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Abstract— This paper is concerned with system identification
and the calibration of parameters of dynamic models used in
different robotic platforms. A constant time algorithm has been
developed in order to automatically calibrate the parameters
of a high-fidelity dynamical model for a robotic platform. The
presented method is capable of choosing informative motion
segments in order to calibrate model parameters in real time
while also calculating a confidence level on each estimated

. . . . th
parameter. Simulations and experiments with a % scale four

wheel drive vehicle are performed which demonstrate the
accuracy and efficiency of the approach.

I. INTRODUCTION

Dynamical models are used in planning, control and state
estimation of robotic platforms; however, having a model
which well describes a real physical platform. Despite the
amount of effort one might put into designing a high-
fidelity dynamical model, there exists yet another challenge
that arises: such models typically have a bogglingly large
number of parameters which must be tuned very precisely.
For instance, when operating a ground vehicle around a turn
at high speed, a small inaccuracy in the coefficient of friction
could send the vehicle into slip through a discontinuous
change in dynamics. Such behavior would be deleterious and
potentially hazardous unless it were predictable, in which
case it might be used to an advantage in e.g. guiding the
vehicle through a tight corner. Even if an accurate set of
parameters are chosen via expert tuning, some of these pa-
rameters would inevitably change in time due to mechanical
degradation or environmental disturbances.

Even more complicating to the scenario is that only some
of these parameters are perceptible in driving unless an
obscure set of conditions are met. For instance, in a ground
vehicle the static coefficient of friction between tires and the
ground is only measureable at the point of slip; the dynamic
coefficient is only measureable when slipping, which is
potentially even more challening. Also, it is not immedi-
ately obvious which types of motions a vehicle platform
might undergo that allow a human operator to determine
the suspension stiffness. No one motion will allow all of
these parameters to be observed, thereby creating a quandary
of how to operate a vehicle such that all relevant physical
parameters might be known to some degree of certainty.

And yet despite these difficulties the goal of grounding a
system’s representation in concrete parameters that represent
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Fig. 1. Calibrating wheel friction coefficient and wheel base of model four
wheel drive car.

physical relationships remains highly desirable. Were the
estimation of these physical parameters to be robust and
reflexive for different operating scenarios, it is possible that
model-predictive control could be applied in contexts that
are currently challenging, such as when dynamic parameters
are changing in time or are unknown before plant operation.
Furthermore, these parameters might be estimated through
measurements through external sensors, e.g. cameras or
infrared, providing another mechanism to directly influence
controllers built on these models. Finally, reasoning about
such systems can be transparent and tractable from a nearly
intuitive standpoint.

To address this, the present work develops a probabilistic
calibration method which may be used to estimate parameters
of a dynamical model of a ground vehicle.

II. RELATED WORK

The parameter estimation problem has been well-studied
on robotic platforms, traditionally aimed at particular pa-
rameters on certain experimental platforms; these efforts
have largely grown out of a need to estimate parameters
that cannot be directly measured, such as the coefficient of
friction for wheels or the extrinsic transformation between
an IMU sensor and image sensor of a camera. Another
possibility is that such parameters are not truly static and
change during operation. For example in the case of ground
vehicles, GPS measurements have been used in order to
estimate vehicle mass [1], roll stiffness and damping ratio [2]
or tire/road friction coefficient [3]. In the case of quadrotor
UAVs, IMU measurements have been used to estimate the
body moment of inertia [4]. For other platforms, the 6-DOF
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Fig. 2. A flow chart overview of the method. First, a sequence of state information known as a “motion sample” is captured within a candidate window,
which is used to estimate calibration parameters. Next, the motion sample is compared to a priority queue of motion samples. The comparison operator
in this priority queue determines if the sample in the candidate window reduces the entropy over the whole calibration parameter set while maintaining a
balance of informative motion segments across all calibration parameters. If the motion sample is comparatively better than any within the priority queue,
the candidate window is augmented to the priority queue and the lowest-scoring window in the queue is purged.

pose measurements have been leveraged to estimate inertial
parameters of a grasped object [S] or thrust factor of ac-
tuators [6]. Geometric/kinematic parameters have also been
estimated for different platforms, like linkage length in a
robotic arm [7], [8], as well as distances and angles between
a car chassis coordinate frame and its tire frames [9]. More
recently in the robotics community, probabilistic approaches
have been developed in order to estimate camera/IMU/laser
scanner extrinsic parameters [10], [11], [12].

