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This paper focuses on improving the effectiveness of parking enforcement patrol by op-
timizing the schedule of visit at each parking lot and the routing plan of patrol vehicles.
Meanwhile, individual parking driver makes his/her parking payment decision based on
knowledge of the patrol visit frequencies. Game-theoretic models are proposed to capture
the interactions among the parking enforcement agency and parking drivers. We first de-
velop a discrete formulation of the problem in the form of a mixed-integer program and
propose a Lagrangian relaxation based solution approach. For large-scale instances, we also
develop a continuum approximation model that can be reduced to a simpler non-linear
optimization problem. A series of numerical experiments are conducted to show that, for

Continuum approximation small problem instances, both modeling approaches can yield reasonable solutions, al-

Lagrangian relaxation though the continuum approximation approach is able to produce a solution within a
much shorter time. For large-scale instances, the discrete model incurs prohibitive com-
putational burdens, while the continuum approximation approach still provides a near-
optimum solution effectively. We also discuss impacts of various system parameters, as
well as the performance of different policy options (e.g., whether to allow multiple park-
ing tickets to be issued to a vehicle with a long time of parking violation).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As the demand for parking continues to grow especially in urban areas, it has become a major challenge to enhance
the efficiency and sustainability of parking services. Many cities have started to implement various parking management
strategies (e.g., parking pricing, reservation) to improve the efficiency of their parking systems. For any of these strategies to
be effective, parking enforcement has to be established to reduce or eliminate parking violations (Litman, 2006). However,
this is not a trivial task. According to NYC OpenData (2016), in the fiscal year 2015 alone, 7.3 million parking violation tickets
were issued in New York City, and 45% of them were due to overtime parking. As parking violations waste already limited
parking resources, it is essential to strengthen parking enforcement management.

In most urban areas, parking is not free. A driver needs to pay a certain amount of money, usually at the time of arrival,
to secure a parking space for a chosen length of time. However, in many systems, especially with parking meters, the drivers
often do not know the exact length of needed parking duration when he or she is making the payment. In many other
situations, the parking duration is actually random due to unexpected delays or distractions. A parked vehicle is considered
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to be in the violation state once the actual parking duration exceeds the paid parking time, and a ticket will be issued to
such a vehicle when a patrol officer visits the parking lot. The fine associated with a parking ticket is usually much larger
than the parking price. As such, a driver’s parking payment decision shall be affected by the likelihood of encountering
an officer, or in other words the schedule/frequency of patrol activities (Adiv and Wang, 1987; Elliot and Wright, 1982).
Although the drivers may not possess accurate knowledge of the exact patrol schedule, it is not uncommon that they are
aware of the approximate patrol frequency at a specific parking lot, especially for those drivers who use the parking lot on a
daily basis. Accordingly, when the patrol frequency is low, a knowledgeable driver may incline to be more opportunistic and
pay less money for parking; in contrast, drivers at a frequently patrolled parking lot would tend to be more conservative.

In practice, the parking enforcement agency usually divides the operating hours into multiple time periods and sends out
officers to visit various parking lots in a periodic and repetitive manner. For a single period, a patrol officer departs from
the base location at the beginning of the period, and visits a sequence of parking lots according to a routing plan. When
the officer arrives at a parking lot, he or she checks the status of all parked vehicles to see if there is any violation. Once
the officer finds a violation, he or she needs to spend some time on processing the violation, such as taking photos of the
vehicle and issuing a ticket. After processing all the violations in the parking lot, the officer proceeds to the next location.
Finally, the officer needs to return to the base location before the end of this period. From the perspective of the parking
enforcement agency, it would be ideal if all the parking lots can be patrolled sufficiently frequently such that no parking
violation exists. However, the agency may have only limited patrol resources to use. In addition, as mentioned above, there is
also a time duration limit imposed on each single patrol route. As such, in order to construct an optimal or at least feasible
routing plan, the agency needs to figure out the length of time that is needed for processing violations in each parking lot
(which is called service time in this paper), and yet the travel time in-between parking lots. The travel time is considered
to be deterministic and known, while the service time directly depends on the number of violations that is processed en
route.

Parking enforcement patrol is one type of patrol activities routinely conducted by law enforcement agencies. Related
resource allocation, positioning or routing problems have been explored in similar contexts. For instance, police patrol plan-
ning has been extensively studied in the urban environment (Larson, 1972; Chaiken and Dormont, 1978a; 1978b). In these
models, the deployed police patrol vehicles were typically modeled as servers in a queuing system; such models capture
the reactive nature of the police force (i.e., the primary mode of police operation is to respond to calls for service). Birge
and Pollock (1989) extended the police patrol problem to the rural environment, and Taylor etal. (1985) proposed an in-
teger nonlinear goal programming model which focused on maintaining a visible police presence on highways. Another
example of patrol problems is the well-known art gallery and illumination problem, which deals with the positioning and
deployment of guards in art galleries or museums (Urrutia, 2000).

The parking agency’s problem shares some similarities with the periodic vehicle routing problem (PVRP) in which a set
of given customers (each with a known visit frequency requirement) are repeatedly visited over multiple time periods, and
different routes are constructed in each time period to serve the customers collectively (Christofides and Beasley, 1984).
The PVRP is a variant of the classic vehicle routing problem and has been widely applied to many practical contexts, e.g.,
waste collection (Beltrami and Bodin, 1974), elevator maintenance and repair (Blakeley etal., 2003) and vending machine
replenishment (Rusdiansyah and Tsao, 2005). The readers are referred to Campbell and Wilson (2014) for more details on
PVRP. Since patrol frequency is part of the agency’s decision, the closest literature might be that on PVRP with service choice
(PVRP-SC), which is an extension of the PVRP that allows each customer’s visit frequency/schedule to be a decision variable.
Francis etal. (2006) studied the PVRP-SC in the context of interlibrary book delivery, and proposed a mixed-integer model
and an exact solution method. A survey of related variants, formulations, and solution methods can be found in Francis etal.
(2008).

The challenge is that, instead of knowing the exact demand in advance (as we normally assume for PVRP-SC and other
patrol problems), the demand in the parking enforcement patrol problem (i.e., depending on the number of parking viola-
tions in each parking lot) is not only stochastic but also dependent on the agency’s patrol decision. That is, the likelihood of
a vehicle being in violation is directly related to the driver’s payment decision, and this payment decision is affected by the
agency'’s patrol frequency. Such bi-directional relationships between the number of parking violations (as well as the service
time) and the agencys patrol routing plans, therefore, imposes an additional layer of complexity on the already difficult
PVRP-SC type problems.

