes” [23-25], in which each AABB stores the indices
of its left child and a “rope” that is the index of the node that
traversal should proceed to if the current node is a leaf node or it
is not intersected (lines 17 and 20 in Algorithm 2). In practice, we
generate the skip ropes during the hierarchy generation and AABB
determination.

The ropes are shown schematically in Fig. 5, where green arrows
indicate ropes to other nodes within the tree, while red arrows
indicate that traversal should be terminated. If the query AABB
overlaps an internal node, the traversal proceeds to the left child. If
it does not overlap, then traversal proceeds to the next node along
the rope. The rope is always followed for a leaf node regardless
of overlap. For example, if the query AABB overlaps internal node
0, traversal proceeds to internal node 1. If it does not overlap
internal node 1, then leaf nodes 0 and 1 can be skipped, and
traversal proceeds along the rope to leaf node 2. After leaf node
2 is processed, traversal of this tree is complete.

We found that memory access patterns significantly affected
the traversal speed. The AABB data was aligned in two four element
structures containing the lower and upper bound coordinates of
the AABB, the traversal rope, and either the left child for an internal
node or the number of particles in a leaf node. With this layout,
our implemented rope algorithm is advantageous compared to
other proposed stackless traversal algorithms [26-28] because its
memory accesses are minimal and fully coalesced. Similarly to
the stenciled cell list, the neighbor list is constructed from the
sorted particle order so that threads within a warp traverse similar
parts of the tree. We have not implemented the LBVH traversal
using multiple threads per particle because Algorithm 2 does not
lend itself as naturally to strided access as Algorithm 1. Such an
optimization is left as possible future work.
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3.4. Memory management

The neighbor list memory layout affects the speed of the
subsequent pair force calculation. In previous versions of HOOMD-
blue, the neighbor list was stored in an effectively two-dimensional
row-major matrix with the particle indexes as columns and the
neighbors as rows [7]. This memory layout demands that the
number of rows be equal to the maximum number of neighbors
for any particle. Although this works well when all particles have
roughly the same number of neighbors, it presents problems in
size-asymmetric systems when a minority of particles has many
more neighbors than the majority. The number of neighbors for a
particle scales as r,f In a system with a cutoff radius disparity of
10:1, the large particles have roughly 1000 times more neighbors
than the small particles. This in turn leads to intense memory
demands that can easily exceed the typical capacities of GPUs, even
if there is only a single large particle.

To remedy this problem, we manage the neighbor list memory
in an alternative fashion that significantly reduces memory
requirements. We track the maximum number of neighbors per
particle type, and allocate the memory for a one-dimensional array
holding the maximum total number of neighbors for the system
based on the number of particles per type. We round the maximum
number of neighbors per type to the next-highest multiple of 8 for
improved memory alignment and less frequent resizing. Because
particles are randomly ordered in memory by type, we maintain
a second array that gives each particle an index into its memory
in the one-dimensional neighbor list array. We compute this list
of indexes in parallel using a device-wide exclusive prefix sum on
an array initially filled with the number of neighbors reserved for
each particle.

4. Performance

All benchmarks were performed on XSEDE [29] Comet,
hosted by the San Diego Supercomputer Center, on an NVIDIA
Tesla K80 GPU. HOOMD-blue was compiled using CUDA 7.0 in
single precision without MPI support because this is a typical
configuration for many users. The open-source CUB library [30]
(version 1.4.1) is embedded in HOOMD-blue for the radix sort.

4.1. Lennard-Jones binary mixture

We first performed a synthetic benchmark of a Lennard-
Jones binary mixture of particles that differ solely in their cutoff
radius. Because the Lennard-Jones potential decays quickly with
radial distance, the local density of the bulk liquid is essentially
unchanged by expanding the cutoff beyond a sufficiently long
length. This means that varying the cutoff systematically varies the
number of neighbors to compute while the particle configurations
are mostly unperturbed. This benchmark can then systematically
probe the performance of the neighbor list algorithms as a function
of both size disparity and composition.

We first equilibrated a Lennard-Jones liquid of 192,000 particles
(all marked type “A”)at T = 1.5 in a cubic box of edge length L =
72 with all quantities defined in the standard reduced Lennard-
Jones units. We used a cutoff of ras = 3.0 between all particles
during the equilibration. Integration was performed with particles
coupled to a Langevin heat bath using a simulation timestep At =
0.005 and damping factor y = 1.0. After equilibration, we marked
a certain number fraction xg as “B” particles with a large cutoff
radius rgg between them, using arithmetic mixing rules for the
cross interactions.