The calibration task, frequently known as “system iden-
tification” for physical platforms, generally involves esti-
mating some parameters of the model from some indirect
sensory measurements, however the choice of sensors and
their attachment location on an autonomous platform is very
important for achieving accurate calibration estimates, since
only some specific motions of robot would render parameters
observable. Regressing parameters on data which does not
render parameters of interest observable generally leads to
wildly inaccurate results or a lack of convergence. One
approach previously taken is to attach a sensor in a specific
location which properly excites its output signal; however,
finding the ideal location might be very hard if not impossible
[13], [14]. Two ways to avoid calibration a platform using a
dataset which does not make parameters observable is to
restrict motions of robot to some pre-planned trajectories
which have good excitation properties [9], [15] or to algorith-
mically choose the most informative motion segments [12],
[10], [11] from a platforms trajectory. In these approaches,

one must be careful in choosing informative segments of
motion since an uneven amount of information could bias
the results toward selecting segments only for parameters
with more informative segments without balancing this with
accuracy over the entire parameter set. To avoid this problem,
techniques like normalization of the posterior estimate has
been proposed [16], but this has been exclusively applied to
the SLAM problem.

1II. METHODOLOGY

In this work we develop a self-calibration approach to the
estimation of parameters for a dynamic physical model of
a ground platform using as input the state estimates to the
vehicle. The approach develops an algorithm for choosing
informative motion segments for all calibration parameters,
and is extensible to intrinsic and extrinsic parameters (e.g.
tire friction coefficients and wheel base) for the vehicle.

In general, dynamic models of robotic platforms are de-
veloped under the assumption that the platform operate only
in the same regimes as those in which they are calibrated.
This work represents a step toward loosening this highly
constraining assumption, allowing for such parameters to
potentially change in a dynamic environment and for the
system to estimate these new parameters in real-time. Fur-
thermore, the procedure developed allows for the estimation
of a high-fidelity (and high-dimensional) model which, from
a principled standpoint, has proven to be quite elusive. Many
approaches for example assume a four-wheeled vehicle is



reducible to a bicycle model [17], however the assumptions
implicit in such a model are very constraining: a vehicle
must drive on a flat surface, with tires always in contact with
the ground and without any roll. Many vehicles in normal
operation, and especially in challenging off-road conditions,
do not exhibit such behavior.

We now will provide a high-level explanation of the
algorithm, accompanied by a flow chart in Figure 2. At the
core of the method, and the key innovation in this work, is the
evaluation of discrete-segment motion samples by assigning
a “score” that quantifies the sample’s informativeness toward
estimating the parameters. The collection of these motion
samples in a priority queue are used to jointly estimate cali-
bration parameters online. Since both the candidate window
and priority queue have fixed sizes, the calibration parameter
estimates are produced in constant time. Our approach is
also highly parallelizable, with the consumption, candidate
window and priority queue optimization operations each
running in separate threads. Note that the parallelization of
this algorithm is shown using dotted windows for each part
of algorithm in Figure 2.

A. Dynamics Model

First we suppose that we have a model of the dynamics
of the platform given as:

'(t) = ®(x(t), F(1), u(t), p), (1)

in which ®(-) represents the dynamical model, (t) € R”
is the state of the system, @’(t) is the derivative of the state
under the governing dynamics, f consolidate external forces
applied to the system, w(t) € R™ is a control input (for
vehicles, generally the steering and acceleration), and p €
R™ is model parameter vector to be calibrated. Distinctions
between the system’s “real dynamics” and modeled ones are
ignored with the restriction that modeling assumptions are
not violated when operating the platform. For example, if a
physical model is utilized which restricts the vehicle to not
be airborne, it is assumed the vehicle will never go airborne.
This model is discretized in time, such that

@ = [z],...,2}], 2)

is the state of the platform at time step k.

For a simple car model, a calibration parameter vector
might include vehicle properties like tire and chassis geom-
etry; more complicated models might consider inertial prop-
erties, linear and rolling friction coefficients of all bodies,
suspension anchor points, suspension damping and stiffness
coefficients, motor speed-torque parameters for steering and
acceleration motors and a chassis’s center of mass location.

Strictly speaking, the generality of the method we de-
scribed may be extended to non-ground vehicle platforms;
however, we will describe this method as we have developed
it for such systems. The state x; includes the SE(3) pose
of the wheels and chassis, as well as the current steering
wheel angle, wheel speeds. Many of these quantities may be

directly estimated through, e.g. modern SLAM algorithms or
properly placed sensors like linear or angular encoders.