In this paper, we propose two game-theoretic mathematical models to capture the interactions between the agency’s
patrol decision and drivers’ parking payment decision. The parking enforcement agency determines the patrol schedule at
each parking lot and the routing plan of the available patrol vehicles, while taking into consideration the fact that each
parking driver makes his/her optimal parking payment decision in accordance with the patrol frequencies. We model the
agency'’s patrol planning problem as a variant of PVRP-SC and handle the driver’s parking payment problem as a variant of
the news-vendor problem. As the driver’s parking payment problem can be solved in closed form, the parking enforcement
patrol problem can be transformed into a single-level mathematical program. We first develop a discrete formulation as
well as a Lagrangian relaxation based solution algorithm. To facilitate the solution process for large-scale instances, we
also develop a continuum approximation (CA) formulation that can be reduced to a non-linear optimization problem. The
performance of the proposed models and algorithms is tested through a series of numerical experiments. It is shown that
the both the discrete and CA approach can produce reasonable solutions, though the computation time for the CA approach
is much shorter. The CA approach demonstrates to be an effective alternative to avoid prohibitive computational difficulty
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in solving the discrete models, especially for large-scale instances. We discuss impacts of various system parameters (e.g.,
parking demand distribution, ratio between ticket fine and parking price) and also draw managerial insights on the impact of
different ticketing policies (e.g., whether to allow a violator to receive multiple tickets for one single long-duration violation).

This remainder of the paper is organized as follows. In Section 2, a discrete mathematical model, as well as a Lagrangian
relaxation-based algorithm, are developed for the parking enforcement patrol problem. Then, a continuum approximation
formulation and its corresponding solution method are presented in Section 3. Section4 presents the numerical results for
the performance of the proposed models and solution approaches. Section5 concludes the paper and discusses possible
directions of future research.

2. Discrete model

The aforementioned parking enforcement patrol problem is modeled as a discrete mathematical program, which contains
both the agency’s optimization problem and the parking drivers’ payment problem. The agency needs to decide: i) what
level of patrol schedule or frequency should be enforced for each parking lot, and ii) how to deploy limited patrol vehicles
to maximize the effectiveness of the patrol. Drivers know about the patrol frequencies (but not the exact schedule) and
adjust payment decisions accordingly to minimize the total cost (including the parking payment and expected violation
penalty).

2.1. User’s problem

We first consider a generic driver who decides to pay for parking at a generic parking lot with a perceived patrol fre-
quency R/T, where R denotes the total number of patrol visits within a time horizon T. Let T denote the needed duration
of parking for a vehicle in the parking lot, which is a random variable drawn from a cumulative distribution function F(t).
Assume T is its expectation. Let p denote the length of time that a driver decides to pay. Note that p, T and T all have the
same unit of time. Since (t — p)* is the length of time during which the vehicle is in violation and T/R is the headway

of two consecutive officer visits, (TT‘ /’;?Jr defines the expected number of times that the vehicle is caught in violation. The
agency follows a “multiple-ticket policy;” i.e., a vehicle receives a ticket every time that it is caught in violation, regard-
less of how many tickets it has already received. As such, the expected parking violation fine for an individual violator is
y%(r —p)*, where y denotes the fine per ticket. The fine per ticket y is much greater than the parking price per time unit

B, i.e., y > B. The optimal payment decision can thus be determined by solving the following news-vendor problem:
min  E[fp+yf(r-p)'] (1)

st. p>0, (2)

where (t — p)* =: max{t — p, 0}.

The objective function (1) minimizes the expected total parking cost for an individual driver, including the parking pay-
ment and expected parking violation fine. Constraint (2) states that the paid length of time is nonnegative.! This news-
vendor type model can be optimally solved if R and F(t) are known. The optimal solution, denoting as p*, can be derived in
closed form as the following:

(1 BTY ¢ R_B.
p= F( yR)’ Ty 3)

0, otherwise,

where F~1(.) is the inverse of the cumulative distribution function. The condition % > g in (3) indicates that a driver would
pay for parking only if the fine per unit time is larger than the meter payment cost per unit time; otherwise, the driver
would be better off paying the fine. Moreover, the probability for the vehicle to be in parking violation, denoted by P'°, can

be derived as follows:

N AL} i

1, otherwise.

PY° = Pr(t > p*) =

The above formula for PVi° provides a theoretical explanation for the intuitive fact that increasing the patrol frequency
(R) and fine-to-price ratio (y/8) can help deter the occurrence of overtime parking. We can also observe another interesting
fact that under the multiple-ticket policy, the probability for a parking vehicle to be in the violation state is independent of
the probability distribution of parking duration.

1 It is well known that variants to the news-vendor model could allow meter time limits (e.g., 2h or 10h) to be imposed and yet still yield closed-form
solutions.
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Fig. 1. Illustration of patrol schedule and routes.

Now we consider the alternative case of a “single-ticket policy,” i.e., at most one ticket can be issued to a same vehicle
in violation during the horizon T. In this case, the parking users model can be modified into the following variant:

mpin Er[ﬁp—i—%min{g(r -p", 1”
st. p>0. (5)

The objective function (5) can be written equivalently as:

(Bp+y-min{ R pyralare) = pp XX [ e - pparor v [ R, (6)
0 T T Jp

P+T

Then, the first-order derivative of (6) with respect to p is
- [r(rr ) -Fo)]
B—F|F(p+gz)-F®)|
R

It shall be easy to verify that, in the degenerated case 7 < g (6) is a monotonically nondecreasing function of p

[0, +0), and the parking payment model (5) reaches its optimal solution at p = 0. Otherwise, when % > g (6) will increase
first and decrease for p € [0, p*], and then increase again for p € (p*, 0o); the optimal solution of (5) is either at the boundary
point (i.e.,, p=0), or at p = p*, whereas p* solves the following implicit equation:

F("*%) F(p) = m (7)

Even though we can no longer get a closed-form solution to (5), it can still be solved numerically, and the probability for a
vehicle to be in violation (which now depends on the probability distribution of parking duration) can be computed as well.
Such probabilities can be computed for all possible patrol schedules and serve as input data to the agencys optimization
model in the next section.

2.2. Agency’s problem

The parking enforcement agency manages an urban area with a set of spatially distributed parking lots V, each of which
contains sufficiently many parking spaces. The agency decides the patrol routing plan within the long time horizon T, which
can be further divided into a finite set of discrete time periods 7, each with length H. Every patrol route would start and end
at a depot, which we denote the depot by index 0. We consider each parking lot as an M/G/co queuing system, in which the
arrival of parking vehicles follows a Poisson process with rate A;, and the service time for per vehicle (i.e., parking duration)
follows a general distribution with expectation value 7;. Further, we assume that the parking system is in the stationary
state over the entire time horizon, such that the number of vehicles parked in each parking lot per time period follows
a same probability distribution. It has been shown in the literature that under these assumptions, the number of parking
vehicles in lot j per time period, N;, should follow a Poisson distribution (Newell, 1966).

