
3268 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 12, JUNE 15, 2018

Quantized Spectral Compressed Sensing:

Cramer–Rao Bounds and Recovery Algorithms
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Abstract—Efficient estimation of wideband spectrum is of great
importance for applications such as cognitive radio. Recently, sub-
Nyquist sampling schemes based on compressed sensing have been
proposed to greatly reduce the sampling rate. However, the impor-
tant issue of quantization has not been fully addressed, particu-
larly, for high resolution spectrum and parameter estimation. In
this paper, we aim to recover spectrally sparse signals and the cor-
responding parameters, such as frequency and amplitudes, from
heavy quantizations of their noisy complex-valued random linear
measurements, e.g., only the quadrant information. We first char-
acterize the Cramér–Rao bound under Gaussian noise, which high-
lights the trade-off between sample complexity and bit depth under
different signal-to-noise ratios for a fixed budget of bits. Next, we
propose a new algorithm based on atomic norm soft threshold-
ing for signal recovery, which is equivalent to proximal mapping
of properly designed surrogate signals with respect to the atomic
norm that motivates spectral sparsity. The proposed algorithm can
be applied to both the single measurement vector case, as well as
the multiple measurement vector case. It is shown that under the
Gaussian measurement model, the spectral signals can be recon-
structed accurately with high probability, as soon as the number
of quantized measurements exceeds the order of K log n, where
K is the level of spectral sparsity and n is the signal dimension.
Finally, numerical simulations are provided to validate the pro-
posed approaches.

Index Terms—Line spectrum estimation, quantization, Cramér–
Rao bound, atomic norms, compressed sensing, multiple measure-
ment vectors.

I. INTRODUCTION

E
MERGING applications in wireless communications, cog-

nitive radio, and radar systems deal with signals of

wideband or ultrawideband [1]. Spectrum sensing or signal ac-

quisition in this regime is a fundamental challenge in signal

processing, since the well-known Shannon-Nyquist sampling

rate may become prohibitively high in practice. Therefore, it
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is highly desirable to come up with alternative approaches that

have less demanding sampling requirements.

Recently, compressed sensing (CS) [2], [3] has emerged as

an effective approach to allow sub-Nyquist sampling [4]–[6]

when the wideband signal is approximately sparse in the spec-

tral domain. The resulting paradigm is referred to as Compres-

sive Spectrum Sensing [7], [8]. Significant focus has been put

on reducing the sampling rates of the analog-to-digital convert-

ers (ADC), which only covers one aspect of the operations of

ADCs. Quantization, which maps the analog samples into a fi-

nite number of bits for digital processing, is another necessary

step that requires careful treatments. Most existing works, with

a few exceptions, assume that the samples are quantized at a

high bit level so that the quantization error is relatively small

and well-behaved.

This paper aims at understanding the fundamental limits of

quantization, as well as developing computationally efficient al-

gorithms, for compressive spectrum sensing and parameter esti-

mation, in particular in the regime of heavy quantization where it

is no longer appropriate to model quantization errors as bounded

additive noise. Examining the figure-of-merit of ADCs, two key

specifications are the sampling rate and the effective number

of bits (ENOB), which is the number of bits per measurement,

also known as the bit depth. Typically, a small bit depth allows

a high sampling rate, and vice versa [9]. Therefore, it is critical

to understand the fundamental trade-off between sampling rate

and bit depth for high-resolution spectrum estimation. Though

the importance of understanding such trade-off has been real-

ized in the context of CS [10], [11], they haven’t been studied

for the task of parameter estimation using estimation-theoretic

tools.

Another motivating application is wideband spectrum sensing

in bandwidth-constrained wireless networks [12], [13]. In order

to reduce the communication overhead, each sensor transmits

quantized messages, e.g., 1-bit messages; and it is necessary to

estimate wideband spectrum from quantized measurements at

the fusion center. Moreover, the quantization scheme might be

unknown, due to lack of the knowledge of noise statistics or pri-

vacy constraints. Therefore, it is necessary to develop estimators

that do not require exact knowledge of the quantizers.

A. Our Contributions

We study high-resolution spectrum estimation of sparse ban-

dlimited signals from quantizations of their noisy random lin-

ear measurements. The signals of interest are spectrally sparse,
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which contain a linear superposition of complex sinusoids with

continuous-valued frequencies in the unit interval. In the ex-

treme 1-bit case1, the quantization is based on the quadrants

of the complex-valued measurements. More generally, sophis-

ticated quantization schemes such as Lloyd’s quantizer [14] can

be used to allow a higher bit depth. The specific form of the

quantizer can be either known or unknown. In addition, the

quantized measurements may be additionally contaminated by

a noise model to be described later, in order to model imperfec-

tions in the quantization.

In this paper, we first derive the Cramér-Rao bound (CRB)

for estimating multiple frequencies and their complex ampli-

tudes assuming additive white Gaussian noise (AWGN) and the

Lloyd’s quantizer, using a fixed and deterministic CS measure-

ment matrix. Our bounds suggest that the CRB experiences a

phase transition depending on the signal-to-noise ratio (SNR)

before quantization. In the low SNR regime it is noise-limited,

and behaves similarly as if there was no quantization; in the high

SNR regime, it is quantization-limited, and experiences severe

performance degeneration due to quantization. Furthermore, we

use the derived CRB to answer the following question: given the

same budget of bits, should we use more measurements (high

sample complexity) with low bit-depth, or fewer measurements

(low sample complexity) with high bit-depth? We answer this

question by comparing 1-bit versus 2-bit quantization schemes

using the CRB, and demonstrate the answer depends on the

SNR. At low SNR, 1-bit measurements are preferred, while at

high SNR, 2-bit measurements are preferred.

