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Abstract

This software note announces a new open-source release of the Maxent software for
modeling species distributions from occurrence records and environmental data, and describes a
new R package for fitting such models. The new release (Version 3.4.0) will be hosted online by
the American Museum of Natural History, along with future versions. It contains small
functional changes, most notably use of a complementary log-log (cloglog) transform to
produce an estimate of occurrence probability. The cloglog transform derives from the
recently-published interpretation of Maxent as an inhomogeneous Poisson process (IPP), giving
it a stronger theoretical justification than the logistic transform which it replaces by default. In
addition, the new R package, maxnet, fits Maxent models using the glmnet package for
regularized generalized linear models. We discuss the implications of the IPP formulation in
terms of model inputs and outputs, treating occurrence records as points rather than grid cells
and interpreting the exponential Maxent model (raw output) as as an estimate of relative
abundance. With these two open-source developments, we invite others to freely use and

contribute to the software.



New hosting and licensing for Maxent

Maxent is a self-contained Java application for species distribution modeling (SDM) based
on occurrence records (locations where the species has been found) together with environmental
variables such as rainfall and temperature for a surrounding study area (Phillips et al. 2006;
Phillips and Dudik 2008). Since performing well in a comparison of species distribution
modeling methods (Elith et al. 2006), it has been widely used: Google Scholar reports more
than 6000 citations for Phillips et al. (2006) at the time of writing. Until now the software
source code has been owned by AT&T, but the application has been freely available and hosted
online by Princeton University (www.cs.princeton.edu/%7Eschapire/maxent).

Despite documentation of the underlying mathematics, the software has sometimes been
referred to as a black box, since the underlying source code was not available. The source code
is now released under the MIT open-source licence, and we invite interested developers to use
and contribute to the code. The geospatial community has been a leader in open source and free
software development (Bocher and Neteler 2012) and many in the ecology, evolution, and
environmental science communities have called for increased openness as not only an ethical
imperative but also a necessity to answer key pressing questions about global change
(Wolkovich et al. 2012). The Maxent application will henceforth be hosted by the Center for
Biodiversity and Conservation (CBC) at the American Museum of Natural History, at
biodiversityinformatics.amnh.org/open_source/maxent, extending the role that the
CBC has played in fostering the development of Maxent and hosting the New York Species
Distribution Modeling Discussion Group for the past 15 years. In addition to the Maxent
application, the new site contains the existing tutorial and a few key publications, as well as a
link to the source code on GitHub (https://github.com/mrmaxent/maxent).

In addition to the Java source code, we announce a new R package, maxnet
(https://CRAN.R-project.org/package=maxnet; Version 0.1.2,
https://github.com/mrmaxent/maxent, authored by SJP), which implements

Maxent using the glmnet R package (Friedman et al. 2010) for model fitting. This new



package takes advantage of the derivation of Maxent as a form of infinitely-weighted logistic
regression (see below). It fits Maxent models using the same feature classes (linear, quadratic,

hinge, etc.) and regularization options of the Java version.

Maxent and inhomogeneous Poisson processes

Maxent estimates the distribution (geographic range) of a species by finding the distribution
which has maximum entropy (i.e., is closest to geographically uniform) subject to constraints
derived from environmental conditions at recorded occurrence locations. The constraints are
defined in terms of “features” (environmental variables such as temperature, and simple
functions of those variables such as quadratic terms), and require that the mean of each feature
should match the sample mean. This formulation is equivalent to maximizing the likelihood of a
parametric exponential distribution (Phillips et al. 2004). More recently, it was noted that the
exact same maximum likelihood exponential model can be obtained from an inhomogeneous
Poisson process (IPP) (Aarts et al. 2012; Fithian and Hastie 2013; Renner and Warton 2013).
This development is important for Maxent users, as it yields new interpretations of model inputs
and outputs, and allows the use of other software packages for fitting Maxent models. Here we
give a very brief overview of the IPP formulation, following Fithian and Hastie (2013); note that
in following their notation, some of the same symbols (e.g., >\) are used differently from
previous papers describing Maxent.