For each parking lot, the combination of time periods during which it is visited defines its patrol schedule. We denote
S as the set of all possible patrol schedules, indexed by s. A schedule s € S and a time period t € 7 are connected by a
binary parameter as;, where as = 1 if period t is part of schedule s, or as; = 0 otherwise. Hence, a generic schedule s can
be represented by a vector of binary parameters in the form of (as_tzl, Gsp=2, .-, as_[=m). For example, in Fig. 1, parking lot
j=11is patrolled in period 1 and 3, which means that its patrol schedule is (1, 0, 1). We can see that each parking lot in
Fig. 1 has a different patrol schedule. Since each possible vector indicates a schedule, the total number of distinct schedules
|S| = 2!71. For schedule s € S, the associated average patrol frequency is ’% = @ Note that multiple patrol schedules
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may have the same average patrol frequency; e.g., parking lots j = 1 and j = 4 in Fig. 1. Based on (4), the value of PYi°, ..,
the probability that a vehicle is in violation if it is patrolled according to schedule s, can be computed for each schedule;
ie,Vses,

) /BT lf Z[eTaSt = é
P =1 yYiras’ T Y’ (8)
1, otherwise.

Given the probability distribution of N; and the definition of PYie | the probability distribution for the number of violations
per time period in lot j under schedule s, Mj;, can be obtained according to Proposition 1.

Proposition 1. If parking lot j € V is patrolled according to schedule s € S, the number of violations per time period in this lot
follows a Poisson distribution with mean P{'°A;T;.

Proof. Each of the parked vehicles in lot j € V in a time period, independently of each other, would be in the violation state
with probability Py if this lot is patrolled according to schedule s € S. The number of parked vehicles in the lot follows a
Poisson distribution. According to Proposition 5.2 in Ross (2014), the number of violations per time period in lot j is also an
independent Poisson random variable with mean PYioA ;T j. This completes the proof. O

The parking enforcement agency needs to decide the type of patrol schedule to be assigned to each parking lot, and the
patrol routes in each time period that fulfill the schedule at all lots. We denote K as the set of patrol vehicles, indexed by k.
Denote h;; as the travel time on arc (i, j) € A, where A denotes the set of arcs within the network, and ¢ denotes the service
time for processing a violation. The summation of total travel time and service time within a single route should not exceed
H. We denote yg; as the scheduling assignment variable, which equals to 1 if parking lot j € V is visited according to schedule
s € S, or 0 otherwise. For example, in the example shown in Fig. 1, ys j_4 = 1 for schedule s = (1,0, 1), and y; j_ = 0 for any
s#(1, 0, 1). Combining parameter PY"° with decision variable Vsj» we can express the probability for a vehicle in parking lot
j to be in violation as ) Ps"ioysj, whereas ) ys; =1,Vj and yg {0, 1}, Vs, j. Let xy; denote the routing decision variable,
whose value equals to 1 if patrol vehicle k € K travels through arc (i, j) in period t € 7, or 0 otherwise. The binary decision
variable vy, links the routing and the scheduling decision together. It equals to 1 if parking lot j € V is patrolled according
to schedule s € S and meanwhile it is visited by patrol vehicle k € K in period t € 7, or 0 otherwise.

The agency may bear different types of goals while planning the parking enforcement patrol. If the perspective is to im-
prove the social benefit, the agency could attempt to minimize the expected total costs associate with all parking violations
during the planning horizon, i.e.,

oD Y VROA T (9)
teT seS jev

Here we use the fine per ticket to convert violation counts to monetary values. Alternatively, the agency may want to
maximize the total expected revenue from parking meter payments, i.e.,

220 BpyATs;, (10)
teT seS jev

and/or the expected total fine revenue, i.e.,

Z ZVRSPVIO)\ Tjysj = Z ZVRS )L iTiYsj = Z.BT)‘ T]( _}’50]')7 (11)

seS/{so} jev seS/{so} jev jev

where sy denotes the schedule that Y., as,r = 0, and the second equality holds because pYio = %. As such, maximizing
the total collected fines will lead to minimizing the expected parking demand that is never patrolled during the planning
horizon.

The agency’s problem can be formulated as the following integer program, where the three possible objectives are com-
bined with relative weights wq, w,, ws.

min w1 ZZZ]/PsViO)\j?ijj —wZZZZﬁp:]Ajijsj — w3 Z ZVRSPSViO)\.jijSj (12)

teT seS jey teT seS jev seS/{so} jev
s.t. Z Xij— Y Xuji=0, VieV,keK,teT, (13)
jevu{o} jevu{o}
Z thkijf l, ViEVU{O},tGT, (14)
kek jev
thkOj: thkjo <1, VI(EK,tET, (15)

jev jev
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> Xij <19l -1, VQCV,VkeK teT, (16)

ijeQ

Pr{ > hijXeij+ @ 2 3 Mgy < H} >P,VkeK,teT, (17)
(i.j)eA jevses

sztka > Xtkij VjeV,keIC,teT, (18)

seS ievu{0}

Y Vgkj =0stysj, VjeV,seS teT, (19)

kek

Y ysi=1. VjeV, (20)

seS

Xeiij» stk Vsj € 10,1}, V(i j) e A jeV,seS keK,teT, (21)

The objective function (12) is to minimize the expected total violations and meanwhile maximize the expected total revenue
from meter payments and fines. Constraints (13)-(16) are typical vehicle flow balance constraints and subtour elimination
constraints. Constraints (17) are the chance-constrained constraints for the route time restrictions, enforcing a minimum
probability P, for the time limit constraints to hold. Constraints (18) represent the connection between decision variable
v and x, while constraints (19) present the connection between the scheduling decision y and routing related decision v.
Constraints (20) ensure that each parking lot is assigned to a specific schedule. Constraints (21) define the binary variables.

The number of parking violations that patrol vehicle k visits in period t is 3" ;cy, > scs MsjVsyj- It follows a Poisson dis-
tribution with mean 3.y, 3 scs pyio), iTjVstkj» because each Mg; is a Poisson random variable. According to the Central Limit
Theorem, when the number of parking violations is larger, the Poisson distribution can be closely approximated by a normal
distribution with equal mean and variance, i.e.,

Z ZMsjUstkj ~N Z Z Psvm)"jfjvstkjv Z Z Ps‘,io)"jfjvstkj

jev ses§ jey ses jev se§

Then, the deterministic equivalent of the chance constraints (17) can be written as:

Z hijxtkij +@ Z Zpswo)"jfjvstkj + o Z ZPSViO)"j‘Ejvstkj <H, Vk e K,teT, (22)

(i,j)eA jev seS§ jev ses

where o = ®-1(P,) and ®~1(.) represents the inverse of a standard normal p.d.f. function.

