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Quantized Spectral Compressed Sensing:
Cramer—Rao Bounds and Recovery Algorithms

Haoyu Fu

Abstract—Efficient estimation of wideband spectrum is of great
importance for applications such as cognitive radio. Recently, sub-
Nyquist sampling schemes based on compressed sensing have been
proposed to greatly reduce the sampling rate. However, the impor-
tant issue of quantization has not been fully addressed, particu-
larly, for high resolution spectrum and parameter estimation. In
this paper, we aim to recover spectrally sparse signals and the cor-
responding parameters, such as frequency and amplitudes, from
heavy quantizations of their noisy complex-valued random linear
measurements, e.g., only the quadrant information. We first char-
acterize the Cramér—-Rao bound under Gaussian noise, which high-
lights the trade-off between sample complexity and bit depth under
different signal-to-noise ratios for a fixed budget of bits. Next, we
propose a new algorithm based on atomic norm soft threshold-
ing for signal recovery, which is equivalent to proximal mapping
of properly designed surrogate signals with respect to the atomic
norm that motivates spectral sparsity. The proposed algorithm can
be applied to both the single measurement vector case, as well as
the multiple measurement vector case. It is shown that under the
Gaussian measurement model, the spectral signals can be recon-
structed accurately with high probability, as soon as the number
of quantized measurements exceeds the order of K log n, where
K is the level of spectral sparsity and n is the signal dimension.
Finally, numerical simulations are provided to validate the pro-
posed approaches.

Index Terms—Line spectrum estimation, quantization, Cramér—
Rao bound, atomic norms, compressed sensing, multiple measure-
ment vectors.

I. INTRODUCTION

MERGING applications in wireless communications, cog-
E nitive radio, and radar systems deal with signals of
wideband or ultrawideband [1]. Spectrum sensing or signal ac-
quisition in this regime is a fundamental challenge in signal
processing, since the well-known Shannon-Nyquist sampling
rate may become prohibitively high in practice. Therefore, it
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is highly desirable to come up with alternative approaches that
have less demanding sampling requirements.

Recently, compressed sensing (CS) [2], [3] has emerged as
an effective approach to allow sub-Nyquist sampling [4]-[6]
when the wideband signal is approximately sparse in the spec-
tral domain. The resulting paradigm is referred to as Compres-
sive Spectrum Sensing [7], [8]. Significant focus has been put
on reducing the sampling rates of the analog-to-digital convert-
ers (ADC), which only covers one aspect of the operations of
ADCs. Quantization, which maps the analog samples into a fi-
nite number of bits for digital processing, is another necessary
step that requires careful treatments. Most existing works, with
a few exceptions, assume that the samples are quantized at a
high bit level so that the quantization error is relatively small
and well-behaved.

This paper aims at understanding the fundamental limits of
quantization, as well as developing computationally efficient al-
gorithms, for compressive spectrum sensing and parameter esti-
mation, in particular in the regime of heavy quantization where it
is no longer appropriate to model quantization errors as bounded
additive noise. Examining the figure-of-merit of ADCs, two key
specifications are the sampling rate and the effective number
of bits (ENOB), which is the number of bits per measurement,
also known as the bit depth. Typically, a small bit depth allows
a high sampling rate, and vice versa [9]. Therefore, it is critical
to understand the fundamental trade-off between sampling rate
and bit depth for high-resolution spectrum estimation. Though
the importance of understanding such trade-off has been real-
ized in the context of CS [10], [11], they haven’t been studied
for the task of parameter estimation using estimation-theoretic
tools.

Another motivating application is wideband spectrum sensing
in bandwidth-constrained wireless networks [12], [13]. In order
to reduce the communication overhead, each sensor transmits
quantized messages, e.g., 1-bit messages; and it is necessary to
estimate wideband spectrum from quantized measurements at
the fusion center. Moreover, the quantization scheme might be
unknown, due to lack of the knowledge of noise statistics or pri-
vacy constraints. Therefore, it is necessary to develop estimators
that do not require exact knowledge of the quantizers.

A. Our Contributions

We study high-resolution spectrum estimation of sparse ban-
dlimited signals from quantizations of their noisy random lin-
ear measurements. The signals of interest are spectrally sparse,
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which contain a linear superposition of complex sinusoids with
continuous-valued frequencies in the unit interval. In the ex-
treme 1-bit case!, the quantization is based on the quadrants
of the complex-valued measurements. More generally, sophis-
ticated quantization schemes such as Lloyd’s quantizer [ 14] can
be used to allow a higher bit depth. The specific form of the
quantizer can be either known or unknown. In addition, the
quantized measurements may be additionally contaminated by
a noise model to be described later, in order to model imperfec-
tions in the quantization.

In this paper, we first derive the Cramér-Rao bound (CRB)
for estimating multiple frequencies and their complex ampli-
tudes assuming additive white Gaussian noise (AWGN) and the
Lloyd’s quantizer, using a fixed and deterministic CS measure-
ment matrix. Our bounds suggest that the CRB experiences a
phase transition depending on the signal-to-noise ratio (SNR)
before quantization. In the low SNR regime it is noise-limited,
and behaves similarly as if there was no quantization; in the high
SNR regime, it is quantization-limited, and experiences severe
performance degeneration due to quantization. Furthermore, we
use the derived CRB to answer the following question: given the
same budget of bits, should we use more measurements (high
sample complexity) with low bit-depth, or fewer measurements
(low sample complexity) with high bit-depth? We answer this
question by comparing 1-bit versus 2-bit quantization schemes
using the CRB, and demonstrate the answer depends on the
SNR. At low SNR, 1-bit measurements are preferred, while at
high SNR, 2-bit measurements are preferred.

