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Abstract

A new reduced order model (ROM) provides rapid and reasonably accurate prediction
of the complex behavior of multiple, simultaneously growing radial hydraulic fractures.
The method entails vastly reducing the degrees of freedom typically associated with
fully-coupled simulations of this multiple moving boundary problem by coupling
together an approximation of the influence of the stress interaction among the fractures
(“stress shadow”) with an approximation of fluid flow and elasticity, ensuring
preservation of global volume balance, global energy balance, elasticity, and
compatibility of the crack opening with the inlet fluid flux. Validating with large scale
(“high-fidelity””) simulations shows the ROM solution captures not only the basic
suppression of interior hydraulic fractures in a uniformly-spaced array due to the well-
known stress shadowing phenomenon, but also complex behaviors arising when the

spacing among the hydraulic fractures is non-uniform. The simulator’s usefulness is
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demonstrated through a proof-of-concept optimization whereby non-uniform spacing
and stage length are chosen to maximize the fracture surface area and/or the uniformity

of growth associated with each stimulation treatment.

KEYWORDS: Hydraulic fracturing; Reduced order model; Optimization; Multiple

fracture growth

1 Introduction

Reduced order models (ROMs) have a great potential for enabling optimization
and uncertainty quantification for hydraulic fracturing. However, ascertaining the
essential ingredients necessary for a reasonably accurate and suitable efficient ROM for
simulating systems of multiple, simultaneously-growing hydraulic fractures remains a
challenging and open problem.

Hydraulic fracturing (HF) is a well stimulation technique used in many industrial
applications include mining, waste disposal, and enhanced geothermal systems [1-3]
The most well-known application is its use for increasing the rate at which oil and gas
can be extracted from wells. In this application, pressurized fluid drives growth of
cracks through the reservoir rock, carrying granular proppant that is left behind in the
created fractures. The resulting high conductivity pathways promote an increased flow
of hydrocarbons from the reservoir formation towards the well (as described in further
detail by e.g.[4]). Both vertical and horizontal wells are stimulated in this way, with
vertical well simulation comprising most cases over the 70 year history of hydraulic

fracturing and horizontal well fracturing comprising the essential advance for unlocking
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unconventional (low-permeability) resources in the past two to three decades [5].
Essentially all horizontal wells in unconventional reservoirs (such as shale gas and oil)
are treated by hydraulic fracturing, and the most common approach is to stimulate in a
sequential manner from the “toe” to the “heel” of the well (see description in e.g.[6]).
Within each of these sequential “stages”, multiple clusters of perforations comprise the
reservoir entry points, with the intention that injected fluid is reasonably uniformly
distributed among these possible entry points, thereby uniformly stimulating the
reservoir rock. Although such a multistage technique has enabled tremendous cost
savings, analysis of production logs over several basins tends to show that between 20
to 40 percent of perforation clusters do not contribute to production [7], indicating
current simulation strategies are highly non-optimal. One contributing factor is the non-
uniformity of reservoir properties, including the in-situ stresses along the well e.g.[8,9].
Another factor is almost certainly the widely recognized phenomenon known of “stress
shadowing” (see e.g. field evidence in [10]). Stress shadowing refers to suppression of
some HFs as a result of the compressive stresses exerted on them by other, nearby HFs
(e.g.| ]). One result is that the ideal case of uniform hydraulic fracture growth (Fig.
la) is probably never achieved. Instead, some hydraulic fractures are suppressed due to
the presence of locally elevated compressive stress (Fig. 1b as previously discussed by

e.g.[14], see also. [11,12,15,16,17,18]).
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Fig. 1. Illustration of multiple, simultaneous HFs in one stage showing. (a) Ideal,

uniform result, and (b) Result in which central fractures are suppressed.

While there are certainly demonstrations showing use of hydraulic fracture
simulators to identify approaches that improve uniformity of stimulation (see
e.g.[6,19]), optimization is challenging because of the simulations’ computational
intensity. Overcoming this challenge has opened a growing area of interest in generating

reduced order models for hydraulic fractures, for example following formalisms that
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involve order reduction via an empirical search for eigenfunction bases that can be used
to capture system behavior over some subdivision of the time domain ([20-24]). Here
we follow a different approach, but the goal is the same, namely, to obtain a reduced
order model that provides a useful approximation to the full model, and with the key
feature being capturing interaction of simultaneously growing hydraulic fractures.

While there are several possible threads in the literature that aim generally at
simulating and optimizing multistage completions, here we will briefly introduce the
background most relevant to the current contribution. The Implicit Level Set Algorithm,
or “ILSA” [25] was extended by [19] for multiple parallel-planar HFs, including full
3D elastic coupling between the simultaneously propagating fractures (“ILSA II”’). This
simulator has been used to demonstrate that the stress shadow effect can be reduced
with appropriate placement of interior HFs close to the outer HFs to inhibit their growth
relative to the other fractures in the array.

Although ILSA II is a fully coupled benchmark simulator (to use terminology
commonly contrasted with ROMs, we also can call this a “large scale” or “high-fidelity”
model), implementing state of the art approaches to enable accurate calculations on very
coarse meshes, the model can require several days, and sometimes over one week, to
compute a multi-fracture result at typical reservoir length and time scales (note timing
is for single node calculations, ~2.5 GHz processor speed). Hence, optimization of HF
design, which can require hundreds or thousands of model runs, is not practical with
this or other models with run times on the order of tens of hours to days. Similarly,

uncertain quantification, which also can require thousands or model evaluations, is not
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typically possible. A first step is, therefore, addressing the need for rapid, even if
approximate, simulation. Such ROM simulators can be used to do broad explorations
of high dimensional parametric spaces, identifying combinations of parameters, which
can be examined in detail by a few, fully-coupled simulations.

We previously demonstrated the feasibility and basic concept of a new HF
simulator, called “C2Frac”, which very rapidly estimates the growth of an array of HFs
[26]. In this prototype model, the HFs are restricted to radial, planar growth - as in the
current version presented here - but under the additional limitation that fractures remain
small in radius compared to their separation. The method uses semi-analytical HF
solutions (after [27]), coupling a far field approximation of the interaction stress via an
overall energy balance. In this way, the model predicts each HF’s aperture Wi(¢), net
pressure Pi(?), radius R;(f), and inflow rate Qi(¢) for different choices of uniform or non-
uniform spacing among N HFs. The validating shows good agreement between C2Frac
and ILSA II benchmarks, however, because of the use of a far-field approximation of
the interaction stress between the HFs, the C2Frac estimates diverge from fully coupled
benchmark solutions when the fracture radii become similar to the fracture spacing.
Additionally, because the prototype model does not account for near field stress
interaction, it does not capture some of the complex behaviors predicted by fully
coupled simulations when the fracture spacing is non-uniform. In particular, the
previous model cannot capture when the interior fractures switch from being suppressed
to accepting the majority of the fluid, as observed in fully-coupled simulations by [19].