It is well-known that maximum likelihood estimators ap-

proach the performance of CRB asymptotically at high SNR

[15], however, their implementation requires exact knowledge

of the likelihood function, which in our problem, includes the

exact form of the quantizer and noise statistics. However, such

knowledge may not be available in certain applications. There-

fore, our goal is to develop estimators that do not require the

knowledge of the quantization scheme. To mitigate basis mis-

match [16], atomic norm [17]–[24] has been proposed recently

to promote spectral sparsity via convex optimization without

discretizing the frequencies onto a finite grid, which has found

applications in signal denoising, interpolation of missing data,

and frequency localization of spectrally-sparse signals. Existing

atomic norm minimization algorithms assume unquantized mea-

surements that are possibly contaminated by additive noise, and

a direct application will lead to highly sub-optimal performance

when a significant amount of the quantized measurements

saturate [25].

In this paper, we propose a novel atomic norm soft thresh-

olding (AST) algorithm [24] to recover spectrally-sparse signals

and estimate the frequencies from their 1-bit quantized measure-

ments. Our algorithm is based on finding the proximal mapping

of properly designed surrogate signals, that are formed by linear

combinations of the sample-modulated measurement vectors,

with respect to the atomic norm to promote spectral sparsity. In

other words, we aim to find signals that balance between the

1Throughout this paper, we measure the bit depth as the number of bits used
to quantizer a real number.

proximity to the surrogate signals and the small atomic norm.

Moreover, the frequencies can be localized without knowing the

model order a priori, by examining the peak of a dual polynomial

constructed from the dual solution. Alternatively, conventional

subspace methods can be used to estimate the frequencies us-

ing the recovered spectral signal. The proposed algorithm can

be generalized to handle quantizations of noisy random linear

measurements of multiple spectrally-sparse signals [20], where

each signal contains the same set of frequencies with different

coefficients. The proposed algorithms do not require knowledge

of the specific form of the quantizer, and therefore can be applied

even when the quantizer is unknown.

When the measurement vectors are composed of i.i.d. com-

plex Gaussian entries, under a mild separation condition that

the frequencies are separated by 4/n, it is shown that the recon-

struction error scales as
√

K log n/m/λ, where K is the level

of spectral sparsity, n is the signal dimension, m is the number

of measurements, and λ is a parameter that depends on the SNR

before quantization, which increases as we increase SNR but

saturates at high SNR. Therefore, the reconstruction error rate

allows a trade-off between the sample complexity and SNR.

B. Related Work

Our work is closely related to 1-bit compressed sensing

[26]–[33], which aims to recover a sparse signal from signs

of random linear measurements. In particular, Plan and Ver-

shynin [29]–[32] generalize this idea to reconstructing signals

that belong to some low-dimensional set. Very recently, [34]

studied a similar setup and proposed a new algorithm using

projected gradient descent. The surrogate signals used in our

algorithm can be traced back to [11], [32]. The difference lies

in that instead of projecting the surrogate signals directly onto

some low-dimensional set, we adopt the proximal mapping of

the surrogate signals with respect to the atomic norm. Several

algorithms have been proposed in the CS literature to deal with

general quantization schemes [10], [35] and nonlinear mea-

surement schemes [32], [34], however the focus has been on

reconstruction of sparse signals in a finite dictionary, whereas

our focus is on parameter estimation and reconstructing sparse

signals in a parametric dictionary containing an infinite number

of atoms.

There are also several conflicting evidence regarding the

trade-offs between bit-depth and sample complexity [11], [36]

for signal reconstruction, as they may vary for different prob-

lems when using specific algorithms. In contrast, we derive

the Cramér-Rao bound for parameter estimation using quan-

tized compressive random measurements, which provides an

estimation-theoretic benchmark for gauging the trade-off as well

as benchmarking performances. Our CRB adds to existing lit-

erature of CRB calculations for 1-bit quantized single-tone fre-

quency estimation [37] as well as for parameter estimation using

compressive measurements [38].

C. Paper Organization and Notations

The rest of this paper is organized as follows. Section II

provides the problem formulation. Section III presents the
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Cramér-Rao bound for parameter estimation and discusses the

trade-off between bit depths and sample complexity. Section IV

presents backgrounds on the atomic norm and the proposed al-

gorithms with performance guarantees. Section V presents the

extension when quantizations of multiple measurement vectors

are available. Numerical experiments on the proposed algo-

rithms are provided in Section VI. We conclude in Section VII.

Throughout this paper, we use boldface letters to denote vec-

tors and matrices, e.g., a and A. The Hermitian transpose of a

is denoted by aH, the transpose of a is denoted by aT, and ‖A‖,

‖A‖F , Tr(A) denote the spectral norm, the Frobenius norm,

and the trace of the matrix A, respectively. An indicator func-

tion for an event A is denoted as IA . Denote T (u) ∈ C
n×n as

the Hermitian Toeplitz matrix with u as the first column. Define

the inner product between two vectors a, b as 〈a, b〉 = aHb.

The cardinality of a set D is defined as |D|. If A is positive

semidefinite (PSD), then A � 0. �(y) and �(y) denote the real

and imaginary part of a complex number y, respectively. The ex-

pectation of a random variable a is written as E[a]. Define 	 as

entry-wise product. Throughout this paper, we use c, c1 , c2 , . . .
to denote universal constants whose values may change from

line to line.

II. PROBLEM FORMULATION

Let x� ∈ C
n be a line spectrum signal, which is composed

of a small number of spectral lines, defined as

x� =

K
∑

k=1

ckv(fk ), (1)

where K is the number of frequencies or level of sparsity,

ck = Akej2πφk ∈ C is the kth coefficient, Ak > 0 is the kth

amplitude, φk ∈ [0, 1) is the kth normalized phase, fk ∈ [0, 1)
is the kth frequency, and

v(f) =
[

1 ej2πf · · · ej2π (n−1)f
]T

.