It is well-known that maximum likelihood estimators ap-
proach the performance of CRB asymptotically at high SNR
[15], however, their implementation requires exact knowledge
of the likelihood function, which in our problem, includes the
exact form of the quantizer and noise statistics. However, such
knowledge may not be available in certain applications. There-
fore, our goal is to develop estimators that do not require the
knowledge of the quantization scheme. To mitigate basis mis-
match [16], atomic norm [17]-[24] has been proposed recently
to promote spectral sparsity via convex optimization without
discretizing the frequencies onto a finite grid, which has found
applications in signal denoising, interpolation of missing data,
and frequency localization of spectrally-sparse signals. Existing
atomic norm minimization algorithms assume unquantized mea-
surements that are possibly contaminated by additive noise, and
a direct application will lead to highly sub-optimal performance
when a significant amount of the quantized measurements
saturate [25].

In this paper, we propose a novel atomic norm soft thresh-
olding (AST) algorithm [24] to recover spectrally-sparse signals
and estimate the frequencies from their 1-bit quantized measure-
ments. Our algorithm is based on finding the proximal mapping
of properly designed surrogate signals, that are formed by linear
combinations of the sample-modulated measurement vectors,
with respect to the atomic norm to promote spectral sparsity. In
other words, we aim to find signals that balance between the

IThroughout this paper, we measure the bit depth as the number of bits used
to quantizer a real number.
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proximity to the surrogate signals and the small atomic norm.
Moreover, the frequencies can be localized without knowing the
model order a priori, by examining the peak of a dual polynomial
constructed from the dual solution. Alternatively, conventional
subspace methods can be used to estimate the frequencies us-
ing the recovered spectral signal. The proposed algorithm can
be generalized to handle quantizations of noisy random linear
measurements of multiple spectrally-sparse signals [20], where
each signal contains the same set of frequencies with different
coefficients. The proposed algorithms do not require knowledge
of the specific form of the quantizer, and therefore can be applied
even when the quantizer is unknown.

When the measurement vectors are composed of i.i.d. com-
plex Gaussian entries, under a mild separation condition that
the frequencies are separated by 4/n, it is shown that the recon-
struction error scales as /K logn/m/\, where K is the level
of spectral sparsity, n is the signal dimension, m is the number
of measurements, and ) is a parameter that depends on the SNR
before quantization, which increases as we increase SNR but
saturates at high SNR. Therefore, the reconstruction error rate
allows a trade-off between the sample complexity and SNR.

B. Related Work

Our work is closely related to 1-bit compressed sensing
[26]-[33], which aims to recover a sparse signal from signs
of random linear measurements. In particular, Plan and Ver-
shynin [29]-[32] generalize this idea to reconstructing signals
that belong to some low-dimensional set. Very recently, [34]
studied a similar setup and proposed a new algorithm using
projected gradient descent. The surrogate signals used in our
algorithm can be traced back to [11], [32]. The difference lies
in that instead of projecting the surrogate signals directly onto
some low-dimensional set, we adopt the proximal mapping of
the surrogate signals with respect to the atomic norm. Several
algorithms have been proposed in the CS literature to deal with
general quantization schemes [10], [35] and nonlinear mea-
surement schemes [32], [34], however the focus has been on
reconstruction of sparse signals in a finite dictionary, whereas
our focus is on parameter estimation and reconstructing sparse
signals in a parametric dictionary containing an infinite number
of atoms.

There are also several conflicting evidence regarding the
trade-offs between bit-depth and sample complexity [11], [36]
for signal reconstruction, as they may vary for different prob-
lems when using specific algorithms. In contrast, we derive
the Cramér-Rao bound for parameter estimation using quan-
tized compressive random measurements, which provides an
estimation-theoretic benchmark for gauging the trade-off as well
as benchmarking performances. Our CRB adds to existing lit-
erature of CRB calculations for 1-bit quantized single-tone fre-
quency estimation [37] as well as for parameter estimation using
compressive measurements [38].

C. Paper Organization and Notations

The rest of this paper is organized as follows. Section II
provides the problem formulation. Section III presents the
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Cramér-Rao bound for parameter estimation and discusses the
trade-off between bit depths and sample complexity. Section IV
presents backgrounds on the atomic norm and the proposed al-
gorithms with performance guarantees. Section V presents the
extension when quantizations of multiple measurement vectors
are available. Numerical experiments on the proposed algo-
rithms are provided in Section VI. We conclude in Section VII.

Throughout this paper, we use boldface letters to denote vec-
tors and matrices, e.g., @ and A. The Hermitian transpose of a
is denoted by a", the transpose of a is denoted by a', and || A||,
IlA|lg, Tr(A) denote the spectral norm, the Frobenius norm,
and the trace of the matrix A, respectively. An indicator func-
tion for an event A is denoted as I 4. Denote 7 (u) € C"*" as
the Hermitian Toeplitz matrix with u as the first column. Define
the inner product between two vectors a,b as (a,b) = a''b.
The cardinality of a set D is defined as |D|. If A is positive
semidefinite (PSD), then A > 0. R(y) and I(y) denote the real
and imaginary part of a complex number y, respectively. The ex-
pectation of a random variable a is written as E[a]. Define © as
entry-wise product. Throughout this paper, we use c, ci, ca, . . .
to denote universal constants whose values may change from
line to line.

