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ABSTRACT: Hard polyhedra are a natural extension of the
hard sphere model for simple fluids, but there is no general
scheme for predicting the effect of shape on thermodynamic
properties, even in moderate-density fluids. Only the second
virial coefficient is known analytically for general convex
shapes, so higher-order equations of state have been elusive.
Here we investigate high-precision state functions in the fluid
phase of 14 representative polyhedra with different assembly
behaviors. We discuss historic efforts in analytically approx-
imating virial coefficients up to B4 and numerically evaluating
them to B8. Using virial coefficients as inputs, we show the
convergence properties for four equations of state for hard
convex bodies. In particular, the exponential approximant of Barlow et al. (J. Chem. Phys. 2012, 137, 204102) is found to be
useful up to the first ordering transition for most polyhedra. The convergence behavior we explore can guide choices in
expending additional resources for improved estimates. Fluids of arbitrary hard convex bodies are too complicated to be
described in a general way at high densities, so the high-precision state data we provide can serve as a reference for future work in
calculating state data or as a basis for thermodynamic integration.

■ INTRODUCTION

The thermodynamic behavior of molecules and colloidal
particles is often dominated by shape,2 but while the hard
sphere (HS) system is a standard model for simple fluids, much
less is known about nonspherical hard shapes. Pade ́
approximant hard sphere equations of state (EOSs) have
been studied for half a century,3 and modern numerical
techniques can calculate up to the 12th hard sphere virial
coefficients with high precision.4−6 In contrast, only the
simplest of anisotropic shapes are described well analytically
or in published numerical studies, and trends observed for
specific families of shapes have not led to effective general
expressions for even the third virial coefficient.7

Indeed, the difficulty in deriving an EOS for highly
anisotropic polyhedra was discussed recently by Solana8 with
respect to the hard tetrahedron system for which high-precision
virial coefficients are available.9 Besides these tetrahedron data,
we are not aware of other reports of virial coefficients for hard
polyhedra.
Polyhedra are particularly interesting shapes because they are

geometrically simple and can be synthesized with a high level of
shape perfection and monodispersity in nanocrystals.10

Simulation studies of hard polyhedra demonstrate a rich set
of assembly phenomena greatly exceeding that of hard
spheres.11−13 The deviation from hard sphere behavior has

been explained by the presence of well-defined facets, inducing
local alignment.14 As a result, the effective entropic interactions
are directional, which affects the behavior of the hard
polyhedron fluid even at intermediate densities. The knowledge
of equations of state of hard polyhedra promises insights into
the dynamics of hard polyhedron systems and is a prerequisite
for the establishment of particle shape as a thermodynamic
parameter.15

Here we study state functions of 14 hard polyhedra that were
chosen to cover a range of asphericities and serve as
representative for diverse assembly behavior. We determine
the compressibility factors of the polyhedron fluids using
Monte Carlo simulation and calculate the first eight virial
coefficients by numerically evaluating cluster integrals. We
discuss implications for historic semianalytic equations that
incorporate geometric factors. Our findings test and compare
the applicability and convergence of four forms of equations of
state, each constructed in terms of arbitrary numbers of
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available virial coefficients. We examine the virial expansion in
density, a free volume expansion, a modification to an EOS
described by Solana,8 and the exponential approximant due to
Barlow et al.1 The functional forms of these equations are not
capable of representing the sharp transition and coexistance
region of a first-order phase transition, so we cannot expect to
provide a single state function across multiple phases. Previous
literature casts doubt16 that convergence or divergence will be
an effective way to predict phase transitions, but we are
nevertheless surprised at the variety of behaviors observed
across shapes, functional forms, and orders of error in EOS
schemes.
We investigate 14 polyhedra, including three Platonic solids

(tetrahedron, cube, and octahedron), three Archimedean solids
(truncated tetrahedron, truncated cube, and truncated octahe-
dron), a Catalan solid (rhombic dodecahedron), two Johnson
solids (square pyramid and triangular dipyramid), and four
additional polyhedra (triangular prism, pentagonal prism,
hexagonal prism, and obtuse golden rhombohedron) with
known phase behavior,12 as well as the 90% truncated
tetrahedron.17

