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ABSTRACT

Blind sensor calibration for spectrum estimation is the problem of
estimating the unknown sensor calibration parameters as well as the
parameters-of-interest of the impinging signals simultaneously from
snapshots of measurements obtained from an array of sensors. In
this paper, we consider blind phase and gain calibration (BPGC)
problem for direction-of-arrival estimation with multiple snapshots
of measurements obtained from an uniform array of sensors, where
each sensor is perturbed by an unknown gain and phase parameter.
Due to the unknown sensor and signal parameters, BPGC problem
is a highly nonlinear problem. Assuming that the sources are un-
correlated, the covariance matrix of the measurements in a perfectly
calibrated array is a Toeplitz matrix. Leveraging this fact, we first
change the nonlinear problem to a linear problem considering cer-
tain rank-one positive semidefinite matrix, and then suggest a non-
convex optimization approach to find the factor of the rank-one ma-
trix under a unit norm constraint to avoid trivial solutions. Numerical
experiments demonstrate that our proposed non-convex optimization
approach provides better or competitive recovery performance than
existing methods in the literature, without requiring any tuning pa-
rameters.

Index Terms— sensor calibration, nonconvex, spectrum estima-
tion, off-the-grid, direction-of-arrival estimation

1. INTRODUCTION

In many fields of science and engineering, improving the perfor-
mance of measurement tools including radar, microscope, and crys-
tallography, is of great interest. However, due to the variations such
as temperature, pressure, and humidity in manufacture or even in
measurement procedure, the performance or sensitivity of each sen-
sor in a measurement tool may deviate from prescription or during
measurement procedure. Therefore, it is required to calibrate the
sensor parameters as well as recover the signal of interest from the
collected measurements at the same time to have the accurate sig-
nal measurement performance in measurement tools, especially in
an array of sensors.

Direction-of-Arrival (DoA) estimation [1, 2, 3] is a well-known
problem in the field of signal processing. It aims to estimate the di-
rection of impinging signals by using measurements collected from
an array of sensors. Due to the relationship between beam patterns
and excitation at the array introduced by the Fourier transform, DoA
estimation can be treated as a spectrum estimation problem, where
the spectrum corresponds to the direction-of-arrivals.
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Unlike the conventional DoA problem, Blind Phase and Gain
Calibration (BPGC) with spectrum estimation is the problem of re-
covering unknown sensor calibration parameters as well as the loca-
tion of frequencies of a signal of interest simultaneously [4, 5, 6, 7].
Since each sensor is assumed to suffer from an unknown gain and
phase perturbation to be estimated, BPGC with spectrum estimation
becomes much more challenging than the conventional DoA estima-
tion problem. For this problem, the authors of [7] proposed an al-
ternating method that iteratively updates sensor parameters by fixing
frequencies, and then the frequencies by fixing the sensor parame-
ters until certain predetermined tolerance is met. However, due to
the alternating nature of the method, it may suffer from error prop-
agation. In [5, 6], the authors proposed algebraic methods under
the assumption that the sources are uncorrelated; hence, the covari-
ance matrix of the measurements in a perfectly calibrated array is a
Toeplitz matrix. By leveraging the Teoplitz structure, they obtained
a system of linear equations and solved it to recover the sensor pa-
rameters ignoring phase wrapping. Furthermore, the authors of [4]
proposed to simultaneously estimate the sensor parameters as well
as the Toeplitz covariance matrix by minimizing a nonlinear least-
squares loss function with regularization terms via gradient descent
using Wirtinger calculus. However, the algorithm contains many
regularization parameters that need to be set carefully.

In this paper, we study BPGC with off-the-grid spectrum esti-
mation, which is a nonlinear problem over unknown sensor param-
eters as well as signal parameters. Unlike prior works that directly
try to estimate the sensor parameters, we aim to estimate the sen-
sor parameters through an inverse vector that perfectly calibrates
the measurements when it is multiplied to the sensor measurements.
This allows us to change the nonlinear sensor calibration problem
to a linear problem over certain rank-one positive semidefinite ma-
trix and a positive semidefinite Toeplitz matrix. We, then, propose a
non-convex minimization approach to find the factor of the rank-one
matrix under a unit norm constraint to avoid trivial solutions. This
problem is solved via the trust-region method [8, 9, 10]. Numerical
experiments demonstrate that our proposed non-convex optimization
approach outperforms other known methods [7, 6, 4] in the various
aspects including frequency separation limit, sensitivity to noise, and
scaling with the number of snapshots.