II. PROBLEM FORMULATION

Let * € C" be a line spectrum signal, which is composed
of a small number of spectral lines, defined as

K
= av(fi), (1
k=1

where K is the number of frequencies or level of sparsity,

v = Apel?™% ¢ C is the kth coefficient, A; > 0 is the kth
amplitude, ¢, € [0, 1) is the kth normalized phase, f; € [0, 1)
is the kth frequency, and

v(f) =

In CS, we acquire a set of random linear measurements of «*,
contaminated by additive complex Gaussian noise, where each
measurement is given as

(16271 ... ej?w(nfl)f]T_

Zi:<aiam*>+o.ei7 ’iil,...,m, 2)

where m is the number of measurements, a; € C"’s are the
measurement vectors composed of i.i.d. standard complex Gaus-
sian entries CA/(0, 1), o is the noise level, and we further have
iid. ¢ ~ CN(0,1). In a vector notation, we write

z = Ax" + o€, 3)
where A = [ay,as,...,a,]" € C"*" is the measurement
matrix, € = [e1,€,...,6,]",and 2 = [21, 22,. .., 2] ". These

measurements are then quantized into a finite number of bits for
the ease of digital storage and processing. Denote Q(-) : R +— D
as the quantizer that quantizes a real number into a finite alphabet
D, where the bit depth is the smallest number of bits necessary to
represent D, i.e., b* = min{b € Z* : |D| < 2°}. The quantized
measurements ¥ = [y1,%s, ..., Yn|" of z are then denoted as

Y = Q(?R(ZZ))-F]Q(%(ZZ)), 1= 1,...,m, (4)
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where we apply the same quantizer Q to both the real part
and the imaginary part of the complex-valued measurement
z;. With slight abuse of notation, we denote the quantized
measurements as

y = Q(z). ®)

Our goal is then to recover x*, and the set of frequencies
=4/ {1(:1: from the quantized measurements y, possibly
without a priori knowing the sparsity level K, and the form of
the quantizer Q.

Several choices of the quantizer are of special interest. At the
extreme, we consider only knowing the quadrature information
of z;, where

Q(a) = sign(a),

We refer to this quantizer as the one-bit quantizer, as only a
single bit is used to quantize each real number.
More generally, we consider a quantizer Q(-) that is fully

acR, 6)

characterized by the quantization intervals {[t(,t[+1)}yi‘;1,
D

where ty = —o0, {jp| = o0, U, ‘l[t(,tHl) R, as well as the
representatives of each interval w; € [ty, ;1 ), where
Qa) =w, if a€ [te,trr). (7

For example, the Lloyd’s quantizer [14] belongs to this form.
The choice of the quantization scheme plays an important role
in determining the performance of parameter estimation.

III. CRAMER-RAO BOUNDS AND TRADE-OFFS

In this section, we study the effects of quantization on param-
eter estimation by deriving the Cramér-Rao bound assuming the
quantizer, the sparsity level, and the noise level are known. In
particular, the bounds are calculated for 1-bit and general quan-
tizations, respectively, which are then used to study the trade-off
between sample complexity and bit depths for a fixed bit budget.

To begin with, we assume the set of parameters, including
the frequencies, amplitudes, and phases, given as k = { fi., Ay,
I8 }f:l € R3*X | is deterministic but unknown, the measurement
matrix A is deterministic and known. Denote the probability
mass function as p(y|k), which is given as

m

Hp vilK) = H[p

where the second equality follows from the fact that ¢; is proper.
Moreover, let

p(ylk) = (yi)lK) - p(S(yi)|K)], (8)

pRwi)k) = [] prey.) (wlk) o=+ ©)
weD

p(Sw)k) = [] o) (wlr)ew= (10)
weD

be the probability mass function of R(y) and (y), respec-
tively. The Fisher Information Matrix (FIM), denoted by I (k) €
R3K>3K g given as

o) = E Kalogmym)) (alogmyn))T] Can

oK oK
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Note that for any 1 < i,7 < m,

(alogpm(yz-)m)) (alogp&(yj)m))T}

E ok ok

. [alogpgi@nmq E [alogpg(yj)n)r o,

where the first equality follows from independence of #(y; ) and
3(y, ), and the second equality follows from the fact

e [ (ZesrRuie))

_ g |5 Lerwo=e) 9pme (wlﬂ)l

PRr(y) (W]k) or

w€eD

=0.

_ Z Ipw( y w|n _ 9 (Zwevmm(w\"@))
oK

weD

Thus, plugging (8) into (11) all cross-terms will be zero and we
have

0 =3 I

k) +I(Kk)], (12)
i=1
where
(k) = E <8logp§i<yi>|n>> (alogpgymmﬂ
_ 1 Opny) (WIK) [ Opriy,) (w]r)\ "
,;Dpwy»(w)( oK )( Or )

and I (k) can be given similarly by replacing R(y; ) with 3(y;).