_In the above formulation, the information from the user’s level is incorporated into the agency’s level through parameter
PY'°. In this way, the agency’s patrol planning problem and drivers’ parking payment problem are integrated into a single-
level model.

2.3. Lagrangian relaxation solution approach

We develop a Lagrangian relaxation (LR) algorithm (Fisher, 1985) to solve the above discrete model. If we relax con-
straints (19) and incorporate them into the objective function with properly defined Lagrangian multipliers, the schedule
related variables (y) and routing related variable (x and v) can be completely separated into two subproblems that can be
solved independently. Denote p; as the Lagrangian multiplier associated with each one of the relaxed constraints (19), and
© = {ptsj}. The objective function of the relaxed problem can be written as follows:

> (w1 DO YPOAT Y — w2 Yy B iTiYsi

jev teT sesS teT sesS
vio) &
—w3 Y YRPOAT Y =Y Y PGl | DD DD PVt
seS/{so} teT seS teT seS jeV kek

For a given vector p, the relaxed problem can be decomposed into two groups of independent subproblems: schedule
assignment subproblem and routing subproblems. It is clear that the schedule assignment subproblem can be further
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decomposed into a set of subproblems (SP1-j) for all j € V, as follows:

(SP1-j) min @1 Y Y yPOAT s — w2y Y BPiATYsi— @3 Yy YRPOA T — Y Y pujastysj

teT seS teT seS seS/{so} teT seS

s.t. Zysj =1,

seS
ysi€{0,1}, VseS.

Similarly, the routing subproblem can be decomposed into a set of subproblems (SP2-t) for all t € T, as follows:

(SP2-t) min YY" > py v

SeS jeV kek
S.L. Z Xekij — Z Xji=0, VieVul{O} kek,
jevu{o} jevu{o}
szfkii <1, Vievu{0},
keK jev
thkoj = thkjo <1, Vkek,
jev jev
Z Xij < 19| -1, VQcCV, Vkek,
i,jeQ
Z hijxeij + @ Z Zl’s"io)»jfjvstkj +o ZZI’SViOAjijS[,(j <H Vkek,
(i,j)eA jev ses§ jev ses
Zustkj = Z Xij» VjeV.kek,
ses ievu{0}

Xeijs Vs, V(U j) e A jeV,seS kek.

Note that the subproblem SP1-j is actually a simple assignment problem that can be easily solved to optimality using
current mixed-integer solver. The subproblem SP2-t is a variant of the team orienteering problem (Chao etal., 1996), in
which a certain length limit is enforced for each route and not all customers have to be visited. We apply a conic optimiza-
tion technique (Atamtiirk and Narayanan, 2008) to handle the square root term in constraints (22). First, we introduce a
new variable €2, which is defined as:

Qe i= [Y Y POATivg . Ve K teT. (23)

jev se§

Given the fact that each vy is a binary variable, it follows that vg; = (vst,{j)z. The above equations can thus be written in
the form of second order cone constraints:

(Qu)? =D > POAT(vaj)® Yk € K. (24)

jev seS§

In this way, the routing subproblem is reformulated into a mixed-integer quadratic constrained program (MIQCP), which can
be solved using commercial solver CPLEX. However, this MIQCP model is still NP-hard as it is far more complex than the
classic orienteering problem. Moreover, as the MIQCP model needs to be solved for each t € 7 in each iteration, solving it
to optimality is time-consuming and unrealistic. Alternatively, we impose additional stopping criteria (e.g., near optimal gap
value and computation time limit) such that the solution process for each routing subproblem may be terminated before
reaching optimality. By solving the above relaxed subproblems, the obtained objective values constitute a lower bound to
the original problem. The solution {g;;} and {y,;} from subproblems SP1-j and SP2-t may violate the relaxed constraints
(19). If this happens, we heuristically adjust the infeasible solution from the relaxed subproblems into a feasible one so as
to obtain an upper bound to the original problem. In iteration I, the adjustment of solution is done as follows:
Step 1: For each parking lot j € V, find out schedule s° € S such that Y ¢ > pex ﬁitkj =ay,,VteT;

Step 2: Modify the solution {?éj} as ?ioj =1 and yéj =0,Vs e S/s%;

Step 3: Add constraints Yy x Vsexj = astﬂj, Vse S, teT,jeV to subproblem SP2-t, and check feasibility of the modified
subproblem. If it is feasible, UB' = min{UB'~!, s s 3", P¥°A ;T jy;}; otherwise, UB' = UB'~!, where UB' is the best upper
bound obtained so far.

After each iteration, we update the Lagrange multipliers according to the standard subgradient optimization procedure
(Fisher, 1985). The initial values of the Lagrangian multipliers are set to zero. At the end of iteration I, the multipliers are
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updated as:

(:Ostj)lﬂ = (pstj)l + .Bl (Z Vstkj — astYsj)7V]' eV,seS,teT,
kek

where the step size §; is updated according to

Bl = I 7! (UB'-Zly)
jev Doses DteT (Zkek Vstkj— aS[.Vx])

Here, Z{B is the lower bound found in iteration [, and 7 is a control parameter whose value is initially set to 2 and then
decreases by a factor of 0.5 whenever the optimality gap has failed to improve in several iterations.

3. Continuous approximation model

The discrete model proposed in the previous section is NP-hard, and would face difficulty handling large-scale instances.
As an alternative, we propose a continuum approximation model to obtain approximate solutions to the parking enforce-
ment patrol problem. The CA modeling technique has been established as a powerful tool for strategic and tactical decision-
making for a wide range of large-scale logistic problems; e.g., see Erera (2000), Daganzo (2005), Ouyang and Daganzo (2006),
Francis and Smilowitz (2006), Smilowitz and Daganzo (2007), Cui etal. (2010) and Ouyang etal. (2015). One important ad-
vantage of the CA model lies in its closed-form formulation, which not only yields managerial insights but also can be solved
much more efficiently than the discrete counterpart.

3.1. Formulation

In the CA model, all discrete variables and parameters are approximated by continuous functions, and we assume that
these approximate functions are smooth and slow-varying over the region %. Let §(x) denote the spatial density of parking
lots near a point x € % per unit area. Let 1/(x) denote the density of parking demand near x € 2, measured by the number of
parking vehicles per unit area per time period. Furthermore, we let 64(x) denote the fraction of parking lots being patrolled
according to schedule s € S near a point x € Z and «(x) as the density of patrol vehicles used in time period t € 7 near
X € & per unit area.

As it is possible that not all the parking lots are visited in each period, we introduce two auxiliary decision functions
to describe the patrol routes. The first one is the spatial density of parking lots being visited in period t € 7 near x € %,
denoted by A(x) and measured also by the number of parking lots per unit area; i.e., A;(X) := ) g a5 (x)6s(x). Another
auxiliary decision function is denoted by ¥;(x), which represents the density of parking violations in period t € 7 around
X € # per unit area. Per our discussion in Section 2, ¥;(x) is a random variable following a Poisson distribution with mean
Yoses ast Py (x)0s(x), which can be closely approximated by a normal distribution, i.e., ¥ (x) ~ ([,Lt (%), o7 (x)) where
e (X) = 02 (X) = Y P05t Y ()65 (x).