In a broader context, the BPGC problem has been studied exten-
sively in the recent literature under different assumptions. Our pa-
per considers multiple snapshots of measurements and exploits the
covariance structure. In comparison, several recent works consider
only a single measurement vector by imposing additional structural
assumptions on the sensor parameters, such as a sparsity or subspace
prior [11, 12, 13, 14]. Also, the multiple snapshot setting without
spectrum estimation is considered in [13, 15, 16].

Notations: We denote the set of complex numbers as C. We de-
note a scalar, a vector, and a matrix by a, a, and A respectively. We
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reserve the superscripts H, 7', and - for conjugate transpose, trans-
pose, and conjugate respectively. For the diagonal operator, denoted
by diag(-), if it is used over a matrix, it represents the diagonal ele-
ments of the matrix. If the diagonal operator is used over a vector,
it represents a matrix having the vector as diagonal elements of the
matrix, and O elsewhere.

2. PROBLEM FORMULATION

The BPGC with off-the-grid spectrum estimation problem is an in-
verse problem with both unknown sensor calibration and signal pa-
rameters. In this problem, the measurement obtained from a uniform
array of sensors is stated as

y.[t] = diag(g)Vz[t] +eft], t=0,1,....,L—1, (1)
where y_[t] € CV is the noisy measurement from N sensors at
time t, g € CV is the vector containing unknown sensor calibra-
tion parameters. More specifically, we denote the n-th gain param-
eter and the phase parameter as |g,| and Zg, respectively. V =

[vo,...,vr—1] € CV*" is an unknown Vandermonde matrix whose
columns are given as
1 ; i _
Vs = [l,eﬂ"fs,...,eﬂ”(N 1>fS]T, 0< fs < 1.

VN
We denote the set of distinct frequencies as F := {fs}.Z;. The
coefficient at time ¢ is given as x[t] € C", which is assumed to be
zero-mean. The noise vector is given as e[t] € CV, which is also
zero-mean and satisfies E[e[t]e[t]”] = o*I, where o is the noise
level. Here, L represents the number of snapshots. Throughout the
paper, we assume that [t] and e[t] are independent, and the sources
are uncorrelated; namely, R® = E[z[t]z[t]”] = diag({y2}"2}).
Therefore, the covariance matrix of the calibrated sensor measure-
ments z[t] = V&[t], is written as

R = E[z[t]z[t]"] = VR*V" = Toep(u), 2)

where Toep(u) is the Hermitian Topelitz matrix with the first column
given by the vector u € C”. Clearly, the covariance matrix R* can
be used to recover the set of frequencies and their corresponding
power via standard spectrum estimation methods such as MUSIC
[17] and ESPRIT [18].

From the signal model in (1), the covariance matrix of y,[t] can
be expressed as

R =Ely.[t]y.[t]"] = diag(g)Toep(u)diag(g) + o°I.  (3)
In the noiseless setting, the above model reduces to
RY = diag(g)Toep(u)diag(g). )

Our goal in this paper is to simultaneously estimate g and w up
to trivial ambiguities by using a finite number of snapshots. Clearly,
it is not possible to uniquely determine g and w from (4), even as-
suming perfect estimation of the covariance matrix RY. This ambi-
guity, introduced in Definition 1, has been characterized in [4].

Definition 1 (Trivial ambiguity) Let {g,u} be a solution to (4).
Then {g,u} is equivalent to {g,u} up to a trivial ambiguity if there
exist co > 0, c1, c2 such that

j(c1+nez) =~ —2 —jncy
gn7

gn = Co€ Up =Co € Un, n=0,1,.... N —1.

To be precise, this ambiguity suggests that we can only recover the
set of frequencies up to circular shift, and their power up to scaling.
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3. REVIEW OF EXISTING APPROACHES

We first review existing methods including the algebraic method [6]
and the optimization method using Wirtinger Flow [4].

The algebraic method [6] solves a linear system of equations
brought up from the ratios between entries of the covariance matrix
RY. The m-th row and n-th column entry of RY is specified as

_ r—1
Ry, = 250N 7l demm, s)
s=0

From (5), the amplitudes of the sensor parameters (gain parameters)
are recovered by calculating \/RY, ,,, forn =0,1,..., N — 1. Also,
by computing the ratio between R} , ., ., and R}, ;, we have
the following equation for the phase information:

RY

Bitk+1 — Biv1 — Btk + B = éw mod 27,  (6)
Rl+k,l

where mod is the modulo operator and 8; = Zg; represents the

phase information of the [-th sensor parameter. In the same way, by
comparing the entries of RY for/ =0,1,...., N —k—2and k = 1,
and setting 8o = Bny-1 = 0, we can have N numbers of inde-
pendent equations with N unknown variable (’s including By and
Bn—1. By ignoring the modulo operator, this set of equations be-
comes linear, and the phase information of the sensor parameters are
recovered by inverting the linear system. However, since N num-
bers of equations are obtained by setting £k = 1, there are many
disregarded equations in (6).