The CRB for estimating «, is then given as CRB(k) =
I(k)7', and the CRB for estimating the ith parameter in &,
is given as [I (k) 1];.;.

A. CRB for 1-Bit Quantization

Our goal is then to calculate the FIM in (12). We will explain
in details the calculations for the 1-bit case. First, since R(z;) ~

N(R((a;,z*)), 07), then

Priy,) (W]K) =P (w-RN(z) > 0|k)
1 R((a;, x*
:+w-q><(<aw>)),w:i1, (13)
2 o
where ®(u) = o= [ e~ dt. Therefore, by the chain rule,

Opw(y) (WIK)  w <%(<az,

ok o

>)) IMR((ai, )
ok

R(lan,a))? > OR((ai, "))
: .

(14)
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As a short-hand notation, denote s;(k) = R(
ri(k) = S({a;, *)). Plug (14) into I'?(k), we hay

we
4exp (7257( )2 /O’ ((’*)sI ) (832 )
and similarly,

To? [1 — 4p2 ( "Ef
dexp (—2r;(k)?/0?) [Ori(K)\ [Ori(k)\"
o2 [1 _AP2 (m('@))} ok ok '
As aremark, when ¢ = 0, the amplitude of the signal cannot
be recovered from the 1-bit measurements due to scaling am-

biguity, and the FIM becomes singular in this case. Therefore,
our expressions for CRB is valid when o # 0.

(al, x*)) and

T (k) =

Tl (k) =

B. CRB for General Quantization

We now explain the calculation for a general quantization
scheme. For wy € D, and a corresponding interval [t¢, ty;1), we
have

Py (welk) =P (R(zi) € [tr, ter1)|k)

tpp1-si(K)
7

et dt

1
N

:<I><t”1 —Usz'('@)> _(I)(tz—;i("é)) s

then, following similar arguments, we have

ty—si(r)
7

) (welk)
oK

1 _(r[+1—s;(n))2
= —— (& 2
2

ye

Py

Therefore, define

|D|-1
L 16
T G e () o ()

and

D) |:_('(+ ()2 _<[67',(l<))2:|2

Dl-1 |e 2 —e 4
I 17
) =1 @(ﬁ)_@(w) an

we have the following theorem for the expression of FIM in
light of our derivations in the previous subsection.

Theorem 1: The Fisher information matrix I (k) for estimat-
ing the unknown parameter k is given as

w2 (e (%)

1 2 ()Y

I(r) =

(18)
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SNR (dB) SNR (dB) SNR (dB)
Fig. 1. CRB under different bit-depths with respect to SNR for a fixed number of measurements m = 100. Here, n = 64 and ' = 3. Each row represents the

CRB for estimating the frequency, amplitude, and phase of one spectral atom.

It is worth mentioning the FIM depends only on the quan-
tization intervals, not the value of representatives. In con-
trast, the FIM using the unquantized measurements z is given
as

2 o 0si (k) (0si(k)\"
Iunquantizcd (K/) - ? Z B (8/4

=1

UAG) (3”(”)>T). (19)

oK oK

9ri(k) - Following the

9si (k) _ OR((a;,x*))
Ik 0k

S (af! 60"? ). Define

It remains to evaluate aséff)

Wirtinger calculus [39], we have
1R (a02r) and 2308) — et 1

ot = 2L

Then, for each of the parameters in k, we have, for k =
1,....K,

= [O,jgmj%f’ e j2m(n — 1)ej2ﬂ'(n—1)f}-r.

a *

% = ceg(fr), (20a)
0" _ cinmony(f 20b
871;6 =€ v k)7 ( )
ox* )

— = j2mepv(fi ). (20c)
r

C. Numerical Evaluations

We now evaluate the CRB for 1-bit and 2-bit quantization
schemes using the Lloyd’s quantizer, and compare it against
the CRB without quantization. We generate a spectrally-sparse
signal «* of length n = 64 with frequencies f; = 0.3, fo =

0.325, and f3 = 0.8, and complex coefficients ¢; = 0.4e/270-1
¢y = 0.15e727055 "and ¢3 = 0.05¢7270-7% which are selected
arbitrarily.

We first fix the number of measurements as m = 100, and
generate a measurement matrix with complex standard i.i.d.
Gaussian entries. Fig. 1 shows the CRB for estimating all
parameters with respect to the SNR, where it is defined as
SNR = ||z*||3/o>. It is evident that increasing the bit depth
improves the performance. In the low SNR regime performance
is noise-limited, and behaves similarly as if there was no quan-
tization; in the high SNR regime, performance is quantization-
limited, and experiences severe performance degeneration due
to quantization.