■ THEORY
The fluid EOS is commonly represented with dimensionless
compressibility factor Z, which is the ratio of the fluid volume
to that of an ideal gas at the same temperature T, pressure p,
and number of particles N. For a simple fluid consisting of N
particles of uniform volume v0, a convenient notation uses the
reduced pressure p* = βpv0 with β = (kBT)

−1 and the packing
fraction η = v0ρ = v0N/V to write

β
ρ η

= = = = *
Z

V
V

pV
Nk T

p p

id B (1)

The virial EOS is expressed as a power series in density to
perturbatively describe the fluid phase relative to the ideal gas.
The jth order virial EOS (VEOSj) is the power series

∑ ∑ρ η= + ̂ = +
=

−

=

−Z B B1 1j
k

j

k
k

k

j

k
k

VEOS
2

1

2

1

(2)

where Bk = B̂k/v0
k−1 is the reduced kth virial coefficient.

The second virial coefficient captures the initial departure
from ideal gas behavior and is the last coefficient that can be
analytically solved for general hard convex bodies (HCBs). It is
given by18,19

α= + = +B
RS
v

1 1 32
0 (3)

where it is useful to define a size-independent shape asphericity
α = RS/3v0 as a function of three fundamental shape measures:
surface area S of a single particle; R, the mean curvature
integrated over the surface and normalized by 4π; and particle
volume v0. α can be seen as relating the quantity RS for a
convex shape to that of a sphere of the same volume, such that
α ≡ 1 for a sphere.
It is possible to formulate equations of state that are

parametrized using only B2 but that are more accurate to higher
densities than VEOS2 itself. Since van der Waals, it has been
common to describe Z not relative to the absolute volume, but
to the non-excluded volume available to particles of finite size.
Equation 4,20 for example, is known21 to converge faster than
the VEOS for hard spheres. With a1 = 1 and a2 = 3α, ZFV2 is

exact through B2 but projects a better high-density fit for HCBs
than VEOS2 does.

∑η η
η

=
−=

−
Z a( )

(1 )n
m

n

m

m

mFV
1

1

(4)

Values of am can be calculated from known virial coefficients
and tend to be of moderate magnitude.
A popular class of equations that extrapolates to higher

density more accurately than a truncated virial expansion is the
Pade ́ approximant. Here, compressibility factor Z is expressed
as the ratio of two polynomials, the coefficients of which can be
chosen by equating the first few terms of a Taylor expansion in
η to targeted virial coefficients. The best-known Pade ́
approximant for hard spheres is the Carnahan−Starling (CS)
equation,3 which was proposed empirically and predicts Bk = k2

+ k − 2. More accurate approximants are possible within
Percus−Yevick theory.22 In this article, we will broadly define
an approximant as any functional form that is constructed to
capture the effect of higher-order terms in the density series,
while adhering to the virial series to given order at low density.
Using B2 and assuming Z0 = 1/(1 − η) as the low-density

limiting behavior,a Solana proposed8 capturing the shape-
dependent perturbations to the hard sphere EOS in a single
term, c(η). We note that deviation from ZHS is constrained to
B3 and higher if we first scale the sphere volume to match the
known second virial coefficient. Using “effective hard sphere”
ZEHS, then, we have

η
η

η η
η

=
−

+ −
−′

⎡
⎣⎢

⎤
⎦⎥Z c Z( )

1
1

( ) ( )
1

1S
HCB

EHS
(5)

where ZEHS(η) = ZHS(ηeff) and ηeff = η(1 + 3α)/4.
For the purposes of this article, we neglect geometric

arguments for approximating c(η) and choose instead to solve
for coefficients ci in c(η) = ∑i=0

j−2 ciη
i using numerically

calculated virial coefficients to construct an approximant of
jth order. c0 is necessarily unity for HCBs, and ci depends on
virial coefficients up to Bi+2

HS and Bi+2
HCB.