Simulating this phase is essential for obtaining accurate predictions, but it can only be
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captured when the impacts of near field stress interaction between very closely spaced
fractures are appropriately modeled.

The necessary model improvements are here enabled by developing a new
algorithm leading to numerical simulations approximating the benchmark solutions for
all times, regardless of fracture radius and spacing, while running 10°-10° times faster
than the fully coupled benchmark simulator. In this paper, the new model, called
“C3Frac”, is developed and validated. We begin by presenting the governing equations.
We then introduce a new approach to approximation of the interaction stress from each
fracture based on a uniformly pressurized crack with equal volume and radius to the
actual HF. Next, we describe an interaction stress coupled elasticity function, which
preserves volume balance by ensuring the elasticity solution is consistent with the inlet
flow rate boundary condition. Then, the system of governing equations is completed by
requiring that the fluid is partitioned among the multiple entry points so as to maintain
equality of the wellbore pressure predicted for each fracture while also conserving the
fluid injected into the wellbore. These final conditions are required by both the fully
coupled and approximate simulator. In the case of the fully coupled simulator the
wellbore pressure is predicted by carefully simulating fluid flow at all locations within
the fracture so as to obtain an accurate estimate of the pressure at the fracture inlet
(wellbore). In contrast, the approximate simulator approximates the fluid flow in a
manner preserving the main contribution to viscous energy dissipation and then predicts
the inlet pressure for each fracture using global energy balance.

After presenting the model, we next show how well it approximates the fully
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coupled simulations. Following this validating, numerical experiments illustrate cases
for uniform and non-uniform spacing designs to indicate how spacing effects the
hydraulic fracture growth. Thus, we utilize the new C3Frac model to search for
optimized HF scenarios in terms of created fracture surface area, providing examples
of optimized designs for different stage lengths, inflow rates, and pumping times. The
work concludes with a demonstration of the benefits of optimization and the potential
for non-uniform fracture spacing to promote multiple methods for promoting multiple

HF growth.

2 Governing Equations

In a typical HF treatment of an oil or gas well, one or more fractures is/are created
by injection of fluid. The fracture is initiated within a rock formation that contains the
hydrocarbons (the reservoir), and propagates perpendicularly to the orientation of the
minimum in situ confining stress a,. Here the HFs are considered to grow transversely
to a horizontal well, as illustrated by Fig. 1. This model accounts for the growth of N
fractures within a single stage and, for now, neglects the stresses induced by the
previous stages [28-30], noting that these can be important especially if they induce
substantial fracture curving. Furthermore, we note that if the fracture curving is
negligible (see [31] for one approach for ascertaining if the curving will be important),
then these previous-stage stresses can be accounted for with a straightforward extension
of the approach wherein the stresses from fractures in the previous stage(s) are
accounted for in the same manner as we account for fracture induced stresses within

the same stage. The model, then, considers an array of N planar fractures distributed
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within one stage of length Z (see Fig. 2). Hence, the spacing /i, k=1,..N-1 between each

of the fractures is such that:

Z=th (1)

k=1

Growth of the array of HFs is driven by injection of an incompressible fluid from a
wellbore at the center of each of the radially-growing HFs (Fig. 1). The rate provided
to each HF is variable and determined as a part of the solution, however, to conserve
fluid in the wellbore, the influx rates to each fracture must always sum to a constant
total volumetric rate Q,. This is to say that we consider the total fluid injection rate
provided to the wellbore to be a constant, but the partitioning of this fluid to each
fracture to be transient. The HFs are taken to propagate quasi-statically (i.e. well below
the speed of sound for the rock) in a permeable, linear elastic rock characterized by E’
= E/(1-V?) for Young’s modulus E, Poisson’s ratio v, and toughness K "= (32/m)"*Kc for
fracture toughness K;c (after [27]). Solution to the problem consists of determining the
partitioning of the influx to each HF as well as each HF’s crack width, net pressure, and
radius. Several additional assumptions are introduced to simplify this problem:

(D Crack propagation follows linear elastic fracture mechanics (LEFM), which
assumes that the material follows a linear elastic stress-strain relationship
everywhere except for in a very small “process zone” near the crack tip [32].
Crack propagation will occur when the opening-mode stress intensity at the
crack tip attains the material fracture toughness [33,34].

(I)  Lubrication theory is used to describe laminar flow of a Newtonian fluid

within the fracture (e.g.[35]).
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(III) ~ The rock is impermeable, and hence the leak off term is not considered in
this study (i.e. it is not considered in the fluid mass balance of Eq. (2)).

(IV)  All HFs grow radially and parallel to one another.

(V)  Gravitational force is neglected both in the elasticity and fluid flow
equations.

(VI)  The fluid front is coincident with the crack front, meaning the lag between
the fluid front and fracture tip is very small compared to the fracture radius,
which is valid under typical high confinement conditions encountered in
reservoirs [31].

(VII) The far field in situ stress o, is uniform and constant, although the total
compressive stress acting on each fracture is, of course, non-uniform and
non-constant due to the interaction with its neighbors.

For a detailed discussion of several of these common assumptions in hydraulic
fracture modeling, especially regimes of small versus large viscosity and small versus
large leakoff, see Detournay [48]. We also idealize that, for the entire period of growth,
the fractures remain planar and radial, as illustrated by Fig. 2. Again we note that this
idealization neglects deviation of the fracture path either due to interaction with natural
fractures or due to stress shadowing from other HFs [16,30,31,37,38,39,40]. It also
neglects the presence of a height growth barrier which is present in most reservoirs and
leads to a transition from radial to blade-like growth (called the “PKN” geometry after
[41,42]). Based on similar arguments to those described in detail by [19], this model is

expected to remain valid for gently curving HFs, as long as the impact of the curving
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on the energy required to drive the HFs represents a small correction to the leading
order term(s) used by this model. However, it is also clearly possible that the stress
interaction will be affected by the curving and, in the context of a coupled model where
small perturbations can sometimes be amplified, it is possible that scenarios in which
the curving significantly impacts behavior will be discovered as a part of future research.
Furthermore, ongoing efforts will aim at capturing the transition to PKN-like growth,
but the present model is limited to the radial growth period that persists as long as the
fracture radius does not exceed the lithologically-limited fracture height. An additional,
important limitation in scope is that here the near-wellbore pressure losses due to
fracture tortuosity and/or perforation friction and pressure loss associated with fluid
flow through the inside of the casing between the perforation clusters are neglected.
These, too, are readily accounted for, through incorporated into the power balance as
one power contribution to preserve the inlet pressure condition [43,44], but not the
focus of this paper. Finally, accounting for interaction with natural factures is a

challenge which remains for future research and is not addressed here.
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Fig. 2. Geometry of the multiple HF problem for N HFs distributed within a stage of
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length Z and with fracture spacing 4 . The arrows illustrate the interaction stresses

between fractures.