In [4], the authors consider the following non-convex optimiza-
tion problem that simultaneously optimizes g and u:

1 .
min - ||RY — diag(g)Toep(u)diag(g) |} + G (g,w), (D

g,uGCN

where G(g, u) = (max(col|g||3 —1,0))* + (max(e: [|ul5 —1,0))
is introduced to prevent g and u from going to zero with some con-
stant co and c¢1, and A is a regularization parameter. By solving
(7) over g and w via gradient descent using Wirtinger derivatives,
the sensor parameter g and Toep(w) are recovered. This method is
called Wirtinger Flow and requires a tuning parameter \. In practice,
the solution from the algebraic method is used as the initialization of
the gradient descent.

4. PROPOSED NON-CONVEX APPROACH

In this paper, we propose our non-convex approach to solve the
BPGC with off-the-grid spectrum estimation problem. Different
from existing approaches, we first reformulate (4) by introducing
the entry-wise inverse vector of the sensor parameter, denoted by
h € CV, such that

hog=1, ()

where © denotes entry-wise product. The vector h is well-defined as
long as all the entries in g are non-zero, which is a mild assumption.
We can then equivalently rewrite (4) as

diag(h) - RY - diag(h) = Toep(u). )

Note that diag(h) - RY - diag(h) = RY © hh'.
By defining H = hh™, (9) is further rewritten as

RY ® H — Toep(u) =0, (10)
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Fig. 1. Frequency support recovery error in Hausdorff distance (Unit: RL) by varying the noise level 0. The number of sensors N and the
number of support r are 20 and 5 respectively. RL is set to 1/N. (a) Number of snapshots L = 103. (b) L = 10°. (¢) L = 108.

which is linear in both H and w. Furthermore, the matrix H is rank-
one and positive semidefinite. Let us denote the projection onto a
Toeplitz matrix and the null space of Toeplitz matrices as Pr(-) and
P11 (-) respectively. Then, (9) suggests that

Pr.(RY® H) =0, (11)

which is a set of linear constraints on H. Therefore, we can refor-
mulate the problem as a rank-one matrix recovery problem. To avoid
scaling ambiguity, we propose a constrained optimization problem
for the recovery of h as

min F(h) := [[Pr. (R © hh")[[k, (12)
o=

where the constraint ||h||2 = 1 is introduced to avoid scaling ambi-
guity. Note that this new formulation (12) is simpler than (7), since
there is only one variable h € CV.

The problem (12) can be solved by the general non-convex op-
timization solvers such as the Riemannian trust-region algorithm
[8, 9, 10], which provides convergence to a critical point from any
initial point and linear local convergence to a local minimum with
gradient information if the initial point is near a local minimum. By
the Wirtinger derivative, the gradient of the objective function F'(h),

denoted by VF'(h) := %, is stated as

VF(h) = 2diag (Rydiag(fl)PTL (diag(h)Rydiag(fz))) . (13)

With this gradient information in (13), the Riemannian trust-region
algorithm can solve our newly proposed non-convex optimization
problem (12).

One interesting question is under what conditions we can
uniquely identify {h,u} up to trivial ambiguities defined in Defini-
tion 1. This is supplied in the proposition below.

Proposition 1 (Uniqueness) Suppose u1 # 0. Let {g,u} be a so-
lution to (4) and h © g = 1. If there is another solution {fl, u}
to (9) satisfying h # 0 and @, # O, then {h, @} is equivalent to
{h,u} up to a trivial ambiguity.

The assumption on w1 # 0, which is made in [4], prevents Rly 10
Il =0,1,..., N — 1, to be zero. Hence, from linear equations of
(6), g satisfying (4) is uniquely determined up to trivial ambiguity.
Also, as long as one of the entries in h is zero, Toep(@) will have a
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zero row and a zero column, which implies %1 = 0. Therefore, all
entries in h should not vanish. The whole proof of Proposition 1 is
similar to the proof of uniqueness in [4, Sec. 2.2]. Due to the space
limitation, we omit the proof here.