The third virial coefficient, B3, is analytic for some particle
shapes of high symmetry, and B4 is known for hard spheres;
however, only B2 is generally solvable, e.g., for polyhedra. At
higher densities, theoretical treatments must account for
higher-order particle correlations. Rigorous studies of hard
sphere systems23 illustrate the potential utility of methodologies
commonly supporting analytic expressions for third- and
fourth-order approximants.
HCB approximants frequently incorporate α and other

asphericity terms,24 which give some metric of a shape in
relation to that of a quantifiably related sphere. Equations are
easily normalized for particle size, but at least two quantities are
necessary to capture the available shape information in R, S, and
v0. In addition to α, several equations of state7,8,25 use a
complementary geometric parameter (τ = 4πR2/S) that relates
the surface area of a shape to that of a sphere with the same
integrated mean curvature.b

Attempts at analytic expressions for B3 frequently lead to
expressions27,28 of the form

α= + + GB 1 63 (6)

with the limiting constraint that G → 3 for spheres. Boubliḱ
originally asserted G ≈ 3α2, while more recent works7,25

explore its dependence on an independent shape parameter τ.
Kihara and Boublik reason that G = 3α2ξ and attempt to
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constrain ξ to some simple form ϕ(τ), such that 3α2ϕ(τ) = G =
a3 in eq 4.

Solana’s EOS yields α= + η η

∂
∂ =

G 3 3 c

0
with the implied

constraints that, in the low-density limit η → 0+, c(η) → α

while the derivative η
∂
∂ c goes to zero for spheres and is non-zero

for nonspheres.
Gibbons presented a generalized EOS29 that was later

improved.30,31 A variant by Song and Mason32 (SM) projects to
higher order by explicitly perturbing the hard sphere fourth
virial coefficient.
Various proposed expressions for B4 take the form B4 = 1 +

9α + 3G + H but do not attempt to or succeed at describing
polyhedra. We note, though, that H is equivalent to a4 from eq
4, and

α
= + + +

= + + +G

B a a a a

a

3 3

1 9 3
4 1 2 3 4

4 (7)

Today, the computational cost of numerically determining B3

and B4 to high precision trivially surpasses the effectiveness of
prior approximate methods. With knowledge of many numeri-
cally calculated virial coefficients, approximants can be
constructed to arbitrary order.
Recently, Barlow et al.1 introduced a generalized Pade ́

approximant for repulsive spheres of arbitrary softness, which
extrapolates from a chosen number of virial coefficients used as
inputs. The effectiveness of the approximant is enhanced over
conventional Pade ́ approximants by enforcing the same high-
density asymptotic behavior as the model fluid being described.
In the hard sphere limit, the jth-order exponential approximant
(EAj) takes the form of an exponential of a polynomial in
density

η η η= + + + −Z N N Nexp( ... )j j
j

EA 2 3
2 1

(8)

with coefficients Ni determined by matching the Taylor
expansion of ZEAj to known virial coefficients.

■ METHODS

Calculation of the Second Virial Coefficient. We calculate the
second virial coefficient analytically using the conventional HCB
expression, eq 3, and three fundamental geometric measures.
Mean curvature (or the average of two principal curvatures) is most

easily understood for a polyhedron as the limiting case of a
spheropolyhedron as the rounding radius goes to zero. When the
surface of a polyhedron is extended outward by a radius r, the facets,
edges, and vertices become facets, cylindrical sections, and spherical
sections, respectively, on the resulting spheropolyhedron. For the
spherical sections, principle curvatures are κ1 = κ2 = 1/r, so mean
curvature H = 1/2(κ1 + κ2) = 1/r. On the cylindrical sections, one of
the principal curvatures is zero, and H = 1/2r. Mean curvature is zero
on the facets.
Together, the spherical sections at the vertices comprise exactly one

complete spherical surface, while the cylindrical sections along the
edges have length li and π − θi radians, where θi is the dihedral angle.
Integrating the mean curvature over the surface of the spheropolyhe-
dron is then straightforward

∫ ∫ ∫ ∫

∬ ∫ ∫

∑ ∑ ∑

∑

∑

θ θ ϕ θ

π π θ

= + +

= +

= + −
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r
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2

0 0

i i

(9)

In the limit as r→ 0, the (normalized) integrated mean curvature for a
polyhedron is then given by

∫ ∑π π
π θ= = −

σ
R H S l

1
4

d
1
4 2i

i
i

(10)

The summation runs over all edges with edge length li and dihedral
angle θi between adjacent faces.

The remaining fundamental measures in eq 3 are easy to calculate
for convex polyhedra. The surface area due to the (triangulated) facets
is given by the half-magnitude of the cross products of the edges, and
the contributing volume of each is given by the volumes of the cones
that share an apex at some interior point (such as the particle center of
mass).