Based on the results of Daganzo (2005), the total travel distance can be divided into a line-haul distance from the depot
to the vicinity of the customers and a local distance to visit each customer. Here we let r(x) denote the distance from
the depot to a point x € %Z. The line-haul travel time around x € # in period t € T is then derived as 2vur(x)«;(x), where
v denotes the inverse of traveling velocity. The total local travel distance around x € % in period t € 7 can be defined as

IQU(At(x))%, where k is a dimensionless constant that depends on the distance metric (Daganzo, 2005). The complete CA
formulation can be written as follows:

min o Y3 / YRy (x)6:(x)dx) - w222</ Zﬂps(X)l/f(X)Hs(X)dX)

teT seS teT seS SES
@ Y / Y RP20,(x)dx) (25)
seS/ So}
st. Y6 =1, Vxez, (26)
seS
S ke()dx <K, VteT, (27)
Pr{(plpt () + 20r (0K (x) + VR(Ac(x))? < H (x)} >P, VteT.xe (28)

0<0s(x) <1, VseS,xez, (29)
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ke(x) >0, VteT,xex. (30)

The objective function (25) can be interpreted similarly as (12). Constraints (26) enforces that all parking lots within each
neighborhood must be assigned to a specific schedule. Constraints (27) impose a limit over the total number of patrol
vehicles. Constraints (28) are the chance-constrained formulation of the time limit constraints, in which ¢¥;(x) is the

service time spent on dealing with violations in period t € 7 around x € 2, 2vr(x)k:(X) + Ul}(At(X))% is the total travel
time in period t € 7 around x € %, and Hk¢(x) is the time limit in period t € 7 around x € £%. Since ¥; (x) ~ N(//Lt (%), 0[2 (x))

and u;(x) = atz (%) = Yges PYPag ¥ (x)05(x), the deterministic equivalent of constraints (28) can then be written as:

) ZPS‘”Oastlﬁ(x)@s(x) + O‘(Z I’S‘”Oastlﬁ(x)es(x)> ! +2ur(X)K: (X) + lec(At(x))% <Hki(x), VYteT,xe®.

seS seS
(31)

Constraints (29) and (30) specify non-negativity properties of functions 8s(x) and x(x).

3.2. CA solution approach

To solve the CA model, we propose to apply the geographic decomposition technique in Francis and Smilowitz (2006).
As parameters are assumed to vary slowly over the region %, we can decompose the problem according to a set of separate
subregions, and we assume that a subregion «# € # is small enough that all parameter functions are nearly constant inside
this subregion. Meanwhile, a subregion should be large enough to accommodate at least one route. Denote the set of sub-
regions as Z and A; = | Z| as the area size of subregion z € Z. We further define V, as the total number of parking lots in a
subregion z, i.e, V; = [, o, S(x)dx, and W; as the total number of vehicles seeking parking in subregion z per time period,
ie, W, = fxgdz ¥ (x)dx. We define decision variable 6, to represent the fraction of parking lots in subregion z € Z being
patrolled according to schedule s € S and x; as the number of patrol vehicles used in subregion z € Z in period t € 7. In
this way, the CA formulation can be approximated as a summation of a series of local homogeneous problems (one for each
subregion), as follows:

min ;Y Y Y yPIOWy -0, Y Y Y BpiWabs, —w3 Y. Y YRPYOW,6;, (32)
teT seSzez teT seSzez seS/{so}2€2
st. Y 6O,=1, VzeZ, (33)
seS
S k<K VteT, (34)
zeZ

1
2

[SES

ol X PSVioasthesz +a <Z PsVioasthesz> + UI’E(Z astAszgsz) < [H = 2vur;]kiz, VteT,ze Z, (35)
ses§ seS seS

0<0,<1, VseS,zeZ, (36)

ki >0, VteT,ze2Z. (37)

The modified formulation can be solved using the non-linear optimization solver KNITRO (Artelys, 2016). Since the KNI-
TRO solver only guarantees local optima, a multi-start mechanism is invoked to improve solution quality.

The continuous model is not meant to replace the discrete modeling approach; rather, it is considered as a comple-
mentary model that can be used to estimate system performance and generate guidelines to obtain feasible (and often
near-optimum) discrete route designs (Daganzo and Newell, 1986). Given the number of customers to be served as well as
the number of patrol vehicles being assigned to certain time and location, recipes for developing implementable vehicle
routes have been proposed in the literature (Daganzo, 1984a; 1984b; Newell and Daganzo, 1986a; 1986b; Newell, 1986).
Ouyang (2007) further proposed automated constructive heuristic algorithms that yield satisfying routing solutions for large
instances.
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Fig. 2. Spatial distribution of parking lots.

Table 1

Comparison between discrete and CA models (10, 15, 20, 25-node).
# of parking lots ~ CPLEX LR CA

Upper bound  Lower bound  Gap Upper bound  Lower bound  Gap CPU time (s)  OB] Diff

10 15.5 10.0 35.5% 171 8.2 52.0% 59 169  9.0%
15 374 18.5 50.5% 38.7 16.6 57.1% 26 351 -6.1%
20 59.8 244 59.2% 53.9 25.2 53.2% 38 571 5.9%
25 97.2 313 67.8% 773 336 56.5% 33 804  4.0%

4. Numerical study

In this section, we present numerical experiments to: (i) test and compare the performance of both discrete and continu-
ous models; (ii) show how the CA approach can be used as an effective decision support tool for various large-scale system
settings; and (iii) obtain managerial insights on the impact of different agency objectives, as well as the performance of
multiple-ticket vs. single-ticket policies. In the following tests, we consider a five-hour planning horizon and divide it into
five identical time periods, such that H = 60 min. The service time per violation ¢ is 1min, and the inverse of traveling
velocity v is 5 min/km. All distances are computed with Euclidean metric and measured in kilometers. We perform all
numerical tests on a personal computer with 3.4GHz CPU and 8GB RAM.

4.1. Discrete vs. CA approach

To compare the performance of both models, we first run tests for small-scale homogeneous cases. The locations of all
nodes (i.e., parking lots) are generated uniformly in a 4km x 4km square region, as shown in Fig.2. Four test cases with
an increasing number of parking lots (i.e., 10, 15, 20 and 25) are constructed. For example, the 10-node case only includes
circles, while the 20-node case includes circles, triangles and diamonds. The average number of parked vehicles at each
parking lot (i.e.,, A;T;, Vj) is randomly drawn from a uniform distribution [20, 60]. Here we set % =10,K=1, w1 =1, 0wy =
w3 =0 and P, = 0.8. We solve the discrete model using both the proposed LR approach and a commercial MIP solver CPLEX.
The computation time limit is set to be 8 h for each test instance. While applying the CA approach, we consider the entire
region as one subregion.