The control input w(t) is discretized by sampling the
continuous input signal over time intervals Aty =t —tp_1
which need not be uniform. Through this, it is assumed that
the control input is constant within the interval [t ¢ + Atg].
Current control inputs, system state and the timestamp of the
system are sampled and stored as a triplet s, = [z, ug, tg)
which compose the motion samples at timestep k.

B. Rolling Candidate Window

In order to score motion segments based on how much
information they contribute to the calibration parameter
estimation problem, a rolling window of size n. is used.
The rolling candidate window Cj = [Sg—n.,...,Sk] is
composed of the n. latest motion samples. Within C; a score
of informativeness is calculated. The score is calculated by
estimating parameters p and calculating a score based on
the entropy of the posterior. Since the entropy is a way to
quantify uncertainty, lower scores represent more desirable
motion samples contained within the window.

For a given candidate window C', a cost function is
constructed as follows:

1) Initialize Eq. (1) at a state/input pair given at the

beginning of the window as the canonical estimate of
that state; i.e.,

= Sk—n.- 3)

2) Integrate Eq. (1) forward with the measured control
inputs over the time intervals stored in C}, to get Cl:

Sk—n,

Cr = [8k_n,,..., 8. (4)
3) Construct a cost function:
Yo, = Ci[2] B Gy 2], 5)

where C [x] represents only the vector of states in
the corresponding window, and operator H calculates
a weighted error between two state vectors.

The cost function W, is later minimized in order to
calculate the covariance of the posterior f]ck and a score
for current window. The candidate window C}, is a rolling
window, meaning that when a new measurement arrives,
Si—n, 1s removed and the new measurement is pushed back
to the window; a new score is then calculated.

C. Optimization

Calibration parameters are estimated in a nonlinear maxi-
mum likelihood estimation framework. The joint probability
distribution of parameter p given state measurements Sy in
window C), and dynamics provided by Eq. (1) is:

P(p, Qilz]) = P(Qxlz]lp)P(p) = [ P(C'[z]lp), (©)
i=1

where Q, = [C°,...,C%, i € {0,...,ng} represents
all candidate windows in the queue at time step k. In



Fig. 3. Elements of cost function before candidate window optimization.
For a given motion segment C}, (blue dots) in _candidate window for a
window of size n. = 4 and an integrated path C}, with initial parameter
values (red dots), a corresponding cost function ¥, is constructed.

Eq. (6), the likelihood term P(Qg[x]|p) is factored since
different candidate windows are selected such that they are
independent of each other (see Section III-D). Note that the
prior term P(p) can be dropped since the priority queue will
carry the prior of the estimate.

Noting that the prior term in Eq. (6) vanishes since the
first state variable is always fixed to the first measurement
(see Eq. (3)), hence we have:

P(p, Cilx]) =

An optimal estimate p for the parameter vector p can be
calculated by minimizing the joint probability:

P(Ck[z]|p). )

p= argmax P(p, C(:)[x]). (8)

According to Eq. (6), the solution to this estimation problem
can also be achieved by maximizing the likelihood term.
Assuming that parameter noise is Gaussian distributed, we
can write probability density function of each likelihood term
in Eq. (6) as:

P(ac, p) x exp(—5 |Cile] BE(Ci, -, p)2)
xep(—3Cle 8GR ©

%),

1
o< eXp(—EH'IIC,L

in which ||-||% signifies squared Mahalanobis distance given
measurement uncertainty 3 and C;[z] for the i" candidate
window. In the case of a rolling candidate window, the equa-
tion above will only have one likelihood term as mentioned
at Eq. (7). then Eq. (8) is solved by iteratively updating
parameter vector p with a trust region method [18], [19].
Given the Gaussian distribution assumption, the covariance
of the posterior is computed over calibration parameters by
inverting the Fisher information matrix:

3(p) = Covariance(p) = (JT(p) J(P))~L.  (10)

Here J(p) is Jacobian of ¥, at p. The Jacobian is checked
to make sure it is full rank before calculating the covariance;
if it is not of full rank, then the current motion sample
is ignored due to lacking observability in all calibration
parameters.

D. Entropy Score Board

Solving the MLE problem within a candidate window
completes results in the covariance of the estimate 33(-),
which is used to calculate a score vector for the current
motion sample. Since the eigenvalues of the covariance
matrix represent uncertainty in each parameter direction, an
eigen-decomposition of 3(-) is calculated and stored as an
entropy value for current window. Recall that a lower entropy
implies a better candidate. We designate Ky, as the vector of
eigenvalues of the matrix 32 for the candidate window Cl.