Having established the simplifying assumption, we return to the description of the
model itself. For an array of N fractures, there are SN unknowns. They are, for the i
fracture, the opening wi(r,f), fluid pressure ppi(r,f), fracture radius Ri(¢), elastic
interaction stress from the other fractures o;)(7¢), and inlet flow rate Qi(¢), where
i=1,...,N (see Fig. 2). These quantities are governed by a manifestation of a classical
HF model bringing together elastic deformation of the HF, fluid mass balance, laminar
fluid flow, and an LEFM crack propagation criterion [45], with an addition of an elastic
expression of the interaction stress (after [46]) and a condition of pressure and fluid
continuity within the wellbore (after e.g.[19]). Specifically, the model begins firstly
with fluid continuity (mass balance) which, based on the assumptions of an

incompressible fluid and an impermeable rock, is given for the i’ fracture by

ow;(r,t) N 10rq;(r,t)

2
ot r or 0 @

where ¢ is the flow rate across the fracture aperture (width), thatis, ¢ = (v)w for mean
velocity (v).

Secondly, the elastic body is considered to be deformed by a traction 7; acting
across the surfaces of each fracture. In the case of interacting circular cracks, the
elasticity relationship between local normal traction 7 and width w is given by [46]

8R; (¢)

wi(r,t) = FT{Pi,Ti(Pi; 0} pi=1/Ri(®) (3)

Here the non-local integral operator F and internal traction acting on each fracture 7;

are given in Section 3.
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Thirdly, according to lubrication theory for an incompressible Newtonian fluid [47],
the radial flux q;(r,t) is proportional to the gradient of the fluid pressure via the

classical Poiscuille law, that is

w; (7, t)3 0pr (1, t)
12u or

q;(t) = - 4

where u is the dynamic viscosity. Fourthly, according to Assumption (I) (linear elastic
fracture), the crack always propagates in limit equilibrium, and hence the fracture

propagation criterion takes the form
K; = K¢ (5)

where K; denotes the mode I (opening) stress intensity factor and K the model I

fracture toughness. For the radial fracture, K; can be expressed as [32]

/Ri(t) Y Ti(pi t)
K, =2 id i (6)
1 T J;) -,z .2 p;ap

Fifthly, injection of fluid from the borehole is imposed at the center of each fracture.

Hence, based on mass balance considerations, the boundary condition at the inlet of the

crack is given by the source condition for each fracture
21 rlirgw rq;(r,t) = Qi(t) (7)

where R, is the radius of the wellbore.

Sixthly, the boundary conditions at the crack tip are given by zero opening and zero
flux w;(R;,t)=0, q;(R;,t)=0 [48,49] the initial condition (¢=0) is given by R;=0,
w;=0, and pyq;)=0.

Note that with these initial and boundary conditions, the fluid continuity Eq. (2)
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can be integrated to give a global mass balance equation which, although it does not
provide an additional independent equation (it follows directly from equations already

defined), is useful for simulation. This equation is given by

t R;(t)
f Q;(tH)dt = an w;(r, t)rdr ()
0 0

Also, by substitution of the Poiseuille Eq. (4) into the continuity Eq. (2), we obtain

the Reynold’s lubrication equation given by

an'(T', t) 110 ap l-(r, t)
_ 10 > o)

or  12uraor <rwi(r, £ or
Recall that 5N equations are required to solve for the SN unknown quantities:
fracture opening wi(z, t), fluid pressure pyi(7, ¢), radius R;(?), elastic interaction stress
from the other fractures oy)(7 ¢), and inlet flow rate Qi(z). So far we have defined 3N
equations which are provided by the coupled system of partial-integro-differential
equations from Reynolds lubrication equation for laminar fluid flow (Eq. (9)), elasticity
(Eq. (3)), and propagation (Eq. (5)). An additional N equations are obtained from the
interaction stresses which occur when multiple hydraulic fractures grow in close
proximity to one another. An approximation of these stresses is described in Section 3.1.
Hence, the system is closed firstly by the N-1 equations given by the constraint that the
pressure is the same at every entry point (because they are tied by the wellbore)

Pr)(Rw, £) = Dr2)(Rw, t) = =+ = prvy(Rw, t) (10)

Note that a perforation friction loss term can be included [ ], leaving Eq. (10) intact
but providing a pressure loss between the wellbore pressure and the fluid pressure at

the first point within the hydraulic fracture. The system is closed, then, with one
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equation from the constraint that the sum of fluid injected to all entry points must equal

the total injection rate Q,, that is

N
ZQz(t) =0Q, (11)
i=1

These form a complete system for determining wi(r, £), pri(r 1), Ri(t), oii(rt), and
Qi(?). The problem, then, consists of finding these unknowns as a function of given
quantities Q,, 1, K’, E’,Rw, N, hi, and t, where p’=12 p, for dynamic viscosity x, all
other quantities are as previously defined, starting from known values of these

quantities at an initial time #.

3 Approximation
3.1 Interaction Stress Approximation

The main challenge and interest of the problem is due to HF interaction. In general,
the interaction stresses need to be computed based on the details of the pressure
distribution inside each HF (as in e.g. [19]). However, such an approach is not
compatible with the desire for rapid, approximate computation. So, for this model, we
propose an approximation of the interaction stress using the uniformly-pressurized
crack solution of [50], whereby the normal component of stress performed by
neighboring crack j on crack i is determined as

11
2P, 11 o 8ji2sin5@;; + 7;,;5inb;;
O = 6; i ZCOSE(pjll- —tan

1 1
6j,i2COS§‘Pj,i + Tj'iCOSQj,i

(12)

3 3 11
+ ;6 2cos (E ®ji— 9j,i> — 5,i0j,i 25in > @y

where
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N| =

2

1
t=(1+3) = + 445

2
R:
(PiR_;> +{fi—1

1 R; : 2
;i = arctan f_ @j; = arccot piﬁ + i — 1| /285,
Ji J

Recall that {;; is theratio of spacing h;; (between fracture i and; ) to the crack radius

(13)

)
I

R;, and recalling that p; is the ratio of radial position r to fracture radius R;, p; = RL{
Note that the {;; value decreases as the fracture grows, that is, as R; increases for
each fracture.