An IPP is a widely-used model for a random set /£ of points falling in some domain 1)
(Cressie 1993; Diggle 2003). To apply it to species distribution modeling, we can use the set of
occurrence records for Z, while I is the geographic study area. The IPP can be defined by an
intensity function A which assigns a non-negative real-valued intensity )‘(Z) to each point 2 in
D. 1t can be thought of as indexing the likelihood that a point (here, an occurrence record of the

species) falls at or near 2. We can define a probability density over the domain I by:

pa(2z) = A(2)/ /D A(z)dz (Equation 1)



where the denominator simply makes PA sum to 1. An IPP with intensity A is defined as an

independent and identically distributed (i.i.d.) sample from PX, whose size (number of points) is

Az)dz

a Poisson random variable with mean J D . Warton and Shepherd (2010) suggested
modeling the occurrence records for a species as arising from an IPP whose intensity )‘(z) isa

log-linear function of a vector of real-valued features X(z ) :
)\(Z) = exp(a + 5’X(2)) (Equation 2)

The coefficient (v is essentially a normalizing constant, giving no information about the species’

Az)dz

distribution — its maximum likelihood value simply ensures that J/ D equals the total
number of occurrence records. Conditioned on the number of occurrence records, the likelihood
of the IPP is the same as Maxent’s likelihood, since P is exactly Maxent’s exponential
distribution. The maximum likelihood values of the coefficients 5 are therefore exactly the same
as those given by Maxent. This equivalence still holds true when using regularization (as is done
by the Maxent software), by which a penalty term (Phillips et al. 2004; Elith et al. 2011) is
added to the log likelihood to penalize larger values of the coefficients and thereby produce a

simpler model.

Implications for model inputs

While the IPP model can be defined for a finite discrete domain (such as a regular grid), it is
perhaps most natural for a continuous IJ; for SDM, this means that occurrence records are
considered to be points (with zero area) in geographic space rather than sites or quadrats of
some non-zero area. The IPP then models the process of drawing some point locations randomly
from the locations of all individuals of the species (leaving aside complications due to sample

selection bias; see Renner et al. 2015; Fithian and Hastie 2013; Phillips et al. 2009). Hence, it



models occurrence records as being obtained with probability proportional to the local
abundance of the species. This contrasts with Phillips et al. (2006), who outlined an idealized
data model in which the domain I is a finite grid of equal-sized cells, with occurrence records
corresponding to grid cells randomly selected from those occupied by the species. In this latter
case, a grid cell with a single individual is considered as likely to have an occurrence record as a
grid cell in which the species is very abundant; the difference between the two data models is
more pronounced for larger grid sizes. Given the realities of biological sampling, the truth
surely lies somewhere between these two extremes, and depends strongly on the data-collection
methods used in the field (Renner et al. 2015). For example, the density of records derived from
incidental sightings will likely be strongly affected by local abundance; in contrast,
presence-only data sets of occurrence records from intensive sampling of transects will not
distinguish between areas with a few individuals truly present per transect versus those with
many.

For the IPP model, we expect to have more occurrence records in areas and environmental
conditions where the species is abundant. However, care should be taken when multiple records
lie close together, since co-located or nearby records are often an artifact of spatially
auto-correlated sampling (for example, records may be clustered around a research station). For
these reasons, the occurrence records may need to be thinned (Boria et al. 2014;
Aiello-Lammens et al. 2015) to better match the IPP’s assumption of independent samples.

Note that this particular issue of clustered sampling is separate from that of spatially biased
sampling (Fithian et al. 2015) and it may be necessary to apply both thinning and bias correction
to the same dataset (Syfert et al. 2013).

Additionally, the primary goal of SDM is often to model and understand the environmental
conditions inhabited by the species, rather than simply its geographic distribution. Both for this
use and to better estimate the geographic distribution, it is important that (to the degree possible)
the occurrence data represent a random sample of suitable conditions in ). In addition to

consideration of sampling biases (see above), this requires a careful choice of the study area ) —



see for example Renner et al. (2015) and discussion of environmental equilibrium and noise

assumptions of Anderson (2013).