We then performed short benchmark runs in the NVE ensemble
using the standard cell list, stenciled cell list, and LBVHs for
building the neighbor list. The neighbor list buffer width was

set to 0.0 to force a rebuild at every simulation step. For the
stenciled cell list, we performed most benchmarks with Apjy = raa.
We performed 1000 warm-up steps to determine optimal kernel
launch parameters for each algorithm, and then profiled the time
required to construct the neighbor list during 10,000 simulation
steps. We varied rgg from 3.0 to 18.0, choosing values so that an
integer number of cells covered the simulation box. We then varied
xp from 10% to 50%. The benchmarked absolute neighbor list build
times are reported as supplementary data (see Appendix A).

We expected and confirmed that the stenciled cell list
performance was essentially indistinguishable from the standard
cell list for the single component Lennard-Jones liquid (xg = 0.0)
with Apj, = raa. For other values of xg and rgg, we scanned over a
range of nominal cell widths Ay, and found that A, = raa gave
the optimal performance in almost all systems. This bin width gave
neighbor list build times that were between 50% and 100% faster
than with A, = raa/2. For the particles of type A, setting Api, =
raa/2 reduced the number of distance checks by about 40% from
Apin = Taa; however, nearly five times more cells were accessed.
The overhead of these additional cell accesses evidently outweighs
the benefits of choosing a smaller Ap;, in our GPU implementation.
Accordingly, we set Ay, = raa for all subsequent results.

The authors of Ref. [ 10] describe an additional optimization for
the stenciled cell list to further reduce the number of distance
checks. In their CPU algorithm, the maximum distance between
cells in the stencil is also computed in addition to the minimum
distance. If the maximum distance is shorter than the cutoff, the
particle can be included without distance check. We implemented
this on the GPU with a single thread and multiple threads per
particle, but found that it led to comparable or increased neighbor
list build times in our benchmarks, and so chose not to include it
in our final implementation.

For this synthetic benchmark, the most important measure-
ment is the relative speed of the three neighbor list algorithms.
Fig. 6 compares the speedup of the stenciled cell list and the LBVH
neighbor list build times versus the standard cell list for different
concentrations and cutoffs. Here, a speedup greater than one indi-
cates that the stenciled cell list or LBVH is faster than the standard
celllist. For rgg < 6.0, the stenciled cell list performs comparably to
the standard cell list, while the LBVH is slower. This behavior is ex-
pected because the A and B interaction lengths are nearly the same,
and it is faster to build and search the cell list than to build and tra-
verse the LBVH. As rgg is increased, both the stenciled cell list and
the LBVHs considerably outperform the simple cell list. We note
that this speedup is more pronounced for systems with smaller xg
for both algorithms.

Fig. 7 compares the speedup in the neighbor list build time
between the LBVHs and the stenciled cell list. Here, a speedup
greater than one indicates that LBVH is the faster algorithm. For
rgg < 6.0, the stenciled cell list typically performs better than
the LBVH, as does the simple cell list. The LBVH outperforms the
stenciled cell list for larger asymmetries rgg > 6.0 and low
concentrations xg < 0.3. This behavior is in agreement with our
expectation that trees outperform cell lists for non-uniform or
sparse systems. For many colloidal systems, the number density of
large particles is typically quite low, so in these systems we might
expect LBVHs to outperform the stenciled cell list.

4.2. Colloid solution

We benchmarked the stenciled cell list and LBVHs for a rep-
resentative colloidal system, the colloid solution described in
Ref. [10]. We fixed the solvent density at o = 0.6 and varied the
colloid diameter a and the colloid volume fraction ¢ = wa’pc/6
where pc is the colloid number density. The solvent-solvent in-
teractions were modeled with a standard Lennard-Jones potential
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Fig. 6. Speedup in the stenciled cell list (top) and LBVH (bottom) neighbor list build
time compared to a standard cell list for the Lennard-Jones binary mixture with
varying largest cutoff rgg and composition xg.
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Fig. 7. Speedup in the LBVH neighbor list build time compared to a stenciled cell
list for the Lennard-Jones binary mixture of Fig. 6.

with cutoff rss = 3.0. The colloid-colloid and colloid-solvent in-
teractions were modeled through integrated Lennard-Jones poten-
tials [31] using the same parameterization as Ref. [10] with the
colloid-colloid interactions truncated at rcc = 5a/2, and the col-
loid-solvent interactions at rcs = a/2 + 4.0. The maximum colloid
diameter explored was a = 20, which led to a maximum interac-
tion range asymmetry of 50:3.