In many situations, we cannot simultaneously have high sam-
ple complexity and high bit depth, but rather, our budget is
constrained by the number of total bits, whichis B = m - b* =
m - [logy |D|]. Therefore, it is useful to understand the trade-
off between sample complexity and bit depth. Here, we use
the CRB as a tool to compare the 1-bit and 2-bit quantiza-
tion schemes. Fix the total number of bits as B = 100. In the
1-bit quantization scheme, we use a measurement matrix with
m = 100 as generated earlier. In the 2-bit quantization scheme,
we only use the first m /2 rows of the same measurement matrix.
For comparison, we also plot the CRB assuming unquantized
measurements using the same measurement matrix as the 1-bit
case. Fig. 2 shows the CRB for estimating all parameters with
respect to the SNR. It can be seen that in the low SNR regime,
1-bit quantization is preferred, as performance is noise-limited,
so higher sample complexity improves performance; in the high
SNR regime, 2-bit quantization is preferred, as performance is
quantization-limited, so higher bit depth improves performance.
Our analysis is estimation-theoretic, and doesn’t depend on the
algorithm being adopted.
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Fig. 2.
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0 5 10 15 20
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CRB under different bit-depths with respect to SNR for a fixed number of bits B = 100. In this case, 2-bit quantization only has half the number of

measurements of the 1-bit case. Here, n = 64 and K = 3. Each row represents the CRB for estimating the frequency, amplitude, and phase of one spectral atom.

IV. ATOoMIC NORM SOFT THRESHOLDING FOR QUANTIZED
SPECTRAL COMPRESSED SENSING

It is well-known that maximum likelihood estimators ap-
proach the performance of CRB asymptotically at high SNR
[15], however, their implementation requires exact knowledge
of the likelihood function, which may not be available in certain
applications. Therefore, in this section, we will develop esti-
mators that do not require the knowledge of the quantization
scheme using 1-bit measurements via atomic norm minimiza-
tion [17]. We first provide the backgrounds on atomic norm for
line spectrum estimation, and then describe the proposed algo-
rithms for both the single vector case and the multiple vector
case with performance guarantees.

A. Backgrounds on Atomic Norms

The atomic norm is originally proposed in [17] as a uni-
fied framework of convex regularizations for solving underde-
termined linear inverse problems. Subsequently, [18]-[24] has
tailored it to the estimation of spectrally-sparse signals.

For the single vector case, define the atomic set as A; =
{ei?v(f): f€[0,1),¢ € [0,2m)}, then the atomic norm of a
vector x is given as

le|a:=inf{t >0: x €t-conv(Ay)}

= inf Z\ai\’m:Zaiv(ﬁ) , (1)

where conv(A) denotes the convex hull of set .A. The atomic
norm can be viewed as a continuous analog of the ¢; norm over

the continuous dictionary defined by the atomic set. Therefore,
by promoting signals with small atomic norms, we encourage
signals that can be expressed by a small number of spectral
atoms. Appealingly, as shown in [18], it is possible to calculate
|l]| 4 using an equivalent semidefinite program, which can be
computed efficiently using off-the-shelf solvers:

w] > 0},

w

where 7 (u) denotes the Hermitian Toeplitz matrix with w as the
first column. The dual atomic norm || - ||* for a vector g € C",
as will become useful later, is given as

l[la = min {1Tr(7(u))+g”rm(g)

ueCm,w | 2n

lqll’y = sup (g,z)r = sup |q"v(f)l,
el a<1 refo]

where the second equality follows from the fact the the extreme
values are taken when « is aligned with v(f) due to convexity.
From the above equation it is clear that ||g[|*; can be interpreted
as the largest absolute value of a polynomial of 727/, denoted

as Q(f) = lg"v(f)].

B. Atomic Soft-Thresholding With Quantized Measurements
We first construct a surrogate signal from the quantized mea-

surements as [32]

m

1 1
= — i = fAH Cn, 22
§=— ;Zly,a, Ay € (22)
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Fig.3. Value of A with respect to SNR before quantization.

and use the following atomic norm soft-thresholding (AST)
algorithm to estimate the signal x,

. . 1 2

& = argming,.cn §||:c — sl + 7|z 4, (23)
which is the proximal mapping of the surrogate signal s with
respect to the atomic norm, where 7 > 0 is a regularization
parameter. One appealing feature of atomic norm minimiza-
tion is that the set of frequencies can be recovered via the dual
polynomial approach [24]. Namely, denote the dual variable
as ¢ = (s — &) /7, and Q(f) = |g"v(f)|. Then the set of fre-
quencies can be localized as F = {f : Q(f) = 1}. We refer
interested readers to the details in [18]. Alternatively, the fre-
quencies can be localized via performing conventional subspace
methods using the estimated signal.

C. Performance Guarantees

In this section, we develop performance guarantees of the
proposed AST algorithm under 1-bit quantization in the single
vector case using the sign quantizer in (6). Note that in this case,
it can be seen that s in (22) is an unbiased estimator of * up to
a scaling difference, i.e.,

*

Els] = \e——
== Ay

where
e 2
V@ + @ B)  /a(1,/SNR 1 1)

depends on the SNR before quantization SNR = ||z*||3 /0.
To illustrate, Fig. 3 depicts A as a function of SNR, which is
a monotonically increasing function with respect to SNR and
approaches to the limit 2/,/7 as SNR goes to infinity.

Without loss of generality, we assume ||x*||s = 1. The per-
formance of AST relies critically on the separation condition,
which is defined as the minimum distance between distinct fre-
quencies,

(24)

, 4
A=gl;?|fk—fj| > (25)
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where |f;, — f;| is evaluated as the wrap-around difference on
the unit modulus. Under the separation condition, we have the
performance guarantee of the proposed algorithm in (23), stated
below.

Theorem 2: Set T := ny/nlogn/m for some constant 7 >
1. Under the separation condition, the solution & satisfies

T N 1 /Klogn

— — @ < — - =

A s A m
with high probability.