In CS, we acquire a set of random linear measurements of x� ,

contaminated by additive complex Gaussian noise, where each

measurement is given as

zi = 〈ai ,x
�〉 + σεi , i = 1, . . . , m, (2)

where m is the number of measurements, ai ∈ C
n ’s are the

measurement vectors composed of i.i.d. standard complex Gaus-

sian entries CN (0, 1), σ is the noise level, and we further have

i.i.d. εi ∼ CN (0, 1). In a vector notation, we write

z = Ax� + σε, (3)

where A = [a1 ,a2 , . . . ,am ]H ∈ C
m×n is the measurement

matrix, ε = [ε1 , ε2 , . . . , εm ]T, and z = [z1 , z2 , . . . , zm ]T. These

measurements are then quantized into a finite number of bits for

the ease of digital storage and processing. DenoteQ(·) : R �→ D
as the quantizer that quantizes a real number into a finite alphabet

D, where the bit depth is the smallest number of bits necessary to

represent D, i.e., b� = min{b ∈ Z
+ : |D| ≤ 2b}. The quantized

measurements y = [y1 , y2 , . . . , ym ]T of z are then denoted as

yi = Q(�(zi)) + jQ(�(zi)), i = 1, . . . , m, (4)

where we apply the same quantizer Q to both the real part

and the imaginary part of the complex-valued measurement

zi . With slight abuse of notation, we denote the quantized

measurements as

y = Q(z). (5)

Our goal is then to recover x� , and the set of frequencies

f = {fk}K
k=1 , from the quantized measurements y, possibly

without a priori knowing the sparsity level K, and the form of

the quantizer Q.

Several choices of the quantizer are of special interest. At the

extreme, we consider only knowing the quadrature information

of zi , where

Q(a) = sign(a), a ∈ R, (6)

We refer to this quantizer as the one-bit quantizer, as only a

single bit is used to quantize each real number.

More generally, we consider a quantizer Q(·) that is fully

characterized by the quantization intervals {[t� , t�+1)}|D|−1
�=1 ,

where t0 = −∞, t|D| = ∞, ∪|D|
�=1 [t� , t�+1) = R, as well as the

representatives of each interval ω� ∈ [t� , t�+1), where

Q(a) = ω� , if a ∈ [t� , t�+1). (7)

For example, the Lloyd’s quantizer [14] belongs to this form.

The choice of the quantization scheme plays an important role

in determining the performance of parameter estimation.

III. CRAMER-RAO BOUNDS AND TRADE-OFFS

In this section, we study the effects of quantization on param-

eter estimation by deriving the Cramér-Rao bound assuming the

quantizer, the sparsity level, and the noise level are known. In

particular, the bounds are calculated for 1-bit and general quan-

tizations, respectively, which are then used to study the trade-off

between sample complexity and bit depths for a fixed bit budget.

To begin with, we assume the set of parameters, including

the frequencies, amplitudes, and phases, given as κ = {fk , Ak ,
φk}K

k=1 ∈ R
3K , is deterministic but unknown, the measurement

matrix A is deterministic and known. Denote the probability

mass function as p(y|κ), which is given as

p(y|κ) =

m
∏

i=1

p(yi |κ) =

m
∏

i=1

[p(�(yi)|κ) · p(�(yi)|κ)] , (8)

where the second equality follows from the fact that εi is proper.

Moreover, let

p(�(yi)|κ) =
∏

ω∈D
p�(y i )(ω|κ)I{�( y i )= ω } (9)

p(�(yi)|κ) =
∏

ω∈D
p�(y i )(ω|κ)I{�( y i )= ω } (10)

be the probability mass function of �(y) and �(y), respec-

tively. The Fisher Information Matrix (FIM), denoted by I(κ) ∈
R

3K×3K , is given as

I(κ) = E

[

(

∂ log p(y|κ)

∂κ

)(

∂ log p(y|κ)

∂κ

)T
]

. (11)
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Note that for any 1 ≤ i, j ≤ m,

E

[

(

∂ log p(�(yi)|κ)

∂κ

)(

∂ log p(�(yj )|κ)

∂κ

)T
]

= E

[

∂ log p(�(yi)|κ)

∂κ

]

· E

[

∂ log p(�(yj )|κ)

∂κ

]T

= 0,

where the first equality follows from independence of �(yi) and

�(yj ), and the second equality follows from the fact

E

[(

∂ log p(�(yi)|κ)

∂κ

)]

= E

[

∑

ω∈D

I{�(y i )=ω}
p�(y i )(ω|κ)

∂p�(y i )(ω|κ)

∂κ

]

=
∑

ω∈D

∂p�(y i )(ω|κ)

∂κ
=

∂
(
∑

ω∈D p�(y i )(ω|κ)
)

∂κ
= 0.

Thus, plugging (8) into (11) all cross-terms will be zero and we

have

I(κ) =

m
∑

i=1

[

IR
i (κ) + II

i (κ)
]

, (12)

where

IR
i (κ) = E

[

(

∂ log p(�(yi)|κ)

∂κ

)(

∂ log p(�(yi)|κ)

∂κ

)T
]

=
∑

ω∈D

1

p�(y i )(ω|κ)

(

∂p�(y i )(ω|κ)

∂κ

)(

∂p�(y i )(ω|κ)

∂κ

)T

,

and II
i (κ) can be given similarly by replacing�(yi) with�(yi).

The CRB for estimating κ, is then given as CRB(κ) =
I(κ)−1 , and the CRB for estimating the ith parameter in κ,

is given as [I(κ)−1 ]i,i .

A. CRB for 1-Bit Quantization

Our goal is then to calculate the FIM in (12). We will explain

in details the calculations for the 1-bit case. First, since �(zi) ∼
N (�(〈ai ,x

�〉), 1
2 σ2), then

p�(y i )(ω|κ) = P (ω · �(zi) > 0|κ)

=
1

2
+ ω · Φ

(�(〈ai ,x
�〉)

σ

)

, ω = ±1, (13)

where Φ(u) = 1√
π

∫ u

0 e−t2
dt. Therefore, by the chain rule,

∂p�(y i )(ω|κ)

∂κ
=

ω

σ
Φ′
(�(〈ai ,x

�〉)
σ

)

∂�(〈ai ,x
�〉)

∂κ

=
ω√
πσ2

exp

(

−�(〈ai ,x
�〉)2

σ2

)

∂�(〈ai ,x
�〉)

∂κ
. (14)

As a short-hand notation, denote si(κ) = �(〈ai ,x
�〉) and

ri(κ) = �(〈ai ,x
�〉). Plug (14) into IR

i (κ), we have

IR
i (κ) =

4 exp
(

−2si(κ)2/σ2
)

πσ2
[

1 − 4Φ2
(

si (κ)
σ

)]

(

∂si(κ)

∂κ

)(

∂si(κ)

∂κ

)T

,

and similarly,

II
i (κ) =

4 exp
(

−2ri(κ)2/σ2
)

πσ2
[

1 − 4Φ2
(

r i (κ)
σ

)]

(

∂ri(κ)

∂κ

)(

∂ri(κ)

∂κ

)T

.