In the solution presented in Eq. (12), P; is a uniform internal net pressure. The key
to the approximation, then, is to choose this internal pressure so as to best approximate
the actual interaction stress produced by HFs with non-uniform internal pressure. The
approach used here is to select this uniform pressure for each HF at each time step so
as to generate a fracture with the same volume as the actual HF being opened by a non-
uniform internal pressure. That is, for the j hydraulic fracture the classical expression

for the volume of an ellipsoidal crack resulting from uniform internal pressurization

[50] leads directly to

g t
R e A K (14)
0

The interaction stress model is completed by summation of the interaction stress
for each fracture from all neighbors. Hence the interaction stresses exerted on the i

hydraulic fracture is approximated as
N,j#i
o1y = 2 0ji[piRi/R; ;i Vit P (15)

i=1
where o;; is given by Eq. (12) and P;is given by Eq. (14).
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3.2 Approximating Elasticity and Fluid Flow

Elasticity, crack propagation, and fluid flow are strongly coupled through Eq. (3). The

non-local integral operator F and internal traction acting on each fracture are given by

T{pp T; (pp t)}=fp:ll \/SZS N fol xz/WLl(szt) dxds
-p;

(16)
Ti(p,t) = Pry(p.Rot) = o1 (p R t) = 00

recalling that where the o, is the far field stress, and oy is the interaction stress
defined by Eq. (15). Additionally, ;; is the ratio of spacing h;; (between fracture i
and j) to the crack radius R; (see Section 3.1), and ps(;)(r,t) is the fluid pressure,
a part of the solution. In general, a complete solution is required simultaneously
satisfying all of the relevant governing equations. But, the computational intensity of
such a solution is the reason why fully coupled models require large computational
times. To promote rapid computation, we will approximate this solution. Here we begin

by expressing the fluid pressure as

112\ 3
uE
Priy(r,t) = < . > ;(p, t) + 0, pi = r/R;(t)

(17)
2 .
M, t) = A0 |0 —————[ - B(InZ+1), @ ~2479

3(1-p,)3
This form of the pressure is taken based on the solution of [27] for a viscosity dominated,
radially-growing hydraulic fracture in an impermeable rock. When considering the self-
similar solution for zero toughness and constant injection rate for an HF propagating in
an infinite, homogeneous elastic rock, [27] shows that A;(t) = 0.3581 and B =

0.09269. While this solution only applies for this self-similar limit, we borrow its form
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for our approximation because it preserves the well-known behavior of the pressure at
the tip and inlet of a propagating HF [51], which ought to also be present for interacting

hydraulic fractures with non-constant influx rates, that is

2 3
proy~3(1—p) 1-p <1 (18)
Pray~ —Inp,,p, K1

The overall premise is that a solution of this form ought to be reasonably
compatible with the consequences of coupling between elasticity and fluid flow in the
limit where the energy dissipation associated with fluid flow is far greater than the
energy dissipation associated with rock breakage (viscosity-dominated regime, see [52]
for a more complete discussion). It remains to choose the coefficients, and we find that
a usefully accurate approximation can be obtained (as shown in Section 4) by setting
B=0.09269 and solving for the values of the Ai(¢) coefficients that preserve global

volume balance for each fracture (Eq. (8)). Hence, A;(t) is a time dependent variable

chosen to satisfy
1 t
2y (L@ WO | 2(pu Ax(Dpdp — [ i0)de =0 (19)
0 0

where the characteristic width

1/3
Qi (O \

Wi(6) = kan (“'5'2)1/3) (20)

represents the near well-bore width derived from Poiseuille law by extracting the

leading order behavior of Eq. (4) at inlet to relate the fluid flux to the fluid pressure
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gradient, where pr)~Bln(r) for r < R;. Here B is the inlet asymptotic coefficient
given by [27]. Note that the dominance of this term near the inlet and the equality of
the inlet pressures (Eq. 11) justify setting B equal for all HFs. Similarly, drawing again

on the viscosity regime scaling from [27], the radius is given by

1/3
R(t)—%(t)<< ) f Q(t)dt> @1)

where 7,(f) are unknown values of dimensionless radius for each HF. These are obtained
through a requirement that the opening at the HF centers obtained from elasticity,
accounting for interaction stress, is compatible for each HF with the width obtained
from Eq. (20). To do this, substitution of Eq. (17) in Eq. (3) introduces a dimensionless
crack opening 2;(p;, A;(t)) which is determined by w;(p;, A4;(t))/ w;(0,4;(t)) as

02;(pi, Ai (1)) = F{pi, Ti(pi, Ai (£))}/F{0, T;(pi, Ai (1)) } (22)

with F denoting the non-local integral as Eq. (3) shown and T;(p, 4;(t),t) is the

traction acting across the surfaces of the i crack given by

1
rpr2\3

WE 2

) Ai(t) w — 1

3(1—p)3

Ti(pi, Ay (), 1) = <
(23)

N,j#i
(ln— + 1 Z il (t)
]L pl R. (t)
where again we recall that o;; denotes the interaction stress performed by the
neighboring fractures j loading on fracture 7 (see Section 3.1). The coefficient A;(t) is
still unknown. The strategy, then, is to choose this correspondence between the pressure
and opening via Egs. (3) and (17), and in this way we ensure compatibility of the

solution with elasticity, as shown by Eq. (24).
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We arrive to a system of 2N equations for the unknown quantities y;(t) and A4;(t)
that impose: 1) satisfying global volume balance for each HF, and 2) requiring the HF
opening at the center, computed from elasticity and including the interaction stress, to
be compatible with the opening required by Eq. (20). Hence

Jznyi(t)zLi(t)ZWi(t)f Q;(pi, Ai(©))pidp; = f Qi(t)dt
0 0

I 4y;(t)L;(t)

yields Vi(t)
~ l| - {Ai(t)} @4
nE' :F{O, Ti (pi'Ai(t): t)} - Wi(t) )

3.3 Motivation for Energy Calculation

It is useful at this point to summarize. The model presented here is constructed so
that it first and foremost exactly satisfies global fluid volume balance for each fracture.
The solution is also constructed so that the correspondence between the fluid pressure
and HF opening exactly satisfies elasticity equation for each fracture, up to a scaling of
the elasticity equation by the HF radius, which is chosen via y; to ensure that the
elastically-determined width at the inlet is compatible with the influx boundary
condition. Hence, we have replaced the need to solve for 3N unknowns (w;, p;, R;) based
on 3N equations given by elasticity, propagation, and lubrication (Egs. (3), (6), and (9),
respectively) with 2N unknowns (y; and A;) satisfying 2N equations given by Eq. (24).
These, of course, depend implicitly upon the calculation of the interaction stress, which
we recall proceeds from Eq. (15) using the solution for a uniformly pressurized crack
with the same volume as the actual HF.

Besides approximating the interaction stress, the present solution method replaces

the propagation conditions K;=K;c for each HF with a zero-toughness tip asymptote
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compatible with elasticity and fluid flow and which is implicit in the form of the
pressure and opening solutions chosen here (see detailed discussions in [27,48,52]).
Hence, the solution henceforth is applicable to only the viscosity-dominated regime of
hydraulic fracture propagation. Generalization to finite toughness HFs is a subject of
ongoing work.

Importantly, for the present solution method, we must realize that Reynold’s
lubrication equation is rather harshly approximated by simply ensuring global volume
balance and a functional form of the pressure and opening expected to arise at the
inlet and tip of the HF. Furthermore, the pressure gradient implied by the lubrication
equation is very large near the inlet (Eq. (18)). Between these issues, it becomes
unreliable to use the distribution of the pressure from Eq. (17) to compute the inlet
pressures for the purpose of imposing the equal inlet pressure boundary condition (Eq.
(10)). We therefore adopt an alternative where the inlet pressure for each HF is
computed in order to satisfy a global energy balance. These energetically-computed
pressures are then set equal to one another, providing an additional N-/ equations
satisfying pressure continuity along the wellbore (Eq. 10), noting that at this point
additional energy loss due to perforations is readily accounted for (after [43]). When
combined with the condition that the sum of the influxes equal a constant total
wellbore pumping rate (Eq. (11)), we obtain in total an additional N equations by

which we determine the N unknown values of the fracture influxes, Qi(z).