The proof of Theorem 2 can be found in Appendix A. Theo-
rem 2 suggests that the proposed algorithm accurately recovers
the signal as soon as m is on the order of K logn, which is
order-wise near-optimal, since at least an order of K log(n/K)
measurements are needed in order to recover a sparse signal
in the DFT basis [30]. Moreover, the theorem also suggests
that the normalized reconstruction error is inverse proportional
to A, which plays the role of SNR after quantization and is a
nonlinear function of the SNR before quantization. In the low
SNR regime, A scales as 1/v/SNR, and the performance is
comparable to that using unquantized measurements. However,
in the high SNR regime, there is a saturation phenomenon, as
evidenced by Fig. 3, and the performance does not improve as
much with we increase SNR, which is also corroborated by nu-
merical simulation in Section VI. These results are qualitatively
in line with existing work on one-bit CS [30].

Remark 1: More generally, Theorem 2 can be extended to
the generalized linear model following similar strategies in
[29], as long as the 1-bit measurements y;’s are i.i.d. and sat-
isfy E[y;|a;] = g ((a;, z*)) for some link function g(-), and
accordingly A = E[g(6)6"] where the expectation is taken with
respectto § ~ CN (0, 1). This allows us to model other complex
quantization schemes with non-Gaussian noise.

V. EXTENSION TO THE MULTIPLE VECTOR CASE

In many applications, we encounter an ensemble of line spec-
trum signals, where each signal &; € C" contains a linear com-
bination of spectral lines with the same set of frequencies F,
but with varying amplitudes, given as

K
zf =Y e (fi), 1<t<T,
k=1

where ¢, ; € C,and T is the number of snapshots. Denote X * =
[z}, 25, ..., %] € C"*T asthe signal ensemble. Similar to (3),
the CS measurement of each snapshot is given as

z; = Ax; + o€y, (26)

where €; = [€1 4, €2.4,...,€m ] contains i.i.d. standard com-
plex Gaussian CA/(0,1) entries. Similar to (5), the quantized
measurements of each z; is then given as

Y, = Qz1).

Denote Z = [z1,29,...,2zr]and Y = [y;,Ys,...,Yp] as the
unquantized measurement ensemble and the quantized measure-
ment ensemble, respectively. Our goal is then to recover X * and
the set of frequencies from Y, without assuming the knowledge

27
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Fig.4. Frequency localization via peaks of the dual polynomial, superimposed
on the ground truth.

of the sparsity level and the quantizer. The presence of multi-
ple vectors can significantly improve the accuracy of frequency
estimation.

It is possible to extend the atomic norm formulation to the
multiple vector case [20]. Define the atomic set as

Am ={A(f,b) =v (f)b|f € (0,1],be C" ||b]| =1},
then the atomic norm is defined as

|X||la=inf{t>0:X €t-conv(A,)}

inf Z|ck.| ‘XZZCkA(fkabk) ;
k k

which can be computed similarly via solving the following
semidefinite program [20]:

. 1 1

1Xla= o min,  {5-T(T () + 5Tx(W)|
T(u) X

[ X" W} = O}'

The dual norm for some Q € C"*7 is given as

Q= sup (Q,X)r = sup [Q"v(f)],
[Xla<1 felo0,1]

which is the largest absolute value of the polynomial Q(f) =
H
1Q v (/).
For reconstruction, we construct the surrogate signal ensem-
ble from the quantized measurement ensemble Y as

S = iAHY e Cc™T, (28)
m

and use the following atomic norm soft-thresholding (AST)
algorithm to estimate the signal ensemble X,

X = argminyccnr || X — S||% + 77 || X || 4, (29)

where 7 > 0 is a regularization parameter. Moreover, define

O = (S~ X)/mr, and Q(f) = |Q"v(f)||. Then the set of
frequencies can be localized as F = {f : Q(f) = 1}. Alterna-
tively, the frequencies can be localized via performing conven-
tional subspace methods using the estimated snapshots.
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Fig. 5. Normalized reconstruction error with respect to the number of mea-
surements at different SNRs with or without quantization.
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Fig. 7. Mean square error of frequency localization with respect to SNR
using 1-bit measurements, CRB is provided as a benchmark: (a) first frequency;
(b) second frequency.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to evaluate
the performance of the proposed AST algorithms for parameter
estimation using quantized compressive measurements in both
the single vector case and the multiple vector case. For imple-
mentation of the AST algorithms, we used the CVX toolbox
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[40]. There’re several other fast solvers developed for atomic
norm minimization that are more scalable to large problems,
including ADMM [20], [24], ADCG [41], and CoGent [42], to
name a few.

A. Single Vector Case

Let n =64 and K = 3. The set of frequencies is located
at f ={0.3,0.325,0.8}, where the first two frequencies are
separated barely more than 1/n, the Rayleigh limit. The number
of bits is set as m = 1000, where the measurement vectors are
generated with i.i.d. CAV/(0,1) entries. The measurements are
quantized according to (6). Fig. 4 shows the amplitude of the
constructed dual polynomial by solving (23), where its peaks
can be used to localize the frequencies. It can be seen that it
matches accurately with the ground truth.