One of the primary considerations is that we would contain
the number of motion samples we are tracking at any given
time; this was part of our comparison operator design,
and was found to aid robustness in collecting salient and
informative segments for all parameters. To do this, we
introduce the notion of a score board which is part of our
comparison as follows:

1) The maximal entropy for each parameter from all
motion samples in the priority queue is stored in a
vector A € RY (since each element of A corresponds
to an element of p).

2) A w x ng table T is constructed to keeps track of
which candidate windows are informative for which
parameters, where ng = ns X w is size of priority
queue and ng is the number of samples per parameter
desired. T € B**" contains boolean values in its
entries, where an entry in index TJ[i,j] shows that
candidate segment in index j of priority queue is
informative for parameter 1.

3) A vector 7 € R™ keeps track of the total number
of informative segments for each parameter which
currently exist in priority queue by summing over the
rows of T:

nagQ

For each newly calculated K, we compare corresponding
indexes in this vector to current worst entropy A according
to Algorithm 1.

Note in Algorithm 1, njs is a tuning parameter repre-
senting the minimum acceptable score, and @ = 0.95 is a
safety margin to ensure at least a 5% reduction on maximum
entropy occurs when adding a motion sample to the priority
queue. A candidate window might overlap with previous
candidates in queue which would result in double counting
the information in the queue and over-fitting the results; to
avoid this, the current candidate window is checked for such

(11)



Data: Ck, KRk, Np, )\, Nar,
Output: update_condition, current_score
current_score + 0;
for i € {0,...,np — 1} do
if kKi[i] < a x A[7] then
| current_score < current_score + 1;
end
end
if current_score > nj; then
| update_condition < true;
else
| update_condition < false;
end
Algorithm 1: Priority queue update condition

a condition. If there is overlap, then the current candidate
is compared with the sample in the priority queue with an
overlap as in Alg. 1 and replaces the entry in the queue if
the resulting score is higher.

In the case that the update condition in Alg. 1 is satisfied
and there are not any common segments between the current
candidate window and any candidates in the priority queue,
then a final condition is checked to make sure the amount
of data entered is not biased toward a group of parameters.
In this check, the new candidate is added to priority queue
and corresponding entries of T which reduce entropy of
parameter ¢ are marked with /s and corresponding 7; and \;
values are updated. If adding a new 1 to the table falsifies
the queue limit inequality 7; < ns on any parameters, then
the table entry which previously had the highest entropy in
vector A is changed to a 0. Figure 4 shows a flow chart for
this procedure.

To initialize this process, the very first candidate is ac-
cepted without any checks and later candidates are checked
for having an overlapping window or if they have a lower
entropy score but no replacements (with higher entropy
candidates) takes place until the queue is full. Once a
decision is made a pruning step takes effect by removing
columns of table 7" which have all zeros and also removing
corresponding candidate window from the queue.

E. Priority Queue

The priority queue Q = [C°,...,C, i € {0,...,nq}
is responsible for storing the set of candidate windows which
have been selected using the criteria described in Section III-
D. At every update to this queue we construct a cost function
and jointly optimize over all candidate windows in the queue.
from Eq. (5) we can write

7LQk

Vo, = Z(\I’C"’)v

=0

12)

Then cost function ¥q, is passed to the optimization
pipeline in section III-C to find a new estimate pp as well as
its corresponding covariance 3 p. The estimated covariance
is then used to asses the confidence level on each estimated
parameter.
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Fig. 4. Flowchart for deciding if a motion sample should be added to
the priority queue or not. In this chart Ceomm[K] is the motion sample
in queue which has overlapping segment with candidate in current rolling
window.

IV. EXPERIMENTS

In order to validate this algorithm, we have performed

simulations on a model four wheel drive vehicle as well
. . 1th .

as experiments on a modified 3 -scale vehicle platform.
The method as described has been implemented in the C++
language and tested in both simulation and experiment, and
has reliably performed in real-time on an Intel Core i7. As
shown in Figure 2 with dashed lines, the pipeline consists
of three main threads. The first thread is responsible for
capturing motion samples in discrete time and constructing
a rolling candidate windows as described in Section III-
B. When this task is complete, this thread signals to a
second thread that the motion sample is ready for analysis.
This second thread then minimizes the cost ., using the
optimization technique explained at Section III-C. In addition
to assigning a score to a given motion sample, this thread also
handles the decision making explained in Section III-D and
updating Q. This thread then provides a synchronization
token to a third thread which calculates and updates the cost
W, . The optimization in the third thread results in a new
parameter and covariance estimate.