3.4 Balancing Input Power

The expression for the input power is obtained by equating the hydraulic rate of



396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

work (product of the pressure and inflow rate) to terms associated with various energy

storage, work, and dissipation terms, that is (after [ )]
Priy(Rw, ©)Q:(t) = U, — Woy — Wiy + Doy + Driy (25)
where:

e Uis a portion that goes into increasing the strain energy by deforming the rock
strain energy — this is the recoverable elastic energy.

e W, is the work done on the crack by the in-situ stress — the hydraulic input power
must be sufficient to overcome this negative work.

e W1 is the work done on each HF by the compressive stresses induced by its
neighbors — again the hydraulic input power must be sufficient to overcome this
negative work.

e D, is the dissipation rate associated with rock breakage.

e Dris the dissipation rate associated with viscous fluid flow.

Note that, consistent with the present limitation to the viscosity regime, without further
loss of generality we can assume D, < Dy, and hence D, is neglected. The remaining
terms can be defined following from basic continuum mechanics definitions. Here we

make use of the form already derived by [26] whereby

. Ri o ow; oT;
U, = nj <Ti — +w; —l> rdr (26)
Ry, ot at
Wowy = —Qi0, (27)
. min(R;Rj) ow: dR; R:
Wiy = —2m <] Oy(i —Lrdr + O1(i —lR-W-(—l)> (28)
® R, (ONFR @ g T R;
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R (0w 29)
Df(l) = 17 Wi ar rdr

Ry

Upon substitution unknowns 4; and y; with explicit dependence upon the unknown Q;
via the expression for W, and with implicit dependence on Q; via the solutions pressure,
width, and radius expressions. Additionally, in order to rapidly estimate the time
derivatives, they are approximated over a single time step according to the power law
growth of width, length, and pressure given by the single fracture solution of Savitski
and Detournay [27]. As such, the dimensionless width, length and pressure rate is set to
be consistent with power law growth of 1/9, 4/9 and 1/3 powers, respectively. Bringing

all of this together we obtain

. N,j#i 220 (0 !
U, = Z n)/l(t)z( )(W) j Qi(pi, Ai(®)) Tner iy (01, Ai () ) pdp (30)
j=1
Wi
( mmin{Rr, R;} \
min{ﬁ—;,l} Ri dW]
N, j#i Jo oI\ P Fp dp G
= — Z < / \1/3 [
=1 ,
(Q, (O dr, k
+2nk ’ 1oy 1/3 R; dt O-I(l)(1 t)-Q _,A(t)
KE"™ R;
2n3( : )
k J

1
3

C (@PE w3 1 3| (am(piai®)\* (B
Df.p(l)—”( Py >f0 Qi(Pi:Ai(t)) ((T —(;) p,dp, (32)

2

. ; 3E12 ’ 3
Dfjny =™ (%) f Q(OA(t)) (-) p.dp, (33)

where R is given by Eq. (21).
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3.5 Summary and Implementation

The final version of the minimalist simulator satisfies:

e Volume balance globally.

e Poiseuille flow via an approximation that preserves the appropriate
behavior of the pressure near the tip and inlet, i.e. where most of the viscous
dissipation takes place.

e The interaction stress based on the solution for a uniformly pressurized
crack with the same radius and volume.

e The width-pressure elasticity relationship exactly.

e Propagation exactly, here limiting consideration to vanishingly small
fracture toughness.

e The condition of equal inlet pressures exactly, with the wellbore
approximated for each HF so as to be compatible with each HF’s global
energy balance.

e The condition that the fracture influxes sum to the total injection rate
exactly.

Such an approach allows an ROM entailing solution of 3N equations for 3N
unknowns, with simple functional relationships connecting all other quantities. In
contrast, to solve the original problem using a fully meshed simulator, even a boundary
element-type (BEM) simulator, would require solving for 2N unknowns corresponding
the HF lengths and influxes plus an additional 4NM? for the nodal values of the pressure,

width, flux, and interaction stress on an MxM mesh for each HF in the array. If the mesh
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consists of 10-1000 elements in each direction, the ROM represents a reduction in
degrees of freedom on the order of 10'-10° compared to a large-scale model. Indeed
this will be shown to be on the order of the factor by which the computational times
differ between the ROM and benchmark simulations. The algorithm used by C3Frac to
implement this approach is as follows:
1) User inputs: Set values for the physical parameters {E, v, Kic, i, O, Z, omin,
Ry, hijtas well as the initial time, final time, and time step for the
calculation, {zy, tr,;4t}, respectively.
2) Pre-guessed state: Set Qi(k);l = Qi(k_l). Then fluid pressure pf(i)(k)‘l,
length Ri(k);l, width w;® 1 of each HF (i = 1,..., N) is predicated

according to Eq. (17), (20) and (21).

2 () (k);113 £ (k)
. W2Q; (1) Wit] "t
w; i (p) = < l £72

1/9
) Qi(p, Ai() )

1

1
) E’t(k) 3 . o)
Ri(k),l — < > Qi(t(k))(k),lt(k) Vi( )il

!

12

1/3
. u (k)1
P, (p) = (1:(—]()) Myeei(pir Ai (1)

For the first-time step, the dimensionless parameters for a viscosity-
dominated HF are presented by [27] with small adjustments to the

coefficients demonstrated by [26]. The interaction stress is estimated as

Eq. (15):
N,j#i h
: : k ; ; i
Ul(i)(k)’l — Z o.j’i(k),l [PiVi( )Ri(k) 1/Rj(k) 1 S NGF
j=1 !

3) Then the Agk)‘l and yi(k);l are solved by the system Eq. (24):
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( N ] 1 \
o (yi(k);lLi(t(k))(k),l) Wi(t(k))(k),lj -Qi(pi'Ai(t)(k);l)(k);lpidp‘
0

(0 o
_f 0 (t®) Mgt =0, i=1,.,N
] . |
(OEFEANGNLAE
4y Ly (e8) |
i 7;E’ F{o, Ti(pi,Ai(t)(k).l’t(k))}
\ _Wi(t(k))(k);l _o, 1w J