As a remark, when σ = 0, the amplitude of the signal cannot

be recovered from the 1-bit measurements due to scaling am-

biguity, and the FIM becomes singular in this case. Therefore,

our expressions for CRB is valid when σ �= 0.

B. CRB for General Quantization

We now explain the calculation for a general quantization

scheme. For ω� ∈ D, and a corresponding interval [t� , t�+1), we

have

p�(y i )(ω� |κ) = P (�(zi) ∈ [t� , t�+1)|κ)

=

∫

t � + 1 −s i (κ)

σ

t � −s i (κ)

σ

1√
π

e−t2

dt

= Φ

(

t�+1 − si(κ)

σ

)

− Φ

(

t� − si(κ)

σ

)

, (15)

then, following similar arguments, we have

∂p�(y i )(ω� |κ)

∂κ

=
1√
πσ2

[

e−
( t � + 1 −s i (κ) ) 2

σ 2 − e−
( t � −s i (κ) ) 2

σ 2

]

∂�(〈ai ,x
�〉)

∂κ
.

Therefore, define

ΓR
i (κ) =

|D|−1
∑

�=1

[

e−
( t � + 1 −s i (κ) ) 2

σ 2 − e−
( t � −s i (κ) ) 2

σ 2

]2

Φ
(

t� + 1 −si (κ)
σ

)

− Φ
(

t� −si (κ)
σ

) , (16)

and

ΓI
i (κ) =

|D|−1
∑

�=1

[

e−
( t � + 1 −r i (κ) ) 2

σ 2 − e−
( t � −r i (κ) ) 2

σ 2

]2

Φ
(

t� + 1 −r i (κ)
σ

)

− Φ
(

t� −r i (κ)
σ

) , (17)

we have the following theorem for the expression of FIM in

light of our derivations in the previous subsection.

Theorem 1: The Fisher information matrix I(κ) for estimat-

ing the unknown parameter κ is given as

I (κ) =
1

πσ2

m
∑

i=1

(

ΓR
i (κ)

∂si(κ)

∂κ

(

∂si(κ)

∂κ

)T

+ ΓI
i (κ)

∂ri(κ)

∂κ

(

∂ri(κ)

∂κ

)T )

. (18)
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Fig. 1. CRB under different bit-depths with respect to SNR for a fixed number of measurements m = 100. Here, n = 64 and K = 3. Each row represents the
CRB for estimating the frequency, amplitude, and phase of one spectral atom.

It is worth mentioning the FIM depends only on the quan-

tization intervals, not the value of representatives. In con-

trast, the FIM using the unquantized measurements z is given

as

Iunquantized (κ) =
2

σ2

m
∑

i=1

∂si(κ)

∂κ

(

∂si(κ)

∂κ

)T

+
∂ri(κ)

∂κ

(

∂ri(κ)

∂κ

)T )

. (19)

It remains to evaluate
∂si (κ)

∂κ and
∂r i (κ)

∂κ . Following the

Wirtinger calculus [39], we have
∂si (κ)

∂κ = ∂�(〈ai ,x
� 〉)

∂κ =
1
2�

(

aH
i

∂x�

∂κ

)

and
∂r i (κ)

∂κ = ∂�(〈ai ,x
� 〉)

∂κ = 1
2�

(

aH
i

∂x�

∂κ

)

. Define

g(f) =
∂v(f)

∂f
=
[

0, j2πej2πf , · · · , j2π(n − 1)ej2π (n−1)f
]T

.

Then, for each of the parameters in κ, we have, for k =
1, . . . , K,

∂x�

∂fk
= ckg(fk ), (20a)

∂x�

∂Ak
= ej2πφk v(fk ), (20b)

∂x�

φk
= j2πckv(fk ). (20c)

C. Numerical Evaluations

We now evaluate the CRB for 1-bit and 2-bit quantization

schemes using the Lloyd’s quantizer, and compare it against

the CRB without quantization. We generate a spectrally-sparse

signal x� of length n = 64 with frequencies f1 = 0.3, f2 =

0.325, and f3 = 0.8, and complex coefficients c1 = 0.4ej2π ·0.1 ,

c2 = 0.15ej2π ·0.55 , and c3 = 0.05ej2π ·0.75 , which are selected

arbitrarily.

We first fix the number of measurements as m = 100, and

generate a measurement matrix with complex standard i.i.d.

Gaussian entries. Fig. 1 shows the CRB for estimating all

parameters with respect to the SNR, where it is defined as

SNR = ‖x�‖2
2/σ2 . It is evident that increasing the bit depth

improves the performance. In the low SNR regime performance

is noise-limited, and behaves similarly as if there was no quan-

tization; in the high SNR regime, performance is quantization-

limited, and experiences severe performance degeneration due

to quantization.

In many situations, we cannot simultaneously have high sam-

ple complexity and high bit depth, but rather, our budget is

constrained by the number of total bits, which is B = m · b� =
m · �log2 |D|�. Therefore, it is useful to understand the trade-

off between sample complexity and bit depth. Here, we use

the CRB as a tool to compare the 1-bit and 2-bit quantiza-

tion schemes. Fix the total number of bits as B = 100. In the

1-bit quantization scheme, we use a measurement matrix with

m = 100 as generated earlier. In the 2-bit quantization scheme,

we only use the first m/2 rows of the same measurement matrix.

For comparison, we also plot the CRB assuming unquantized

measurements using the same measurement matrix as the 1-bit

case. Fig. 2 shows the CRB for estimating all parameters with

respect to the SNR. It can be seen that in the low SNR regime,

1-bit quantization is preferred, as performance is noise-limited,

so higher sample complexity improves performance; in the high

SNR regime, 2-bit quantization is preferred, as performance is

quantization-limited, so higher bit depth improves performance.

