
Opening the black box: an open-source release of Maxent 

Steven J. Phillips
1
, Robert P. Anderson

2
, Miroslav Dudík

3
, Robert E. Schapire

3
, Mary E. Blair

1
 

 

1 Center for Biodiversity and Conservation, American Museum of Natural History, Central Park 

West at 79th Street, New York, NY 10024, USA 

2 Dept. of Biology, City College of New York, City Univ. of New York, New York, NY 10031, 

USA; Program in Biology, Graduate Center, City Univ. of New York, 365 Fifth Avenue, New 

York, NY 10016 USA; and Div. of Vertebrate Zoology (Mammalogy), American Museum of Natural 

History, Central Park West at 79th Street, New York, NY 10024 

3 Microsoft Research, 641 Avenue of the Americas, 7th floor, New York, NY 10011 USA 

 

Abstract 

 This software note announces a new open-source release of the Maxent software for 

modeling species distributions from occurrence records and environmental data, and describes a 

new R package for fitting such models. The new release (Version 3.4.0) will be hosted online by 

the American Museum of Natural History, along with future versions. It contains small 

functional changes, most notably use of a complementary log-log (cloglog) transform to 

produce an estimate of occurrence probability. The cloglog transform derives from the 

recently-published interpretation of Maxent as an inhomogeneous Poisson process (IPP), giving 

it a stronger theoretical justification than the logistic transform which it replaces by default. In 

addition, the new R package, maxnet, fits Maxent models using the glmnet package for 

regularized generalized linear models. We discuss the implications of the IPP formulation in 

terms of model inputs and outputs, treating occurrence records as points rather than grid cells 

and interpreting the exponential Maxent model (raw output) as as an estimate of relative 

abundance. With these two open-source developments, we invite others to freely use and 

contribute to the software. 



New hosting and licensing for Maxent 

 Maxent is a self-contained Java application for species distribution modeling (SDM) based 

on occurrence records (locations where the species has been found) together with environmental 

variables such as rainfall and temperature for a surrounding study area (Phillips et al. 2006; 

Phillips and Dudík 2008). Since performing well in a comparison of species distribution 

modeling methods (Elith et al. 2006), it has been widely used: Google Scholar reports more 

than 6000 citations for Phillips et al. (2006) at the time of writing. Until now the software 

source code has been owned by AT&T, but the application has been freely available and hosted 

online by Princeton University (www.cs.princeton.edu/%7Eschapire/maxent). 

 Despite documentation of the underlying mathematics, the software has sometimes been 

referred to as a black box, since the underlying source code was not available. The source code 

is now released under the MIT open-source licence, and we invite interested developers to use 

and contribute to the code. The geospatial community has been a leader in open source and free 

software development (Bocher and Neteler 2012) and many in the ecology, evolution, and 

environmental science communities have called for increased openness as not only an ethical 

imperative but also a necessity to answer key pressing questions about global change 

(Wolkovich et al. 2012). The Maxent application will henceforth be hosted by the Center for 

Biodiversity and Conservation (CBC) at the American Museum of Natural History, at 

biodiversityinformatics.amnh.org/open_source/maxent, extending the role that the 

CBC has played in fostering the development of Maxent and hosting the New York Species 

Distribution Modeling Discussion Group for the past 15 years. In addition to the Maxent 

application, the new site contains the existing tutorial and a few key publications, as well as a 

link to the source code on GitHub (https://github.com/mrmaxent/maxent). 

 In addition to the Java source code, we announce a new R package, maxnet 

(https://CRAN.R-project.org/package=maxnet; Version 0.1.2, 

https://github.com/mrmaxent/maxent, authored by SJP), which implements 

Maxent using the glmnet R package (Friedman et al. 2010) for model fitting. This new 



package takes advantage of the derivation of Maxent as a form of infinitely-weighted logistic 

regression (see below). It fits Maxent models using the same feature classes (linear, quadratic, 

hinge, etc.) and regularization options of the Java version. 