To obtain the solution, the system of equations is solved numerically using
Newton’s method. Based on the above calculated value, the stress strain
coupled local crack opening, net pressure and radius is numerically

evaluated. We then substitute the stress coupled Qi(k);l ,yi(k);l

into the
power balance function. Use non-linear solver (e.g. Matlab “fsolve”) to
obtain the V influxes Qi(k)"2 simultaneously satisfying the constraints that
the pressure at the inlet of all of the fractures is the same (i.e. connected
by a horizontal wellbore with negligible friction loss along the wellbore

between the entry points) and a further constraint that the sum of all

influxes to the fractures must equal the total influx to the well. That is,

N
pray P (Ry) = 0ry® Ry = - = pray © (Ry), z % =q,
i=1

Here a critical point is that the pressures are estimated using the
energy balance equation via Eq. (25). Upon substitution of the estimates

for the power terms Egs. (20), (21) and (30)-(33) this estimate is
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5 1/3
2 E”? Qi(k);n /l' ! o o
K ( o ) [0 pdp, —..
0
(k);n
) N jsi —w;j(k) [min(lek);ﬂ’R;k);n):r* .....
(6) jZ::‘ min(R,!“‘”/R;M?”,]) Ri(k)m (k);n (k);n te
27 .[0 Or| Pi R(}f);n’éhl’ Q" pdp, +...
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Evz,u‘(Q.(k)m)} 13 o 1/9
0.04637| —— | In (/)Wﬂ3 =
t ' k)n
£(0") (1)
EVZ,Ll'(QI'(k)m)3 1/31 GIAY 61_1/(-)(]{);" 2 B’
_— Qv — L2 \pdp.
t(k) ( i ) [ ap, J ,0,-2 pldpl

Note the simplicity of the modification, illustrating the potential to include
other mechanisms (e.g. fluid leakoff, perforation loss and previous stage
effect) in a straightforward manner provided their contribution to the
global energy balance can be computed.

Qi(k); ! and

5) Check the relative difference between initially guessed
returned Qi(k)" 2. If the value is below a given tolerance that is

[Qi(k);N _ Qi(k);N—l]/Qi(k);N—l < TOL

(k);2
i

then output the Q as the final result. If not, iterate to convergence.

6) Repeat steps (2)-(5) until £ =1,
Note that the new C3Frac bears a few similarities to the previously-published C2Frac
[26]. Similarities include they both solve the flow rate based on the power balance with

Newtonian numerical method. However, the striking and important difference lies in

the solution of width, radius and pressure, which is solved by using an asymptotic
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solution in C2Frac. In contrast, C3Frac uses Eq. to obtain the non-self-
similar solution caused by the inconstant flow rate with interaction stress included. The
result is that C3Frac and C2Frac give very similar predictions when the fracture radii
are less than the fracture spacing, and they diverge as the fractures continue their growth
such that the courser approximation of the interaction stress and elasticity equation used
in C2Frac becomes less accurate.
4 Validating and Overall Behavior of the Solution

We validate and illustrate the use of the model considering cases with 5 HFs. The
fractures are placed symmetrically relative to the middle fracture. Hence the “outer”
fractures, 1 and 5, are identical. So also the “inner” fractures, 2 and 4, are identical.
Fracture 3 always occupies the center of the array and will henceforth be called the
“middle” fracture. The validating is comprised of comparison of the C3Frac
approximations (ROM) to fully coupled large-scale (“high fidelity”) simulations
obtained using ILSA II (after [19], using similar validating cases to [26]). ILSA II is
extended for multiple, parallel planar hydraulic fractures based on the Implicit
Level Set Algorithm (“ILSA”) [25] ILSA by accounting for full 3D elastic coupling
between the simultaneously propagating fractures. The Implicit Level Set Algorithm
(“ILSA™) is a fully coupled simulator for 3D hydraulic fractures under the constraint
that fracture growth is confined to a pre-defined plane. It’s utility is similar to other
planar3D hydraulic fracture simulators (see review of Lecampion et al[55]), with the
key novelty of enabling accurate solutions on very coarse meshes by embedding an

appropriate tip asymptotic behavior and then computing the moving boundary
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condition of the advancing crack tip through an implicit time stepping method that
projects the front location based on these known asymptotics. Like several other planar
3D hydraulic fracture simulators, the elasticity equation is solved using a 3D
displacement discontinuity method and fluid flow is solved using the Finite Volume
method. The following parameter set is used for both the C3Frac and ILSA II
simulations:
E=9.5 GPa, v=0.2, K;c=0 MPa-m'?,
u=1 Pa-s, 0o=0.1 m*/s, Z=20 m,
O, =70 Mpa, Ryw=0.2m.

For each case, we present comparisons of the time evolution of fracture radius, fluid
influx to each fracture, fracture opening at the center, and total fracture area. We also
present three-dimensional plots showing the radius of each HF with color scale
corresponding to the HF width. Figs. 3 and 4 show results from a case where the HFs
are uniformly spaced so that ;1 = 5 m and hence fracture planes have z coordinates (in
meters) z1=0, zo=5, z3=10, z4=15, and z5=20. Figs. 5 and 6 show results corresponding
to a non-uniformly spaced array in which fractures 2 and 4 are moved so that /#;=3.6 m,
corresponding to fracture planes having z coordinates (in meters) z1=0, z2=3.6, z3=10,
z4=16.4, and z5=20. These results presented include: The dimensionless radius R;(t)/Z,
the inflow rate q;(R,,,t), the crack aperture at inlet w;(R,,,t) and total fracture area

defined as

A() = z R2() (34)
i=1
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Fig. 3. Evolution for uniform spacing 4;= h>= h3= hs=5m, showing results from both

C3Frac (ROM) and ILSA II (large scale).
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Fig. 6. C3Frac compared with ILSA II for non-uniform array with 4;= 44=3.6m and
h2>= h3=6.4m.

Overall the ability of C3Frac to approximate the fracture radius and area is very
good. The inlet flux is also adequately approximated, with several observations that can
be made. Firstly, we observe the stress-shadowing phenomenon in which outer fractures
grow preferentially while growth of the inner fractures is stunted. This phenomenon has
also been observed by many others (e.g.[ ]), and is strongly evidenced in the
uniform spacing case (Fig. 4), where the inflow to the outer fracture increases sharply
to 0.05m’/s and consumes nearly all the total injection rate after 20 seconds. The
localization of growth in the outer fractures is understandable because they have no
constraint on their growth from outside the array. At the same time, flow rate to the
other fractures decreases to approach zero. This is understood because the interior
fractures have to compete with one another in an induced compressive stress field that

is established by the outer fractures and enhanced by any additional growth by the
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interior fractures. The localization to the outer fractures becomes more pronounced with
time while growth of the inner fractures is minimal for uniform spacing (4;=5m) case
(Fig. 3)

Upon changing the spacing /; from 5m to 3.6m, the induced stresses from the inner
fractures on the middle fracture decrease as the spacing between the inner and middle
increases. Under this spacing, the inlet flow rate to the outer fractures consumes less of
the total influx to the wellbore and the middle fracture’s flow rate is only slightly less
while the flow rate to the inner fracture remains almost constant with time. A similar
behavior was observed by [19].

Further fracture growth is driven by a somewhat surprising mechanism. Capturing
this mechanism is critical to matching the benchmark ILSA II simulations, and this was
not possible with the prototype C2Frac model presented by [26]. The present work has
focused on better approximating the stress interaction among the fractures especially
when the radius exceeds the spacing. The “squeeze out” phenomenon (first observed
by [19]) approximated by this new version C3Frac is described as follows. Due to the
relative growth difference among the five fractures, the interaction stress induced from
inner fractures obtains a negative value (tensile) near the tip. Combined with the impact
of the moving boundary on the time derivative of the energy integral, a decreased
interaction stress contribution is formed in the total energy balance for inner fractures
via Eq. (28).