Calculation of Higher Virial Coefficients. Virial coefficients
from B3 to B8 (eq 2) for all of the polyhedra studied are calculated
numerically, following methods very similar to those recently used to
compute virial coefficients of hard spheres.5 We briefly review these
methods here.

Each coefficient Bk is given via the configurational integral (taking
particle 1 to define the origin)

∫ ω ω ω= −
!

− ⎜ ⎟⎛
⎝

⎞
⎠B v

k
k

f r r r1
( , ) d ... d d ... dk

k k k
k k0

1
B 2 1 (11)

with the orientation integrals normalized to unity: ∫ dωi = 1. The
integrand f B is the sum of biconnected graphs4

∑ ∏ω =
∈

f fr( , ) ( )k k

G ij G
ijB

(12)

Graphs G are formed from k vertices, one for each particle appearing
in the integral, with Mayer f-bonds joining some of the vertex pairs.
For hard polyhedra, the Mayer function f ij for the particles labeled i
and j in the configuration (rk,ωk) will be zero if they are not
overlapping, and −1 otherwise. The product in eq 12 is taken over all
pairs having a bond in graph G, and the sum is over all doubly
connected graphs of k vertices.

For each shape, we directly sample the full set of graphs efficiently
by building up candidate configurations under simpler constraints.5

Chains and trees are graphs having no closed loops and are easily
generated randomly to form a template. Each bond in the template is
satisfied by finding a random orientation and position for each
sequentially placed polyhedron that overlaps the polyhedron at the
neighboring vertex. Additional overlaps, occurring by chance, add
bonds to the template to form the configuration graph.

The configuration graph is used for an initial screening to quickly
identify some of those configurations for which f B equals zero (for
instance, we confirm that the configuration graph of polyhedra is
doubly connected). If the configuration does not pass the screening,
zero is added to the average. If it does pass, then we compute the
integrand f B(r

k,ωk) using Wheatley’s recursive algorithm,4 and we
compute the sampling weight for the configuration, π(rk,ωk), using the
methods detailed previously.5 Virial coefficient Bk is then given in
terms of the average for this process, according to

π
= −

! π

− ⎜ ⎟⎛
⎝

⎞
⎠B v

k
k

f1
k

k
0
1 B

(13)

where the angle brackets indicate the computed average.
For the 14 representative polyhedra, we sample 1.45 × 1011

configurations for each coefficient. Within this total, independent
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sub-averages of 1 × 108 to 2 × 109 (varying with coefficient) samples
are collected to generate uncertainty estimates, which are reported as
one standard deviation of the mean (68% confidence level).
Thermodynamic Monte Carlo Simulation of Hard Polyhe-

dron Fluids. We perform isobaric (constant-pressure) hard particle
Monte Carlo simulations using standard methods employed
previously.12,33 At state points from p* = 10−4 to the freezing
transition, we simulate each system with periodic boundary conditions
and measure the packing fraction. Each simulation begins with N =
2048 particles positioned and oriented randomly at a moderate
density, and we define a MC step to mean N Monte Carlo trials. We
initially targeted a relative uncertainty in packing fraction of ≤10−4 at
up to 300 state points per shape, conservatively estimating a need to

sample each state point up to 20 times with simulation trajectories up
to 2.5 × 106 MC steps. In many cases, we have determined the
sufficiency of fewer data for a state point and choose not to complete
this protocol.

The hard sphere system fluid equilibrates easily within 0.5 × 106

MC steps even at high densities and within 0.1 × 106 steps at densities
below η ≈ 0.25. When η ≈ 0.25, we observe that simulation densities
for shaped particles converge by the time the Monte Carlo move sizes
are optimized and fixed, variously at 0.2 × 106, 0.3 × 106, or 0.5 × 106

MC steps depending on the shape. For higher densities, then, the
polyhedra are allowed to equilibrate for 1.5 × 106 MC steps, and then
the packing fraction is measured over an additional 1.0 × 106 steps.