 

Maxent and inhomogeneous Poisson processes 

 Maxent estimates the distribution (geographic range) of a species by finding the distribution 

which has maximum entropy (i.e., is closest to geographically uniform) subject to constraints 

derived from environmental conditions at recorded occurrence locations. The constraints are 

defined in terms of “features” (environmental variables such as temperature, and simple 

functions of those variables such as quadratic terms), and require that the mean of each feature 

should match the sample mean. This formulation is equivalent to maximizing the likelihood of a 

parametric exponential distribution (Phillips et al. 2004). More recently, it was noted that the 

exact same maximum likelihood exponential model can be obtained from an inhomogeneous 

Poisson process (IPP) (Aarts et al. 2012; Fithian and Hastie 2013; Renner and Warton 2013). 

This development is important for Maxent users, as it yields new interpretations of model inputs 

and outputs, and allows the use of other software packages for fitting Maxent models. Here we 

give a very brief overview of the IPP formulation, following Fithian and Hastie (2013); note that 

in following their notation, some of the same symbols (e.g., ) are used differently from 

previous papers describing Maxent. 

 An IPP is a widely-used model for a random set  of points falling in some domain  

(Cressie 1993; Diggle 2003). To apply it to species distribution modeling, we can use the set of 

occurrence records for , while  is the geographic study area. The IPP can be defined by an 

intensity function  which assigns a non-negative real-valued intensity  to each point  in 

. It can be thought of as indexing the likelihood that a point (here, an occurrence record of the 

species) falls at or near . We can define a probability density over the domain  by: 

 

  (Equation 1) 



 

where the denominator simply makes  sum to 1. An IPP with intensity  is defined as an 

independent and identically distributed (i.i.d.) sample from , whose size (number of points) is 

a Poisson random variable with mean . Warton and Shepherd (2010) suggested 

modeling the occurrence records for a species as arising from an IPP whose intensity  is a 

log-linear function of a vector of real-valued features : 

 

  (Equation 2) 

 

The coefficient  is essentially a normalizing constant, giving no information about the species’ 

distribution – its maximum likelihood value simply ensures that   equals the total 

number of occurrence records. Conditioned on the number of occurrence records, the likelihood 

of the IPP is the same as Maxent’s likelihood, since  is exactly Maxent’s exponential 

distribution. The maximum likelihood values of the coefficients  are therefore exactly the same 

as those given by Maxent. This equivalence still holds true when using regularization (as is done 

by the Maxent software), by which a penalty term (Phillips et al. 2004; Elith et al. 2011) is 

added to the log likelihood to penalize larger values of the coefficients and thereby produce a 

simpler model. 

 

Implications for model inputs 

While the IPP model can be defined for a finite discrete domain (such as a regular grid), it is 

perhaps most natural for a continuous ; for SDM, this means that occurrence records are 

considered to be points (with zero area) in geographic space rather than sites or quadrats of 

some non-zero area. The IPP then models the process of drawing some point locations randomly 

from the locations of all individuals of the species (leaving aside complications due to sample 

selection bias; see Renner et al. 2015; Fithian and Hastie 2013; Phillips et al. 2009). Hence, it 



models occurrence records as being obtained with probability proportional to the local 

abundance of the species. This contrasts with Phillips et al. (2006), who outlined an idealized 

data model in which the domain  is a finite grid of equal-sized cells, with occurrence records 

corresponding to grid cells randomly selected from those occupied by the species. In this latter 

case, a grid cell with a single individual is considered as likely to have an occurrence record as a 

grid cell in which the species is very abundant; the difference between the two data models is 

more pronounced for larger grid sizes. Given the realities of biological sampling, the truth 

surely lies somewhere between these two extremes, and depends strongly on the data-collection 

methods used in the field (Renner et al. 2015). For example, the density of records derived from 

incidental sightings will likely be strongly affected by local abundance; in contrast, 

presence-only data sets of occurrence records from intensive sampling of transects will not 

distinguish between areas with a few individuals truly present per transect versus those with 

many. 

 For the IPP model, we expect to have more occurrence records in areas and environmental 

conditions where the species is abundant. However, care should be taken when multiple records 

lie close together, since co-located or nearby records are often an artifact of spatially 

auto-correlated sampling (for example, records may be clustered around a research station). For 

these reasons, the occurrence records may need to be thinned (Boria et al. 2014; 

Aiello-Lammens et al. 2015) to better match the IPP’s assumption of independent samples. 