Implications for model outputs

The IPP model gives an estimate A (Z ) of the intensity of occurrence records at or near the
point 2. If the sampling effort is unbiased (an unlikely assumption — see Reddy and Davalos
2003), this is also an estimate of the relative abundance of the species: i.e., it is linearly
proportional to the average number of individuals per unit area at or near 2. The constant of
proportionality (which we will write as €P) between the model and the true abundance of the
species cannot be determined from occurrence records alone (Fithian and Hastie 2013). Rather,
some independent measure or estimate of total population size is required to estimate €p and
hence absolute abundance. Maxent models (derived from occurrence records) have indeed been
found to show correlation with independently measured local abundance (VanDerWal et al.
2009; Weber et al. 2016). We note, however, that although a linear relationship is theoretically
predicted between >‘(Z ) (Maxent’s “raw” output format) and local abundance, a nonlinear (but
still monotonic) relationship is predicted for transformed outputs such as the logistic transform

used by VanDerWal et al. (2009).

From relative abundance to probability of presence

(13

The interpretation of Maxent as an IPP allows Maxent’s “raw” output format to be used

directly as a model of relative abundance. However, many SDM uses call for models of
probability of presence. Additionally, maps made from raw output do not often match
ecologists’ intuition about the (potential or realized) distribution of their study species. For these
reasons, Maxent’s default output scaling is a model of probability of presence, with an important
caveat.

Consider a quadrat within the domain ), and assume the environmental conditions are

constant within the quadrat. The IPP estimates the species’ absolute abundance in the quadrat as



a Poisson variable with mean:
Predicted mean abundance = cpA eXp(a + /X( Z)) (Equation 3)
where A is the area of the quadrat. The probability of presence of the species in the quadrat is
the probability that there is at least one individual there, which according to the Poisson
distribution is:
Probability of presence =1 — exp(—c, A exp(a + B'x(2))) (Equation 4)
thus yielding a Bernoulli generalized linear model whose link function is termed a
complementary log-log (cloglog) link (Fithian et al. 2015). Note, however, that this derivation
relies on the species’ presence or absence at nearby sites being independent. Therefore, it may
not be appropriate when species distributions (including patterns of abundance) exhibit spatial
dependence beyond that owing to spatial autocorrelation of the utilized predictor variables. For
example, positive autocorrelation of individuals occurs for flocking birds and for plants with
limited dispersal abilities, and negative autocorrelation for territorial mammals. Note that the
IPP literature includes methods to detect spatial dependence (such as Ripley’s K -function) and
to incorporate it into the model (e.g., using area-interaction processes) at the cost of increasing
modeling complexity (Renner et al. 2015).
Because of the above derivation, a cloglog transform appears to be most appropriate for
estimating probability of presence, and Maxent version 3.4.0 now uses it by default. The
previous default (a logistic transform, Phillips and Dudik 2008) is now available as an option.

H = —Ep, [In(px)] of the probability distribution P is used as

For both transforms, the entropy
a constant offset to the linear model; specifically, the new cloglog transformation estimates
probability of presence as:
Probability of presence = 1 — exp ( — exp (H ) P (Z ) ) (Equation 5)
Note that this estimate is appropriate for some quadrat size, but we cannot say explicitly

what that size is, since it depends on the (unknown) Cp (this is the important caveat mentioned at

the beginning of this section). At best, we can define the quadrat size implicitly: consider a point



E

2 whose log probability under PX equals the mean log probability, i.e., In(px(2)) = j 23 In(px)]