Figure 1. Pressure vs packing fraction for the sphere and 14 polyhedra. The subfigures are in order of increasing asphericity α from left to right and
top to bottom. We compare the Monte Carlo simulation data (gray circular markers) with the four eighth-order approximants: the virial equation
(eq 2) in blue, labeled “V”; the free volume EOS (eq 4) in orange, labeled “F”; the modified Solana EOS (eq 5) in green, labeled “S”; and the
exponential approximant (eq 8) in red, labeled “E”. The estimated error is not shown here but is more clearly illustrated in Figure 2 and in the
Supporting Information. The Solana equation is meaningless for the hard sphere and is omitted from that subfigure.
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Below η ≈ 0.25, the packing fraction is measured from the step at
which MC parameters are fixed. To give equal weight, the value
contributed to a packing fraction measurement is extracted from the
same range of MC steps in each trajectory. Because, at lower packing
fractions, we are able to achieve our desired precision before
completing 2.5 × 106 MC steps, some computations were terminated
early and the trajectories were truncated to 1.2 × 106 MC steps.
Because of fairly long correlations in the denser systems (see the

Supporting Information), we do not expect a single trajectory to
reasonably sample the entire ensemble and instead rely on
independent simulations for uncorrelated measurements. Uncertainty
in the state data is estimated from the standard error of the mean

packing fraction from 5 to 20 independent simulations equilibrated
and run with different random number seeds.

Construction of Approximants. Approximants of the various
forms discussed are constructed to exactly reproduce an arbitrary
number of virial coefficients. The free volume equation of state (eq 4)
can easily be represented in terms of the numerically calculated virial
coefficients with

∑= − −
−=

+ ⎛
⎝⎜

⎞
⎠⎟a

m
k

B( 1)
1
1m

k

m
k m

k
1 (14)

and uncertainty propagated by

Figure 2. Deviations of the state functions from the simulation data for the sphere and 14 polyhedra. We show the relative difference for virial
equation ZVEOS8 (blue, “V”, eq 2), free volume EOS ZFV8 (orange, “F”, eq 4), modified Solana EOS ZSolana8 (green, “S”, eq 5), and exponential
approximant ZEA8 (red, “E”, eq 8), each normalized to the simulation data (gray). The estimated uncertainty in the vertical axis is represented by the
1σ filled regions. The width of the horizontal gray line reflects the estimated simulation uncertainty. The width of the EOS plot traces includes the
uncertainty propagated from simulation due to the normalization, dominating other sources of error at low densities.
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∑ ∑σ η
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1 (1 )Z
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m B
2

2

1
2

j kFV
(15)

The other approximants (eqs 5 and 8) are less trivial, but free
parameters are solved by expressing a Taylor series expansion around
η = 0 and equating terms to known reduced virial coefficients. This is
easily performed by computer algebra (in this case with Wolfram
Mathematica) along with the derived uncertainty propagated from the
virial coefficients. For EOS orders 3−8, we have calculated am (eq 4), ci
(eq 5), and Nk (eq 8).

■ RESULTS AND DISCUSSION
We did not equilibrate simulations through the first ordering
transition of each shape, and we do not claim to precisely locate
the ordering transitions. In the cases of the hard sphere,
octahedron, and triangular dipyramid, the apparently equili-
brated fluid data extend to pressures in metastable regions, but
in these cases, we restrict our comparisons to densities below
the first ordering transitions noted in the literature.34−36 The
obtuse golden rhombohedron undergoes a liquid crystal

transition above η ≈ 0.25 or p* = 1.9, so we restrict our
EOS analysis to the disordered fluid.
Figures 1 and 2 compare semianalytic equations of state to

our simulation data. Up to the triangular prism, the exponential
approximant provides the best eighth-order EOS, generally
staying within measurement precision longer and diverging
later than the other EOSs. For more aspherical shapes, the
eighth-order VEOS and modified Solana EOS are as good or
better. Remarkably, the VEOS describes the obtuse golden
rhombohedron within 1−2% up to the liquid crystal transition,
while the approximants all diverge at somewhat lower densities.
For densities less than approximately half of the first ordering

transition, compressibility values from the approximants
generally converge quickly (Figure 3). All of the approximants
match the simulation data better to higher densities than the
VEOS at third order, and for low asphericity, all three
outperform the VEOS as high as seventh order. At fourth
order and higher, the exponential approximant generally
remains within 1% and within 5% to higher densities than