Our analysis is estimation-theoretic, and doesn’t depend on the

algorithm being adopted.
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Fig. 2. CRB under different bit-depths with respect to SNR for a fixed number of bits B = 100. In this case, 2-bit quantization only has half the number of
measurements of the 1-bit case. Here, n = 64 and K = 3. Each row represents the CRB for estimating the frequency, amplitude, and phase of one spectral atom.

IV. ATOMIC NORM SOFT THRESHOLDING FOR QUANTIZED

SPECTRAL COMPRESSED SENSING

It is well-known that maximum likelihood estimators ap-

proach the performance of CRB asymptotically at high SNR

[15], however, their implementation requires exact knowledge

of the likelihood function, which may not be available in certain

applications. Therefore, in this section, we will develop esti-

mators that do not require the knowledge of the quantization

scheme using 1-bit measurements via atomic norm minimiza-

tion [17]. We first provide the backgrounds on atomic norm for

line spectrum estimation, and then describe the proposed algo-

rithms for both the single vector case and the multiple vector

case with performance guarantees.

A. Backgrounds on Atomic Norms

The atomic norm is originally proposed in [17] as a uni-

fied framework of convex regularizations for solving underde-

termined linear inverse problems. Subsequently, [18]–[24] has

tailored it to the estimation of spectrally-sparse signals.

For the single vector case, define the atomic set as As =
{

ejφv(f) : f ∈ [0, 1), φ ∈ [0, 2π)
}

, then the atomic norm of a

vector x is given as

‖x‖A := inf{t > 0 : x ∈ t · conv(As)}

= inf

{

∑

i

|αi |
∣

∣

∣
x =

∑

i

αiv(fi)

}

, (21)

where conv(A) denotes the convex hull of set A. The atomic

norm can be viewed as a continuous analog of the �1 norm over

the continuous dictionary defined by the atomic set. Therefore,

by promoting signals with small atomic norms, we encourage

signals that can be expressed by a small number of spectral

atoms. Appealingly, as shown in [18], it is possible to calculate

‖x‖A using an equivalent semidefinite program, which can be

computed efficiently using off-the-shelf solvers:

‖x‖A = min
u∈Cn ,w

{

1

2n
Tr(T (u)) +

w

2

∣

∣

∣

[

T (u) x

xH w

]

� 0

}

,

where T (u) denotes the Hermitian Toeplitz matrix with u as the

first column. The dual atomic norm ‖ · ‖∗A for a vector q ∈ C
n ,

as will become useful later, is given as

‖q‖∗A = sup
‖x‖A≤1

〈q,x〉R = sup
f∈[0,1]

|qHv(f)|,

where the second equality follows from the fact the the extreme

values are taken when x is aligned with v(f) due to convexity.

From the above equation it is clear that ‖q‖∗A can be interpreted

as the largest absolute value of a polynomial of ej2πf, denoted

as Q(f) = |qHv(f)|.

B. Atomic Soft-Thresholding With Quantized Measurements

We first construct a surrogate signal from the quantized mea-

surements as [32]

s =
1

m

m
∑

i=1

yiai =
1

m
AHy ∈ C

n , (22)
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Fig. 3. Value of λ with respect to SNR before quantization.

and use the following atomic norm soft-thresholding (AST)

algorithm to estimate the signal x,

x̂ = argminx∈Cn

1

2
‖x − s‖2

2 + τ‖x‖A, (23)

which is the proximal mapping of the surrogate signal s with

respect to the atomic norm, where τ > 0 is a regularization

parameter. One appealing feature of atomic norm minimiza-

tion is that the set of frequencies can be recovered via the dual

polynomial approach [24]. Namely, denote the dual variable

as q̂ = (s − x̂)/τ , and Q(f) = |q̂Hv(f)|. Then the set of fre-

quencies can be localized as F̂ = {f : Q(f) = 1}. We refer

interested readers to the details in [18]. Alternatively, the fre-

quencies can be localized via performing conventional subspace

methods using the estimated signal.

C. Performance Guarantees

In this section, we develop performance guarantees of the

proposed AST algorithm under 1-bit quantization in the single

vector case using the sign quantizer in (6). Note that in this case,

it can be seen that s in (22) is an unbiased estimator of x� up to

a scaling difference, i.e.,

E[s] = λ
x�

‖x�‖2
,

where

λ =
2‖x�‖2

√

π(σ2 + ‖x�‖2
2)

=
2

√

π(1/SNR + 1)
(24)

depends on the SNR before quantization SNR = ‖x�‖2
2/σ2 .

To illustrate, Fig. 3 depicts λ as a function of SNR, which is

a monotonically increasing function with respect to SNR and

approaches to the limit 2/
√

π as SNR goes to infinity.

Without loss of generality, we assume ‖x�‖2 = 1. The per-

formance of AST relies critically on the separation condition,

which is defined as the minimum distance between distinct fre-

quencies,

∆ = min
k �=j

|fk − fj | ≥
4

n
, (25)

where |fk − fj | is evaluated as the wrap-around difference on

the unit modulus. Under the separation condition, we have the

performance guarantee of the proposed algorithm in (23), stated

below.

Theorem 2: Set τ := η
√

n log n/m for some constant η ≥
1. Under the separation condition, the solution x̂ satisfies

∥

∥

∥

∥

x̂

λ
− x�

∥

∥

∥

∥

2

�
1

λ

√

K log n

m

with high probability.

The proof of Theorem 2 can be found in Appendix A. Theo-

rem 2 suggests that the proposed algorithm accurately recovers

the signal as soon as m is on the order of K log n, which is

order-wise near-optimal, since at least an order of K log(n/K)
measurements are needed in order to recover a sparse signal

in the DFT basis [30]. Moreover, the theorem also suggests

that the normalized reconstruction error is inverse proportional

to λ, which plays the role of SNR after quantization and is a

nonlinear function of the SNR before quantization. In the low

SNR regime, λ scales as 1/
√

SNR, and the performance is

comparable to that using unquantized measurements. However,

in the high SNR regime, there is a saturation phenomenon, as

evidenced by Fig. 3, and the performance does not improve as

much with we increase SNR, which is also corroborated by nu-

merical simulation in Section VI. These results are qualitatively

in line with existing work on one-bit CS [30].

