




reducible to a bicycle model [17], however the assumptions

implicit in such a model are very constraining: a vehicle

must drive on a flat surface, with tires always in contact with

the ground and without any roll. Many vehicles in normal

operation, and especially in challenging off-road conditions,

do not exhibit such behavior.

We now will provide a high-level explanation of the

algorithm, accompanied by a flow chart in Figure 2. At the

core of the method, and the key innovation in this work, is the

evaluation of discrete-segment motion samples by assigning

a “score” that quantifies the sample’s informativeness toward

estimating the parameters. The collection of these motion

samples in a priority queue are used to jointly estimate cali-

bration parameters online. Since both the candidate window

and priority queue have fixed sizes, the calibration parameter

estimates are produced in constant time. Our approach is

also highly parallelizable, with the consumption, candidate

window and priority queue optimization operations each

running in separate threads. Note that the parallelization of

this algorithm is shown using dotted windows for each part

of algorithm in Figure 2.

A. Dynamics Model

First we suppose that we have a model of the dynamics

of the platform given as:

x′(t) = Φ(x(t), F (t),u(t),p), (1)

in which Φ(·) represents the dynamical model, x(t) ∈ R
n

is the state of the system, x′(t) is the derivative of the state

under the governing dynamics, f consolidate external forces

applied to the system, u(t) ∈ R
m is a control input (for

vehicles, generally the steering and acceleration), and p ∈
R

w is model parameter vector to be calibrated. Distinctions

between the system’s “real dynamics” and modeled ones are

ignored with the restriction that modeling assumptions are

not violated when operating the platform. For example, if a

physical model is utilized which restricts the vehicle to not

be airborne, it is assumed the vehicle will never go airborne.

This model is discretized in time, such that

xi =
[

x1

i , . . . , x
n
i

]

, (2)

is the state of the platform at time step k.

For a simple car model, a calibration parameter vector

might include vehicle properties like tire and chassis geom-

etry; more complicated models might consider inertial prop-

erties, linear and rolling friction coefficients of all bodies,

suspension anchor points, suspension damping and stiffness

coefficients, motor speed-torque parameters for steering and

acceleration motors and a chassis’s center of mass location.

Strictly speaking, the generality of the method we de-

scribed may be extended to non-ground vehicle platforms;

however, we will describe this method as we have developed

it for such systems. The state xi includes the SE(3) pose

of the wheels and chassis, as well as the current steering

wheel angle, wheel speeds. Many of these quantities may be

directly estimated through, e.g. modern SLAM algorithms or

properly placed sensors like linear or angular encoders.

The control input u(t) is discretized by sampling the

continuous input signal over time intervals ∆tk = tk − tk−1

which need not be uniform. Through this, it is assumed that

the control input is constant within the interval [tk, tk+∆tk].
Current control inputs, system state and the timestamp of the

system are sampled and stored as a triplet sk = [xk,uk, tk]
which compose the motion samples at timestep k.

B. Rolling Candidate Window

In order to score motion segments based on how much

information they contribute to the calibration parameter

estimation problem, a rolling window of size nc is used.

The rolling candidate window Ck = [sk−nc
, . . . , sk] is

composed of the nc latest motion samples. Within Ck a score

of informativeness is calculated. The score is calculated by

estimating parameters p and calculating a score based on

the entropy of the posterior. Since the entropy is a way to

quantify uncertainty, lower scores represent more desirable

motion samples contained within the window.

For a given candidate window Ck, a cost function is

constructed as follows:

1) Initialize Eq. (1) at a state/input pair given at the

beginning of the window as the canonical estimate of

that state; i.e.,

ŝk−nc
= sk−nc

. (3)

2) Integrate Eq. (1) forward with the measured control

inputs over the time intervals stored in Ck to get Ĉk:

Ĉk = [ŝk−nc
, . . . , ŝk] . (4)

3) Construct a cost function:

ΨCk
= Ck [x]� Ĉk [x̂] , (5)

where C [x] represents only the vector of states in

the corresponding window, and operator � calculates

a weighted error between two state vectors.

The cost function ΨCk
is later minimized in order to

calculate the covariance of the posterior Σ̂Ck
and a score

for current window. The candidate window Ck is a rolling

window, meaning that when a new measurement arrives,

sk−nc
is removed and the new measurement is pushed back

to the window; a new score is then calculated.

C. Optimization

Calibration parameters are estimated in a nonlinear maxi-

mum likelihood estimation framework. The joint probability

distribution of parameter p given state measurements sk in

window Ck and dynamics provided by Eq. (1) is:

P (p,Qk[x]) = P (Qk[x]|p)P (p) =

nq
∏

i=1

P (Ci[x]|p), (6)

where Qk = [C0, . . . ,Ci], i ∈ {0, . . . , nQ} represents

all candidate windows in the queue at time step k. In