As a model for experiments, a physics based dynamics
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Fig. 5. Estimation results for friction coefficient (top), and wheel base
(bottom) of simulated car. Solid colored line represent mean value, filled
areas are scaled variances and black dashed line is ground truth value.

model using the Bullet Physics Engine [20] is constructed.
To accomplish this, a high fidelity four-wheel drive vehicle
model was implemented; the model includes parameters such
as mass, inertia and geometry for each wheel and the chassis,
dampers and springs as a suspension for each wheel and their
anchor points, steering and acceleration motor speed/torque
properties and speed limits and also rigid body linear/rolling
friction coefficients. This model is also capable interacting
with a map of the environment and modeling contact forces
[21].

We will now describe the two sets of experiments we
conducted in procedural detail, and present their results.

A. Simulation

For this experiment a simulated world with a flat floor and
constant friction coefficient at every point was constructed.
The simulated vehicle was developed to accept steering and
throttle commands from a user who would manually drive
the vehicle in the simulated environment using a gamepad.
The state of the vehicle used in this case is:

T; = [wpsa d’psaw] s (13)

where x,; € SE(3) is the pose vector of the chassis with
rotations in axis-angle format, &,s is vector of linear and
rotational velocities and w is vector of wheel velocities. In
these experiments, the model for the simulated vehicle are
exactly equal to those in Eq. (1) used to regress the cali-
bration parameters, however the parameters are significantly
perturbed. The target of this experiment is to identify the
perturbation and regress the correct physical parameters.

In this experiment, the user first drives the simulated
car in a back and forth motion in the virtual environment
until a sufficient number of priority queue updates have
occurred (in our case four), suggesting a reasonable estimate
may have been found. The user then drives on circular
trajectories in order to consider alternate motions that may
influence the parameter calibration. This sequence of driving
demonstrated what is intuitively expected: in the first type
of motion, both the friction and wheel base estimates are
very uncertain since a back and forth motion does not render
these parameters observable. In the second type of motion
however, and especially when introducing some obvious
sliding in the driving mode, more informative segments for
these calibration parameters are added to the priority queue.
Through the combination of these motions, both parameters
eventually converge to very close to their ground truth values
with very low uncertainty.

A set of two calibration parameters are considered in this
case: the car’s wheel base and the ground/tire friction coef-
ficient are simultaneously estimated. Since these parameters
are known for the simulated vehicle, we may compare the
resulted estimates to the ground truth values directly. Figure
5 shows the results for applying this calibration method
with nc = 20 and ng = 10 for about one minute with
discretization steps of 100ms. In both charts, the solid line
shows the mean of the estimate and the two shaded areas
with different colors show variance bounds on the estimate
while a black dashed line shows the ground truth value.

B. Robotic Platform Tests

We have designed and built a four-wheel drive, eighth-
scale car (see Figure 1) which accepts throttle and steering
commands and is capable of measuring wheel speeds, current
steering angle position and suspension lengths in real time.
In order to get pose and velocity measurements of chassis,
experiments were performed in a large open room equipped
with a motion capture system. In these trials, the vehicle
has been modeled with same physics based model explained
in previous section and the state vector is the same as that
considered in Eq. (13). Whenever required, derivatives of
state are achieved by numerically differentiating the model
around current state at a given time instance. Figure 6 shows
the priority queue estimates of friction coefficient and wheel
base on our model vehicle. The wheel base estimate of 0.32
meters is fairly close to the measured value of 0.34, this error
could be due to the differences of the physics based dynamic
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Fig. 6. results from the car

model and the actual vehicle. As one might realize, the
parameter confidence after convergence on real data is low
compared to simulated data, which is a result of using a less
accurate model. Since comparison of the friction coefficient
estimate to a ground truth value is impractical we evaluate
it qualitatively. Friction coefficient is a number in the range
[0...1] where zero means no friction. Since the experiment
happened on a carpeted floor with treaded tires, a high value
of i was expected and the priority queue estimate shows a
similar value (0.85).

V. CONCLUSIONS

As described before parameter estimation is a crucial task
for self driving vehicles in the sense that wrong parameters
might result in unstable systems, which use a dynamical
models as their core to predict vehicle’s behavior. In this
paper a new method in estimating parameters has been
shown which chooses most informative motion samples of
the trajectory of vehicle and estimates the parameters while
avoiding any biasing toward a group of parameters with
higher chance to be excited. Method has been implemented
and tested both in simulation and physical experiments.

Both, results show usefulness of this method while giving
a confidence level on the current estimate. We believe this
method is not limited only to AGV’s and in future more
experiments with other robotic platforms will be done.
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