Remark 1: More generally, Theorem 2 can be extended to

the generalized linear model following similar strategies in

[29], as long as the 1-bit measurements yi’s are i.i.d. and sat-

isfy E[yi |ai ] = g (〈ai ,x
�〉) for some link function g(·), and

accordingly λ = E[g(θ)θH] where the expectation is taken with

respect to θ ∼ CN (0, 1). This allows us to model other complex

quantization schemes with non-Gaussian noise.

V. EXTENSION TO THE MULTIPLE VECTOR CASE

In many applications, we encounter an ensemble of line spec-

trum signals, where each signal xt ∈ C
n contains a linear com-

bination of spectral lines with the same set of frequencies F ,

but with varying amplitudes, given as

x�
t =

K
∑

k=1

ck,tv (fk ) , 1 ≤ t ≤ T,

where ck,t ∈ C, and T is the number of snapshots. Denote X� =
[x�

1 ,x
�
2 , . . . ,x

�
T ] ∈ C

n×T as the signal ensemble. Similar to (3),

the CS measurement of each snapshot is given as

zt = Ax�
t + σεt , (26)

where εt = [ε1,t , ε2,t , . . . , εm,t ]
T contains i.i.d. standard com-

plex Gaussian CN (0, 1) entries. Similar to (5), the quantized

measurements of each zt is then given as

yt = Q(zt). (27)

Denote Z = [z1 ,z2 , . . . ,zT ] and Y = [y1 ,y2 , . . . ,yT ] as the

unquantized measurement ensemble and the quantized measure-

ment ensemble, respectively. Our goal is then to recover X� and

the set of frequencies from Y , without assuming the knowledge
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Fig. 4. Frequency localization via peaks of the dual polynomial, superimposed
on the ground truth.

of the sparsity level and the quantizer. The presence of multi-

ple vectors can significantly improve the accuracy of frequency

estimation.

It is possible to extend the atomic norm formulation to the

multiple vector case [20]. Define the atomic set as

Am =
{

A (f, b) = v (f) b|f ∈ (0, 1] , b ∈ C
1×T , ‖b‖ = 1

}

,

then the atomic norm is defined as

‖X‖A = inf {t > 0 : X ∈ t · conv (Am )}

= inf

{

∑

k

|ck |
∣

∣

∣
X =

∑

k

ckA (fk , bk )

}

,

which can be computed similarly via solving the following

semidefinite program [20]:

‖X‖A = min
u∈Cn ,W∈CT ×T

{ 1

2n
Tr(T (u)) +

1

2
Tr(W )

∣

∣

∣

[T (u) X

XH W

]

� 0
}

.

The dual norm for some Q ∈ C
n×T is given as

‖Q‖∗A = sup
‖X‖A≤1

〈Q,X〉R = sup
f∈[0,1]

‖QHv(f)‖,

which is the largest absolute value of the polynomial Q(f) =
‖QHv(f)‖.

For reconstruction, we construct the surrogate signal ensem-

ble from the quantized measurement ensemble Y as

S =
1

m
AHY ∈ C

n×T , (28)

and use the following atomic norm soft-thresholding (AST)

algorithm to estimate the signal ensemble X ,

X̂ = argminX∈Cn ×T ‖X − S‖2
F + τT ‖X‖A, (29)

where τT > 0 is a regularization parameter. Moreover, define

Q̂ = (S − X̂)/τT , and Q(f) = ‖Q̂H
v(f)‖. Then the set of

frequencies can be localized as F̂ = {f : Q(f) = 1}. Alterna-

tively, the frequencies can be localized via performing conven-

tional subspace methods using the estimated snapshots.

Fig. 5. Normalized reconstruction error with respect to the number of mea-
surements at different SNRs with or without quantization.

Fig. 6. Normalized reconstruction error with respect to the spectral sparsity
level at different SNRs before quantization.

Fig. 7. Mean square error of frequency localization with respect to SNR
using 1-bit measurements, CRB is provided as a benchmark: (a) first frequency;
(b) second frequency.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to evaluate

the performance of the proposed AST algorithms for parameter

estimation using quantized compressive measurements in both

the single vector case and the multiple vector case. For imple-

mentation of the AST algorithms, we used the CVX toolbox
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Fig. 8. Performance with respect to the number of snapshots at different SNRs using 1-bit measurements: (a) signal reconstruction error; (b) frequency estimation
error measured in Hausdorff distance.

[40]. There’re several other fast solvers developed for atomic

norm minimization that are more scalable to large problems,

including ADMM [20], [24], ADCG [41], and CoGent [42], to

name a few.

A. Single Vector Case

Let n = 64 and K = 3. The set of frequencies is located

at f = {0.3, 0.325, 0.8}, where the first two frequencies are

separated barely more than 1/n, the Rayleigh limit. The number

of bits is set as m = 1000, where the measurement vectors are

generated with i.i.d. CN (0, 1) entries. The measurements are

quantized according to (6). Fig. 4 shows the amplitude of the

constructed dual polynomial by solving (23), where its peaks

can be used to localize the frequencies. It can be seen that it

matches accurately with the ground truth.

Next, we compare the performance of signal reconstruction

using atomic norm with unquantized measurements z, by run-

ning the algorithm:

x̂UQ = argminx∈Cn

1

2
‖z − Ax‖2

2 + τ̃‖x‖A,

where τ̃ is a properly tuned regularization parameter. The

normalized reconstruction error is defined as sin2(∠x̂,x) =
1 − |〈x̂,x�〉|2/(‖x̂‖2

2‖x�‖2
2), where x̂ is the reconstructed sig-

nal using either algorithm. Fig. 5 shows the normalized recon-

struction error at different SNRs with comparisons to that using

the quantized measurements and the AST algorithm (23), where

SNR is defined again as SNR = ‖x�‖2
2/σ2 . It can be seen that

the reconstruction accuracy improves as we increase the SNR as

well as the number of measurements, validating the theoretical

analysis. In particular, at low SNR, using quantized measure-

ments can potentially achieve better reconstruction quality with

much fewer measurement budgets in bits. It can also be seen

that improving the SNR before quantization does not have as

strong impact as for the unquantized case.