Such a point could be called a “typical” location of the species, as predicted log abundance there
is average among all points where individuals of the species are found. The predicted probability
of occurrence in a quadrat centered at such a typical point 2 is 1— 1/ e~ 0-632, corresponding
to a predicted abundance of one individual per quadrat. This is similar to Maxent’s logistic
output, which gives a predicted probability of occurrence of 0.5 for such a location. In general,
the cloglog transformed output is somewhat greater than the logistic one (Figure 1), especially at
higher values. The main effect of using the cloglog rather the logistic transform is that areas of
moderately high output (yellow and orange in Figure 2 left) are more strongly predicted
(relatively warmer colors in Figure 2 right). We emphasize that the use of entropy as an offset is
somewhat arbitrary, but has the advantage of being scale independent (for example, it would not
be affected by changing units from meters to kilometers) and produces output values (and hence
mapped predictions) with good visual discrimination across the same range of values (0-1) for
all species. Importantly, whenever more is known about the species, such as its absolute
abundance at some sites or its total population size, the use of entropy as an offset can be
avoided by deriving an estimate of € and therefore the probability of presence for quadrats of
any given size. This is analogous to using addition information about the species’ prevalence to
derive an appropriate offset for the logistic transform (Guillera-Arroita et al. 2014).

Although the above derivation of the cloglog transform provides a stronger theoretical
justification than the robust Bayes argument (Phillips and Dudik 2008) for the logistic
transform, the cloglog transform may have only a small effect on model performance. On a
large reference data set (that of Elith et al. 2006), the cloglog transform marginally lowered
values of model calibration (measured by correlation with 0/1 data encoding observed
absences/presences, known as the COR statistic) relative to the logistic transform for models
made with random background data (Table 1). In contrast, and more importantly, it improved

this measure of model performance when target-group background (Phillips et al. 2009) was



used to reduce the effects of sample selection bias. The raw output (the exponential model of
Eqgns 1 and 2) substantially underperformed cloglog (and other output formats), which is as
expected given that COR measures ability to predict probability of presence rather than
abundance. We note that rank-based statistics such as AUC (area under the receiver operating

characteristic curve) are unaffected by the logistic and cloglog transforms.

Maxent as infinitely-weighted logistic regression (IWLR): the maxnet
package

Because Maxent is an IPP, standard generalized linear modeling software can be used to fit
Maxent models via Poisson regression (Renner and Warton 2013), or even more conveniently,
using standard logistic regression Fithian and Hastie (2013). Specifically, the latter authors
showed that the coefficients 5 of the Maxent or IPP model can be fitted via a weighting process
they call infinitely-weighted logistic regression (IWLR). The idea is to fit a logistic model to
occurrence records (with response variable Y = 1) and background data (points chosen
randomly from the domain D, with response variable Y = 0). This process yields coefficients B for
an exponential model, and has been used in studies of resource selection by animals (Manly
et al. 2002), but may not produce the same values of the coefficients as Maxent. The novel
contribution of Fithian and Hastie (2013) was to give a large weight W to all the background
data and to show that the limit (as V¥ tends to infinity) of the resulting vector of logistic
regression coefficients equals the Maxent (and IPP) coefficients. This allows Maxent (and IPP)
models to be fitted using standard GLM software. The new R package for fitting Maxent models
(maxnet, available at https://CRAN.R-project.org/package=maxnet) does just
this — leveraging the glmnet R package (Friedman et al. 2010) to fit an ll-regularized logistic
regression model with a large weight W.A weight of W = 100 is used by default, in contrast to a
weight of 1 for occurrence records.

Instead of upweighting background points, we may equivalently downweight presence

points (Renner et al. 2015). In addition, the intercept term (¢, above) can be manipulated by



choosing the background weights based on the area of the study region, so that the resulting IPP
is scaled in units of occurrence records per unit area (Renner et al. 2015). Given the area of the
study region, this weighting scheme could easily be used with maxnet, though it would not
affect any of the standard output formats (raw, cloglog etc.) since none of them use .

There is a variety of R packages available for fitting point process models (Renner et al.
2015), so why introduce another? The novel contribution of maxnet is to implement all the
derived feature classes (especially hinge features) and default tuned regularization values of the
Maxent Java application, so that Maxent models can be fitted natively and easily in R. The
package is brief — about 200 lines of code implementing feature classes and regularization
parameters, model fitting, predicting from a model, and plotting of response curves.