We initially equilibrated only the Lennard-Jones solvent cou-
pled to a Langevin heat bath in a cubic simulation box at T = 1.0
(simulation timestep At = 0.005, damping factor y = 1.0). We
then randomly dispersed N¢ colloids into the simulation box, and
deleted solvent particles within 5% of the colloid-solvent contact
distance (a + 1.0)/2. The final system parameters are listed in
Table 1, where Ns is the number of solvent particles after deletion.
The resulting dispersion was then equilibrated using the same in-
tegration scheme and a neighbor list buffer radius of 1.0. For profil-
ing, we performed 25,000 NVE simulation steps to determine the
optimal kernel launch parameters and an additional 25,000 simu-
lation steps for data collection using the stenciled cell list and the
LBVHs. During the profiling time, the neighbor list was rebuilt be-
tween roughly 1200 and 1400 times.

Fig. 8 shows the profiling results for three colloid diameters
a = 5, 10, and 20 at volume fractions ¢ = 0.1 and 0.2. Here, the
solid shaded areas indicate the time required to build the neighbor
list while the cross-hatched areas indicate the total simulation time
to complete 25,000 steps. In all cases, the total run time is shorter
for ¢ = 0.2 than ¢ = 0.1. This is due to the larger amount of
colloid excluded volume, which decreases the number of solvent
particles in the simulation.
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Fig. 8. Colloid solution neighbor list build time (solid) and total simulation time
(cross-hatched) for 25,000 simulation steps using stenciled cell list (Apin, = T'ss)
and LBVHs at varied colloid diameters (a) a = 5, (b) a = 10, and (c¢) a = 20 and
volume fractions ¢. See Table 1 for benchmark parameters and relative speedups.

Table 1 reports the speedups in the neighbor list build time and
total run time. We observe that for all systems the LBVHs outper-
form the stenciled cell list, with a maximum speedup in total run
time of 3.6 x. It is clear that as the colloid diameter increases, the
speedup of the LBVHSs versus the stenciled cell list increases, which
is consistent with our expectation that LBVHs are more favorable
for decreasing number density from the synthetic Lennard-Jones
benchmark. For the stenciled cell list, the neighbor list calculation
typically accounted for roughly 50% of the simulation time, so the
actual speedup in the neighbor list calculation time for the LBVHs
was between 2.1x and 8.2 x. Although explicit timings are not re-
ported here, we found that both algorithms clearly outperformed
the standard cell list as in Ref. [10].

5. Conclusions

We developed a parallel algorithm for computing neighbor
lists based on linear bounding volume hierarchies on GPUs.
We compared this algorithm to a GPU implementation of an
established CPU algorithm based on stenciled cell lists. We found
that both the stenciled cell list and LBVH algorithms outperform
a standard cell list for a synthetic benchmark with asymmetric
interaction ranges, and that the highest speedups relative to a
standard cell list are obtained when the fraction of particles with
large cutoffs is small. These benchmarks also revealed that LBVHs
outperform the stenciled cell list for large asymmetries and low
number fractions of large particles. We confirmed this in a realistic
colloidal system where the LBVHs consistently outperformed the
stenciled cell list.

We have focused our discussion on the GPU implementation
of the LBVH algorithm, but we emphasize that a BVH neighbor-
list algorithm is also applicable to CPU codes. We observed sizable
speedups in the neighbor list build time using CPU BVHs compared
to a CPU standard cell list in HOOMD-blue as size asymmetry
increased (not reported in the present article). Both the CPU and
GPU BVH neighbor list implementations are available as open-
source software in HOOMD-blue v. 1.3, and can be downloaded
from the HOOMD-blue webpage [8].

The LBVH neighbor-list algorithm described here has numerous
applications in soft matter simulations, especially when the system
of interest has components with disparate length scales. These
length scales may be geometric constraints, as is the case for
colloidal particles dispersed in an atomistic solvent, or due to
disparate interaction length scales. As in graphics processing,
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Table 1

Colloid solution benchmark parameters and speedups for LBVH versus stenciled cell list.

a [ N¢ Ng L neighbor list speedup total speedup
5 0.1 500 158,517 68.9 2.1x 1.5x
0.2 1000 123,267 ’ 2.1x 1.5x
0.1 250 665,540 4.1x 2.1x
10 0.2 500 548,740 1094 4.1x 2.0x
0.1 100 2,176,957 8.2x 3.6x
20 0.2 200 1,841,931 161.2 8.0x 3.3%x

LBVH neighbor lists may also find useful applications in systems
with uniform length scales but spatially non-uniform particle
distributions, as is often the case for studying systems with
interfaces or particle clustering.

Although this work has focused on the application of LBVHs to
general-purpose molecular simulations, other tree data structures,
including octrees and k-d trees, are also likely excellent candidates
for neighbor list construction. Higher quality LBVHs may also
provide better performance for certain problems [20]. Moreover,
hybrid approaches that combine cell lists and hierarchical trees
are also known to significantly accelerate graphics processing [11].
These algorithms incur different costs for tree construction and
traversal [14], and should be carefully compared to each other in
simulation applications. Such alternative hierarchical algorithms
are promising avenues for future work.
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