Table 1 presents the best objective function values from the LR approach and the CPLEX solver, both after 8 h of compu-
tation, as well as the result and computation time from the CA model. Note that the upper bounds are in correspondence
to feasible solutions, and hence the quality of the CA solution is compared to the best known upper bound. We can observe
that when the test instances are small, the performance of the LR approach is similar to that of CPLEX. When the number of
nodes exceeds 20, the LR approach outperforms CPLEX in terms of the gap between the upper and lower bounds. However,
neither the LR approach nor the CPLEX solver could improve the lower bound of the discrete model, even for small-scale
instances. The CA approach, on the other hand, always yields a solution that is close to the best-known solution from the
discrete model, within merely 1min for all test instances. Note that the CA approach is expected to perform better for
large-scale problem instances, so the test results show strong promise.

To run tests for heterogeneous cases, the E-n33 dataset from Christofides and Eilon (1969) is used. To accommodate the
data in the context of parking enforcement patrol, some modifications are made. The coordinates of the nodes are scaled
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Fig. 3. Spatial distribution of parking lots (30-node).

Table 2
Comparison between discrete and CA models (30-node).
P, % K  CPU time (s) Expected violation cost ( x 10°)
LR CA LR(UB)  LR(LB) CA Diff (%)

08 30 1 27330 60 374 6.5 393 5.2
08 30 2 2827 43 6.5 6.5 6.5 0.0
08 30 3 2386 55 6.5 6.5 6.5 0.0
08 15 1 27864 38 87.9 131 933 6.1
08 15 2 29427 37 29.6 13.1 309 4.6
08 15 3 3113 35 131 13.1 13.1 0.0
08 10 1 25994 55 119.7 19.5 1245 40
08 10 2 25364 43 76.5 19.5 79.7 41
08 10 3 3181 37 332 19.5 351 5.8
09 30 1 28,824 69 44.4 6.5 46.4 44
09 30 2 3113 54 6.5 6.5 6.5 0.0
09 30 3 2307 64 6.5 6.5 6.5 0.0
09 15 1 28,156 36 93.0 131 96.2 33
09 15 2 25571 41 383 131 36.9 -3.6
09 15 3 3371 56 131 131 13.1 0.0
09 10 1 25869 45 123.8 19.5 1290 42
09 10 2 28577 59 83.4 19.5 80.6 -33
09 10 3 28592 31 384 19.5 36.2 -5.7

according to the following formula: horizontal coordinate = (X — 255)/18, vertical coordinate = (Y — 375)/18, where X and
Y represent the original horizontal and vertical coordinates of the nodes. The demand for each node is scaled down as
min{max{L/15, 20}, 60}, where L represents the original demand value. Then, we exclude node 1, 4 and 5 such that the
remaining 30 nodes are included in a [4 x 4] square region. Now the dataset contains 30 nodes distributed across the region
as shown in Fig.3. We further assume that the depot is adjacent to the patrol area and the line-haul travel time from the
depot to all parking lots is negligible. While solving the test case with the CA approach, we apply a so-called hierarchical
clustering method to group the discrete parking lots into distinct clusters, and based on that determine the actual partition
of subregions.? The main idea of hierarchical clustering is to build a hierarchy of clusters by maximizing the dissimilarity
between clustered subsets of observations (Rokach and Maimon, 2005). In our analysis, the dissimilarity metric is based on
the Euclidean distances among different parking lots. We also ensure that each subregion has a least one parking lot node.
The result of clustering analysis indicates that the region in our test case should be partitioned into three subregions as
shown in Fig. 3. The density of parking lots is 1.2/km? for subregion 1, 3.67/km?2 for subregion 2 and 2.33/km?2 for subregion
3. The parking demand densities for three regions are 59.4/km?, 145.8/km2 and 88.7/km?, respectively.

We generate 18 test instances with the following parameter values P, {0.8, 0.9}, % € {30, 15,10} and Ke(1, 2, 3}. In the
following tests, we assume the agency focuses on minimizing the expected total violations, i.e., w; = 1, w; = w3 = 0. Table 2
presents the best objective function values obtained from both models, as well as the associated computation times.

2 More discussion on other methods to translate discrete input data into continuous density representations can be found in Peng etal. (2014).
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The test results show that the CA approach is a promising way to produce a good quality solution in a short computation
time. We can observe that the CA approach can yield a solution which is less than 6% deviating from the best known
solution of the discrete model. However, it usually takes more than 7 h to solve the discrete model, while the computation
time for the CA model is no more than 60s. Moreover, if the scale of the problem becomes much larger when the discrete
model is expected to bear prohibitive burdens, the quality of CA solution can be even closer to that of the discrete solution.

4.2. CA performance for large instances

To test the performance of the CA approach for larger instances, we consider a 100 km? square region and partition it
into 10 x 10 identical square cells. The test instances are grouped into spatially homogeneous and heterogeneous cases. In
the homogeneous cases, we set % =15, w; =1, w, = w3 =0, and Py, = 0.9, and then generate 18 instances with §(x) =8 €
{10, 20}, ¥ (x) = ¥ € {150,300, 600}, and K < {10, 20, 30}. The computation times and objective function values from the CA
model are summarized in the left part of Table 3.

For the heterogeneous cases, we consider the spatial variations in parking demand density and fine-to-price ratio. In the
following, we let the parameters 1(x) and Y®) he continuous functions that vary across space, defined as follows:

BX)
min||x,d||
W(x)=1ﬂ|:1+77cos (nﬁ(wﬂ,‘v’xeg, -
Y () minllx.di
’3("):%[]_“05(”@;@'“ VX%, (39)

where D denotes the set of peak points (i.e., the places with the highest parking demand density or highest parking price)
within region % and ||x, d|| represents the Euclidean distance from point x to the nearest peak point d. The coordinate
system is set up with the origin point located at the left bottom corner of the region. As the parking demand within a
cell is aggregated to the center, we simply use the coordinates of the cell center to denote its location. Note that ¢ and
% control the average of parking demand density and fine-to-price ratio, while n and ¢ control their variability. In what
follows, we consider that there is only one peak point located at the center of the region unless stated otherwise. For
example, based on (38), the parking demand density is high in the center area and decreases radially.