Additionally, it provides some simple use examples based on the Bradypus variegatus
(brown-throated three-toed sloth) data set from Phillips et al. (2006). The purpose of the
package is to replicate the behaviour of the Maxent Java application by using the equivalence
with IPPs; this complements Renner et al. (2015), who show (Appendix Section 6) how to
adjust default settings in the Maxent application in order to fit an IPP.

When run on the data set of Elith et al. (2006), maxnet has similar performance to the
Maxent Java application. Small differences are likely due primarily to different implementations
of hinge features and different random choices of background data. In order to limit computation time,
the maxnet implementation of hinge features uses 50 hinge features per environmental variable by
default, with evenly spaced knots, in contrast to Maxent which may use one knot per unique value of
the environmental variable. The scripts used to run maxnet on that data set appear in the online

Appendix, along with further examples of usage.

A change in default feature classes

Both the previous and current releases of Maxent allow the use of quadratic, product (or
interaction), threshold (or step-function) and hinge (piecewise linear) features, in addition to the

original environmental variables (linear features). The selection of feature classes for use in the



model depends only on sample size, though ll-regularization forces many coefficients to zero.
Given enough occurrence records (80+), all of the derived feature classes were previously
considered by the model. Version 3.4.0 differs by omitting threshold features by default
(although they are available as an option), since this appears to improve model performance
generally and results in models that are smoother and simpler, and hence likely to be more
realistic. Avoiding use of threshold features makes a small but useful improvement to the
performance of Maxent (Table 1) on the data set of Elith et al. (2006). The differences in AUC
and COR are similar to differences within the three groupings of modeling methods in Elith

et al. (2006), but smaller than differences among groupings. Apparently hinge features, which
were introduced to Maxent later than threshold features (Phillips and Dudik 2008), are best used
as a replacement for threshold features rather than as a complement. Hinge features provide at
least as much flexibility in the fitted response to predictor variables as threshold features, while
tending to reduce over-fitting to the training data. The scripts used to run Maxent with various
settings for Table 1 appear in the online Appendix. Unfortunately, the data set of Elith et al.
(2006) is not yet publicly available, but when it is publicly released, it will be added to the
online Appendix too, so that the values in Table 1 can be easily replicated.

We emphasize that the settings used in the analyses reported in Table 1 are merely defaults,
and the best choice for other data sets may be different (Merow et al. 2013; Radosavljevic and
Anderson 2014). We have also found that product features barely improve average performance
on the data set of Elith et al. (2006) (not shown), and could usually be omitted in order to make
simpler and more easily interpreted models. Importantly, avoiding product features enables the
use of the Explain tool to interactively explore model predictions (Elith et al. 2010; Renner et al.

2015).

Future directions

Species distribution models based on Maxent and IPP remain an active area of research, as

new methods are developed to accommodate the challenging nature of occurrence data and



species distributions (Fithian et al. 2015; Merow et al. 2016). The open-source release of the
Maxent Java code, together with the maxnet R package, will facilitate the work of others in
improving the science of modeling species distributions. Similarly, we hope that it will facilitate
the practical and public use of Maxent for mapping and preserving biodiversity, as done by the
Atlas of Living Australia (http://www.ala.org.au/).

The IPP perspective on Maxent input requirements and interpretation of model outputs
should provide new direction for research regarding studies of population abundance. One
conclusion is that under certain assumptions regarding the occurrence data, Maxent’s raw
(exponential) output can be interpreted as a model of relative abundance (Renner et al. 2015). A
natural question arising from this is whether in practice, raw output indeed better correlates with
local abundance than logistic output (as used by VanDerWal et al. 2009). This should also
inform meta-analyses of relationships between SDM output and abundance and other measures
of population performance (Weber et al. 2016).