Next, we examine the performance of the proposed algorithm

as a function of the spectral sparsity level. Fix n = 64 and

m = 1000. At each run, we randomly generate K different

frequencies that satisfy the separate condition. Fig. 6 shows the

normalized reconstruction error as a function of the sparsity level

at various SNR, averaged over 200 Monte Carlo simulations.

It can be seen that the reconstruction error is higher when the

spectral sparsity level is higher, and the SNR is lower. Moreover,

it can be seen that the reconstruction error stops to decrease when

the SNR is relatively high, indicating a saturation effect due to

quantization, as predicted by our theory.

We further compare the performance of frequency localiza-

tion using the proposed algorithm with the CRB. Fix n = 64
and m = 1000. We generate the ground signal with frequen-

cies f1 = 0.3, f2 = 0.325 and amplitudes c1 = 0.4ej2π ·0.1 ,

c2 = 0.15ej2π ·0.55 . Fig. 7 shows the average mean squared error

for each frequency over 200 Monte Carlo simulations, against

the corresponding CRB calculated using the formulas in Sec-

tion III. The frequencies are estimated by using the MATLAB

function rootmusic by assuming the correct model order,

that is K = 2. The performance of the proposed algorithm ex-

hibits a threshold effect where it approaches that of CRB as soon

as SNR is large enough. However, further increasing the SNR

doesn’t seem to improve the performance, which coincides with

the saturation effect discussed earlier.

B. Multiple Vector Case

We evaluate the performance of the AST algorithm (29) in

the multiple vector case. We follow the same setup as Fig. 4,

where n = 64, the set of frequencies f = {0.3, 0.325, 0.8}, and

the number of measurements for each snapshot is m = 50. The

coefficients of each snapshot in X is generated independently

using the standard complex Gaussian distribution. The SNR

per snapshot is defined as SNR = ‖X‖2
F /(Tσ2), where T is

the number of snapshots. We set the regularization parameter

τT =
√

n log n/(10 · mT ) in the experiment. The normalized

reconstruction error is defined as sin2(∠X; X̂), where X̂ is the

recovered signal containing multiple snapshots, and ∠ denotes

the angle between the subspace spanned by X and X̂ . Once X̂
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is obtained, we estimate the frequencies by using the MATLAB

functionrootmusic by assuming the correct model order, that

is K = 3. The accuracy of frequency estimation is evaluated

by examining the Hausdorff distance between the recovered

frequencies f̂ and the ground truth f as

dH (f , f̂) = max

{

sup
f∈f

inf
f̂∈f̂

‖f − f̂‖2 , sup
f̂∈f̂

inf
f∈f

‖f − f̂‖2

}

.

Fig. 8 shows the recovery performance with respect to the

number of snapshots at different SNRs, averaged over 50 Monte

Carlo simulations, where (a) depicts the normalized reconstruc-

tion error, and (b) depicts the squared Hausdorff distance. At a

fixed SNR, it can be seen that both the normalized reconstruc-

tion error and frequency estimation error reduce, highlighting

the benefit of having multiple snapshots. In particular, having

multiple snapshots allows better frequency recovery once the

number of snapshots is large enough. Moreover, performance

improves as we increase the SNR.

VII. CONCLUDING REMARKS

In this paper, we examined the effect of (heavy) quantization

in spectral compressed sensing that is useful for understand-

ing wideband spectral signal acquisition and processing. Our

contributions are two-fold. We first derived the Cramér-Rao

bound for parameter estimation with multiple complex sinu-

soids using quantized compressed linear measurements. This

bound is instrumental in describing the trade-offs between bit

depth and sample complexity at different SNR regimes. Such

an estimation-theoretical perspective is independent of the al-

gorithm and hasn’t been exploited in the previous literature.

Secondly, we developed algorithms for spectral-sparse signal

recovery using quantized measurements via atomic norm min-

imization, which do not require knowledge of the quantizer in

recovery. Under a mild separation condition, we establish that

we can accurately recover a spectrally-sparse signal from the

signs of O(K log n) random linear measurements. The pro-

posed algorithm also can be extended to handle multiple signal

snapshots. This generalizes the literature on one-bit compressed

sensing to the important class of spectrally sparse signals using

atomic norms, and we carefully examined the performance of

the proposed algorithms via numerical experiments.

An alternative convex relaxation for spectrally-sparse signal

recovery is based on Hankel matrix enhancement and nuclear

norm minimization [43], [44]. In the single vector case, instead

of imposing the atomic norm regularizer as in (23), one may

consider

x̂ = argminx∈Cn

1

2
‖x − s‖2

2 + τH ‖H(x)‖∗. (30)

Here, H(x) denotes a Hankel matrix given as

H(x) =

⎡

⎢

⎢

⎢

⎢

⎣

x1 x2

x2
. . .

...
. . .

xn1
xn1 +1 · · · xn

⎤

⎥

⎥

⎥

⎥

⎦

, (31)

where n1 is set as �n/2� to make the matrix H(x) as square as

possible, ‖ · ‖∗ is the nuclear norm, and τH is a regularization

parameter. Our preliminary numerical simulations suggest this

method is also effective for promoting spectral sparsity, but a

detailed study is beyond the scope of the current paper. We leave

the thorough analysis of (30) to future work.

Since the Cramér-Rao bounds assume perfect knowledge of

the quantizers, they may not be indicative to benchmark the

performance of the atomic norm minimization algorithms as

proposed in this paper, since these algorithms do not make use

of such knowledge. In the future, it might be interesting to

develop estimation-theoretical bounds that only assume partial

or little knowledge about the quantizer.