Note that this particular issue of clustered sampling is separate from that of spatially biased 

sampling (Fithian et al. 2015) and it may be necessary to apply both thinning and bias correction 

to the same dataset (Syfert et al. 2013). 

 Additionally, the primary goal of SDM is often to model and understand the environmental 

conditions inhabited by the species, rather than simply its geographic distribution. Both for this 

use and to better estimate the geographic distribution, it is important that (to the degree possible) 

the occurrence data represent a random sample of suitable conditions in . In addition to 

consideration of sampling biases (see above), this requires a careful choice of the study area  – 



see for example Renner et al. (2015) and discussion of environmental equilibrium and noise 

assumptions of Anderson (2013). 

 

Implications for model outputs 

The IPP model gives an estimate  of the intensity of occurrence records at or near the 

point . If the sampling effort is unbiased (an unlikely assumption – see Reddy and Dávalos 

2003), this is also an estimate of the relative abundance of the species: i.e., it is linearly 

proportional to the average number of individuals per unit area at or near . The constant of 

proportionality (which we will write as ) between the model and the true abundance of the 

species cannot be determined from occurrence records alone (Fithian and Hastie 2013). Rather, 

some independent measure or estimate of total population size is required to estimate  and 

hence absolute abundance. Maxent models (derived from occurrence records) have indeed been 

found to show correlation with independently measured local abundance (VanDerWal et al. 

2009; Weber et al. 2016). We note, however, that although a linear relationship is theoretically 

predicted between  (Maxent’s “raw” output format) and local abundance, a nonlinear (but 

still monotonic) relationship is predicted for transformed outputs such as the logistic transform 

used by VanDerWal et al. (2009). 

 

From relative abundance to probability of presence 

The interpretation of Maxent as an IPP allows Maxent’s “raw” output format to be used 

directly as a model of relative abundance. However, many SDM uses call for models of 

probability of presence. Additionally, maps made from raw output do not often match 

ecologists’ intuition about the (potential or realized) distribution of their study species. For these 

reasons, Maxent’s default output scaling is a model of probability of presence, with an important 

caveat. 

Consider a quadrat within the domain , and assume the environmental conditions are 

constant within the quadrat. The IPP estimates the species’ absolute abundance in the quadrat as 



a Poisson variable with mean: 

 Predicted mean abundance =  (Equation 3) 

where  is the area of the quadrat. The probability of presence of the species in the quadrat is 

the probability that there is at least one individual there, which according to the Poisson 

distribution is: 

 Probability of presence =  (Equation 4) 

thus yielding a Bernoulli generalized linear model whose link function is termed a 

complementary log-log (cloglog) link (Fithian et al. 2015). Note, however, that this derivation 

relies on the species’ presence or absence at nearby sites being independent. Therefore, it may 

not be appropriate when species distributions (including patterns of abundance) exhibit spatial 

dependence beyond that owing to spatial autocorrelation of the utilized predictor variables. For 

example, positive autocorrelation of individuals occurs for flocking birds and for plants with 

limited dispersal abilities, and negative autocorrelation for territorial mammals. Note that the 

IPP literature includes methods to detect spatial dependence (such as Ripley’s -function) and 

to incorporate it into the model (e.g., using area-interaction processes) at the cost of increasing 

modeling complexity (Renner et al. 2015). 

 Because of the above derivation, a cloglog transform appears to be most appropriate for 

estimating probability of presence, and Maxent version 3.4.0 now uses it by default. The 

previous default (a logistic transform, Phillips and Dudík 2008) is now available as an option. 

For both transforms, the entropy  of the probability distribution  is used as 

a constant offset to the linear model; specifically, the new cloglog transformation estimates 

probability of presence as: 

 Probability of presence = . (Equation 5) 

 Note that this estimate is appropriate for some quadrat size, but we cannot say explicitly 

what that size is, since it depends on the (unknown)  (this is the important caveat mentioned at 

the beginning of this section). At best, we can define the quadrat size implicitly: consider a point 



 whose log probability under  equals the mean log probability, i.e., 

. 