In the current example, the dominance of the fractures, 1, 3, and 5 is thus stopped

by the reversal of the inner fractures at 50s (see Fig. 6). The fluid that was in these
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fractures in the region near the wellbore is subsequently displaced toward the perimeter
as they are subjected to the induced stress associated with the now rapidly inflating
inner fractures. This outward squeezing of the fluid has the effect of advancing the
fracture by the displacing the fluid from the vicinity of the wellbore rather than by influx
from the wellbore. A new phase is reached in which the role of the inner fractures
switches from being passive and accepting relatively little fluid to accepting the
majority of the fluid and actively driving the dynamics of the fracture development
throughout the array. The increased uptake of fluid in the inner fractures also has a
suppressing effect on outer fractures. As a side effect, the middle fracture gets a chance
to take in more fluid from the wellbore, which is also depicted by a small rise (Fig. 6)
shortly after #,. At =80s, the suppression effect from inner fractures also starts to affect
middle fracture, and ultimately chokes further uptake of fluid into fractures 1, 3, and 5.
Note that for the uniform spacing, the inner fractures never switch from being stunted
to being dominant because they do not grow sufficiently to be impacted by the negative
stress induced by the ratio 4/R.

Besides the very good agreement between C3Frac and ILSA 11, the C3Frac results
also indicate the temporal and spatial character of crack opening (Fig. 6 and Fig. 4) in
which the penny-shaped geometry is valid until the extension of the fracture becomes
of the order of the stage length. As time goes on, a compressed region, approaching
closure (w;(p;,t) = 0), appears owing to the interaction stress performed by inner
fractures during the reversal process (Fig. 6).

Since the total fractured area can be related to the potential recovery of
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hydrocarbons (e.g.[4]), total fractured area is an important metric of hydraulic
fracturing effectiveness (e.g.[19]). Here we define Ao (), which is the summation of
surface area A(f) over all the fractures, where A;(t) = 1R;(t)?. When all the fractures
are small, so that their mutual stress interactions are insignificant, all configurations
generate surface area at roughly the same rate and almost linearly with the time.
However, for £> 50 s, because of the ever-increasing interaction effects, the 4#;=3.6m
case (12,000 m?, Fig. 6) generates more area than the uniform cases (7,500 m?, Fig. 4).
Note that the same total volume is injected over the same time of pumping for these
two cases. The reason for larger surface area in the non-uniform spacing case is a
beneficial effect of the reversal fractures, causing dominance of fractures 2 and 4 in the
latter part of the injection and an overall more uniform distribution of total volume
among the 5 fractures. Hence these results show the total fractured area can be increased
by more than 60% by selecting configurations for which 4,=3.6 m, as result consistent
with [19].

Furthermore, non-uniform four and six fractures are also employed to test the
validation between C3Frac and ILSA II. shows results from a four fracture case
where the HFs are non-uniformly spaced so that 41 = 5 m and hence fracture planes
have z coordinates (in meters) z1=0, z>=5, z3=15, and z5=20. shows results for a
non-uniformly spaced six-fracture array in which fractures 2, 3, 4 and 5 are moved so
that 4;=2.75 m, h>=4.25 m, corresponding to fracture planes having z coordinates (in
meters) z1=0, zo=2.75, z3=7, z4=13, zs=17.25 and z5=20. The level of agreement between

the ROM of C3Frac and the large scale model of ILSA II is similar to what was obtained
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for five fracture cases. We also note that the aforementioned “squeeze-out” is observed
in the six fracture case but not in the four fracture case presented here, although further
numerical experimentation may lead to discovery of squeeze-out in certain non-uniform

four fracture cases as well.
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Fig. 7. C3Frac compared with ILSA II for a non-uniform four fracture array with 4;=

h3=4m, h,=12m.
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Fig. 8. C3Frac compared with ILSA II for non-uniform six fracture array with A;=
hs=2.75m, h,= hs~4.25m and h3;=6m.

So far we have discussed the overall behavior of the system illustrated both by
C3Frac and the ILSA II benchmarks. But most importantly, Figs. 3-8 show the
similarity between C3Frac and ILSA II. Typically, C3Frac remains within 2% relative
to the ILSA II benchmark for fracture area. The worst match is in the fracture opening
at the wellbore, which is in about 10% discrepancy for the inner fracture and as much
as 50% for the outer and middle fractures. Note that in the far field (short HF) previous
version C2Frac [26], simulates the radial growth only in the range that R,../Z is smaller
than 0.6. Through the substantially modified solution method algorithm, the
approximation to the benchmark ILSA II is achieved even after the fracture radii exceed

the total stage length.
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Table 1
Computation time compare between C2Frac, C3Frac and ILSA II for uniform fracture

array at same simulation time and steps.

Uniform Five |C2Frac C3Frac ILSA II
Computation
1.06s 255s 220612 s
time
Simulation time =903 =203 s =203 s
12 12 128 steps
& Steps 8 steps 8 steps P
p & INTEL-i7 INTEL-17 INTEL-XEON
TOSESSERE 770K 4770k E5649
RAM 4.00 GHz. 4.00 GHz. 2.53 GHz
32 GB RAM 32 GB RAM 96 GB RAM

While achieving the previously-demonstrated accuracy, the simulator takes only
minutes to compute a single multi-fracture result at typical reservoir length and time
scales on a personal computer. Although this is much slower than C2Frac, which
computes in a few seconds, the benefit is the ability to simulate even when the fractures
are long relative to their separation. To this point, an illustration of computation time
for C2Frac, C3Frac, and ILSA II is presented in Table 1. Note, however, that the
computation time of ILSA II for each time step continuously increases because the
advancing front leads to an ever-increasing number of elements in the simulation, there
is no such increase in computation time per model time step in C2Frac or C3Frac. We

also note that there is a possibility to significantly speed up the simulations by
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combining C2Frac and C3Frac, where the former is used to simulate growth until the
maximum fracture length reaches some threshold (say, around half of the stage length),
after which C3Frac is used to compute the rest of the growth, For example, in /#;=3.6m
case, before the squeeze out effect occurs (the point in time where the C3Frac
enhancement become most important), the fracture growth can be well-approximated
by C2Frac in seconds, which in this case would save 3 minutes of computation time
over using C3Frac only. Either way, the simulations are much faster than fully coupled
simulations, which can take tens of hours and up to a week to compute on a similar
computer. Because of the speed of calculation and reasonable accuracy, this new
approximate simulator opens new possibilities to explore large parametric spaces,
identifying combinations of parameters associated with optimal behaviors (i.e.
maximizing fracture surface area) and enabling time consuming but accurate fully-
coupled simulations to be focused on these regions of interest in the parametric space
that governs the behavior of the system.
S Parametric Study

A few examples illustrate the optimization enabled by the rapid computation times
associated with C3Frac. The metric by which we evaluate the performance of a given
configuration is taken as the total surface area of all the fractures in the array until time
t, which we represent by A(z; h;). It is useful to normalize by 4*(T), the total fracture
area of N non-interacting fractures each taking the same total volume of fluid and
growing exactly uniformly according to the relevant analytical solution [27]. The ratio

A(t; h1) AX(T) represents the relative change in the total fractured area that is achieved
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by adjusting h;. We plot A(T; h;)/ A*X(T) as a function of the dimensionless
configuration parameter /4;(N-1)/Z, with various stage lengths Z and injection rates Q.
These results are presented in Figs. 7 and 8, where we note that the uniform spacing
hi=Z/(N-1) is represented as 1, while its limiting values of 0 and 2 correspond to non-
uniform limiting cases with /4;=0 (touching of fractures 1-2 and 4-5) and /#,=2*Z/(N-1)
(touching of fractures 2-3-4), respectively.