The IPP model also offers new insights into spatial dependence for Maxent models, along
with some tools for detecting spatial trends in residuals (Renner et al. 2015). When we use the
IPP intensity to infer a Poisson distribution for abundance within a quadrat (Eqn. 3) and thereby
determine probability of presence therein, we make a strong independence assumption, namely
that presence of the species at nearby points within the quadrat is conditionally independent
given the predictor variables. This assumption may often be violated on fine spatial scales, for
example because individuals in close proximity interact through competition, reproduction, etc.,
and disturbances such as fire impose spatial signatures on species’ patterns of distribution
(including abundance). Outstanding questions include: How important is this violation in
practice when using IPP / Maxent for modeling abundance or probability of presence from
occurrence data? In what circumstances should modellers resort to more complex variants of
IPPs (such as Gibbs or Cox processes; Renner et al. 2015) to explicitly model spatial
dependence? Similar issues arise when modeling abundance from count data: patterns of

occurrence and abundance may be affected by different processes, resulting in excess zeroes in



the abundance data (Wenger and Freeman 2008). This is likely related to the finding that
Maxent models predict a “potential/maximal abundance”, which may not be attained at all sites
(VanDerWal et al. 2009). Zero-inflated models are often used in place of simpler Poisson
models when modeling abundance from count data that exhibit excess zeroes (Barry and Welsh
2002). Perhaps similar ideas can be applied to occurrence data.

The maxnet R package encodes feature classes and regularization defaults in order to fit
the same models as the Maxent Java application, opening up new ways to better integrate
Maxent modeling with the wide variety of visualization and analysis tools available in R. Future
contributions to maxnet could facilitate this integration, for example by contributing code
and/or a vignette that links maxnet with the dismo package or the ENMeval package
(Muscarella et al. 2014) which manage data preparation, modelling and evaluation for SDM. A
test suite would be very helpful to ensure consistency as new functionality gets added to the
package. Only some capabilities of glmnet are used by maxnet, and others (such as elastic
net regularization and data-driven feature selection) could be incorporated. Alternatively,
glmnet or other IPP packages (such as ppmlasso; Renner et al. 2015) could be used directly
on the data set of Elith et al. (2006) (i.e., not via maxnet) and compared with the performance
of maxnet described here in order to determine the most effective use of IPPs on species
occurrence data. In addition, the standard collection of statistical analyses and maps produced as
html output by the Maxent Java application could be assembled in R, and would then be
available for any species distribution modeling method with an implementation in R.

Finally, we invite developers and modelers to imagine new capabilities for the Maxent Java
application, and to contribute to its development. Free and open access to data, software, tools,
publications, and other resources facilitate key steps towards more informed and powerful
models and more inclusive research outcomes (Soberdn and Peterson 2004). Through these
open-source releases we aim to empower Maxent users as a community to use, contribute, and
innovate towards improvement of the software, and to generate new open-source software

resources and tools.
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Online Appendix

An online appendix contains the scripts used to generate Table 1 and Figures 1 and 2, and

further examples of usage for maxnet.
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Table 1. Comparison of performance of Maxent models with varying choices of feature classes
and output transforms, for a reference data set of occurrence records of 226 species, and
presence/absence data for model evaluation (Elith et al. 2006). Maxent feature classes are
abbreviated as “1” (linear), “q” (quadratic), “p” (product), “t” (threshold) and “h” (hinge).
Results are shown for analyses run with random background pixels, as well as for those
implementing a target-group background (Phillips et al. 2009). The AUC statistic measures area
under the receiver operating characteristic curve, while COR measures the correlation between

model output and 0/1 data representing observed absence/presence.

Feature Output Study with ~ Random background Target-group background

Classes Scaling these defaults AUC COR AUC COR

Lqgpt Cumulative  Elithetal.  0.7220 0.1989 0.7534 0.2368
2006

Lqgpth Logistic Phillips and  0.7282 0.2110 0.7575 0.2447
Dudik 2008

Lqgph Raw 0.7296 0.1855 0.7593 0.2404

Lgph Logistic 0.7296 0.2125 0.7593 0.2465

Lgph Cloglog Present paper: 0.7296 0.2120 0.7593 0.2479
Maxent

Lgph Cloglog Present paper: 0.7271 0.2100 0.7587 0.2490

maxnet