Next, we compare the performance of signal reconstruction
using atomic norm with unquantized measurements z, by run-
ning the algorithm:

. . 1 .
ZTyq = argming.cx §||Z — Az|; + 7||x||4,

where 7 is a properly tuned regularization parameter. The
normalized reconstruction error is defined as sin®(/&, z) =
1— [{&,2*)?/(||2|/3]|z*||3), where & is the reconstructed sig-
nal using either algorithm. Fig. 5 shows the normalized recon-
struction error at different SNRs with comparisons to that using
the quantized measurements and the AST algorithm (23), where
SNR is defined again as SNR = ||z*||3 /0. It can be seen that
the reconstruction accuracy improves as we increase the SNR as
well as the number of measurements, validating the theoretical
analysis. In particular, at low SNR, using quantized measure-
ments can potentially achieve better reconstruction quality with
much fewer measurement budgets in bits. It can also be seen
that improving the SNR before quantization does not have as
strong impact as for the unquantized case.

Next, we examine the performance of the proposed algorithm
as a function of the spectral sparsity level. Fix n = 64 and
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Performance with respect to the number of snapshots at different SNRs using 1-bit measurements: (a) signal reconstruction error; (b) frequency estimation

m = 1000. At each run, we randomly generate K different
frequencies that satisfy the separate condition. Fig. 6 shows the
normalized reconstruction error as a function of the sparsity level
at various SNR, averaged over 200 Monte Carlo simulations.
It can be seen that the reconstruction error is higher when the
spectral sparsity level is higher, and the SNR is lower. Moreover,
it can be seen that the reconstruction error stops to decrease when
the SNR is relatively high, indicating a saturation effect due to
quantization, as predicted by our theory.

We further compare the performance of frequency localiza-
tion using the proposed algorithm with the CRB. Fix n = 64
and m = 1000. We generate the ground signal with frequen-
cies fi =0.3, f» =0.325 and amplitudes ¢, = 0.4e/270-1,
¢ = 0.15¢/270-%5 Fig, 7 shows the average mean squared error
for each frequency over 200 Monte Carlo simulations, against
the corresponding CRB calculated using the formulas in Sec-
tion III. The frequencies are estimated by using the MATLAB
function rootmusic by assuming the correct model order,
that is /X' = 2. The performance of the proposed algorithm ex-
hibits a threshold effect where it approaches that of CRB as soon
as SNR is large enough. However, further increasing the SNR
doesn’t seem to improve the performance, which coincides with
the saturation effect discussed earlier.

B. Multiple Vector Case

We evaluate the performance of the AST algorithm (29) in
the multiple vector case. We follow the same setup as Fig. 4,
where n = 64, the set of frequencies f = {0.3,0.325,0.8}, and
the number of measurements for each snapshot is m = 50. The
coefficients of each snapshot in X is generated independently
using the standard complex Gaussian distribution. The SNR
per snapshot is defined as SNR = || X ||% /(T'0?), where T is
the number of snapshots. We set the regularization parameter
77 = y/nlogn/(10 - mT) in the experiment. The normalized
reconstruction error is defined as sin? (£ X ; X ), where X is the
recovered signal containing multiple snapshots, and £ denotes
the angle between the subspace spanned by X and X.Once X
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is obtained, we estimate the frequencies by using the MATLAB
function rootmusic by assuming the correct model order, that
is K = 3. The accuracy of frequency estimation is evaluated
by examining the Hausdorff distance between the recovered
frequencies }' and the ground truth f as

dy (f, f) = max {sup inf || f = fll2,sup inf [|f — f||2} :
fef fef jeplef

Fig. 8 shows the recovery performance with respect to the
number of snapshots at different SNRs, averaged over 50 Monte
Carlo simulations, where (a) depicts the normalized reconstruc-
tion error, and (b) depicts the squared Hausdorff distance. At a
fixed SNR, it can be seen that both the normalized reconstruc-
tion error and frequency estimation error reduce, highlighting
the benefit of having multiple snapshots. In particular, having
multiple snapshots allows better frequency recovery once the
number of snapshots is large enough. Moreover, performance
improves as we increase the SNR.

VII. CONCLUDING REMARKS

In this paper, we examined the effect of (heavy) quantization
in spectral compressed sensing that is useful for understand-
ing wideband spectral signal acquisition and processing. Our
contributions are two-fold. We first derived the Cramér-Rao
bound for parameter estimation with multiple complex sinu-
soids using quantized compressed linear measurements. This
bound is instrumental in describing the trade-offs between bit
depth and sample complexity at different SNR regimes. Such
an estimation-theoretical perspective is independent of the al-
gorithm and hasn’t been exploited in the previous literature.
Secondly, we developed algorithms for spectral-sparse signal
recovery using quantized measurements via atomic norm min-
imization, which do not require knowledge of the quantizer in
recovery. Under a mild separation condition, we establish that
we can accurately recover a spectrally-sparse signal from the
signs of O(K logn) random linear measurements. The pro-
posed algorithm also can be extended to handle multiple signal
snapshots. This generalizes the literature on one-bit compressed
sensing to the important class of spectrally sparse signals using
atomic norms, and we carefully examined the performance of
the proposed algorithms via numerical experiments.