To test the effects of demand variations, 18 instances are generated by letting parameters take values from v € {150, 300},

ne€{0, 0.5, 1} and K< {10, 20, 30}. In order to eliminate the potential interference from other parameters, we set % =30,

{=0,8=10/km?, w =1, wy =w3 =0, and P, = 0.9 for all 18 instances. The computation times and objective function
values are shown in the middle part of Table 3. Furthermore, we generate another 18 instances to test the effects of varying
fine-to-price % €{30,15)}, ¢ €{0, 0.5, 1} and K< {10, 20, 30}, whereas v = 300 /km? and 5 = 0. The computational results
are presented in the right part of Table 3.

We can observe that the computation time of the CA approach never exceeds 300s for all test instances, which is ideal
for quick decision-making. For any fixed values of the parking lot density and parking demand, the expected violations
drastically increase when the fleet size of patrol vehicles is small. As such, the agency should be able to use the CA model
to assess the size of patrol vehicle fleet needed to maintain patrol effectiveness at a certain target level.

For any given values of ¥y and K, the more spatially heterogeneous the parking demand, the smaller the expected number
of parking violations; this is shown in Table 3. As the spatial distribution of parking demand clusters more toward the peak
demand point (as n grows larger), the agency tends to deploy more patrol vehicles toward the peak demand area (rather
than patrolling the entire region indifferently); this is shown in Fig.4.> In so doing, the expected total number of parking
violations decreases as well.

When the fine-to-price ratio varies over space, the expected parking violations decreases as well. This is reasonable. A
low fine-to-price ratio implies a larger value of P from (4). As such, in order to decrease P¥I°, the agency deploys more
patrol vehicles to areas with a lower fine-to-price ratio; this is shown in Fig.5. In the surrounding area, even though the
parked vehicles are patrolled relatively less frequently, the probability of violation is still small due to the high level of
fine-to-price ratio.

We further conduct an analysis on the number and locations of the peak demand points. Three different cases are gen-
erated: case 1, one peak point at the center of the region (5,5); case 2, one peak point at (2.5,2.5); and case 3, two peak
points at (2.5,2.5) and (7.5,7.5). We let ¥ =300/km?, n =1, § =10/km?2, w; =1, wy = w3 =0, P, =0.9 and K = 20. The
maps of the patrol frequency for all 3 test cases are shown in Fig. 6. For cases 1 and 2, when there is a single peak demand
attraction area, the agency would patrol that peak demand region more frequently (such as more than three times within
five hours), whereas visiting the other areas less frequently. This is intuitive, as the agency should prefer maintaining a high
level of patrol frequency for these popular parking areas to reduce the occurrences of parking violation and maximize the
utilization of parking resources. For case 3, the area that can be patrolled at a high level of frequency is much smaller. This
is because there are only a limited number of patrol vehicles, such that the agency has to split the fleet and reduce the

3 In Figs. 4-8, darker color in an area indicates more frequent patrols in that neighborhood, and vice versa.



Table 3

CA results for homogeneous and heterogeneous cases.

Homogeneous parking demand density

Heterogeneous parking demand density

Heterogeneous fine-to-price ratio

§ v K  CPU time (s) Expected violation cost ( x 10°) v n K  CPU time (s) Expected violation cost ( x 10%) viB ¢ K  CPU time (s) Expected violation cost ( x 10%)
10 150 10 160.5 1,556.7 150 0.0 10 2127 861.6 30 00 10 143 2,852.4
10 150 20 167 861.5 150 0.0 20 2555 1433 30 00 20 1319 1,203.9
10 150 30 1075 279.8 150 0.0 30 128 75.0 30 00 30 645 2811
10 300 10 166.7 3,6771 150 0.5 10 1411 738.8 30 05 10 1553 2,305.1
10 300 20 1571 2,881.1 150 05 20 1123 123.5 30 05 20 1539 980.7
10 300 30 1653 2,085.6 150 0.5 30 909 70.8 30 05 30 106.7 2325
10 600 10 1145 8,078.1 150 10 10 921 569.4 30 1.0 10 1485 1,742.9
10 600 20 1675 7149.8 150 10 20 100 99.8 30 1.0 20 1381 689.6
10 600 30 1544 6,254.1 150 10 30 2043 66.6 30 1.0 30 1009 181.7
20 150 10 203.9 1,749.8 300 00 10 1719 2,852.4 15 00 10 1932 3,677.1
20 150 20 1225 1,099.2 300 00 20 1535 1,203.9 15 00 20 1783 2,881.1
20 150 30 478 448.5 300 0.0 30 709 2811 15 0.0 30 1903 2,085.5
20 300 10 305 3,7274 300 05 10 106.5 2,561.6 15 05 10 160 3,272.1
20 300 20 1379 2,937.3 300 05 20 1074 975.6 15 05 20 2981 23754
20 300 30 9338 2,190.9 300 05 30 1172 2331 15 05 30 1399 1,578.3
20 600 10 1424 8,115.5 300 1.0 10 2124 2,226.5 15 1.0 10 1737 2,594.7
20 600 20 2679 72254 300 1.0 20 256.7 821.1 15 1.0 20 2413 1,728.3
20 600 30 452 6,336.3 300 1.0 30 1741 1833 15 1.0 30 1475 1,135.5
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Fig. 5. Patrol frequency distribution under different values of ¢ (y/B = 15,K = 20).
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Fig. 6. Patrol frequency distribution under different spatial distributions of parking demand.
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patrol frequency for both areas. In practice, if parking demand information within the patrol region is known, the above
patrol frequency map can be generated easily from the CA approach, which enables the agency to assess the performance
of the parking enforcement patrol system in a rather intuitive way.

4.3. Impact of agency objective

In the following, we run tests to compare the impact of different agency objectives. We generate eleven test cases, each
with a different combination of weights w, @, and w3. Since meter payments and violation fines contribute to the revenues
in a similar way, here we simply let w, = ws. In these test cases, we assume that the parking durations of all vehicles in
a cell follow a same normal distribution (truncated at 0) with mean T =1 and variance o2 = 0.25. The parking demand
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Table 4
CA results for different combinations of objectives.

(o) Wy w3 Total objective function value  Expected violation cost ~ Expected payment revenue  Expected fine revenue

00 10 1.0 —356,595 186,675 223,806 132,789
0.1 09 09 302,821 181,999 223,901 132,789
02 08 08 —248,643 183,693 223,939 132,789
03 07 07 -195119 181,160 223,593 132,789
04 06 06 —138,581 186,858 223,561 131,981
05 05 05 87866 180,852 223,795 132,789
06 04 04 32,788 182,806 223,389 132,789
07 03 03 20,080 181,544 223,841 132,829
08 02 02 74457 182,153 223,538 132,789
09 01 0.1 128,022 181,889 223,987 132,789
10 00 00 181594 181,594 223,694 132,789
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Fig. 7. Patrol frequency distribution under different weights of objective functions.

density is set to be heterogeneous with ¥ = 150 /km? and 1 =1, and other parameters are § = 10 /km?, %: 15, £ =0,
K =30, and Py = 0.9. Table 4 shows the cost associated with expected total violations, the expected total meter payment,
the expected total fine revenue, as well as the summation.