Such a point could be called a “typical” location of the species, as predicted log abundance there 

is average among all points where individuals of the species are found. The predicted probability 

of occurrence in a quadrat centered at such a typical point  is , corresponding 

to a predicted abundance of one individual per quadrat. This is similar to Maxent’s logistic 

output, which gives a predicted probability of occurrence of 0.5 for such a location. In general, 

the cloglog transformed output is somewhat greater than the logistic one (Figure 1), especially at 

higher values. The main effect of using the cloglog rather the logistic transform is that areas of 

moderately high output (yellow and orange in Figure 2 left) are more strongly predicted 

(relatively warmer colors in Figure 2 right). We emphasize that the use of entropy as an offset is 

somewhat arbitrary, but has the advantage of being scale independent (for example, it would not 

be affected by changing units from meters to kilometers) and produces output values (and hence 

mapped predictions) with good visual discrimination across the same range of values (0-1) for 

all species. Importantly, whenever more is known about the species, such as its absolute 

abundance at some sites or its total population size, the use of entropy as an offset can be 

avoided by deriving an estimate of  and therefore the probability of presence for quadrats of 

any given size. This is analogous to using addition information about the species’ prevalence to 

derive an appropriate offset for the logistic transform (Guillera-Arroita et al. 2014). 

 Although the above derivation of the cloglog transform provides a stronger theoretical 

justification than the robust Bayes argument (Phillips and Dudík 2008) for the logistic 

transform, the cloglog transform may have only a small effect on model performance. On a 

large reference data set (that of Elith et al. 2006), the cloglog transform marginally lowered 

values of model calibration (measured by correlation with 0/1 data encoding observed 

absences/presences, known as the COR statistic) relative to the logistic transform for models 

made with random background data (Table 1). In contrast, and more importantly, it improved 

this measure of model performance when target-group background (Phillips et al. 2009) was 



used to reduce the effects of sample selection bias. The raw output (the exponential model of 

Eqns 1 and 2) substantially underperformed cloglog (and other output formats), which is as 

expected given that COR measures ability to predict probability of presence rather than 

abundance. We note that rank-based statistics such as AUC (area under the receiver operating 

characteristic curve) are unaffected by the logistic and cloglog transforms. 

 

Maxent as infinitely-weighted logistic regression (IWLR): the maxnet 
package 

 Because Maxent is an IPP, standard generalized linear modeling software can be used to fit 

Maxent models via Poisson regression (Renner and Warton 2013), or even more conveniently, 

using standard logistic regression Fithian and Hastie (2013). Specifically, the latter authors 

showed that the coefficients  of the Maxent or IPP model can be fitted via a weighting process 

they call infinitely-weighted logistic regression (IWLR). The idea is to fit a logistic model to 

occurrence records (with response variable ) and background data (points chosen 

randomly from the domain , with response variable ). This process yields coefficients  for 

an exponential model, and has been used in studies of resource selection by animals (Manly 

et al. 2002), but may not produce the same values of the coefficients as Maxent. The novel 

contribution of Fithian and Hastie (2013) was to give a large weight  to all the background 

data and to show that the limit (as  tends to infinity) of the resulting vector of logistic 

regression coefficients equals the Maxent (and IPP) coefficients. This allows Maxent (and IPP) 

models to be fitted using standard GLM software. The new R package for fitting Maxent models 

(maxnet, available at https://CRAN.R-project.org/package=maxnet) does just 

this – leveraging the glmnet R package (Friedman et al. 2010) to fit an -regularized logistic 

regression model with a large weight . A weight of  is used by default, in contrast to a 

weight of 1 for occurrence records. 

 Instead of upweighting background points, we may equivalently downweight presence 

points (Renner et al. 2015). In addition, the intercept term ( , above) can be manipulated by 



choosing the background weights based on the area of the study region, so that the resulting IPP 

is scaled in units of occurrence records per unit area (Renner et al. 2015). Given the area of the 

study region, this weighting scheme could easily be used with maxnet, though it would not 

affect any of the standard output formats (raw, cloglog etc.) since none of them use . 

 There is a variety of R packages available for fitting point process models (Renner et al. 

2015), so why introduce another? The novel contribution of maxnet is to implement all the 

derived feature classes (especially hinge features) and default tuned regularization values of the 

Maxent Java application, so that Maxent models can be fitted natively and easily in R. The 

package is brief – about 200 lines of code implementing feature classes and regularization 

parameters, model fitting, predicting from a model, and plotting of response curves. 