An alternative convex relaxation for spectrally-sparse signal
recovery is based on Hankel matrix enhancement and nuclear
norm minimization [43], [44]. In the single vector case, instead
of imposing the atomic norm regularizer as in (23), one may
consider

N . 1
& = argmingecn @ — sl + M) G0
Here, H () denotes a Hankel matrix given as
I To
H(z)= | A , (31)

Ty Tny+1 e Tp
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where n; is set as |n/2] to make the matrix H(x) as square as
possible, || - ||« is the nuclear norm, and 7y is a regularization
parameter. Our preliminary numerical simulations suggest this
method is also effective for promoting spectral sparsity, but a
detailed study is beyond the scope of the current paper. We leave
the thorough analysis of (30) to future work.

Since the Cramér-Rao bounds assume perfect knowledge of
the quantizers, they may not be indicative to benchmark the
performance of the atomic norm minimization algorithms as
proposed in this paper, since these algorithms do not make use
of such knowledge. In the future, it might be interesting to
develop estimation-theoretical bounds that only assume partial
or little knowledge about the quantizer.

APPENDIX A
PROOF OF THEOREM 2

An alternative way to represent the atomic decomposition is
to write it as an integration of certain point measure [23]. Define
the representing measure of * as

K
() =>_exd(f = fi),
k=1
where d(-) is the delta function. Then we can rewrite * as

1 K
o = [ onautn =Y ewif). G
k=1

Correspondingly, denote /i(f) as the representing measure for
the solution & of (23), which means & = fol v(f)dp(f).

Denote the reconstruction error as e = Ax* — &, and its rep-
resenting measure is 7 = Ap — . With these definitions, apply-
ing [23, Lemma 1], we can bound the error as [23]

lell2 < llells ( [pi@ + a1 +12) oy
a

where I, = SSK Ik, for £ =0,1,2, with I} = ‘ka ~ (df)],

1 =nfy, (= f)v @] =5 fy, (F = 1)’ 12l (@),
where N, ={f €T :d(f, fr) <0.16/n} as the neighbor-
hoods around each frequency, and F' = T \ NX_, Nj.

To bound the first term in (33), let us denote the deviation

w=s—E[s] =s— A", (34)
where E[w] = 0. We have
el < llwll% + lls = 2|
< w|y + 7, (35)

where the first line follows from the triangle inequality, and the
second line follows from the optimality condition of the AST
algorithm in (23) in the following lemma.
Lemma 1 (Optimality conditions [24]): @ is the solution of
(23)if and only if ||s — 2% < 7, and (s — Z,Z) = 7||Z| 4.
Therefore, if we set 7 > n||w||’, where > 1 is some con-
stant, then plugging this into (35) we can show that

lell’y < (n ' +1)7 < 2r. (36)
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The second term in (33) can be bounded in exactly the same
manner as in [23], as long as (36) holds. In effect, [23] proved
the following bound, under the separation condition, with high
probability we have

(/F vl (df) + Io + I +12> < C%. (37)

The following lemma bounds ||w||*, whose proof is provided
in Appendix B.
Lemma 2: With probability at least 1 — 1/(7wnlogn), we

have
nlogn
* <C ,
lw% < \ 7

where C is some universal constant.

Therefore, set 7 = C'ny/nlogn/m, and plug (36) and (37)
into (33), we have

K72 <c

llell; < C-

1
K ogn. (38)
m

which is equivalent to

The proof is complete.

APPENDIX B
PROOF OF LEMMA 2

By definition, we can write ||w||* as

|wly = sup [(s —Az", v (f))]
felo,1)

= sup |(s,v(f)) —E[(s,v(f))]]

felo,1)

— sup [ga- () — Elge- (£)) (39)

felo,1)

where

m

Zyz a;,v

To proceed, we use the following symmetrization bound,
which is the complex-valued version of [30, Lemma 5.1].

Lemma 3: Let {¢;}!", be a sequence of independent
complex-valued random variables, where €; ~ € = e/27% where
6 uniformly distributed between [0, 1). Then

G+ (f) = <

p: =E | sup [ga (f)E[gm*(f)H]
felo0,1)
<2E - 1 l, * 40
fz}épl)m Lz;ey a (f)>H (40)
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Furthermore, we have the deviation inequality

lP’{ sup gz (f)
felo,1)

t
<4P< sup — ey {ai,v(f))|>=p. (41)
{fe(Jl Z 2

Before applying Lemma 3, note that by symmetrization and
rotational invariance, €;y;a; have the same i.i.d. distribution
of \/2a;. Therefore, the following quantities are equivalent in
distribution:

Zéfyz a;,v >

—E [gar (Nl = 2u+t}

sup —
felo,1)

where g is a vector composed of i.i.d. CA/(0, 1).
Applying (41) in Lemma 3 to (39), we have

; 2 t
P ([lwli = 2p+1) < 4P (\/ — sup [(g,v(f))|= 2)
M refo,1)
(42)
From (40) in Lemma 3, we have
. 2
p=E[[wli] <2¢/—E| sup [(g,v(f))]
mo|relon)
1
e n ogn7 43)

m

where the second line follows from [24, Appendix C,D] as

E | sup |{g.v ()| < Civ/nlog ().

f€l0,1]

Moreover, from [24, Appendix C], we have

sup g, v ()] < Co-/nlogn

felo,1

hold with probability at least 1 —1/(mnlogn). Set t =
2C5+/nlogn and plug in the above two inequalities in (4), we

have that
nlogn
ol < €/ 2=

holds with probability at least 1 — 1/(7n logn).
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