Interestingly, for different combinations of weights, there is no significant variation in each of the objective components.
This implies that the agency’s motivation to increase the revenue could actually be quite aligned with the goal of decreasing
the total expected violations.

However, it should be noted that the patrol patterns under different objectives tend to be very different. As shown in
Fig.7(a), if the agency’s objective is only to minimize the expected total violations (i.e., w1 = 1, w, = w3 = 0), the agency
would strive to maintain a relatively high patrol frequency for as large an area as possible, and meanwhile patrol the high
demand area more frequently. However, when the agency focuses on improve the expected total revenue (i.e., w1 =0, wy =
w3 = 1), a larger area will be patrolled at the highest frequency, as shown in Fig. 7(b). Meanwhile, the area that is patrolled
at a rather low frequency would also increase, as compared with the case in Fig. 7(a).

To further gain managerial insights, we apply the CA approach to two more test cases: for one case, we maximize the
expected total meter payment revenue only (i.e., w; =0, w, = 1, w3 = 0), while for the other case, we maximize the ex-
pected total fine revenue only (i.e., w; =0, w, = 0, w3 = 1). The resulted patrol frequency distributions are shown in Fig. 7(c)
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Table 5
Comparison between multiple-ticket and single-ticket policy.

Ticket policy o,  P° Expected violation cost ( x 103)
R=0 R=1 R=2 R=3 R=4 R=5

Multiple - 1.0 0.3333  0.1667  0.1111 0.0833  0.0667 1813
Single 05 10 0.3333  0.1667 01111 0.0834 0.0669 1824
Single 1.0 1.0 03333 01669  0.1131 0.0879  0.0738 201.2
Single 15 1.0 03334 01707 01219 0.0999 0.0876 2412

(a) Multiple-ticket (b) Single-ticket: o = 0.5

(c) Single-ticket: o = 1.0 (d) Single-ticket: o7 = 1.5

Fig. 8. Patrol frequency distribution under multiple-ticket and single-ticket policies.

and (d), respectively. Since the optimal paid parking duration is the inverse of the cumulative distribution function of the
actual parking duration (see (3)), the parking payment would be highly sensitive to the patrol frequency. In other words,
the parking payment may drastically decrease if the agency reduces the patrol frequency. Hence, in the aim of maximizing
the payment revenue, the agency would rather ignore certain low demand area and try to maintain the highest level of
patrol frequency for most of the high demand areas, as shown in Fig.7(c). On the other hand, the fine revenue is much
less sensitive to the patrol frequency. As shown in Fig.7(d), in this case the agency would simply impose a uniform patrol
frequency over the entire region. As mentioned in Section 2.2, maximizing the expected total fine revenue is equivalent to
minimizing the expected parking demand that is never patrolled during the planning horizon. Thus, as long as the patrol
frequency is larger than zero, the expected total fine revenue that agency obtains is unlikely to be affected by the patrol
frequency.

4.4. Multiple-ticket vs. single-ticket policy

In the following, we run tests to compare the performance of different ticketing policies. Following the problem setting
in the previous section, we assume that the parking durations of all vehicles in a cell follow a same normal distribution
(truncated at 0) with mean T and variance 2. Here we generate three different scenarios by fixing T while varying the
value of o¢, i.e., iy = 2,07 € {0.5,1.0, 1.5}. The parking demand density follows (38) with ¥ = 150 /km? and n = 1. Let § =
10 /km?, % =15,¢=0 K=30, vy =1, w; =w3; =0, and P, = 0.9. Table 5 presents the results of P'©® values for different
patrol frequencies and the objective function values. Also, Fig.8 shows the distribution of patrol frequency for four different
scenarios.
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Under the same patrol frequency, a parking vehicle is likely to have a larger value of PVi° if the agency adopts the single-
ticket policy rather than the multiple-ticket one. Moreover, the difference of P¥® between two policies grows even larger
under higher patrol frequency. It is because that, no matter how large the patrol frequency is, the expected penalty cost for
being in violation never exceeds y for the single-ticket case. As such, drivers may incline to pay relatively less money for
parking, which in turn leads to a larger probability of violation.

We can also observe that, by following the single-ticket policy, the system suffers from a much larger number of expected
parking violations if there is a higher level of variability in drivers’ parking durations. The reason is that the drivers would
be less motivated to pay more money under the single-ticket policy as they know that the penalty cost would not exceed
y no matter how long they are in a violation state. This situation gets even worse when the variability of parking duration
grows larger. Meanwhile, under the single-ticket policy, knowing that the effect of frequent patrols is quite limited, the
agency would become reluctant to maintain a high level of patrol frequency. As such, as shown in Fig.8(b)-(d), the agency
tends to spread the patrol vehicles out to the entire region rather than focusing limited patrol resources to the high demand
areas (as shown in Fig.8(a)). More violations are expected to occur since a larger portion of parking areas are under a lower
frequency of patrol. To this end, the multiple-ticket policy should be a better option if the agency aims at imposing a
vigorous enforcement over parking.

5. Conclusion

This paper proposes a game-theoretic mathematical model to optimize the performance of parking enforcement patrol
while taking into consideration the interactive relationships among the parking enforcement agency and parking drivers.
The agency’s patrol planning problem is modeled as a variant of PVRP-SC, while the driver’s parking payment problem is
modeled as a variant of the news-vendor problem. By solving the driver’s parking payment model in closed form, these two
interrelated problems can be modeled as a single-level mathematical program. We build up a discrete optimization model
for the problem and develop a Lagrangian relaxation based algorithm as the solution approach. This model can only handle
small size instances. Then, for the sake of large-scale instances, we propose a CA formulation and further reduce it to a
non-linear optimization program that can be effectively solved using existing solvers. The numerical results show that both
approaches can yield reasonable solutions for small problems, but the CA approach can produce the solution within a much
shorter computation time. In addition, the CA approach is an effective way to avoid the prohibitive computational difficulty
associated with solving large-scale instances. It has also been shown that the agency should adopt the multiple-ticket policy
to implement a more effective enforcement to the parking system.

In the future, a number of research directions can be explored. By relaxing the restriction that the parking demand is
stationary within the time horizon, we intend to examine the problem in which parking demand varies over time. We are
also interested in considering more complex behaviors of parking drivers. For instance, we can relax the assumption that
each driver is designated to a specific parking lot, and allow drivers to decide their own parking location (as per Ayala etal.,
2011; Mackowski etal., 2015; He etal., 2015), as well as the amount of money to pay simultaneously. In addition, it would
be interesting to investigate the gaming behavior between the two sides when the drivers only have inaccurate knowledge
of patrol frequency.
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