First, we illustrate the impact of stage length, keeping all other quantities such as
injection rate and time equal, Fig. 7. We compare results for stage length Z =25m, 50m
and 100m. We observe that the uniformly-spaced configuration, coming with a
significant stress shadow especially at Z=50 and 100m, corresponds to a lower
normalized area around 0.75. By decreasing /4; below Z/(N-1), that is, by moving the
2" and 4" fractures away from the center fracture as suggested by [19], results in 80%
to 120% relative increase in the total fractured area. This increase comes for all stage
lengths, despite the existence of some important differences. Most notably, a smaller
interval ratio s;(N-1)/Z s required to maximize the generated area for the largest stage
length. This is because such a small interval length is needed to stimulate the squeezing
effect, which turns out to have an important impact on maximizing the fracture area.
Also note that the sensitivity of the total, final area to the spacing (derivative of the
plots in Fig. 7) tends to be greater for the larger interval length and at larger injection
times, meaning that such spacing optimization is more important when interval lengths

and/or injection times are large.



730
731

732

733

734

735

0.95
0.9

<
20.85
0.8
0.75

0.7

b)

0.95
0.9
0.85
§ 0.8
0.75
0.7
0.65
0.6
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The prior increases in productivity (inferred from the surface area) of uniform
spacing stimulations by using smaller stage lengths Fig. 7 come without need for
increasing injection rate. To investigate if there is benefit in optimizing in terms of
injection rate, we plot the normalized area A(7; h;)/ A*(T) versus the configuration
perturbation parameter /; for a representative selection of values of the injection rate
0, given by 0.1m?%/s, 0.2m*/s and 0.3m’/s, adjusting injected volume to ensure
satisfaction of the viscosity regime requirement. The total injection volume is preset as
120 m® and 720 m® and stage length is 50m.

We observe that the shapes of these curves are very similar, but a little shifted over
the range of values of the configuration parameter considered. This is due to fluid flow
that follows Poiseuille law, Eq. (4). For the sake of argument, assume we can ignore
differences in the pressure gradient between fracture entry points. Then the crack
opening near the inlet w;(R,,,t) is proportional to the inlet flow rate gi(f) '/>. When
the injection rate is set to be 0.2 m>/s, the crack width is 1.26 times larger than in the
case where 0,=0.1 m%/s. Hence, for the same injected volume, the cases with larger
average width (opening) give a smaller fracture area. This relationship is the cause of
the observed differences in Fig. 8, where O, =0.1 m>/s leads to about 30% more
fractured area than O, =0.2 m®/s. Otherwise, for a given injection rate, the total crack
opening is maximized for the spacing that also achieves the maximum area, as
illustrated by Fig. 8(a) and Fig. 8(b). The reason is that flow rate becomes the most
uniform in its distribution at that spacing. This observation holds for a while, until the

fractures become very long relative to their spacing. In this super-near-field region, the
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fracture opening profile indicates that the opening in the vicinity of the tip increases at

the cost of decreasing the opening of the central portion Fig. 5. Thus, the maximum

width eventually does not correspond to the spacing that generates the maximum area.
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Fig. 8. Illustrative examples of injection rate effect for total fractured area A(7, /)

and summation of near wellbore width Y W(0,7, &) respectively, in which the HF

parameters such as input volume are set as a)120 m> b) 120 m? ¢)720 m* d) 720 m*

6 Conclusion

A new approximate ROM simulator, C3Frac, rapidly predicts how mechanical

interaction among simultaneously growing radial hydraulic fractures effects their

growth. This approximate simulation method is based on preserving global volume and

energy balance and the elastically-determined crack opening while approximating the
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fluid flow via a functional form preserving the pressure gradient near the inlet and tip
and approximating the interaction stresses based on the analytical solution for
uniformly pressurized cracks with the same length and volume as each hydraulic
fracture. Validating through comparison to results from a fully-coupled, large scale
planar 3D model (ILSA II) confirm the accuracy of the approximation, especially for
prediction of the length of each fracture and the overall created fracture surface area.

The ROM is able to capture complex coupled phenomena. When the spacing
between fractures is uniform, the model confirms the phenomenon of stress shadowing
in which growth of one or more fractures is suppressed by the stresses generated by
their neighbors. However, we have also shown that the model captures a “squeeze out”
phenomenon that takes place for certain non-uniform fracture spacing configurations
when the fracture radii substantially exceed the spacing. Simulations suggest there is
the potential to increase the total fractured area in the array after 3600 seconds of
pumping by 100% compared to the uniform array for which the squeeze out effect does
not occur and the inner fractures are simply suppressed in their growth.

The ROM simulator computes within a few minutes on a typical personal computer,
thereby enabling wide ranging parametric studies and optimization that requires
hundreds of model evaluations. As a demonstration of this capability, it is shown that
non-uniform spacing is one of several ways to impact the uniformity and total surface
area of created fractures. Stage length and injection rate also provide variable
parameters for optimization. From our study, strategic stage length choice is shown to

be a complimentary approach. Somewhat counter-intuitively, we show decreasing stage
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length can actually lead to improvement in the ability to generate fracture surface area
with relatively uniform spacing because of the ability of shorter stage lengths to trigger
the squeeze out effect. The numerical experiments also indicate that smaller injection
rate generates more fracture area for a given injected volume, as expected due to the
lower net pressure and resulting fracture opening. As a tradeoff, such a design will
decrease the capacity for proppant admittance due to the smaller opening.

In summary, this work provides not only a new method for reduced order modeling
of hydraulic fractures, but also, practically, a demonstration that the stress shadow effect
can be modified and to some degree mitigated through selectable treating conditions
such as fracture spacing, stage length, and injected volume. While beyond the present
scope, there is more that can be optimized such as fluid flow rate, fluid viscosity, and
so on. Future work will aim at expanding capability for optimizing horizontal well
completions. These efforts will firstly be aimed at including the impact of leak off,
fracture toughness, and the presence of height growth barriers. Future work will also
focus on including proppant transport and developing benchmark laboratory and field

experiments.
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