APPENDIX A

PROOF OF THEOREM 2

An alternative way to represent the atomic decomposition is

to write it as an integration of certain point measure [23]. Define

the representing measure of x� as

µ(f) =

K
∑

k=1

ckδ(f − fk ),

where δ(·) is the delta function. Then we can rewrite x� as

x� =

∫ 1

0

v(f)dµ(f) =

K
∑

k=1

ckv(fk ). (32)

Correspondingly, denote µ̂(f) as the representing measure for

the solution x̂ of (23), which means x̂ =
∫ 1

0 v(f)dµ̂(f).
Denote the reconstruction error as e = λx� − x̂, and its rep-

resenting measure is γ = λµ − µ̂. With these definitions, apply-

ing [23, Lemma 1], we can bound the error as [23]

‖e‖2
2 ≤ ‖e‖∗A

(
∫

F

|γ| (df) + I0 + I1 + I2

)

, (33)

where I� =
∑K

k=1 Ik
� , for � = 0, 1, 2, with Ik

0 =
∣

∣

∣

∫

Nk
γ (df)

∣

∣

∣
,

Ik
1 = n

∣

∣

∣

∫

Nk
(f − fk ) γ (df)

∣

∣

∣
, Ik

2 = n2

2

∫

Nk
(f − fk )2 |γ| (df),

where Nk = {f ∈ T : d (f, fk ) ≤ 0.16/n} as the neighbor-

hoods around each frequency, and F = T \ ∩K
k=1Nk .

To bound the first term in (33), let us denote the deviation

w = s − E[s] = s − λx� , (34)

where E[w] = 0. We have

‖e‖∗A ≤ ‖w‖∗A + ‖s − x̂‖∗A
≤ ‖w‖∗A + τ, (35)

where the first line follows from the triangle inequality, and the

second line follows from the optimality condition of the AST

algorithm in (23) in the following lemma.

Lemma 1 (Optimality conditions [24]): x̂ is the solution of

(23) if and only if ‖s − x̂‖∗A ≤ τ , and 〈s − x̂, x̂〉 = τ‖x̂‖A.

Therefore, if we set τ ≥ η‖w‖∗A, where η ≥ 1 is some con-

stant, then plugging this into (35) we can show that

‖e‖∗A ≤ (η−1 + 1)τ ≤ 2τ. (36)
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The second term in (33) can be bounded in exactly the same

manner as in [23], as long as (36) holds. In effect, [23] proved

the following bound, under the separation condition, with high

probability we have

(
∫

F

|γ| (df) + I0 + I1 + I2

)

≤ C
Kτ

n
. (37)

The following lemma bounds ‖w‖∗A, whose proof is provided

in Appendix B.

Lemma 2: With probability at least 1 − 1/(πn log n), we

have

‖w‖∗A ≤ C ·
√

n log n

m
,

where C is some universal constant.

Therefore, set τ = Cη
√

n log n/m, and plug (36) and (37)

into (33), we have

‖e‖2
2 ≤ C ′ · Kτ 2

n
≤ C ′K log n

m
. (38)

which is equivalent to

∥

∥

∥

∥

x̂

λ
− x�

∥

∥

∥

∥

2

�
1

λ

√

K log n

m
.

The proof is complete.

APPENDIX B

PROOF OF LEMMA 2

By definition, we can write ‖w‖∗A as

‖w‖∗A = sup
f∈[0,1)

|〈s − λx� ,v (f)〉|

= sup
f∈[0,1)

|〈s,v (f)〉 − E [〈s,v (f)〉]|

= sup
f∈[0,1)

|gx� (f) − E[gx� (f)]| (39)

where

gx� (f) := 〈s,v (f)〉 =
1

m

m
∑

i=1

yi 〈ai ,v (f)〉 .

To proceed, we use the following symmetrization bound,

which is the complex-valued version of [30, Lemma 5.1].

Lemma 3: Let {εi}m
i=1 be a sequence of independent

complex-valued random variables, where εi ∼ ε = ej2πθ , where

θ uniformly distributed between [0, 1). Then

µ : = E

[

sup
f∈[0,1)

|gx� (f) − E [gx� (f)]|
]

≤ 2E

[

sup
f∈[0,1)

1

m

∣

∣

∣

∣

∣

m
∑

i=1

εiyi 〈ai ,v(f)〉
∣

∣

∣

∣

∣

]

. (40)

Furthermore, we have the deviation inequality

P

{

sup
f∈[0,1)

|gx� (f) − E [gx� (f)]| ≥ 2µ + t

}

≤ 4P

{

sup
f∈[0,1)

1

m

∣

∣

∣

∣

∣

m
∑

i=1

εiyi 〈ai ,v (f)〉
∣

∣

∣

∣

∣

>
t

2

}

. (41)

Before applying Lemma 3, note that by symmetrization and

rotational invariance, εiyiai have the same i.i.d. distribution

of
√

2ai . Therefore, the following quantities are equivalent in

distribution:

sup
f∈[0,1)

1

m

∣

∣

∣

∣

∣

m
∑

i=1

εiyi 〈ai ,v (f)〉
∣

∣

∣

∣

∣

∼
√

2

m
sup

f∈[0,1)

∣

∣

∣

∣

∣

m
∑

i=1

〈ai ,v (f)〉
∣

∣

∣

∣

∣

∼
√

2

m
sup

f∈[0,1)

| 〈g,v (f)〉 |,

where g is a vector composed of i.i.d. CN (0, 1).
Applying (41) in Lemma 3 to (39), we have

P (‖w‖∗A ≥ 2µ + t) ≤ 4P

(

√

2

m
sup

f∈[0,1)

| 〈g,v (f)〉 | ≥ t

2

)

.

(42)

From (40) in Lemma 3, we have

µ = E [‖w‖∗A] ≤ 2

√

2

m
E

[

sup
f∈[0,1)

| 〈g,v (f)〉 |
]

≤ C

√

n log n

m
, (43)

where the second line follows from [24, Appendix C,D] as

E

[

sup
f∈[0,1]

| 〈g,v (f)〉 |
]

≤ C1

√

n log (n).

Moreover, from [24, Appendix C], we have

sup
f∈[0,1)

|〈g,v (f)〉| ≤ C2 ·
√

n log n

hold with probability at least 1 − 1/(πn log n). Set t =
2C2

√
n log n and plug in the above two inequalities in (4), we

have that

‖w‖∗A ≤ C ·
√

n log n

m

holds with probability at least 1 − 1/(πn log n).
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