Figure 3. Convergence of the jth-order equations of state for selected shapes at α = 1.18, α = 1.97, and α = 2.85. We show the absolute difference
from NpT simulation data for virial equation ZVEOSj (eq 2), free volume EOS ZFVj (eq 4), modified Solana EOS ZSolanaj (eq 5), and exponential
approximant ZEAj (eq 8), plotted vs packing fraction. The log−log scale emphasizes the nature of the dominant error terms. For ease of visualization,
error bars were omitted and data were connected by lines to aid the eye. Because the vertical axis shows an absolute value, apparent poles in some
graphs occur after an EOS has begun to diverge in the opposite direction from its accumulated error, re-intersecting the simulation data. The
horizontal axis scale is adjusted for each shape to allow maximal detail. Plots for the remaining shapes are included in the Supporting Information.
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the other EOS for shapes with asphericity α ≲ 1.8, but results
are rather varied for higher asphericities.
Figure 3 illustrates the effectiveness of the approximants at

projecting to higher order than the virial coefficients on which
they are based. At low order, the free volume equation of state
captures higher than η( )j terms (apparent in the slope of the
error) and is within measurement precision to >10% packing
fraction. In fact, the third-order free volume EOS is superior to
its fourth-order version as well as the other EOSs. The plots for
the free volume EOS seem to show |Zfv − Zsim| passing through
the same point after emerging from the noise at successively
higher densities, though the ordering of the plots from left to
right does not in fact correspond to the increasing order of the
EOS. If such a trend held, however, we would have the
remarkable finding that an important density could be
discerned simply by looking for zeroes in an expression of
the difference between EOSs of successive order [e.g., ZEOS(n+1)
− ZEOS(n) = 0]. Additional plots in the Supporting Information
clarify that the trend is not particularly strong, nor is the
indicated density precise. Nevertheless, we note that the free

volume EOS is unique among the equations studied in
appearing to very nearly mark the density of the liquid crystal
transition.
We list coefficients for VEOS8 and FV8 in Tables 1 and 2.

B3, B4, and a3, as well as τ (Table 3), are all nearly monotonic in
α for the polyhedra studied, but a4, calculated from virial
coefficients, appears to amplify whatever information is
available at lower order and appears to be less strongly
correlated to asphericity. The predictive power of geometric
quantities is less clear for higher virial coefficients, which
become large and negative for highly aspherical polyhedra. This
behavior suggests that the Song−Mason EOS and other Pade ́
approximants that depend on only low-order virial coefficients
are unlikely to capture thermodynamic behavior for general
hard convex bodies.
In several cases, we find that the magnitude of a virial

coefficient decreases substantially from the previous term, only
to increase in a subsequent term. Apparently oscillatory
behavior in virial coefficients has been previously reported,9

and our data support an assertion that the convergence of a

Table 1. Higher Virial Coefficients of the Sphere and 14 Polyhedraa

shape B3 B4 B5 B6 B7 B8

1 sphere5 10 18.364768 28.2244(1) 39.8151(9) 53.341(2) 68.54(1)
2 truncated octahedron 12.84591(4) 26.2284(2) 43.672(1) 64.387(6) 85.87(4) 102.4(3)
3 rhombic dodecahedron 13.47750(4) 27.8331(2) 46.194(1) 66.904(7) 86.98(4) 102.3(3)
4 truncated cube 15.06275(4) 32.0594(3) 52.559(1) 69.522(9) 71.01(6) 46.5(5)
5 90% truncated tetrahedron 16.74906(5) 36.4986(3) 58.887(2) 72.34(1) 62.93(9) 31.2(8)
6 pentagonal prism 17.01593(5) 37.9864(3) 64.318(2) 85.53(1) 80.73(10) 23.4(8)
7 hexagonal prism 17.01369(5) 37.5649(3) 62.642(2) 82.87(1) 81.63(10) 38.2(8)
8 octahedron 17.00537(5) 36.9035(3) 58.149(2) 67.07(1) 49.9(1) 17.6(8)
9 cube 18.30341(5) 41.8485(4) 70.709(2) 88.33(2) 63.5(1) −37(1)
10 truncated tetrahedron 19.19187(6) 43.5694(4) 70.297(3) 79.02(2) 41.4(2) −67(1)
11 triangular prism 25.24793(8) 61.7590(6) 94.874(5) 60.08(4) −136.0(4) −526(4)
12 triangular dipyramid 26.92203(8) 62.4752(7) 78.641(6) 5.06(5) −193.0(5) −355(6)
13 square pyramid 30.15558(9) 74.2408(8) 94.432(7) −27.56(7) −375.4(8) −697(9)
14 tetrahedron 33.0247(1) 80.7475(10) 85.029(9) −90.60(9) −325(1) 200(10)
15 obtuse golden rhombohedron 47.9196(2) 117.349(2) 13.20(2) −676.2(3) −1257(4) 1910(60)

aBk values are the dimensionless reduced virial coefficients, normalized by v0
k−1 as in eq 2. Sphere virial coefficients are analytic to B4. All other virial

coefficients are determined numerically.