Additionally, it provides some simple use examples based on the Bradypus variegatus 

(brown-throated three-toed sloth) data set from Phillips et al. (2006). The purpose of the 

package is to replicate the behaviour of the Maxent Java application by using the equivalence 

with IPPs; this complements Renner et al. (2015), who show (Appendix Section 6) how to 

adjust default settings in the Maxent application in order to fit an IPP. 

 When run on the data set of Elith et al. (2006), maxnet has similar performance to the 

Maxent Java application. Small differences are likely due primarily to different implementations 

of hinge features and different random choices of background data. In order to limit computation time, 

the maxnet implementation of hinge features uses 50 hinge features per environmental variable by 

default, with evenly spaced knots, in contrast to Maxent which may use one knot per unique value of 

the environmental variable.  The scripts used to run maxnet on that data set appear in the online 

Appendix, along with further examples of usage. 

 

A change in default feature classes 

 Both the previous and current releases of Maxent allow the use of quadratic, product (or 

interaction), threshold (or step-function) and hinge (piecewise linear) features, in addition to the 

original environmental variables (linear features). The selection of feature classes for use in the 



model depends only on sample size, though -regularization forces many coefficients to zero. 

Given enough occurrence records (80+), all of the derived feature classes were previously 

considered by the model. Version 3.4.0 differs by omitting threshold features by default 

(although they are available as an option), since this appears to improve model performance 

generally and results in models that are smoother and simpler, and hence likely to be more 

realistic. Avoiding use of threshold features makes a small but useful improvement to the 

performance of Maxent (Table 1) on the data set of Elith et al. (2006). The differences in AUC 

and COR are similar to differences within the three groupings of modeling methods in Elith 

et al. (2006), but smaller than differences among groupings. Apparently hinge features, which 

were introduced to Maxent later than threshold features (Phillips and Dudík 2008), are best used 

as a replacement for threshold features rather than as a complement. Hinge features provide at 

least as much flexibility in the fitted response to predictor variables as threshold features, while 

tending to reduce over-fitting to the training data. The scripts used to run Maxent with various 

settings for Table 1 appear in the online Appendix. Unfortunately, the data set of Elith et al. 

(2006) is not yet publicly available, but when it is publicly released, it will be added to the 

online Appendix too, so that the values in Table 1 can be easily replicated. 

 We emphasize that the settings used in the analyses reported in Table 1 are merely defaults, 

and the best choice for other data sets may be different (Merow et al. 2013; Radosavljevic and 

Anderson 2014). We have also found that product features barely improve average performance 

on the data set of Elith et al. (2006) (not shown), and could usually be omitted in order to make 

simpler and more easily interpreted models. Importantly, avoiding product features enables the 

use of the Explain tool to interactively explore model predictions (Elith et al. 2010; Renner et al. 

2015). 

 

Future directions 

 Species distribution models based on Maxent and IPP remain an active area of research, as 

new methods are developed to accommodate the challenging nature of occurrence data and 



species distributions (Fithian et al. 2015; Merow et al. 2016). The open-source release of the 

Maxent Java code, together with the maxnet R package, will facilitate the work of others in 

improving the science of modeling species distributions. Similarly, we hope that it will facilitate 

the practical and public use of Maxent for mapping and preserving biodiversity, as done by the 

Atlas of Living Australia (http://www.ala.org.au/). 

 The IPP perspective on Maxent input requirements and interpretation of model outputs 

should provide new direction for research regarding studies of population abundance. One 

conclusion is that under certain assumptions regarding the occurrence data, Maxent’s raw 

(exponential) output can be interpreted as a model of relative abundance (Renner et al. 2015). A 

natural question arising from this is whether in practice, raw output indeed better correlates with 

local abundance than logistic output (as used by VanDerWal et al. 2009). This should also 

inform meta-analyses of relationships between SDM output and abundance and other measures 

of population performance (Weber et al. 2016). 