5. NUMERICAL EXPERIMENTS

We compare our non-convex optimization approach against the al-
gebraic method [6], the optimization method using Wirtinger Flow
(WF) [4], and the alternating method [7]. We implement the trust-
region algorithm on the Riemannian manifold [8] by using Manopt
[19] - a Matlab toolbox for optimization on manifolds - to solve (12)
with the initial value obtained from the algebraic method — simi-
lar to [4]. We expect the initial value obtained from the algebraic
method to be close enough to a local minimum, which helps the
trust-region algorithm to converge to the local minimum. We con-
duct 100 trials and measure the average Hausdorff distance of the
support (frequency localization) error. The Hausdorff distance be-
tween the ground truth support F and the support of recovered fre-
quencies F = {f;}"=0, denoted by HD(F, F), is calculated as

HD(F,F)

Czrg{gyll) max (r;lea;:( min a(f +ca, f), max ;rgg a(f + ca, f))7
where d(f1, f2) represents the closest distance between two frequen-
cies fi1 and f2 in a circular manner. For all simulations, we set
v €11,2],s=0,1,....,7—1and |g,| € [1,2],n=0,1,..., N—1.
We randomly choose the phases of g and @[t] in [0, 27r) with holding
E[z[t)x[t]] = diag({y2}"Z}). For the recovery of frequencies, we
use the Root MUSIC algorithm in Matlab [20] for all algorithms.

We first conduct numerical experiments to examine the perfor-
mance with respect to the noise level. For the noisy measurements,
we add the i.i.d. Gaussian random noise following CA (0, o*T) to
the ground truth signal y[t] generated from 5 frequencies, which are
located in [0, 1) and separated by the Rayleigh Limit (RL) 1/N. In
order to exploit the sensitivity to noise, we vary the noise level o
from O to 10 and measure the Hausdorff distance of support error
with a fixed number of snapshots. Fig. 1(a), (b), and (c) show the
average Hausdorff distance of support error obtained from 100 trials
in the unit of RL for 10%, 10° and 10° numbers of snapshots re-
spectively. As shown in Fig. 1(c), when I = 106, our non-convex
approach outperforms other known methods.
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‘We next examine the support recovery error with respect to the
number of snapshots. In this numerical experiment, we choose 5 fre-
quencies separated by 1/N, where the number of sensors N = 20.
We compare our non-convex method to other methods in the noise-
free setting with o = 0 as well as the noisy setting with ¢ = 5 and
o = 10. Fig. 2(a), (b) and (c) show the average Hausdorff distance
of support error in the unit of RL by varying the number of snapshots
L from 1 to 10° for o = 0, 0 = 5, and o = 10 respectively. As
the number of snapshots increases in o = 0 the Hausdorff distance
of all methods decreases. However, when 0 = 5 and o = 10, it
is shown that over 10® and 10* numbers of snapshots are required
for the recovery respectively. Also, our non-convex approach shows
better performance than other algorithms in these regions.

Finally, we examine the resolution limit of the proposed algo-
rithm. In this experiment, we consider two close frequencies with
randomly generated amplitudes and phases. We randomly choose
the location of the first frequency in [0,1), and then, obtain the
second frequency by adding the separation distance A in a circu-
lar manner; namely, fo = (f1 + A) mod 1, where f1 and f> are the
first and the second frequencies respectively, and mod represents the
modulo operator. We conduct 100 trials at each separation condition
with a fixed number of snapshots and a fixed noise level, and mea-
sure the probability of success. We consider a recovery successful
if HD(F, .7:") < A/2. Fig. 3(a), (b). and (c) show the probabil-
ity of support recovery by varying the separation condition between
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two frequencies in the noise level 0 = 0, 0 = 5, and 0 = 10 re-
spectively. The number of snapshots L is set to 10°. The simulation
demonstrate that when noise exists, our non-convex method outper-
forms other known methods in the resolution limit.

6. CONCLUSIONS

In this paper, we studied the problem of blind phase and gain cal-
ibration with direction-of-arrival estimation. Under the assumption
of uncorrelated sources, the covariance matrix of the measurements
obtained from a uniform array of sensors is a Toeplitz matrix. By in-
troducing an inverse calibration vector, we modified the blind phase
and gain calibration problem into a linear problem in a rank-one pos-
itive semidefinite matrix. And then, we proposed a non-convex min-
imization approach to find the inverse calibration parameter by con-
sidering the null space of the Toeplitz matrix under the unit norm
constraint to avoid trivial solutions. Numerical experiments demon-
strate that our proposed non-convex approach outperforms existing
methods including the algebraic method [6], the optimization WF
[4], and the alternating method [7], with no tuning parameters.
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