Table 2. Derived Free Volume Coefficients ak of the Sphere and 14 Polyhedra for eq 4a

shape a2 a3 a4 a5 a6 a7 a8

1 sphere 3.0 3.0 −0.6352316 −0.23462(10) 1.34058(40) −2.4782(23) 3.180(14)
2 truncated octahedron 3.5511711 4.743567(36) 0.344145(91) −1.37116(43) 1.6094(23) −3.564(14) 3.984(87)
3 rhombic dodecahedron 3.6742346 5.129036(38) 0.42328(10) −1.97068(49) 1.8630(28) −3.084(17) 4.53(11)
4 truncated cube 3.9644254 6.133901(43) 0.76447(13) −4.15968(68) 0.5151(40) −1.769(27) 9.35(18)
5 90% truncated

tetrahedron
4.2670168 7.215030(48) 1.05248(17) −6.68128(91) 0.7410(59) 2.821(41) 10.56(30)

6 pentagonal prism 4.2928988 7.430131(48) 1.81730(17) −5.70339(91) −0.8914(60) −2.926(42) 11.55(31)
7 hexagonal prism 4.3094011 7.394892(49) 1.45205(17) −5.77281(93) 0.7160(62) −2.899(44) 8.19(32)
8 octahedron 4.3189880 7.367391(49) 0.84436(17) −7.70900(96) 0.9040(62) 5.809(45) 12.25(33)
9 cube 4.5 8.303408(52) 2.43827(20) −7.8650(11) −3.2600(75) −0.268(55) 16.48(42)
10 truncated tetrahedron 4.6692106 8.853451(56) 2.00141(22) −10.5066(13) −1.3440(92) 5.172(70) 3.45(55)
11 triangular prism 5.5801270 13.087678(75) 4.75562(38) −25.9955(27) −17.281(22) 31.72(20) 43.8(19)
12 triangular dipyramid 5.9220598 14.077909(83) 1.47527(45) −36.4161(34) 0.995(31) 70.05(30) 18.6(30)
13 square pyramid 6.3040560 16.547463(92) 4.68620(55) −49.8136(44) −23.344(42) 131.14(42) 62.3(45)
14 tetrahedron 6.7037158 18.61728(10) 3.78451(67) −69.6277(57) −1.000(58) 329.22(62) −222.1(69)
15 obtuse golden

rhombohedron
8.5595086 29.80059(16) 1.2689(14) −205.921(16) −1.13(20) 1313.4(28) −785(40)

aValues for a2 are analytic for all shapes shown. Other coefficients are calculated by matching terms in the power series in η to the numerically
calculated virial coefficients.
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virial series cannot be concluded from the appearance of a
single small coefficient.
Remarkably, α appears to effectively sort shapes by the onset

and magnitude of these oscillations. Virial coefficients of the
most spherical shapes appear to be monotonically increasing,
but the trend is broken at lower order and to a greater degree in
direct correspondence to increasing α. Negative virial
coefficients appear with the cube (α = 1.5), occurring at
lower order and/or greater magnitude with each asphericity
sampled.
While τ clearly contains information different from that of α,

its utility in thermodynamic prediction is not evident in this
study. We note, however, that expressions involving τ tend to
appear in contexts including shapes much more aspherical than
ours.
The breakdowns of the approximants for the triangular

prism, the triangular dipyramid, the square pyramid, and the
tetrahedron coincide with sign changes and large magnitudes of
higher-order virial coefficients. All approximants fail beyond the
first ordering transition, which can be crystallization or the
formation of a liquid crystal (e.g., the nematic phase at η = 0.25
for the obtuse golden rhombohedron), but also fail to predict
the phase change. No clear pattern emerges as to which EOSs
become clearly nonphysical before the phase change, while
others continue to describe the metastable fluid to higher
densities. As expected, none of the equations studied are
accurate beyond the isotropic fluid phase.