 The IPP model also offers new insights into spatial dependence for Maxent models, along 

with some tools for detecting spatial trends in residuals (Renner et al. 2015). When we use the 

IPP intensity to infer a Poisson distribution for abundance within a quadrat (Eqn. 3) and thereby 

determine probability of presence therein, we make a strong independence assumption, namely 

that presence of the species at nearby points within the quadrat is conditionally independent 

given the predictor variables. This assumption may often be violated on fine spatial scales, for 

example because individuals in close proximity interact through competition, reproduction, etc., 

and disturbances such as fire impose spatial signatures on species’ patterns of distribution 

(including abundance). Outstanding questions include: How important is this violation in 

practice when using IPP / Maxent for modeling abundance or probability of presence from 

occurrence data? In what circumstances should modellers resort to more complex variants of 

IPPs (such as Gibbs or Cox processes; Renner et al. 2015) to explicitly model spatial 

dependence? Similar issues arise when modeling abundance from count data: patterns of 

occurrence and abundance may be affected by different processes, resulting in excess zeroes in 



the abundance data (Wenger and Freeman 2008). This is likely related to the finding that 

Maxent models predict a “potential/maximal abundance”, which may not be attained at all sites 

(VanDerWal et al. 2009). Zero-inflated models are often used in place of simpler Poisson 

models when modeling abundance from count data that exhibit excess zeroes (Barry and Welsh 

2002). Perhaps similar ideas can be applied to occurrence data. 

 The maxnet R package encodes feature classes and regularization defaults in order to fit 

the same models as the Maxent Java application, opening up new ways to better integrate 

Maxent modeling with the wide variety of visualization and analysis tools available in R. Future 

contributions to maxnet could facilitate this integration, for example by contributing code 

and/or a vignette that links maxnet with the dismo package or the ENMeval package 

(Muscarella et al. 2014) which manage data preparation, modelling and evaluation for SDM. A 

test suite would be very helpful to ensure consistency as new functionality gets added to the 

package. Only some capabilities of glmnet are used by maxnet, and others (such as elastic 

net regularization and data-driven feature selection) could be incorporated. Alternatively, 

glmnet or other IPP packages (such as ppmlasso; Renner et al. 2015) could be used directly 

on the data set of Elith et al. (2006) (i.e., not via maxnet) and compared with the performance 

of maxnet described here in order to determine the most effective use of IPPs on species 

occurrence data. In addition, the standard collection of statistical analyses and maps produced as 

html output by the Maxent Java application could be assembled in R, and would then be 

available for any species distribution modeling method with an implementation in R. 

 Finally, we invite developers and modelers to imagine new capabilities for the Maxent Java 

application, and to contribute to its development. Free and open access to data, software, tools, 

publications, and other resources facilitate key steps towards more informed and powerful 

models and more inclusive research outcomes (Soberón and Peterson 2004). Through these 

open-source releases we aim to empower Maxent users as a community to use, contribute, and 

innovate towards improvement of the software, and to generate new open-source software 

resources and tools. 
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Online Appendix 

An online appendix contains the scripts used to generate Table 1 and Figures 1 and 2, and 

further examples of usage for maxnet. 
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Table 1. Comparison of performance of Maxent models with varying choices of feature classes 

and output transforms, for a reference data set of occurrence records of 226 species, and 

presence/absence data for model evaluation (Elith et al. 2006). Maxent feature classes are 

abbreviated as “l” (linear), “q” (quadratic), “p” (product), “t” (threshold) and “h” (hinge). 

Results are shown for analyses run with random background pixels, as well as for those 

implementing a target-group background (Phillips et al. 2009). The AUC statistic measures area 

under the receiver operating characteristic curve, while COR measures the correlation between 

model output and 0/1 data representing observed absence/presence. 

 

 

Feature 

Classes 

Output 

Scaling 

Study with 

these defaults 

Random background Target-group background 

AUC COR AUC COR 

Lqpt Cumulative Elith et al. 

2006 

0.7220 0.1989 0.7534 0.2368 

Lqpth Logistic Phillips and 

Dudík 2008 

0.7282 0.2110 0.7575 0.2447 

Lqph Raw  0.7296 0.1855 0.7593 0.2404 

Lqph Logistic  0.7296 0.2125 0.7593 0.2465 

Lqph Cloglog Present paper: 

Maxent 

0.7296 0.2120 0.7593 0.2479 

Lqph Cloglog Present paper: 

maxnet 

0.7271 0.2100 0.7587 0.2490 

 

 