■ CONCLUSION
We have computed high-precision state data and virial
coefficients for pure fluids of 14 relevant polyhedra to compare
several power series and approximant equations of state. The
virial EOS and the exponential approximant have coefficients
solved with Monte Carlo solutions to the configurational
cluster integrals. The free volume EOS coefficients and the

coefficients in our modification of Solana’s EOS are calculated
in terms of the mapping to virial coefficients. We evaluate the
virial EOS, a free volume EOS, a modification to an EOS based
on hard spheres (due to Solana), and an exponential
approximant due to Barlow et al. to consider which equations
make the best use of numerically evaluated cluster integrals for
orders 3−8.
Each of the four equations may be expressed as an expansion

in density to arbitrary order, and though we are unable to make
strong statements regarding convergence in these expansions,
the free volume expansion in particular has a tantalizing
tendency to imply divergence at some density near the first
ordering transition. A rigorous determination of the first
ordering transition densities may provide better background for
further investigation.
More insight may be possible with additional virial

coefficients, but because computing higher-order cluster
integrals quickly becomes astronomically expensive, some
scheme of extrapolating to higher order is likely necessary.
The graphical information in Figure 3 is available for all shapes
in the Supporting Information, along with the simulation state
data for further numerical analysis.
When no numerically approximated virial coefficients are

available, polyhedra with asphericity less than α ≈ 1.8 are best
represented by their “effective sphere”, equivalent to the trivial
case of setting c(η) ≡ 1 in eq 5.
We show that the free volume EOS (eq 4) can be a

particularly convenient and effective tool for estimation or for
reducing the computational cost of hard particle studies. Given
the equation’s simplicity and the ease with which B3 can be
calculated numerically, the equation can provide an excellent
starting point for thermodynamic integration. If a researcher
wants to integrate the pressure−volume state function in the
fluid regime, eq 4 provides at least three or four digits of
precision up to densities of ≥10%, requiring particle
simulations to be run at only moderate and higher densities.
If more virial coefficients are available, the exponential

approximant provides a good alternative to the virial EOS,
particularly for shapes less aspherical than α = 1.6 to α = 1.8;
the maximum density to which each equation is accurate for a
given α depends on the required precision. Additional data are
provided in the Supporting Information for thermodynamic
reference data or to guide expenditure of computational effort
in constructing an approximant for a chosen purpose.
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Table 3. Geometric Quantities α = (RS)/(3v0), τ = 4π(R2/S),
and B2 = 1 + 3αa

shape α τ B2

1 sphere 1.0 1.0 4.0
2 truncated

octahedron
1.183723696 1.055618663 4.551171089

3 rhombic
dodecahedron

1.224744871 1.110720735 4.674234614

4 truncated cube 1.321475138 1.070529044 4.964425413
5 90% truncated

tetrahedron
1.422338938 1.422338938 5.267016815

6 pentagonal prism 1.430966283 1.139815072 5.292898848
7 hexagonal prism 1.436467026 1.122382953 5.309401077
8 octahedron 1.439662680 1.253110832 5.318988041
9 cube 1.5 1.178097245 5.5
10 truncated

tetrahedron
1.556403524 1.129390052 5.669210573

11 triangular prism 1.860042340 1.269711916 6.580127019
12 triangular

dipyramid
1.974019921 1.396134539 6.922059762

13 square pyramid 2.101351984 1.360539523 7.304055953
14 tetrahedron 2.234571934 1.509477606 7.703715802
15 obtuse golden

rhombohedron
2.853169549 1.317152762 9.559508647

aValues calculated exactly to nine decimal places with Mathematica
except for the 90% truncated tetrahedron (a nonstandard shape),
calculated with 64-bit numerical precision using 9-digit vertex
coordinates.
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■ ADDITIONAL NOTES
aIn fact, Z0 = 1/(1 − 4η) for hard spheres, or Z0 = 1/[1 − (1 +
3α)η] for general HCBs, would give exact behavior to B2 but is
obviously unsuitable as the basis for an extrapolation to a higher
density due to the pole.
bτ and other simple asphericity metrics are neither clearly
orthogonal to α nor as well motivated as quantities of
thermodynamic relevance. With the knowledge that R, S, and
v0 are all easily mapped to the set of Minkowski tensors,26 it
may be that higher-order information on a shape function could
help in understanding HCB thermodynamic behavior, but the
authors cannot offer any insight at this time.
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